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Abstract 

Sentence ranking is a crucial part of 
generating text summaries.  We compared 
human sentence rankings obtained in a 
psycholinguistic experiment to three different 
approaches to sentence ranking: A simple 
paragraph-based approach intended as a 
baseline, two word-based approaches, and two 
coherence-based approaches.  In the 
paragraph-based approach, sentences in the 
beginning of paragraphs received higher 
importance ratings than other sentences.  The 
word-based approaches determined sentence 
rankings based on relative word frequencies 
(Luhn (1958); Salton & Buckley (1988)).  
Coherence-based approaches determined 
sentence rankings based on some property of 
the coherence structure of a text (Marcu 
(2000); Page et al. (1998)).  Our results 
suggest poor performance for the simple 
paragraph-based approach, whereas word-
based approaches perform remarkably well.  
The best performance was achieved by a 
coherence-based approach where coherence 
structures are represented in a non-tree 
structure.  Most approaches also outperformed 
the commercially available MSWord 
summarizer. 

1 Introduction 

Automatic generation of text summaries is a 
natural language engineering application that has 
received considerable interest, particularly due to 
the ever-increasing volume of text information 
available through the internet.  The task of a 
human generating a summary generally involves 
three subtasks (Brandow et al. (1995); Mitra et al. 
(1997)): (1) understanding a text; (2) ranking text 
pieces (sentences, paragraphs, phrases, etc.) for 
importance; (3) generating a new text (the 
summary).  Like most approaches to 
summarization, we are concerned with the second 
subtask (e.g. Carlson et al. (2001); Goldstein et al. 
(1999); Gong & Liu (2001); Jing et al. (1998); 

Luhn (1958); Mitra et al. (1997); Sparck-Jones & 
Sakai (2001); Zechner (1996)).  Furthermore, we 
are concerned with obtaining generic rather than 
query-relevant importance rankings (cf. Goldstein 
et al. (1999), Radev et al. (2002) for that 
distinction). 

We evaluated different approaches to sentence 
ranking against human sentence rankings.  To 
obtain human sentence rankings, we asked people 
to read 15 texts from the Wall Street Journal on a 
wide variety of topics (e.g. economics, foreign and 
domestic affairs, political commentaries).  For each 
of the sentences in the text, they provided a 
ranking of how important that sentence is with 
respect to the content of the text, on an integer 
scale from 1 (not important) to 7 (very important). 

The approaches we evaluated are a simple 
paragraph-based approach that serves as a baseline, 
two word-based algorithms, and two coherence-
based approaches1.  We furthermore evaluated the 
MSWord summarizer. 

2 Approaches to sentence ranking 

2.1 Paragraph-based approach 

Sentences at the beginning of a paragraph are 
usually more important than sentences that are 
further down in a paragraph, due in part to the way 
people are instructed to write.  Therefore, probably 
the simplest approach conceivable to sentence 
ranking is to choose the first sentences of each 

                                                      
1 We did not use any machine learning techniques to 

boost performance of the algorithms we tested.  
Therefore performance of the algorithms tested here 
will almost certainly be below the level of performance 
that could be reached if we had augmented the 
algorithms with such techniques (e.g. Carlson et al. 
(2001)).  However, we think that a comparison between 
‘bare-bones’ algorithms is viable because it allows to 
see how performance differs due to different basic 
approaches to sentence ranking, and not due to 
potentially different effects of different machine 
learning algorithms on different basic approaches to 
sentence ranking.  In future research we plan to address 
the impact of machine learning on the algorithms tested 
here. 



paragraph as important, and the other sentences as 
not important.  We included this approach merely 
as a simple baseline. 

2.2 Word-based approaches 

Word-based approaches to summarization are 
based on the idea that discourse segments are 
important if they contain “important” words.  
Different approaches have different definitions of 
what an important word is.  For example, Luhn 
(1958), in a classic approach to summarization, 
argues that sentences are more important if they 
contain many significant words.  Significant words 
are words that are not in some predefined stoplist 
of words with high overall corpus frequency2.  
Once significant words are marked in a text, 
clusters of significant words are formed.  A cluster 
has to start and end with a significant word, and 
fewer than n insignificant words must separate any 
two significant words (we chose n = 3, cf. Luhn 
(1958)).  Then, the weight of each cluster is 
calculated by dividing the square of the number of 
significant words in the cluster by the total number 
of words in the cluster.  Sentences can contain 
multiple clusters.  In order to compute the weight 
of a sentence, the weights of all clusters in that 
sentence are added.  The higher the weight of a 
sentence, the higher is its ranking. 

A more recent and frequently used word-based 
method used for text piece ranking is tf.idf (e.g. 
Manning & Schuetze (2000); Salton & Buckley 
(1988); Sparck-Jones & Sakai (2001); Zechner 
(1996)).  The tf.idf measure relates the frequency 
of words in a text piece, in the text, and in a 
collection of texts respectively.  The intuition 
behind tf.idf is to give more weight to sentences 
that contain terms with high frequency in a 
document but low frequency in a reference corpus.  
Figure 1 shows a formula for calculating tf.idf, 
where dsij is the tf.idf weight of sentence i in 
document j, nsi is the number of words in sentence 
i, k is the kth word in sentence i, tfjk is the 
frequency of word k in document j, nd is the 
number of documents in the reference corpus, and 
dfk is the number of documents in the reference 
corpus in which word k appears. 
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Figure 1.  Formula for calculating tf.idf (Salton & 
Buckley (1988)). 

 
                                                      

2 Instead of stoplists, tf.idf values have also been used 
to determine significant words (e.g. Buyukkokten et al. 
(2001)). 

We compared both Luhn (1958)’s measure and 
tf.idf scores to human rankings of sentence 
importance.  We will show that both methods 
performed remarkably well, although one 
coherence-based method performed better. 

2.3 Coherence-based approaches 

The sentence ranking methods introduced in the 
two previous sections are solely based on layout or 
on properties of word distributions in sentences, 
texts, and document collections.  Other approaches 
to sentence ranking are based on the informational 
structure of texts.  With informational structure, we 
mean the set of informational relations that hold 
between sentences in a text.  This set can be 
represented in a graph, where the nodes represent 
sentences, and labeled directed arcs represent 
informational relations that hold between the 
sentences (cf. Hobbs (1985)).  Often, informational 
structures of texts have been represented as trees 
(e.g. Carlson et al. (2001), Corston-Oliver (1998), 
Mann & Thompson (1988), Ono et al. (1994)).  We 
will present one coherence-based approach that 
assumes trees as a data structure for representing 
discourse structure, and one approach that assumes 
less constrained graphs.  As we will show, the 
approach based on less constrained graphs 
performs better than the tree-based approach when 
compared to human sentence rankings. 

3 Coherence-based summarization revisited 

This section will discuss in more detail the data 
structures we used to represent discourse structure, 
as well as the algorithms used to calculate sentence 
importance, based on discourse structures. 

3.1 Representing coherence structures 

3.1.1 Discourse segments 
Discourse segments can be defined as non-

overlapping spans of prosodic units (Hirschberg & 
Nakatani (1996)), intentional units (Grosz & 
Sidner (1986)), phrasal units (Lascarides & Asher 
(1993)), or sentences (Hobbs (1985)).  We adopted 
a sentence unit-based definition of discourse 
segments for the coherence-based approach that 
assumes non-tree graphs.  For the coherence-based 
approach that assumes trees, we used Marcu 
(2000)’s more fine-grained definition of discourse 
segments because we used the discourse trees from 
Carlson et al. (2002)’s database of coherence-
annotated texts. 

3.1.2 Kinds of coherence relations 
We assume a set of coherence relations that is 
similar to that of Hobbs (1985).  Below are 
examples of each coherence relation. 



(1) Cause-Effect 
[There was bad weather at the airport]a [and so our 
flight got delayed.]b 
(2) Violated Expectation 
[The weather was nice]a [but our flight got 
delayed.]b 
(3) Condition 
[If the new software works,]a [everyone will be 
happy.]b 
(4) Similarity 
[There is a train on Platform A.]a [There is another 
train on Platform B.]b 
(5) Contrast 
[John supported Bush]a [but Susan opposed him.]b 

(6) Elaboration 
[A probe to Mars was launched this week.]a [The 
European-built ‘Mars Express’ is scheduled to 
reach Mars by late December.]b 
(7) Attribution 
[John said that]a [the weather would be nice 
tomorrow.]b 

(8) Temporal Sequence 
[Before he went to bed,]a [John took a shower.]b 

 
Cause-effect, violated expectation, condition, 

elaboration, temporal sequence, and attribution 
are asymmetrical or directed relations, whereas 
similarity, contrast, and temporal sequence are 
symmetrical or undirected relations (Mann & 
Thompson, 1988; Marcu, 2000).  In the non-tree-
based approach, the directions of asymmetrical or 
directed relations are as follows: cause  effect 
for cause-effect; cause  absent effect for violated 
expectation; condition  consequence for 
condition; elaborating  elaborated for 
elaboration, and source  attributed for 
attribution.  In the tree-based approach, the 
asymmetrical or directed relations are between a 
more important discourse segment, or a Nucleus, 
and a less important discourse segment, or a 
Satellite (Marcu (2000)).  The Nucleus is the 
equivalent of the arc destination, and the Satellite 
is the equivalent of the arc origin in the non-tree-
based approach.  The symmetrical or undirected 
relations are between two discourse elements of 
equal importance, or two Nuclei.  Below we will 
explain how the difference between Satellites and 
Nuclei is considered in tree-based sentence 
rankings. 

3.1.3 Data structures for representing discourse 
coherence 

As mentioned above, we used two alternative 
representations for discourse structure, tree- and 

non-tree based.  In order to illustrate both data 
structures, consider (9) as an example: 

(9) Example text 
0. Susan wanted to buy some tomatoes. 
1. She also tried to find some basil. 
2. The basil would probably be quite expensive 

at this time of the year. 
Figure 2 shows one possible tree representation 

of the coherence structure of (9)3.  Sim represents a 
similarity relation, and elab an elaboration 
relation.  Furthermore, nodes with a “Nuc” 
subscript are Nuclei, and nodes with a “Sat” 
subscript are Satellites. 

 

 
Figure 2.  Coherence tree for (9). 

 
Figure 3 shows a non-tree representation of the 

coherence structure of (9).  Here, the heads of the 
arrows represent the directionality of a relation. 

 

 
Figure 3.  Non-tree coherence graph for (9). 
 

3.2 Coherence-based sentence ranking 

This section explains the algorithms for the tree- 
and the non-tree-based sentence ranking approach. 

3.2.1 Tree-based approach 
We used Marcu (2000)’s algorithm to determine 

sentence rankings based on tree discourse 
structures.  In this algorithm, sentence salience is 
determined based on the tree level of a discourse 
segment in the coherence tree.  Figure 4 shows 
Marcu (2000)’s algorithm, where r(s,D,d) is the 
rank of a sentence s in a discourse tree D with 
depth d.  Every node in a discourse tree D has a 
promotion set promotion(D), which is the union of 
all Nucleus children of that node.  Associated with 
every node in a discourse tree D is also a set of 
parenthetical nodes parentheticals(D) (for 
example, in “Mars – half the size of Earth – is 
red”, “half the size of earth” would be a 
parenthetical node in a discourse tree).  Both 
promotion(D) and parentheticals(D) can be empty 
sets.  Furthermore, each node has a left subtree, 
                                                      

3 Another possible tree structure might be 
( elab ( par ( 0 1 ) 2 ) ). 
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lc(D), and a right subtree, rc(D).  Both lc(D) and 
rc(D) can also be empty. 
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Figure 4.  Formula for calculating coherence-tree-
based sentence rank (Marcu (2000)). 

 
The discourse segments in Carlson et al. 

(2002)’s database are often sub-sentential.  
Therefore, we had to calculate sentence rankings 
from the rankings of the discourse segments that 
form the sentence under consideration.  We did 
this by calculating the average ranking, the 
minimal ranking, and the maximal ranking of all 
discourse segments in a sentence.  Our results 
showed that choosing the minimal ranking 
performed best, followed by the average ranking, 
followed by the maximal ranking (cf. Section 4.4). 

3.2.2 Non-tree-based approach 
We used two different methods to determine 

sentence rankings for the non-tree coherence 
graphs4.  Both methods implement the intuition 
that sentences are more important if other 
sentences relate to them (Sparck-Jones (1993)). 

The first method consists of simply determining 
the in-degree of each node in the graph.  A node 
represents a sentence, and the in-degree of a node 
represents the number of sentences that relate to 
that sentence. 

The second method uses Page et al. (1998)’s 
PageRank algorithm, which is used, for example, 
in the Google™ search engine.  Unlike just 
determining the in-degree of a node, PageRank 
takes into account the importance of sentences that 
relate to a sentence.  PageRank thus is a recursive 
algorithm that implements the idea that the more 
important sentences relate to a sentence, the more 
important that sentence becomes.  Figure 5 shows 
how PageRank is calculated.  PRn is the PageRank 
of the current sentence, PRn-1 is the PageRank of 
the sentence that relates to sentence n, on-1 is the 
out-degree of sentence n-1, and α is a damping 
parameter that is set to a value between 0 and 1.  
We report results for α set to 0.85 because this is a 
value often used in applications of PageRank (e.g. 
Ding et al. (2002); Page et al. (1998)).  We also 
                                                      

4 Neither of these methods could be implemented for 
coherence trees since Marcu (2000)’s tree-based 
algorithm assumes binary branching trees.  Thus, the in-
degree for all non-terminal nodes is always 2. 

calculated PageRanks for α set to values between 
0.05 and 0.95, in increments of 0.05; changing α 
did not affect performance. 
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Figure 5.  Formula for calculating PageRank (Page 
et al. (1998)). 

 

4 Experiments 

In order to test algorithm performance, we 
compared algorithm sentence rankings to human 
sentence rankings.  This section describes the 
experiments we conducted.  In Experiment 1, the 
texts were presented with paragraph breaks; in 
Experiment 2, the texts were presented without 
paragraph breaks.  This was done to control for the 
effect of paragraph information on human sentence 
rankings. 

4.1 Materials for the coherence-based 
approaches 

In order to test the tree-based approach, we took 
coherence trees for 15 texts from a database of 385 
texts from the Wall Street Journal that were 
annotated for coherence (Carlson et al. (2002)).  
The database was independently annotated by six 
annotators.  Inter-annotator agreement was 
determined for six pairs of two annotators each, 
resulting in kappa values (Carletta (1996)) ranging 
from 0.62 to 0.82 for the whole database (Carlson 
et al. (2003)).  No kappa values for just the 15 texts 
we used were available. 

For the non-tree based approach, we used 
coherence graphs from a database of 135 texts 
from the Wall Street Journal and the AP 
Newswire, annotated for coherence.  Each text was 
independently annotated by two annotators.  For 
the 15 texts we used, kappa was 0.78, for the 
whole database, kappa was 0.84. 

4.2 Experiment 1: With paragraph 
information 

15 participants from the MIT community were 
paid for their participation.  All were native 
speakers of English and were naïve as to the 
purpose of the study (i.e. none of the subjects was 
familiar with theories of coherence in natural 
language, for example). 

Participants were asked to read 15 texts from the 
Wall Street Journal, and, for each sentence in each 
text, to provide a ranking of how important that 
sentence is with respect to the content of the text, 
on an integer scale from 1 to 7 (1 = not important; 
7 = very important).   The   texts  were  selected  so  
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Figure 6.  Human ranking results for one text (wsj_1306). 
 
that there was a coherence tree annotation 
available in Carlson et al. (2002)’s database.  Text 
lengths for the 15 texts we selected ranged from 
130 to 901 words (5 to 47 sentences); average text 
length was 442 words (20 sentences), median was 
368 words (16 sentences).  Additionally, texts were 
selected so that they were about as diverse topics 
as possible. 

The experiment was conducted in front of 
personal computers.  Texts were presented in a 
web browser as one webpage per text; for some 
texts, participants had to scroll to see the whole 
text.  Each sentence was presented on a new line.  
Paragraph breaks were indicated by empty lines; 
this was pointed out to the participants during the 
instructions for the experiment. 

4.3 Experiment 2: Without paragraph 
information 

The method was the same as in Experiment 1, 
except that texts in Experiment 2 did not include 
paragraph information.  Each sentence was 
presented on a new line.  None of the 15 
participants who participated in Experiment 2 had 
participated in Experiment 1. 

4.4 Results of the experiments 

Human sentence rankings did not differ 
significantly between Experiment 1 and 
Experiment 2 for any of the 15 texts (all Fs < 1).  
This suggests that paragraph information does not 
have a big effect on human sentence rankings, at 
least not for the 15 texts that we examined. Figure 
6 shows the results from both experiments for one 
text. 

We compared human sentence rankings to 
different algorithmic approaches.  The paragraph-
based rankings do not provide scaled importance 
rankings but only “important” vs. “not important”.  
Therefore, in order to compare human rankings to 
the paragraph-based baseline approach, we 

calculated point biserial correlations (cf. Bortz 
(1999)).  We obtained significant correlations 
between paragraph-based rankings and human 
rankings only for one of the 15 texts. 

All other algorithms provided scaled importance 
rankings.  Many evaluations of scalable sentence 
ranking algorithms are based on precision/recall/F-
scores (e.g. Carlson et al. (2001); Ono et al. 
(1994)).  However, Jing et al. (1998) argue that 
such measures are inadequate because they only 
distinguish between hits and misses or false 
alarms, but do not account for a degree of 
agreement.  For example, imagine a situation 
where the human ranking for a given sentence is 
“7” (“very important”) on an integer scale ranging 
from 1 to 7, and Algorithm A gives the same 
sentence a ranking of “7” on the same scale, 
Algorithm B gives a ranking of “6”, and Algorithm 
C gives a ranking of “2”.  Intuitively, Algorithm B, 
although it does not reach perfect performance, 
still performs better than Algorithm C.  
Precision/recall/F-scores do not account for that 
difference and would rate Algorithm A as “hit” but 
Algorithm B as well as Algorithm C as “miss”.  In 
order to collect performance measures that are 
more adequate to the evaluation of scaled 
importance rankings, we computed Spearman’s 
rank correlation coefficients.  The rank correlation 
coefficients were corrected for tied ranks because 
in our rankings it was possible for more than one 
sentence to have the same importance rank, i.e. to 
have tied ranks (Horn (1942); Bortz (1999)). 

In addition to evaluating word-based and 
coherence-based algorithms, we evaluated one 
commercially available summarizer, the MSWord 
summarizer, against human sentence rankings.  
Our reason for including an evaluation of the 
MSWord summarizer was to have a more useful 
baseline for scalable sentence rankings than the 
paragraph-based approach provides. 
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Figure 7.  Average rank correlations of algorithm and human sentence rankings. 

 
Figure 7 shows average rank correlations (ρavg) 

of each algorithm and human sentence ranking for 
the 15 texts.  MarcuAvg refers to the version of 
Marcu (2000)’s algorithm where we calculated 
sentence rankings as the average of the rankings of 
all discourse segments that constitute that sentence; 
for MarcuMin, sentence rankings were the 
minimum of the rankings of all discourse segments 
in that sentence; for MarcuMax we selected the 
maximum of the rankings of all discourse 
segments in that sentence. 

Figure 7 shows that the MSWord summarizer 
performed numerically worse than most other 
algorithms, except MarcuMin.  Figure 7 also 
shows that PageRank performed numerically better 
than all other algorithms.  Performance was 
significantly better than most other algorithms 
(MSWord, NoParagraph: F(1,28) = 21.405, p = 
0.0001; MSWord, WithParagraph: F(1,28) = 
26.071, p = 0.0001; Luhn, WithParagraph: F(1,28) 
= 5.495, p = 0.026; MarcuAvg, NoParagraph: 
F(1,28) = 9.186, p = 0.005; MarcuAvg, 
WithParagraph: F(1,28) = 9.097, p = 0.005; 
MarcuMin, NoParagraph: F(1,28) = 4.753, p = 
0.038; MarcuMax, NoParagraph F(1,28) = 24.633, 
p = 0.0001; MarcuMax, WithParagraph: F(1,28) = 
31.430, p =0.0001).  Exceptions are Luhn, 
NoParagraph (F(1,28) = 1.859, p = 0.184); tf.idf, 
NoParagraph (F(1,28) = 2.307, p = 0.14); 
MarcuMin, WithParagraph (F(1,28) = 2.555, p = 
0.121).  The difference between PageRank and 
tf.idf, WithParagraph was marginally significant 
(F(1,28) = 3.113, p = 0.089). 

As mentioned above, human sentence rankings 
did not differ significantly between Experiment 1 
and Experiment 2 for any of the 15 texts (all Fs < 
1).  Therefore, in order to lend more power to our 
statistical tests, we collapsed the data for each text 
for the WithParagraph and the NoParagraph 
condition, and treated them as one experiment.  
Figure 8 shows that when the data from 
Experiments 1 and 2 are collapsed, PageRank 

performed significantly better than all other 
algorithms except in-degree (two-tailed t-test 
results: MSWord: F(1, 58) = 48.717, p = 0.0001; 
Luhn: F(1,58) = 6.368, p = 0.014; tf.idf: F(1,58) = 
5.522, p = 0.022; MarcuAvg: F(1,58) = 18.922, p = 
0.0001; MarcuMin: F(1,58) = 7.362, p = 0.009; 
MarcuMax: F(1,58) = 56.989, p = 0.0001; in-
degree: F(1,58) < 1). 
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Figure 8.  Average rank correlations of algorithm 
and human sentence rankings with collapsed data. 

 

5 Conclusion 

The goal of this paper was to evaluate the results 
of three different kinds of sentence ranking 
algorithms and one commercially available 
summarizer.  In order to evaluate the algorithms, 
we compared their sentence rankings to human 
sentence rankings of fifteen texts of varying length 
from the Wall Street Journal. 

Our results indicated that a simple paragraph-
based algorithm that was intended as a baseline 
performed very poorly, and that word-based and 
some coherence-based algorithms showed the best 
performance.  The only commercially available 
summarizer that we tested, the MSWord 
summarizer, showed worse performance than most 
other algorithms.  Furthermore, we found that a 
coherence-based algorithm that uses PageRank and 
takes non-tree coherence graphs as input 
performed better than most versions of a 



coherence-based algorithm that operates on 
coherence trees.  When data from Experiments 1 
and 2 were collapsed, the PageRank algorithm 
performed significantly better than all other 
algorithms, except the coherence-based algorithm 
that uses in-degrees of nodes in non-tree coherence 
graphs. 
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