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Abstract 

A new technique is introduced, linguistic 
profiling, in which large numbers of 
counts of linguistic features are used as a 
text profile, which can then be compared 
to average profiles for groups of texts. 
The technique proves to be quite effective 
for authorship verification and recogni-
tion. The best parameter settings yield a 
False Accept Rate of 8.1% at a False Re-
ject Rate equal to zero for the verification 
task on a test corpus of student essays, 
and a 99.4% 2-way recognition accuracy 
on the same corpus. 

1 Introduction 

There are several situations in language research 
or language engineering where we are in need of 
a specific type of extra-linguistic information 
about a text (document) and we would like to 
determine this information on the basis of lin-
guistic properties of the text. Examples are the 
determination of the language variety or genre of 
a text, or a classification for document routing or 
information retrieval. For each of these applica-
tions, techniques have been developed focusing 
on specific aspects of the text, often based on 
frequency counts of functions words in linguis-
tics and of content words in language engineer-
ing. 

 
In the technique we are introducing in this paper, 
linguistic profiling, we make no a priori choice 
for a specific type of word (or more complex fea-
ture) to be counted. Instead, all possible features 
are included and it is determined by the statistics 
for the texts under consideration, and the distinc-
tion to be made, how much weight, if any, each 

feature is to receive. Furthermore, the frequency 
counts are not used as absolute values, but rather 
as deviations from a norm, which is again deter-
mined by the situation at hand. Our hypothesis is 
that this technique can bring a useful contribution 
to all tasks where it is necessary to distinguish 
one group of texts from another.  In this paper the 
technique is tested for one specific type of group, 
namely the group of texts written by the same 
author. 

2 Tasks and Application Scenarios 

Traditionally, work on the attribution of a text to 
an author is done in one of two environments. 
The first is that of literary and/or historical re-
search where attribution is sought for a work of 
unknown origin (e.g. Mosteller & Wallace, 1984; 
Holmes, 1998). As secondary information gener-
ally identifies potential authors, the task is au-
thorship recognition: selection of one author from 
a set of known authors. Then there is forensic 
linguistics, where it needs to be determined if a 
suspect did or did not write a specific, probably 
incriminating, text (e.g. Broeders, 2001; Chaski, 
2001). Here the task is authorship verification: 
confirming or denying authorship by a single 
known author. We would like to focus on a third 
environment, viz. that of the handling of large 
numbers of student essays. 
 
For some university courses, students have to 
write one or more essays every week and submit 
them for grading. Authorship recognition is 
needed in the case the sloppy student, who for-
gets to include his name in the essay. If we could 
link such an essay to the correct student our-
selves, this would prevent delays in handling the 
essay. Authorship verification is needed in the 
case of the fraudulous student, who has decided 
that copying is much less work than writing an 



essay himself, which is only easy to spot if the 
original is also submitted by the original author. 

 
In both scenarios, the test material will be siz-
able, possibly around a thousand words, and at 
least several hundred. Training material can be 
sufficiently available as well, as long as text col-
lection for each student is started early enough. 
Many other authorship verification scenarios do 
not have the luxury of such long stretches of test 
text. For now, however, we prefer to test the ba-
sic viability of linguistic profiling on such longer 
stretches. Afterwards, further experiments can 
show how long the test texts need to be to reach 
an acceptable recognition/verification quality. 

2.1 Quality Measures 

For recognition, quality is best expressed as the 
percentage of correct choices when choosing be-
tween N authors, where N generally depends on 
the attribution problem at hand. We will use the 
percentage of correct choices between two au-
thors, in order to be able to compare with previ-
ous work. For verification, quality is usually 
expressed in terms of erroneous decisions. When 
the system is asked to verify authorship for the 
actual author of a text and decides that the text 
was not written by that author, we speak of a 
False Reject. The False Reject Rate (FRR) is the 
percentage of cases in which this happens, the 
percentage being taken from the cases which 
should be accepted. Similarly, the False Accept 
Rate (FAR) is the percentage of cases where 
somebody who has not written the test text is ac-
cepted as having written the text. With increasing 
threshold settings, FAR will go down, while FRR 
goes up. The behaviour of a system can be shown 
by one of several types of FAR/FRR curve, such 
as the Receiver Operating Characteristic (ROC). 
Alternatively, if a single number is preferred, a 
popular measure is the Equal Error Rate (EER), 
viz. the threshold value where FAR is equal to 
FRR. However, the EER may be misleading, 
since it does not take into account the conse-
quences of the two types of errors. Given the ex-
ample application, plagiarism detection, we do 
not want to reject, i.e. accuse someone of plagia-
rism, unless we are sure. So we would like to 
measure the quality of the system with the False 
Accept Rate at the threshold at which the False 
Reject Rate becomes zero. 

2.2 The Test Corpus 

Before using linguistic profiling for any real task, 
we should test the technique on a benchmark 
corpus. The first component of the Dutch Au-
thorship Benchmark Corpus (ABC-NL1) appears 
to be almost ideal for this purpose. It contains 
widely divergent written texts produced by first-
year and fourth-year students of Dutch at the 
University of Nijmegen. The ABC-NL1 consists 
of 72 Dutch texts by 8 authors, controlled for age 
and educational level of the authors, and for reg-
ister, genre and topic of the texts. It is assumed 
that the authors’ language skills were advanced, 
but their writing styles were as yet at only weakly 
developed and hence very similar, unlike those in 
literary attribution problems.  
 
Each author was asked to write nine texts of 
about a page and a half. In the end, it turned out 
that some authors were more productive than 
others, and that the text lengths varied from 628 
to 1342 words. The authors did not know that the 
texts were to be used for authorship attribution 
studies, but instead assumed that their writing 
skill was measured. The topics for the nine texts 
were fixed, so that each author produced three 
argumentative non-fiction texts, on the television 
program Big Brother, the unification of Europe 
and smoking, three descriptive non-fiction texts, 
about soccer, the (then) upcoming new millen-
nium and the most recent book they read, and 
three fiction texts, namely a fairy tale about Little 
Red Riding Hood, a murder story at the univer-
sity and a chivalry romance. 
 
The ABC-NL1 corpus is not only well-suited 
because of its contents. It has also been used in 
previously published studies into authorship at-
tribution. A ‘traditional’ authorship attribution 
method, i.e. using the overall relative frequencies 
of the fifty most frequent function words and a 
Principal Components Analysis (PCA) on the 
correlation matrix of the corresponding 50-
dimensional vectors, fails completely (Baayen et 
al., 2002). The use of Linear Discriminant Analy-
sis (LDA) on overall frequency vectors for the 50 
most frequent words achieves around 60% cor-
rect attributions when choosing between two au-
thors, which can be increased  to around 80%  by 
the application of cross-sample entropy weight-
ing (Baayen et al., 2002). Weighted Probability 



Distribution Voting (WPDV) modeling on the 
basis of a very large number of features achieves 
97.8% correct attributions (van Halteren et al., To 
Appear). Although designed to produce a hard 
recognition task, the latter result show that very 
high recognition quality is feasible. Still, this ap-
pears to be a good test corpus to examine the ef-
fectiveness of a new technique.  

3 Linguistic Profiling 

In linguistic profiling, the occurrences in a text 
are counted of a large number of linguistic fea-
tures, either individual items or combinations of 
items. These counts are then normalized for text 
length and it is determined how much (i.e. how 
many standard deviations) they differ from the 
mean observed in a profile reference corpus. For 
the authorship task, the profile reference corpus 
consists of the collection of all attributed and 
non-attributed texts, i.e. the entire ABC-NL1 
corpus. For each text, the deviation scores are 
combined into a profile vector, on which a vari-
ety of distance measures can be used to position 
the text in relation to any group of other texts.   

3.1 Features 

Many types of linguistic features can be profiled, 
such as features referring to vocabulary, lexical 
patterns, syntax, semantics, pragmatics, informa-
tion content or item distribution through a text.  
However, we decided to restrict the current ex-
periments to a few simpler types of features to 
demonstrate the overall techniques and method-
ology for profiling before including every possi-
ble type of feature. In this paper, we first show 
the results for lexical features and continue with 
syntactic features, since these are the easiest ones 
to extract automatically for these texts. Other 
features will be the subject of further research. 

3.2 Authorship Score Calculation 

In the problem at hand, the system has to decide 
if an unattributed text is written by a specific  
author, on the basis of attributed texts by that and 
other authors.  We test our system’s ability to 
make this distinction by means of a 9-fold cross-
validation experiment. In each set of runs of the 
system, the training data consists of attributed 
texts for eight of the nine essay topics. The test 
data consists of the unattributed texts for the 

ninth essay topic. This means that for all runs, the 
test data is not included in the training data and is 
about a different topic than what is present in the 
training material. During each run within a set, 
the system only receives information about 
whether each training text is written by one spe-
cific author. All other texts are only marked as 
“not by this author”.  

3.3 Raw Score 

The system first builds a profile to represent text 
written by the author in question. This is simply 
the featurewise average of the profile vectors of 
all text samples marked as being written by the 
author in question. The system then determines a 
raw score for all text samples in the list. Rather 
than using the normal distance measure, we opted 
for a non-symmetric measure which is a 
weighted combination of two factors: a) the dif-
ference between sample score and author score 
for each feature and b) the sample score by itself. 
This makes it possible to assign more importance 
to features whose count deviates significantly 
from the norm. The following distance formula is 
used: 

∆T = (Σ |Ti–Ai| D  |Ti| S) 1/(D+S) 
In this formula, Ti and Ai are the values for the ith 
feature for the text sample profile and the author 
profile respectively, and D and S are the weight-
ing factors that can be used to assign more or less 
importance to the two factors described. We will 
see below how the effectiveness of the measure 
varies with their setting. The distance measure is 
then transformed into a score by the formula 

ScoreT = (Σ |Ti|(D+S)) 1/(D+S)   –  ∆T 
In this way, the score will grow with the similar-
ity between text sample profile and author pro-
file. Also, the first component serves as a 
correction factor for the length of the text sample 
profile vector.  

3.4 Normalization and Renormalization 

The order of magnitude of the score values varies 
with the setting of D and S. Furthermore, the val-
ues can fluctuate significantly with the sample 
collection. To bring the values into a range which 
is suitable for subsequent calculations, we ex-
press them as the number of standard deviations 
they differ from the mean of the scores of the text 



samples marked as not being written by the au-
thor in question.  
 
In the experiments described in this paper, a 
rather special condition holds. In all tests, we 
know that the eight test samples are comparable 
in that they address the same topic, and that the 
author to be verified produced exactly one of the 
eight test samples. Under these circumstances, 
we should expect one sample to score higher than 
the others in each run, and we can profit from 
this knowledge by performing a renormalization, 
viz. to the number of standard deviations the 
score differs from the mean of the scores of the 
unattributed samples. However, this renormaliza-
tion only makes sense in the situation that we 
have a fixed set of authors who each produced 
one text for each topic. This is in fact yet a dif-
ferent task than those mentioned above, say au-
thorship sorting. Therefore, we will report on the 
results with renormalization, but only as addi-
tional information. The main description of the 
results will focus on the normalized scores. 

4 Profiling with Lexical Features 

The most straightforward features that can be 
used are simply combinations of tokens in the 
text.  

4.1 Lexical features 

Sufficiently frequent tokens, i.e. those that were 
observed at least a certain amount of times (in 
this case 5) in some language reference corpus 
(in this case the Eindhoven corpus; uit den 
Boogaart, 1975) are used as features by them-
selves. For less frequent tokens we determine a 
token pattern consisting of the sequence of char-
acter types, e.g., the token “Uefa-cup” is repre-
sented by the pattern “#L#6+/CL-L”, where the 
first “L” indicates low frequency, 6+ the size 
bracket, and the sequence “CL-L” a capital letter 
followed by one or more lower case letters fol-
lowed by a hyphen and again one or more lower 
case letters. For lower case words, the final three 
letters of the word are included too, e.g. “waar-
maken” leads to “#L#6+/L/ken”. These patterns 
have been originally designed for English and 
Dutch and will probably have to be extended 
when other languages are being handled. 
 

In addition to the form of the token, we also use 
the potential syntactic usage of the token as a 
feature. We apply the first few modules of a 
morphosyntactic tagger (in this case Wotan-Lite; 
Van Halteren et al., 2001) to the text, which de-
termine which word class tags could apply to 
each token. For known words, the tags are taken 
from a lexicon; for unknown words, they are es-
timated on the basis of the word patterns de-
scribed above. The three (if present) most likely 
tags are combined into a feature, e.g. “niet” leads 
to “#H#Adv(stell,onverv)-N(ev,neut)” and 
“waarmaken” to “#L#V(inf)-N(mv,neut)-
V(verldw, onverv)”. Note that the most likely 
tags are determined on the basis of the token it-
self and that the context is not consulted. The 
modules of the tagger which do context depend-
ent disambiguation are not applied. 
 
Op top of the individual token and tag features 
we use all possible bi- and trigrams which can be 
built with them, e.g. the token combination “kon 
niet waarmaken” leads to features such as 
“wcw=#H#kon#H#Adv(stell,onverv)-N(ev,neut) 
#L#6+/L/ken”. Since the number of features 
quickly grows too high for efficient processing, 
we filter the set of features by demanding that a 
feature occurs in a set minimum number of texts 
in the profile reference corpus (in this case two). 
A feature which is filtered out instead contributes 
to a rest category feature, e.g. the feature above 
would contribute to “wcw=<OTHER>”. For the 
current corpus, this filtering leads to a feature set 
of about 100K features. 
 
The lexical features currently also include fea-
tures for utterance length. Each utterance leads to 
two such features, viz. the exact length (e.g. 
“len=15”) and the length bracket (e.g. “len=10-
19”).  

4.2 Results with lexical features 

A very rough first reconnaissance of settings for 
D and S suggested that the best results could be 
achieved with D between 0.1 and 2.4 and S be-
tween 0.0 and 1.0. Further examination of this 
area leads to FAR FRR=0  scores ranging down to 
around 15%. Figure 1 shows the scores at various 
settings for D and S. The z-axis is inverted (i.e. 1 
- FAR FRR=0  is used) to show better scores as 
peaks rather than troughs.  



 
The most promising area is the ridge along the 
trough at D=0.0, S=0.0. A closer investigation of 
this area shows that the best settings are D=0.575 
and S=0.15. The FAR FRR=0  score here is 14.9%, 
i.e. there is a threshold setting such that if all 
texts by the authors themselves are accepted, 
only 14.9% of texts by other authors are falsely 
accepted.  
 
The very low value for S is surprising. It indi-
cates that it is undesirable to give too much atten-
tion to features which deviate much in the sample 
being measured; still, in the area in question, the 
score does peak at a positive S value, indicating 
that some such weighting does have effect. Suc-
cessful low scores for S can also be seen in the 
hill leading around D=1.0, S=0.3, which peaks at 
an FAR FRR=0  score of around 17 percent. From 
the shape of the surface it would seem that an 
investigation of the area across the S=0.0 divide 
might still be worthwhile, which is in contradic-
tion with the initial finding that negative values 
produce no useful results. 

5 Beyond Lexical Features 

As stated above, once the basic viability of the 
technique was confirmed, more types of features 
would be added. As yet, this is limited to syntac-
tic features. We will first describe the system 
quality using only syntactic features, and then 
describe the results when using lexical and syn-
tactic features in combination. 

5.1 Syntactic Features 

We used the Amazon parser to derive syntactic 
constituent analyses of each utterance (Coppen,  
2003). We did not use the full rewrites, but rather 
constituent N-grams. The N-grams used were: 

 
• left hand side label, examining constituent 

occurrence 

• left hand side label plus one label from the 
right hand side, examining dominance 

• left hand side plus label two labels from 
the right hand side, in their actual order, 
examining dominance and linear prece-
dence 

For each label, two representations are used. The 
first is only the syntactic constituent label, the 
second is the constituent label plus the head 
word. This is done for each part of the N-grams 
independently, leading to 2, 4 and 8 features re-
spectively for the three types of N-gram. Fur-
thermore, each feature is used once by itself, 
once with an additional marking for the depth of 
the rewrite in the analysis tree, once with an addi-
tional marking for the length of the rewrite, and 
once with both these markings. This means an-
other multiplication factor of four for a total of 8, 
16 and 32 features respectively. After filtering for 
minimum number of observations, again at least 
an observation in two different texts, there are 
about 900K active syntactic features, nine times 
as many as for the lexical features. 
 
Investigation of the results for various settings 
has not been as exhaustive as for the lexical fea-
tures. The best settings so far, D=1.3, S=1.4, 
yield an FAR FRR=0  of 24.8%, much worse than 
the 14.9% seen for lexical features.  

5.2 Combining Lexical and Syntactic Fea-
tures 

From the FAR FRR=0  score, it would seem that 
syntactic features are not worth pursuing any fur-

Figure 1: The variation of FAR (or rather 1-FAR) 
as a function of D and S, with D ranging from 0.1 
to 2.4 and S from 0.0 to 1.0.  



ther, since they perform much worse than lexical 
ones. However, they might still be useful if we 
combine their scores with those for the lexical 
features. For now, rather than calculating new 
combined profiles, we just added the scores from 
the two individual systems. The combination of 
the best two individual systems leads to an FAR 
FRR=0  of 10.3%,  a solid improvement over lexical 
features  by themselves. However, the best indi-
vidual systems are not necessarily the best com-
biners. The best combination systems produce 
FAR FRR=0  measurements down to 8.1%, with 
settings in different parts of the parameter space. 
 
It should be observed that the improvement 
gained by combination is linked to the chosen 
quality measure.  If we examine the ROC-curves 
for several types of systems (plotting the FAR 
against the FRR; Figure 2), we see that the com-
bination curves as a whole do not differ much 
from the lexical feature curve. In fact, the EER 
for the ‘best’ combination system is worse than 
that for the best lexical feature system. This 
means that we should be very much aware of the 
relative importance of FAR and FRR in any spe-
cific application when determining the ‘optimal’ 
features and parameters.  

6 Parameter Settings 

A weak point in the system so far is that there is 
no automatic parameter selection. The best re-
sults reported above are the ones at optimal set-
tings. One would hope that optimal settings on 
training/tuning data will remain good settings for 
new data. Further experiments on other data will 
have to shed more light on this. Another choice 
which cannot yet be made automatically is that of 
a threshold. So far, the presentation in this paper 
has been based on a single threshold for all au-
thor/text combinations. That there is an enormous 
potential for improvement can be shown by as-
suming a few more informed methods of thresh-
old selection. 

 
The first method uses the fact that, in our ex-
periments, there are always one true and seven 
false authors. This means we can choose the 
threshold at some point below the highest of the 
eight scores. We can hold on to the single thresh-
old strategy  if we first renormalize, as  described 

 

 
 
 
 
 
 
 
in Section 3.4, and then choose a single value to 
threshold the renormalized values against. The 
second method assumes that we will be able to 
find an optimal threshold for each individual run 
of the system. The maximum effect of this can be 
estimated with an oracle providing the optimal 
threshold. Basically, since the oracle threshold 
will be at the score for the text by the author, we 

Figure 2: ROC (FAR plotted against FRR) for a 
varying threshold at good settings of D and S for 
different types of features. The top pane shows the 
whole range (0 to 1)  for FAR and FRR. The bottom 
pane shows the area from 0.0 to 0.2. 



are examining how many texts by other authors 
score better than the text by the actual author.  
 
Table 1 compares the results for the best settings 
for these two new scenarios with the results pre-
sented above. Renormalizing already greatly im-
proves the results. Interestingly, in this scenario, 
the syntactic features outperform the lexical ones, 
something which certainly merits closer investi-
gation after the parameter spaces have been 
charted more extensively. The full potential of 
profiling becomes clear in the Oracle threshold 
scenario, which shows extremely good scores. 
Still, this potential will yet have to be realized by 
finding the right automatic threshold determina-
tion mechanism.  

7 Comparison to Previous Authorship 
Attribution Work 

Above, we focused on the authorship verification 
task, since it is the harder problem, given that the 
potential group of authors is unknown. However, 
as mentioned in Section 2, previous work with 
this data has focused on the authorship recogni-
tion problem, to be exact on selecting the correct 
author out of two potential authors. We repeat the 
previously published results in Table 2, together 
with linguistic profiling scores, both for the 2-
way and for the 8-way selection problem. 
 
To do attribution with linguistic profiling, we 
calculated the author scores for each author from 
the set for a given text, and then selected the au-
thor with the highest score. The results are shown 

in Table 2, using lexical or syntactic features or 
both, and with and without renormalization. The 
Oracle scenario is not applicable as we are com-
paring rather than thresholding. 
 
In each case, the best results are not just found at 
a single parameter setting, but rather over a larger 
area in the parameter space. This means that the 
choice of optimal parameters will be more robust 
with regard to changes in authors and text types. 
We also observe that the optimal settings for rec-
ognition are very different from those for verifi-
cation. A more detailed examination of the 
results is necessary to draw conclusions about 
these differences, which is again not possible 
until the parameter spaces have been charted 
more exhaustively. 
 

 Lexical 
Features 

Syntactic 
Features 

Com-
bina-
tion 

Single 
threshold 

14.9% 24.8% 8.1% 

Single  
threshold after 
renormalization 

9.3% 6.0% 2.4% 

Oracle thresh-
old per run 

0.8% 1.6% 0.2% 

 
Table 1: Best FAR FRR=0 scores for verification with 
various feature types and threshold selection mecha-
nisms. 

 2-way 
errors 
/504 

2-way 
percent 
correct 

8-way 
errors 
/72 

8-way 
percent 
correct 

50 func-
tion words, 
PCA 

 ± 50%   

followed 
by LDA 

 ± 60%   

LDA with 
cross-
sample 
entropy 
weighting  

 ± 80%   

all tokens, 
WPDV 
modeling 

 97.8%   

Lexical 6 98.8% 5 93% 
Syntactic 14 98.2% 10 86% 
Combined 3 99.4% 2 97% 

Lexical 
(renorm.) 

1 99.8% 1 99% 

Syntactic 
(renorm.) 

4 99.2% 3 96% 

Combined 
(renorm.) 

0 100.0% 0 100% 

 
Table 2: Authorship recognition quality for various 
methods. 



All results with normalized scores are already 
better than the previously published results. 
When applying renormalization, which might be 
claimed to be justified in this particular author-
ship attribution problem, the combination system 
reaches the incredible level of making no mis-
takes at all.  

8 Conclusion 

Linguistic profiling has certainly shown its worth 
for authorship recognition and verification. At 
the best settings found so far, a profiling system 
using combination of lexical and syntactic fea-
tures is able select the correct author for 97% of 
the texts in the test corpus. It is also able to per-
form the verification task in such a way that it 
rejects no texts that should be accepted, while 
accepting only 8.1% of the texts that should be 
rejected. Using additional knowledge about the 
test corpus can improve this to 100% and 2.4%. 
 
The next step in the investigation of linguistic 
profiling for this task should be a more exhaus-
tive charting of the parameter space, and espe-
cially the search for an automatic parameter 
selection procedure. Another avenue of future 
research is the inclusion of even more types of 
features. Here, however, it would be useful to 
define an even harder verification task, as the 
current system scores already very high and fur-
ther improvements might be hard to measure. 
With the current corpus, the task might be made 
harder by limiting the size of the test texts.  
 
Other corpora might also serve to provide more 
obstinate data, although it must be said that the 
current test corpus was already designed specifi-
cally for this purpose. Use of further corpora will 
also help with parameter space charting, as they 
will show the similarities and/or differences in 
behaviour between data sets. Finally, with the 
right types of corpora, the worth of the technique 
for actual application scenarios could be investi-
gated.  
 
So there are several possible routes to further 
improvement. Still, the current quality of the sys-
tem is already such that the system could be ap-
plied as is. Certainly for authorship recognition 
and verification, as we hope to show by our par-

ticipation in Patrick Juola’s Ad-hoc Authorship 
Attribution Contest (to be presented at 
ALLC/ACH 2004), for language verification (cf. 
van Halteren and Oostdijk, 2004), and possibly 
also for other text classification tasks, such as 
language or language variety recognition, genre 
recognition, or document classification for IR 
purposes. 
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