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Abstract 

Feature statistics normalization techniques have been shown to be very successful 
in improving the noise robustness of a speech recognition system. In this paper, we 
propose an associative scheme in order to obtain a more accurate estimate of the 
statistical information in these techniques. By properly integrating codebook and 
utterance knowledge, the resulting associative cepstral mean subtraction (A-CMS), 
associative cepstral mean and variance normalization (A-CMVN), and associative 
histogram equalization (A-HEQ) behave significantly better than the conventional 
utterance-based and codebook-based versions in additive noise environments. For 
the Aurora-2 clean-condition training task, the new proposed associative histogram 
equalization (A-HEQ) provides an average recognition accuracy of 90.69%, which 
is better than utterance-based HEQ (87.67%) and codebook-based HEQ (86.00%). 
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1. Introduction 

The performance of a speech recognition system is often severely degraded when there is a 
mismatch between the acoustic conditions of the training and the application environments. 
This mismatch may come from various sources, such as additive noise, channel distortion, 
different speaker characteristics, and different speaking modes. A variety of robustness 
techniques with demonstrated improvement in system performance have been proposed to 
reduce this mismatch. For the purpose of handling additive noise, these robustness techniques 
can be roughly divided into three classes: adaptation of the speech models in the recognizer to 
make them better match the noise conditions, enhancement of the speech features before they 
are fed to the recognizer, and utilization of a noise robust representation of speech signals. In 
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the first class of approaches, compensation is performed on the pre-trained recognition model 
parameters so that the modified recognition models can more effectively classify the 
mismatched testing speech features collected in the application environment. Typical 
examples of this class include the well-known noise masking (Holmes & Sedgwick, 1986; 
Klatt, 1979; Nadas, Nahamoo, & Picheny, 1988), speech and noise decomposition (SND) 
(Varga & Moore, 1990), hypothesized Wiener filtering (Berstein & Shallom, 1991; Beattie & 
Young, 1992), vector Taylor series (VTS) (Acero, Deng, Kristjansson, & Zhang, 2000), 
maximum likelihood linear regression (MLLR) (Leggester & Woodland, 1995), model-based 
stochastic matching (Sankar & Lee, 1996; Lee, 1998), statistical re-estimation (STAR) 
(Moreno, Raj, & Stem, 1996), and parallel model combination (PMC) (Gales & Young, 1993; 
1995a; 1995b). In the second class of approaches, the obtained testing speech features are 
modified in order to fit the acoustic conditions of pre-trained recognition models more 
compatibly. Examples of this class include the well-known spectral subtraction (SS) (Boll, 
1979), codeword-dependent cepstral normalization (CDCN) (Acero, 1990), feature-based 
stochastic matching (Sankar & Lee, 1996; Lee, 1998), vector Taylor series (Segura, Benitez, 
de la Torre, Dupont, & Rubio, 2002; Moreno, Raj, & Stem, 1998), multivariate 
Gaussian-based cepstral normalization (RATZ) (Moreno, Raj, & Stem, 1996), and 
stereo-based piecewise linear compensation for environments (SPLICE) (Deng, Acero, Jiang, 
Droppo, & Huang, 2001; Droppo, Deng, & Acero, 2001). In the third class of approaches, a 
special robust speech feature representation is developed to reduce the sensitivity to various 
acoustic conditions; one way to develop this new feature representation is to normalize the 
statistics of the original speech features in both training and testing conditions in order to 
reduce the mismatch caused by noise. These feature statistics normalization techniques 
include cepstral mean subtraction (CMS) (Atal, 1974), cepstral mean and variance 
normalization (CMVN) (Tibrewala & Hermansky, 1997), cepstral gain normalization (CGN) 
(Yoshizawa, Hayasaka, Wada, & Miyanaga, 2004), histogram equalization (HEQ) (Hilger & 
Ney, 2006), higher-order cepstral moment normalization (HOCMN) (Hsu & Lee, 2004), 
cepstral shape normalization (CSN) (Du & Wang, 2008) etc. A common advantage of these 
methods is simplicity of implementation, since all of them focus on the front-end speech 
feature processing without the need of changing the back-end model training and recognition 
schemes. Regardless of the simplicity, these methods usually improve the recognition 
performance significantly under a noise-corrupted application environment. 

A key process for most of the above normalization methods is to estimate the statistical 
information of speech features. For example, the first-order moment (mean), the first and 
second-order moments (mean and variance), and the probability distribution of features are 
required for CMS, CMVN, and HEQ, respectively. In most cases, the required statistical 
information is directly evaluated from the entire frame set of an utterance. Although simple in 
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implementation, the resulting utterance-based methods likely have some inherent drawbacks. 
First, they cannot be realized in an on-line manner since the computation and normalization of 
the statistics cannot be performed until the last frame of an utterance is received. Second, the 
number of frames in an utterance influences the accuracy of the obtained statistics. Third, 
since the length, or the number of different acoustic units, may vary from utterance to 
utterance, the normalized features of the same acoustic unit in an utterance may differ from 
those in another utterance. 

In our previous works (Hung, 2006; 2008), we proposed that the statistics of features be 
evaluated based on two codebooks, named "pseudo stereo codebooks". Construction of the 
codebook of clean speech cepstra can occur off-line and prior to recognition. The codebook of 
noise-corrupted speech cepstra for each testing utterance is constructed by properly integrating 
the clean-speech codebook and the noise estimates, which often can be extracted from the first 
several frames of the utterance. The resulting codebook-based methods are expected to obtain 
more accurate estimate of feature statistics, and they can be implemented in an almost on-line 
manner. In (Hung, 2008), we have shown that codebook-based CMS and CMVN outperform 
conventional utterance-based ones in recognition accuracy for additive noise environments. 

The original procedures in constructing the codebooks in (Hung, 2008), however, are 
somewhat simple, which possibly results in a less accurate estimate of the statistics for speech 
features. First of all, the clean speech codebook is built with all the feature vectors in the clean 
speech utterances for training. Since these utterances may contain quite long non-speech 
(silence) segments, it is likely that numerous codewords in the codebook just correspond to 
these non-speech parts. Second, the feature statistics are estimated by uniformly averaging the 
codewords, which ignores the relative significance of each codeword. Finally, the noise 
information only depends on the leading frames of an utterance, which may make the 
noise-corrupted speech codebook less accurate. This problem will be worse if the noise is 
non-stationary. Although updating the noise estimate within an utterance based on a voice 
activity detection (VAD) process can alleviate this problem, it will substantially increase the 
implementation complexity. 

Based on the above observations, in this paper, we propose to improve the accuracy of 
the feature statistics estimation in two aspects. First, the procedures of creating the pseudo 
stereo codebooks are modified so that they are more representative of the speech features. The 
resulting advanced pseudo stereo codebooks are shown to be more effective in the 
codebook-based methods than the original ones. Second, the information from both the 
codebook and the frames of the processed utterance are integrated, so that more accurate 
statistics of the features can be obtained in order to further enhance the feature statistics 
normalization techniques. This idea is realized on three well-known approaches, CMS, CMVN, 
and HEQ. We will show that the resulting "associative" methods are superior to the original 
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utterance-based and codebook-based ones in the Aurora-2 clean-condition training task. 

The remainder of the paper is organized as follows: Section 2 presents the construction of 
advanced pseudo stereo codebooks. Section 3 introduces our proposed associative cepstral 
normalization techniques. The experimental environment setup is described in Section 4, and 
the recognition results are given and discussed in Section 5. Finally, Section 6 contains brief 
conclusions. 

2. The Construction of Advanced Pseudo Stereo Codebooks 

In this section, we introduce the approach to constructing the advanced pseudo stereo 
codebooks for clean training and noise-corrupted testing environments, respectively. The 
corresponding procedures are also shown in Figure 1. The basic idea of the process for 
constructing these codebooks is as follows: during the feature extraction processes, we find an 
intermediate feature domain in which the clean speech and noise are linearly additive 
(assuming that the speech signal and noise are uncorrelated in the time domain). The clean 
speech codewords for the intermediate feature domain first are constructed then are linearly 
added to the noise estimates to compose the noise-corrupted speech codewords for that 
domain. Finally, they are transformed to the final feature domain following the remaining 
feature extraction processes. For the mel-frequency cepstral coefficients (MFCC), the 
intermediate feature mentioned above is the mel-spectrum, while for the other two types of 
speech features, linear prediction cepstral coefficients (LPCC) (Atal, 1974; Makhoul, 1975) 
and perceptual linear prediction cepstral coefficients (PLPCC) (Hermansky, 1990), both the 
auto-correlation coefficients and the magnitude spectrum can be selected as the intermediate 
feature. Therefore, the codebook construction process and the relating methods can be applied 
to MFCC, LPCC, and PLPCC. 

For simplicity, the mel-frequency cepstral coefficients (MFCC) are used as the speech 
features here; thus, the two codebooks are just designed for MFCCs. Following the derivation 
processes of the MFCCs for a speech signal, the speech portions of all clean speech utterances 
in the training database are converted into sequences of mel-spectral vectors, each consisting 
of the mel-filter bank outputs. These vectors are then used to construct a set of R codewords 
together with their weights by vector quantization (VQ), denoted as: 

{ }, ;  1rr w r R⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦x ,                                                 (1) 

where r⎡ ⎤⎢ ⎥⎣ ⎦x  and rw  represent the rth codeword and its corresponding weight, respectively. 
Each weight rw  represents the relative cluster size in VQ classification. These mel-spectral 
codewords are then transformed into the cepstral domain as follows: 

( )logr r⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦x C x ,                                                    (2) 
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where C  is the discrete-cosine-transform (DCT) matrix. Thus, the set of codewords 

{ }, ;  1rr w r R⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦x  is the clean speech cepstral codebook. Note that we construct this 
cepstral codebook by transforming the mel-spectral codewords rather than by vector 
quantizing the cepstral features directly and that these mel-spectral codewords are preserved in 
order to construct the noise-corrupted speech codebook. 

Figure 1. The procedures of constructing advanced pseudo stereo codebooks. 
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reliable codewords completely based on a single testing utterance, we construct the 
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( )1s r P ps r p= − +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦y x n .                                          (3) 

and the weight for each s⎡ ⎤⎢ ⎥⎣ ⎦y  is approximated by 

( )1s rs r P pv w P= − + = .                                                (4) 

Finally, we transform each s⎡ ⎤⎢ ⎥⎣ ⎦y  into the cepstral domain, as in Eq. (2): 

( )logs s⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦y C y ,                                                     (5) 

where C  is the discrete-cosine-transform (DCT) matrix. Thus, { }, ;1ss v s RP⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦y  is 
the noise-corrupted speech cepstral codebook. From the above, the two sets of codewords, 

{ }, rr w⎡ ⎤⎢ ⎥⎣ ⎦x  and { }, ss v⎡ ⎤⎢ ⎥⎣ ⎦y , are viewed as the representatives for the clean training and 
noise-corrupted testing conditions, respectively, and they are named "pseudo stereo 
codebooks" here. The term "pseudo" indicates that the noise-corrupted speech codebook is not 
derived from the noise-corrupted speech directly, but is a fusion of the clean speech codebook 
and the noise estimates. 

Here, the codebook construction scheme is different from that in (Hilger & Ney, 2006) in 
two points: 

1. A speech/non-speech classification, or voice activity detection (VAD) procedure, is 
performed on each utterance in the clean training database, and then only the speech 
portions of these utterances are used to construct the clean-speech codewords. Thus, the 
resulting codewords will convey the speech characteristics better than those obtained in 
(Hilger & Ney, 2006). More precisely, for almost every utterance in the clean training 
set, there is a relatively long silent portion preceding and/or following the 
speech-containing portion. Therefore, if we create the codewords with utterances that 
are not VAD-processed, there may be a significant number of codewords that 
correspond to the silence, or the codewords corresponding to the silence may possess 
relatively high weight values, which will result in a less accurate estimate for the 
statistics of speech features. Furthermore, since the utterances to be VAD-processed 
here are clean from noise, the results of speech/non-speech classification are very 
accurate. 

2. Second, the codeword weights, { }rw  and { }sv , are additionally calculated. They 
represent the relative significance of each codeword; thus, the estimated statistics of the 
speech features based on the advanced codebooks are expected to be more accurate than 
those on the original ones in (Hung, 2008). 

In the above codebook construction process, we only focus on the speech characteristics 
in an utterance for clean and noise-corrupted conditions, while the non-speech portions 
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(silence or noise-only regions) are not considered. In other words, a "non-speech" codebook is 
not constructed here. The main reason is simple: in the feature statistics normalization 
approaches, we often do not process the speech and non-speech frames separately in an 
utterance, but treat them in the same manner as the same estimated feature statistics. Although 
normalizing the speech and non-speech frames based on different feature statistics may bring 
better recognition performance, it requires a reliable voice activity detector (VAD) which 
classifies a frame as speech or non-speech accurately in both clean and noise-corrupted 
conditions. Nevertheless, in general, a VAD brings about higher mis-classification rates as the 
signal-to-noise ratio (SNR) gets worse in the noise-corrupted condition, thus possibly harming 
the performance of feature statistics normalization approaches. 

With the help of the above advanced pseudo stereo codebooks, we can estimate the 
statistics and probability distribution functions for the features of both the clean and 
noise-corrupted speech. For example, given the time stream of the mth cepstral coefficients, 

{ }mc n⎡ ⎤⎢ ⎥⎣ ⎦ , of a clean utterance in the training set, the kth order moment and the probability 
distribution function of mC  are approximated by 

( ) ( )
1

,     1,2, 3,
R kk

m r m
r

E C w x r k
=

⎧ ⎫⎪ ⎪⎪ ⎪ ⎡ ⎤≈ =⎨ ⎬ ⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ,                              (6) 

and 

( ) ( ) ( )
1m

R

C m r m
r

F z P C z w u z x r
=

⎡ ⎤≤ ≈ − ⎢ ⎥⎣ ⎦∑ ,                               (7) 

respectively, where mC  denotes a random variable with the samples { }mc n⎡ ⎤⎢ ⎥⎣ ⎦ , mx r⎡ ⎤⎢ ⎥⎣ ⎦  is 
the mth component of the clean speech codeword r⎡ ⎤⎢ ⎥⎣ ⎦x , and ( ).u  is the unit step function, 
defined by 

( )
1    if 0

0    if 0
u

⎧⎪ ≥⎪⎪= ⎨⎪ <⎪⎪⎩
.                                                  (8) 

Similarly, if the time stream { }mc n⎡ ⎤⎢ ⎥⎣ ⎦  corresponds to a noise-corrupted utterance in the 
testing set, then the kth order moment and the probability distribution function of mC  are 
approximated by: 

( ) ( )
1

,     1,2,3,
RP kk

m s m
s

E C v y s k
=

⎧ ⎫⎪ ⎪⎪ ⎪ ⎡ ⎤≈ =⎨ ⎬ ⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ,                              (9) 

and 

( ) ( ) ( )
1m

RP

C m s m
s

F z P C z v u z y s
=

⎡ ⎤≤ ≈ − ⎢ ⎥⎣ ⎦∑                                (10) 
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respectively, where my s⎡ ⎤⎢ ⎥⎣ ⎦  is the mth component of the noise-corrupted speech codeword 
s⎡ ⎤⎢ ⎥⎣ ⎦y . 

Based on these estimated statistics from the advanced codebooks, as in Eqs. (6), (7), (9), 
and (10), the codebook-based cepstral statistics normalization methods stated in (Hung, 2008) 
can be implemented. In Section 5, we will show that the advanced codebooks benefit the 
codebook-based CMS and CMVN in improving the recognition accuracy under 
noise-corrupted environments. 

3. Associative Cepstral Statistics Normalization Techniques 

The previous section introduces how to construct a better codebook set in order to enhance the 
corresponding codebook-based feature normalization methods. Updating the noise information 
in the noise-corrupted codebook, however, especially for a non-stationary noise environment, 
still makes the normalization method less efficient in computation. Besides, the 
codebook-based methods do not behave very well for some normalization methods, like HEQ, 
which will be shown in the subsequent sections. As a result, we attempt to incorporate the 
whole-utterance frames with the developed codebooks to evaluate the feature statistics, in the 
hope that the resulting feature statistics normalization techniques can bring better recognition 
accuracy. We realize our idea in the methods of CMS, CMVN, and HEQ, respectively, which 
is described in the following three subsections. 

3.1 Associative Cepstral Mean Subtraction 
Cepstral mean subtraction (CMS) (Atal, 1974) is a well-known speech feature processing 
technique. It was initially developed for eliminating the channel distortion in the features, but 
was found to be helpful as well in alleviating the effect of additive noise. In CMS, the original 
features are normalized to have zero mean. Briefly speaking, with the time-trajectory of the 
mth cepstral coefficients, { }mc n⎡ ⎤⎢ ⎥⎣ ⎦ , for an utterance as the input, the output of the CMS 
process is expressed as: 

,     1m m mc n c n n Nμ⎡ ⎤ ⎡ ⎤= − ≤ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ,                                      (11) 

where N  is the number of frames in the utterance, and mμ  is the mean (the first-order 
moment) of mc n⎡ ⎤⎢ ⎥⎣ ⎦ . Here, the parameter mμ  is estimated by incorporating the codebooks, 

{ }, rr w⎡ ⎤⎢ ⎥⎣ ⎦x  and { }, ss v⎡ ⎤⎢ ⎥⎣ ⎦y , in Section 2 and the whole-utterance frames, 

{ },1mc n n N⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦ . That is, for a clean speech utterance in the training set, 

( )
1 1

1
1

R N

m r m m
r n
w x r c n

N
μ α α

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,                            (12) 

and for a noise-corrupted speech utterance in the testing set, 
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( )
1 1

1
1

RP N

m s m m
s n
v y s c n

N
μ α α

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ .                             (13) 

In Equations (12) and (13), mx r⎡ ⎤⎢ ⎥⎣ ⎦  and my s⎡ ⎤⎢ ⎥⎣ ⎦  denote the mth component of the 
codewords r⎡ ⎤⎢ ⎥⎣ ⎦x  and s⎡ ⎤⎢ ⎥⎣ ⎦y , respectively, and α  is a weighting factor between 0 and 1, 
which determines the usage ratio between the codebook and the whole-utterance frames. Here, 
the CMS method with the mean parameters defined in Eqs. (12) and (13) is named associative 
CMS (A-CMS). Obviously, if α  is set to 1, the information from the frames in the utterance 
is completely ignored, and A-CMS is identical to codebook-based CMS (C-CMS). On the 
other hand, A-CMS with 0α =  behaves equally to utterance-based CMS (U-CMS). 

3.2 Associative Cepstral Mean and Variance Normalization 
In the method of cepstral mean and variance normalization (CMVN) (Tibrewala & Hemansky, 
1997), the original features are normalized to have zero mean and unity variance. With the 
time-trajectory of the mth cepstral coefficients, { }mc n⎡ ⎤⎢ ⎥⎣ ⎦ , for an utterance as the input, the 
output of the CMVN process is expressed as: 

( ) ,     1m m m mc n c n n Nμ σ⎡ ⎤ ⎡ ⎤= − ≤ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ,                                (14) 

where N  is the number of frames in the utterance, while mμ  and mσ  are the mean and 
standard deviation of mc n⎡ ⎤⎢ ⎥⎣ ⎦ , respectively. In general, CMVN performs better than CMS 
because it additionally normalizes the variance of the features. 

Similar to the previous sub-section, we estimate the two parameters, mμ  and mσ , by 
incorporating the codebooks and the whole-utterance frames. That is, for a clean speech 
utterance in the training set, 

( )
1 1

1
1

R N

m r m m
r n
w x r c n

N
μ α α

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,                            (15) 

( )2 2 2 2

1 1

1
1

R N

m r m m m
r n
w x r c n

N
σ α α μ

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + − −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,                       (16) 

and for a noise-corrupted speech utterance in the testing set, 

( )
1 1

1
1

RP N

m s m m
s n
v y s c n

N
μ α α

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,                             (17) 

( )2 2 2 2

1 1

1
1

RP N

m s m m m
s n
v y s c n

N
σ α α μ

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= + − −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ .                        (18) 

In Equations (15)-(18), mx r⎡ ⎤⎢ ⎥⎣ ⎦  and my s⎡ ⎤⎢ ⎥⎣ ⎦  denote the mth component of the codewords 
r⎡ ⎤⎢ ⎥⎣ ⎦x  and s⎡ ⎤⎢ ⎥⎣ ⎦y , respectively, and α  is a weighting factor between 0 and 1, which 
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determines the usage ratio between the codebook and the whole-utterance frames. Here, the 
CMVN method with means and variances defined in Eqs. (15)-(18) is named associative 
CMVN (A-CMVN). Similar to the case in the previous subsection, A-CMVN with 1α =  is 
equivalent to codebook-based CMVN (C-CMVN), while A-CMVN with 0α =  behaves 
equally to utterance-based CMVN (U-CMVN). 

3.3 Associative Histogram Equalization 
The histogram equalization (HEQ) technique (Hsu & Lee, 2004) normalizes each cepstral 
component stream so that the resulting histogram is close to a reference function. Following 
the notation of the previous two subsections, with the time-trajectory of the mth cepstral 
coefficients { }mc n⎡ ⎤⎢ ⎥⎣ ⎦  for an utterance as the input, the output of the HEQ process can be 
expressed as: 

( )( )1 ,     1 ,
mm N C mc n F F c n n N−⎡ ⎤ ⎡ ⎤= ≤ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦                                (19) 

where ( ).
mC

F  is the probability distribution function of { }mc n⎡ ⎤⎢ ⎥⎣ ⎦ , and ( ).NF  is a 
pre-defined reference distribution function. Compared with CMS and CMVN, HEQ 
additionally compensates all the higher-order moments of the features, and this extra 
compensation often results in an apparent improvement. 

Analogous to the previous subsections, the distribution function ( ).
mC

F  is jointly 
determined by the codebooks and the whole-utterance frames, and the resulting algorithm is 
called associative HEQ (A-HEQ). In A-HEQ, for a clean speech utterance in the training set, 
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α α
= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= − + − −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,             (20) 

and for a noise-corrupted speech utterance in the testing set, 

( ) ( ) ( ) ( )
1 1

1
1

m

RP N

C s m m
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F z v u z y s u z c n
N

α α
= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎟ ⎟⎜ ⎜= − + − −⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎣ ⎦ ⎣ ⎦⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ,              (21) 

where ( ).u  is the unit step function, as in Eq. (8). 

Again, in Equations (20) and (21), the weighting factor α  determines the usage ratio 
between the codebook and the whole-utterance frames. In the extreme case, 1α = , the 
distribution function is completely determined by the codebook, thus A-HEQ becomes 
codebook-based HEQ (C-HEQ). In the other extreme case of 0α = , A-HEQ corresponds to 
utterance-based HEQ (U-HEQ). 
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3.4 Comparison with Some Other Noise Compensation Algorithms 
Previous work presents a series of noise compensation approaches which consider the speech 
and noise characteristics simultaneously, including the parallel model combination (PMC) 
(Gales & Young, 1993; 1995a; 1995b), vector Taylor series (VTS) (Acero, Deng, Kristjansson, 
& Zhang, 2000; Segura, Benitez, de la Torre, Dupont, & Rubio, 2002; Moreno, Raj, & Stem, 
1998), and stereo-based piecewise linear compensation for environments (SPLICE) (Deng, 
Acero, Jiang, Droppo, & Huang, 2001; Droppo, Deng, & Acero, 2001). Here, we discuss the 
relationship of our proposed methods with PMC, VTS, and SPLICE, as well as the differences 
among them as follows: 

1. In PMC, the original clean speech model parameters in the cepstral domain are   
transformed to the linear spectral domain, combined with the noise model parameters, 
then transformed back to the cepstral domain to be the approximated noisy speech 
model. Therefore, PMC compensates the speech model while keeping the noisy testing 
speech unchanged. Similar to PMC, in our proposed methods, the noisy speech 
codewords are obtained by integrating the clean speech codewords and the noise 
estimates in the linear spectral domain. Nevertheless, in our method, both the clean 
training and noisy testing speech data are compensated, then the speech model is 
trained (not just modified) with the new clean training speech data. 

2. The VTS algorithm is often applied in two directions: one to compensate the speech 
model while keep the noisy testing speech unchanged, and the other to compensate the 
noisy testing speech without altering the original clean speech model. Briefly speaking, 
VTS considers that noisy speech is a nonlinear function of clean speech and noise in 
the logarithmic spectral domain and that this nonlinear function is approximated as a 
polynomial in order to estimate the statistics of noisy speech with the statistics of clean 
speech of noise. Therefore, our proposed methods differ from VTS in two ways: both 
the noisy testing speech and the speech model are changed in our methods and we 
primarily deal with the relationship of clean speech and noise in the linear spectral 
domain. 

3. In SPLICE, the restored clean speech cepstral vector is obtained by adding the noisy 
speech cepstral vector to a correction vector. The correction vector is trained using the 
stereo recordings for both the clean and noisy speech data based on the maximum 
likelihood principle. In fact, in SPLICE, a Gaussian mixture model (GMM) for noisy 
speech cepstral vectors is trained, and the minimum-mean-square-error (MMSE) rule or 
the approximate maximum a posteriori (MAP) rule is applied to obtain the optimal 
estimate of the clean speech cepstral vector, given the noisy speech cepstral vector. 
Therefore, compared with SPLICE, our proposed methods do not use the stereo data 
since the noisy speech codebook is constructed simply by integrating the clean speech 
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codewords and the noise estimates. In addition, in SPLICE, the VQ process is 
performed on the noisy speech data in the cepstral domain, while in our methods we 
implement the VQ process on the clean speech data in the linear spectral domain. 

To sum up briefly, in PMC, VTS, and SPLICE, the clean speech or noisy speech is often 
modeled by a single Gaussian or a mixture of Gaussians, while our proposed methods the 
speech are partially represented by a set of codewords. Furthermore, our proposed methods 
have lower computation complexity than PMC, VTS, and SPLICE, while they can provide 
very good recognition performance, as will be shown in the next section. 

4. Experimental Setup 

The proposed codebook-based algorithms have been tested with the AURORA-Project Digit 
Database Version 2.0, which is described in detail in (Hirsch & Pearce, 2000). In this database, 
the recordings have been manually segmented into utterances, and each utterance is saved as a 
file. The number of digits in an utterance can be one, two, three, four, five, six, and seven. 
Besides the digits, there is always a silent section at the beginning and end of an utterance. 
The length of an utterance may vary from 0.59 sec to 5.15 sec, depending on the number of 
digits in the utterance. The testing data consist of 4004 utterances from 52 male and 52 female 
speakers. Three different subsets are defined: Test Set A and Test Set B are each affected by 
four types of noise, and Test Set C is affected by two types. The noises included are: subway, 
babble, car, exhibition, restaurant, street, airport, and train station. Each noise is added to the 
clean speech under seven different signal-to-noise ratios (SNRs): -5dB to 20dB, spaced in 5dB 
intervals, and clean (no noise). The signals in Set A and Set B are filtered with a G.712 filter, 
and those in Set C are filtered with a MIRS filter. G.712 and MIRS are two standard frequency 
characteristics defined by the ITU (ITU recommendation G.712, 1996). Since the proposed 
methods are focused on improving the recognition accuracy for an additive noise environment, 
only Set A and Set B are used for the subsequent experiments. 

On the other hand, under the clean training condition, the training data consist of 8440 
clean speech utterances produced by 55 male and 55 female adults. These signals are filtered 
with a G.712 filter without noise added. For the clean training phase, the 8440 strings in the 
training set are first processed by an energy-based VAD process (Tai & Hung, 2006), and the 
speech portions are converted into vector streams of 23 mel-spectral coefficients. All of the 
23-dimensional feature vectors are used to construct a set of R  codewords via vector 
quantization (VQ) with the K-means clustering algorithm, in which the squared Euclidean 
distance is used for VQ classification. These codewords are also converted to 13-dimensional 
mel-frequency cepstral vectors (c0~c12) to form the clean speech cepstral codebook 

{ }, ;1rr w r R⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦x . Besides, all 8440 strings (including speech and non-speech portions) in 
the training set are converted to MFCC feature vector streams. The resulting 13-dimensional 
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cesptral features plus their delta and delta-delta comprise the components of the final 
39-dimensional feature vectors. With these feature vectors in the training set, two sets of 
hidden Markov models (HMMs) for each digit (oh, zero, one, …, eight, and nine) and silence 
are trained. The first set follows the Microsoft complex back-end training scripts (Droppo, 
Deng, & Acero, 2002), in which each digit HMM has 16 states and 20 Gaussian mixtures per 
state. The second set follows the standard training scripts provided in the Aurora-2 database 
(Hirsch & Pearce, 2000), in which each digit HMM has 16 states and 3 Gaussian mixtures per 
state. 

For the testing phase, the leading 10 frames (0.1 sec) of each utterance are assumed to be 
noise-only, and their corresponding 23-dimensional mel-spectral vectors are the elements of 
the estimated noise components { };  1p p P⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦n  (where 10P = ). We then construct the 
noise-corrupted speech cepstral codebook { }, ;1ss v s RP⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦y  following the procedures in 
Section 2. Based on the two codebooks { }, rr w⎡ ⎤⎢ ⎥⎣ ⎦x  and { }, ss v⎡ ⎤⎢ ⎥⎣ ⎦y , the proposed algorithms 
are performed to adjust the features for both training and testing. The reference distribution 
function in Equation (19) for HEQ is a Gaussian distribution with zero mean and unity 
variance. Note that, even though it has been shown that dynamically determining the 
noise-only components within an utterance based on a voice activity detector (VAD) improves 
the recognition performance of codebook-based methods (Hung, 2008), it will significantly 
increase the computation complexity, especially when the detected non-speech portion is quite 
long (the size of noise-corrupted speech codebook, RP , is proportional to the number of 
noise components, P ). Besides, the results of VAD become less reliable when the 
signal-to-noise ratio (SNR) gets worse, which somewhat deteriorates the accuracy of the 
resulting noise-corrupted speech codebook. Based on the above observations, we select the 
first 0.1 second (10 frames) of each utterance as the noise-only components, in which there is 
always no speech. 

5. Experimental Results and Discussions 

We compare and analyze the recognition accuracy achieved by the different approaches 
proposed here for the AURORA-2 experimental environment. This includes 5 subsections. In 
Subsections 5.1-5.4, the experimental results are obtained via the first set of HMMs (the 
complex back-end). Subsection 5.5, on the other hand, presents the experimental results 
obtained via the second set of HMMs (the standard back-end). The results in the first four 
subsections help us investigate the best possible recognition accuracy achieved by the 
proposed methods with a more elaborate model structure, while the results in the last 
subsection can be used with the purpose of performance comparison with many other 
robustness techniques which are evaluated under the standard model structure. 

Briefly speaking, in Subsection 5.1 we examine the advanced pseudo stereo codebooks 
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proposed in Section 2 to see if they bring better recognition results in codebook-based CMS 
and CMVN than the original ones proposed in (Hung, 2008). In Subsection 5.2, the proposed 
associative CMS, CMVN, and HEQ in Section 3 are compared with the corresponding 
utterance-based and codebook-based ones in terms of the recognition performance. In 
Subsection 5.3, the effect of the weighting factor α  in associative approaches of Section 3 is 
analyzed to see the corresponding influence on the recognition performance. In Subsection 5.4, 
we compare the proposed approaches with some other noise-robust techniques. Finally, the 
proposed methods are evaluated with the standard back-end in Subsection 5.5. 

5.1 Comparison of the Advanced Pseudo Stereo Codebooks with the 
Original Ones in Codebook-based Approaches 

We compare the new proposed pseudo stereo codebooks in Section 2 with the original ones in 
(Hung, 2008) in terms of the recognition accuracy for the codebook-based CMS and CMVN. 
For the pseudo stereo codebooks, the number of clean speech codewords, R , is set to 16, 64, 
and 256, and the first 10 frames of each utterance are assumed to be noise-only and their 
corresponding features constitute the estimated noise vectors { },  1 10p p P⎡ ⎤ ≤ ≤ =⎢ ⎥⎣ ⎦n . Thus, 
the number of noise-corrupted speech codewords, RP , is equal to 160, 640, or 2560. 

Tables 1 and 2 list the recognition results of codebook-based CMS and CMVN, 
respectively, where these results present individual set recognition accuracy rates averaged 
over five SNR conditions (0~20dB, at 5dB intervals). For the purpose of clarification in the 
tables, a superscript "(o)" is added to the names of C-CMS and C-CMVN to indicate that the 
two methods are based on the original pseudo stereo codebooks. 

From the two tables, several phenomena can be found: 

1. Both CMS and CMVN bring improvement in recognition accuracy when compared  
with the baseline processing. As expected, however, CMVN performs better than CMS in 
all cases. As a result, performing the variance normalization really helps improve the 
noise robustness of speech features. 

2. Under the same assignment for the parameter R  (the number of clean speech 
codewords), the advanced pseudo stereo codebooks provide C-CMS and C-CMVN with 
significantly better recognition accuracy than the original codebooks do. These results 
support our statement in Section 2 that the proposed new codebooks are capable of 
providing a better estimate of feature statistics, thus, benefit the codebook-based 
approaches. 

3. In most cases, increasing the number of clean speech codewords R  brings about 
improved recognition accuracy for the four methods, C-CMS(o), C-CMS, C-CMVN(o), 
and C-CMVN. For both C-CMS and C-CMVN with the advanced codebooks, however, a 
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moderate number of codewords already give rise to nearly optimal performance. 
Nevertheless, this is not the case for C-CMS(o) and C-CMVN(o), with the possible reason 
that, in these two methods, we have to increase the number of codewords so that more of 
them can represent the speech portions, and more accurate feature statistics can be 
estimated accordingly. As a result, it shows that the advanced codebooks with a moderate 
size can serve as good representatives for speech features. 

Table 1. Recognition accuracy (%) achieved by two versions of codebook-based CMS 
with a different number of clean speech codewords R averaged across the 
SNRs between 0 and 20dB, under the complex back-end structure. AR (%) 
and RR (%) are the absolute and relative error rate reductions over the 
baseline. C-CMS uses the advanced pseudo stereo codebooks, while C-CMS(o) 
uses the original pseudo stereo codebooks in (Hung, 2008). 

Method Set A Set B Average AR RR 

Baseline 71.92 67.79 69.86 － － 

C-CMS(o) ( 16R = ) 74.21 70.81 72.51 2.65 8.81 

C-CMS  ( 16R = ) 79.04 79.56 79.30 9.45 31.33 

C-CMS(o) ( 64R = ) 74.03 70.74 72.39 2.53 8.39 

C-CMS  ( 64R = ) 80.79 80.19 80.49 10.64 35.28 

C-CMS(o) ( 256R = ) 77.92 75.20 76.56 6.71 22.24 

C-CMS  ( 256R = ) 81.46 81.49 81.48 11.62 38.55 

Table 2. Recognition accuracy (%) achieved by two versions of codebook-based 
CMVN with a different number of clean speech codewords R averaged 
across the SNRs between 0 and 20dB, under the complex back-end structure. 
AR (%) and RR (%) are the absolute and relative error rate reductions over 
the baseline. C-CMVN uses the advanced pseudo stereo codebooks, while 
C-CMVN(o) uses the original pseudo stereo codebooks in (Hung, 2008). 

Method Set A Set B average AR RR 

Baseline 71.92 67.79 69.86 － － 

C-CMVN(o) ( 16R = ) 84.44 82.40 83.42 13.57 45.00 

C-CMVN  ( 16R = ) 85.41 85.21 85.31 15.46 51.27 

C-CMVN(o) ( 64R = ) 84.13 81.53 82.83 12.98 43.04 

C-CMVN  ( 64R = ) 86.92 86.81 86.87 17.01 56.43 

C-CMVN(o) ( 256R = ) 86.67 86.25 86.46 16.61 55.08 

C-CMVN  ( 256R = ) 87.10 87.32 87.21 17.36 57.57 
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5.2 Comparison of the Associative CMS, CMVN and HEQ with the 
Utterance-based and Codebook-based Approaches 

The proposed associative cepstral normalization methods (A-CMS, A-CMVN, and A-HEQ) 
are evaluated here in terms of their robustness against noise. For the purpose of comparison, 
the experiments for the corresponding utterance-based and codebook-based methods are also 
performed. Here, the weighting factor α  in Equations (12), (13), (15)-(18), (20), and (21) is 
preliminarily set to 0.5. Similar to the previous subsection, the size of the clean speech 
codebook, R, is set to 16, 64, or 256, and the number of leading frames for noise estimation, P, 
is set to 10. 

Tables 3, 4, and 5 list the recognition results of various types of CMS, CMVN, and HEQ, 
respectively, where these results present individual set recognition accuracy rates averaged 
over five SNR conditions (0~20dB, at 5dB intervals). For example, in Table 3, the recognition 
accuracy rates for utterance-based CMS (U-CMS), codebook-based CMS (C-CMS) with 

256R = , and associative CMS (A-CMS) with three assignments of the parameter R , are 
presented. A similar arrangement holds for Tables 4 and 5. From the three tables, a series of 
observations are obtained as follows: 

1. Among the three types of CMS, A-CMS performs the best, followed by C-CMS and then 
U-CMS. This condition also holds for A-CMVN, C-CMVN, and U-CMVN. First, the 
results agree with those obtained in (Hung, 2008) that codebook-based CMS and CMVN 
behave better than utterance-based ones. Second, the associative CMS (A-CMS) and 
CMVN (A-CMVN) always outperform both their corresponding utterance-based and 
codebook-based ones. Therefore, combining codebooks with the processed utterance 
features in estimating the feature statistics indeed helps improve the recognition accuracy 
considerably. 

2. For the three utterance-based methods, HEQ always performs better than CMVN and 
CMS. As stated in Section 3, compared with CMVN and CMS, HEQ additionally 
compensates for all the higher-order moments of features, thus, brings about extra 
improvement. This, however, is not the case for codebook-based methods: C-HEQ behaves 
worse than C-CMVN and is the worst of the three HEQ methods. A possible reason is that 
the codebooks give more accurate gross information (i.e. the mean and variance) for the 
features, but they are less capable of providing the detailed behavior (i.e. the probability 
distribution) of them. 

3. Similar to the case in CMS and CMVN, the new A-HEQ outperforms U-HEQ and 
C-HEQ significantly. The superior performance of A-HEQ again reveals that the feature 
statistics can be estimated more accurately by incorporating the codebook and the 
processed utterance features. 
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4. In these high-performance A-CMS, A-CMVN, and A-HEQ, setting the weighting factor 
α  to 0.5 implies the codebooks and the whole-utterance frames are equally treated 
without bias. Although 0.5α =  is not necessarily an optimal assignment, at least it 
implies that there is little need for meticulous tuning of the weighting factor α  in order to 
obtain an improved performance for these associative methods. 

5. A particular phenomenon for these associative methods (A-CMS, A-CMVN, and A-HEQ) 
is that increasing the number of clean-speech codewords R  does not improve the 
recognition accuracy, which somewhat contradicts the results for codebook-based CMS 
and CMVN, as shown in Tables 1 and 2. For example, increasing the value of R  from 16 
to 256 in A-HEQ results in an accuracy degradation of 1.40%. One of the possible reasons 
for this degradation is the inconsistency between the codebooks and the whole-utterance 
frames in these associative methods. The codebooks present only the characteristics of the 
speech portions in the utterance, while the whole utterance contains both speech and 
non-speech portions. Increasing the codebook size somewhat portrays the speech 
characteristics more precisely, thus, highlights the above inconsistency further. From the 
viewpoint of implementation, however, it becomes an advantage since we can obtain better 
recognition results with fewer codewords in these associative methods, which reduces the 
computation complexity. 

Table 3. Recognition accuracy (%) achieved by utterance-based, codebook-based, and 
associative CMS averaged across the SNRs between 0 and 20dB, under the 
complex back-end structure. AR (%) and RR (%) are the absolute and 
relative error rate reductions over the baseline. 

Method Set A Set B Average AR RR 

Baseline 71.92 67.79 69.86 － － 

U-CMS 79.37 82.47 80.92 11.07 36.71 

C-CMS ( 256R = ) 81.46 81.49 81.48 11.62 38.55 

A-CMS ( 16, 0.5R α= = ) 83.28 84.92 84.10 14.25 47.25 

A-CMS ( 64, 0.5R α= = ) 82.92 84.89 83.91 14.05 46.61 

A-CMS ( 256, 0.5R α= = ) 82.13 84.29 83.21 13.36 44.30 
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Table 4. Recognition accuracy (%) achieved by utterance-based, codebook-based, and 
associative CMVN averaged across the SNRs between 0 and 20dB, under the 
complex back-end structure. AR (%) and RR (%) are the absolute and 
relative error rate reductions over the baseline. 

Method Set A Set B Average AR RR 

Baseline 71.92 67.79 69.86 － － 

U-CMVN 85.03 85.56 85.30 15.44 51.22 

C-CMVN ( 256R = ) 87.10 87.32 87.21 17.36 57.57 

A-CMVN ( 16, 0.5R α= = ) 87.87 88.67 88.27 18.42 61.09 

A-CMVN ( 64, 0.5R α= = ) 87.34 88.24 87.79 17.94 59.50 

A-CMVN ( 256, 0.5R α= = ) 87.25 88.06 87.66 17.80 59.05 

Table 5. Recognition accuracy (%) achieved by utterance-based, codebook-based, and 
associative HEQ averaged across the SNRs between 0 and 20dB, under the 
complex back-end structure. AR (%) and RR (%) are the absolute and 
relative error rate reductions over the baseline. 

Method Set A Set B Average AR RR 

Baseline 71.92 67.79 69.86 － － 

U-HEQ 86.95 88.39 87.67 17.82 59.10 

C-HEQ ( 256R = ) 86.23 85.77 86.00 16.15 53.56 

A-HEQ ( 16, 0.5R α= = ) 90.21 91.16 90.69 20.83 69.10 

A-HEQ ( 64, 0.5R α= = ) 88.93 89.68 89.31 19.45 64.52 

A-HEQ ( 256, 0.5R α= = ) 88.84 89.73 89.29 19.43 64.46 

Figures 2, 3, and 4 show the averaged recognition accuracy rates for each of the eight 
noise conditions in Test Sets A and B achieved by various types of CMS, CMVN, and HEQ. 
Roughly speaking, the four noise types, "subway," "street," "car," and "exhibition" can be 
viewed as stationary noise, while the other four noise types, "restaurant," "babble," "airport," 
and "train-station" are non-stationary noise. From the three figures, it is first found that, the 
utterance-based methods perform better in the non-stationary noise cases than in the stationary 
noise cases, while the situation is reversed for codebook-based methods. Second, the accuracy 
variation due to different noise conditions is more significant in the utterance-based and 
codebook-based methods than in the associative methods. Third, for each noise type, the 
associative method always performs better than the corresponding utterance-based and 
codebook-based ones, which again indicates that integrating the utterance and codebook 
information in these feature statistics methods is quite helpful for a wide range of noise 
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environments. 

 

Figure 2. Recognition accuracy (%) achieved by three CMS methods, U-CMS, 
C-CMS (R=256), and A-CMS (R=16, α=0.5) for eight noise types in 
Test Sets A and B, averaged over five SNR conditions, 0~20dB. 

 

Figure 3. Recognition accuracy (%) achieved by three CMVN methods, U-CMVN, 
C-CMVN (R=256), and A-CMVN (R=16, α=0.5) for eight noise types in 
Test Sets A and B, averaged over five SNR conditions, 0~20dB. 



 

 

124                                          Wen-Hsiang Tu and Jeih-weih Hung 

 

Figure 4. Recognition accuracy (%) achieved by three HEQ methods, U-HEQ, 
C-HEQ (R=256), and A-HEQ (R=16, α=0.5) for eight noise types in 
Test Sets A and B, averaged over five SNR conditions, 0~20dB. 

5.3 The Effect of the Weighting Factor α  in the Associative Methods 
Here, the effect of the weighting factor α  on the proposed associative methods is 
investigated. As stated in Section 2, the weighting factor α  determines the usage ratio 
between the codebooks and the whole-utterance frames in estimating the feature statistics. 
Here, the size R  of the clean speech codebook is fixed at 16 since it brings the best 
recognition accuracy, as mentioned in the previous subsection. Then, different assignments of 
the weighting factor α  from 0 to 1, spaced at 0.1 intervals, are given for A-CMS, A-CMVN, 
and A-HEQ. 

Figures 5, 6, and 7 show the recognition results averaged over five SNR conditions 
(0~20dB) and all eight noise types in Test Sets A and B for different values of α  for A-CMS, 
A-CMVN, and A-HEQ, respectively. Note that these associative methods with 0α =  and 

1α =  behave equally to the corresponding utterance-based and the codebook-based 
methods, respectively. For example, A-HEQ with 0α =  is identical to U-HEQ, and A-HEQ 
with 1α =  is identical to C-HEQ. From the three figures, we first find that, with any value 
of α  that is not equal to 0 or 1, the newly-proposed associative methods always behave 
better than both the utterance-based and codebook-based ones. This result again supports our 
previous comment that integrating both codebook and utterance knowledge promotes the 
performance of feature statistics normalization techniques. Next, for different associative 
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methods, the corresponding optimal α  values that achieve the optimal performance are not 
identical to each other. For example, the optimal α  for A-CMS, A-CMVN, and A-HEQ are 
0.3, 0.8, and 0.4, respectively. For each method, however, the differences among the accuracy 
rates obtained with different α  are in fact relatively slight when α  is in the range 
0.3, 0.8⎡ ⎤⎢ ⎥⎣ ⎦  (i.e., 0.3 0.8α≤ ≤ ). The maximum deviation in the accuracy rates for A-CMS 

with varying α  is 1.69%, and it is 1.08% and 0.70% for A-CMVN and A-HEQ, respectively. 
Furthermore, setting 0.5α =  just results in the accuracy degradation of 0.85%, 0.49%, and 
0.01% for A-CMS, A-CMVN, and A-HEQ, respectively, when compared with the optimal 
values. This result implies that we just have to evenly employ the codebooks and the 
whole-utterance frames in these associative methods, then the nearly optimal performance can 
be achieved. 

 

Figure 5. Recognition accuracy (%) averaged over five SNR values and all the 
eight noise types in Test Sets A and B vs. different assignments of the 
weighting factor α in associative CMS.  

 

 Figure 6. Recognition accuracy (%) averaged over five SNR values and all the 
eight noise types in Test Sets A and B vs. different assignments of the 
weighting factor α in associative CMVN. 
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Figure 7. Recognition accuracy (%) averaged over five SNR values and all the 
eight noise types in Test Sets A and B vs. different assignments of the 
weighting factor α in associative HEQ. 

5.4 Comparison of the Associative Methods with the Other Noise-Robust 
Techniques 

In the previous subsections, we have shown that the associative methods outperform the 
corresponding utterance-based and codebook-based methods. Here, the associative methods 
are compared with the other two noise-robust techniques: mean-and-variance normalization 
plus autoregressive moving average (ARMA) filtering (MVA) (Chen & Bilmes, 2007) and the 
ETSI advanced front-end (AFE) feature extraction algorithm (ETSI standard doc, 2003). In 
MVA, an ARMA filter is performed on the (utterance-based) MVN-processed features in 
order to emphasize the relatively low modulation frequency components. On the other hand, 
the AFE makes use of a two-stage Wiener filter in order to reduce noise. For the purpose of 
comparison, we also perform the low-pass ARMA filtering on the A-CMVN processed 
features, which is called A-MVA here. 

Figures 8 and 9 present the recognition accuracy rates of the various approaches for Test 
Sets A and B, respectively. From the two figures, we have the following observations: 

1. Both MVA and AFE perform very well. The superior performance of MVA over 
U-CMVN shows that the low-pass ARMA filter helps extract the noise-robust components 
in U-CMVN processed features. On the other hand, AFE performs the best among all the 
methods here, which implies that, in AFE, the two-stage Wiener filtering process achieves 
very effective noise reduction. 

2. A-CMVN behaves as well as MVA (U-CMVN plus ARMA), and in A-MVA the 
low-pass ARMA filtering process offers A-CMVN an accuracy improvement of 1.76% and 
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1.64% for Test Sets A and B, respectively. This result shows that, similar to U-CMVN, 
A-CMVN is additive to the ARMA filtering to provide better performance. 

3. A-HEQ performs worse than AFE by 2.13% and 0.83% for Set A and Set B, 
respectively, in recognition accuracy. The possible explanation is: the noise estimates are 
quite accurate in AFE, which benefit the two-stage Wiener filtering process a lot, while 
A-HEQ just employs the several leading frames in an utterance as the noise estimates. As a 
result, in our future work, we will attempt to incorporate the noise estimates in AFE with the 
proposed associative methods in order to enhance their noise-robustness capability. 

 

Figure 8. Recognition accuracy (%) achieved by various approaches averaged 
over five SNR values and all the four noise types in Test Set A, under 
the complex back-end structure. 

 

Figure 9. Recognition accuracy (%) achieved by various approaches averaged 
over five SNR values and all the four noise types in Test Set B, under 
the complex back-end structure.  
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5.5 Experimental Results of Our Proposed Methods with the Standard 
Back-end Defined in Aurora-2 Database 

The recognition experiments in the previous four subsections use a more complicated hidden 
Markov model (HMM) structure, which follows the Microsoft advanced back-end training 
scripts (Droppo, Deng, & Acero, 2002), and each digit HMM has 16 states and 20 mixtures 
per states. Here, we train each digit HMM as 16 states and 3 mixtures per states following the 
standard back-end training scripts (Hirsch & Pearce, 2000), and the corresponding recognition 
results for our proposed methods are shown in Table 6. Comparing Table 6 with Tables 3, 4, 
and 5, we have the following observations: 

1. Under the simpler HMM structure, the recognition accuracy rates achieved by each 
method become worse, which implies that a small number of mixtures cannot adequately 
represent the short-term speech characteristics. 

2. The accuracy difference between the utterance-based and codebook-based methods 
becomes more significant. For example, C-CMS and C-CMVN outperform U-CMS and 
U-CMVN by 6.62% and, 6.71%, respectively (in Tables 3 and 4, the accuracy differences 
are less than 2%), and U-HEQ outperforms C-HEQ by 6.36% (in Table 5, the accuracy 
difference is just 1.67%). 

3. In almost all cases, the proposed associative methods perform better than the 
corresponding utterance-based and codebook-based methods. Therefore, it reveals that, 
regardless of the recognition model complexity, integrating the codebook and utterance 
information helps enhancing the feature statistics normalization methods and thus brings 
about better recognition performance under additive noise environments. 

Table 6. Recognition accuracy (%) achieved by various approaches averaged across 
the SNRs between 0 and 20dB, under the standard back-end structure. AR 
(%) and RR (%) are the absolute and relative error rate reductions over the 
baseline. 

 
 
 
 
 
 
 
 
 

Method Set A Set B Average AR RR 

Baseline 61.97 55.78 58.88 － － 

U-CMS 64.36 69.43 66.90 8.02 19.50 

C-CMS ( 256R = ) 72.40 74.64 73.52 14.64 35.60 

A-CMS ( 16, 0.5R α= = ) 73.72 77.51 75.61 16.73 40.69 

U-CMVN 73.83 75.01 74.42 15.54 37.79 

C-CMVN ( 256R = ) 80.88 81.39 81.13 22.25 54.11 

A-CMVN ( 16, 0.5R α= = ) 80.74 81.75 81.24 22.36 54.38 

U-HEQ 80.33 81.24 80.79 21.91 53.28 

C-HEQ ( 256R = ) 75.21 73.64 74.43 15.55 37.82 

A-HEQ ( 16, 0.5R α= = ) 82.96 83.85 83.41 24.53 59.65 
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6. Concluding Remarks and Future Works 

In this paper, we propose associative CMS, CMVN, and HEQ, in which the required statistical 
information is obtained by incorporating advanced pseudo stereo codebooks and the processed 
whole-utterance frames. These new approaches demonstrate enhanced robustness of speech 
features under various additive noise environments. Compared with conventional 
utterance-based and codebook-based CMS, CMVN, and HEQ, these new approaches provide 
significantly better recognition performance. In our future work, we will employ the proposed 
statistics evaluation scheme to other feature statistics normalization approaches, like CGN 
(Yoshizawa, Hayasaka, Wada, & Miyanaga, 2004), HOCMN (Hsu & Lee, 2004), and CSN 
(Du & Wang, 2008), to investigate if better performance can be achieved. 
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