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Abstract 

This paper considers minimum phone error (MPE) based discriminative training of 
acoustic models for Mandarin broadcast news recognition. We present a new phone 
accuracy function based on the frame-level accuracy of hypothesized phone arcs 
instead of using the raw phone accuracy function of MPE training. Moreover, a 
novel data selection approach based on the frame-level normalized entropy of 
Gaussian posterior probabilities obtained from the word lattice of the training 
utterance is explored. It has the merit of making the training algorithm focus much 
more on the training statistics of those frame samples that center nearly around the 
decision boundary for better discrimination. The underlying characteristics of the 
presented approaches are extensively investigated, and their performance is 
verified by comparison with the standard MPE training approach as well as the 
other related work. Experiments conducted on broadcast news collected in Taiwan 
demonstrate that the integration of the frame-level phone accuracy calculation and 
data selection yields slight but consistent improvements over the baseline system. 

Keywords: Discriminative Training, Minimum Phone Error, Phone Accuracy 
Function, Training Data Selection, Large Vocabulary Continuous Speech 
Recognition 

1. Introduction 

Speech is the primary and the most convenient means of communication between individuals. 
Due to the successful development of much smaller electronic devices and the popularity of 
wireless communication and networking, it is widely believed that speech will possibly serve 
as a major human-machine interface for the interaction between people and different kinds of 
smart devices in the near future. On the other hand, huge quantities of multimedia information, 
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such as that in broadcast radio and television programs, voice mails, digital archives, and so 
on are continuously growing and filling our computers, networks, and daily lives. Speech is 
obviously one of the most important information-bearing sources for the great volumes of 
multimedia. Based on these observations, it is expected that automatic speech recognition 
(ASR) technology will play a very important role in human-machine interaction, as well as in 
organization and retrieval of multimedia content. 

When considering the development of an ASR system, acoustic modeling is always an 
indispensable and crucial ingredient we have to carefully manipulate. The purpose of acoustic 
modeling is to provide a method for calculating the likelihood of a speech utterance occurring 
given a word sequence. In principle, the word sequence can be decomposed into a sequence of 
phone-like (subword, e.g. INITIAL or FINAL in Mandarin Chinese) units or acoustic models, 
each of which is normally represented by a continuous density hidden Markov model (HMM), 
and the corresponding model parameters can be estimated from a corpus of orthographically 
transcribed training utterances using maximum likelihood (ML) training [Rabiner 1989]. The 
acoustic models can be alternatively trained with discriminative training algorithms, such as 
maximum mutual information (MMI) training [Bahl et al. 1986] and minimum phone error 
(MPE) training [Povey 2004; Kuo et al. 2006]. These algorithms were developed in an attempt 
to correctly discriminate the recognition hypotheses for the best recognition results rather than 
just to fit the model distributions as done by ML training; therefore, they have continuously 
been a focus of considerable active research in a wide variety of large vocabulary continuous 
speech recognition (LVCSR) tasks over the past few years. Moreover, in contrast to ML 
training, discriminative training considers not only the reference (or correct) transcript of a 
training utterance, but also the competing (or incorrect) hypotheses that are often obtained by 
performing LVCSR on the utterance. 

In this paper, we consider minimum phone error (MPE) based discriminative training of 
acoustic models for Mandarin broadcast news recognition. In order to remedy the defect in the 
phone accuracy function of the MPE training algorithm, we present a new phone accuracy 
function based on the frame-level accuracy of hypothesized phone arcs. Moreover, a novel 
data selection approach based on the frame-level normalized entropy of Gaussian posterior 
probabilities obtained from the word lattice of the training utterance is explored, which has the 
merit of making the MPE training algorithm focus much more on the training statistics of 
those frame samples that center nearly around the decision boundary for better discrimination. 
The underlying characteristics of the presented approaches are extensively investigated and 
their performance is verified by comparison with the original MPE training approach as well 
as other related work. 

The remainder of this paper is organized as follows. In Section 2, the general background 
of MPE based acoustic model training is briefly reviewed. Section 3 elucidates our proposed 
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new accuracy function for MPE training, and Section 4 presents two novel training data 
selection approaches based on frame-level normalized entropy information. The experimental 
setup is detailed in Section 5, and a series of speech recognition experiments is described in 
Section 6. Finally, we present the conclusions drawn from the research in Section 7. 

2. Review of Minimum Phone Error (MPE) Training 

Given a training set of K  acoustic vector sequences { }1,.., ,..,k KO O O O= , the MPE criterion 
for acoustic model training aims to minimize the expected phone errors of these acoustic 
vector sequences using the following objective function [Povey and Woodland 2002]: 

1( ) ( ) ( | ),lat
k k

K
MPE k k kk WF RawAcc W P W Oλλ = ∈= ∑ ∑ W             (1) 

where λ denotes a set of phone-like acoustic models; lat
kW is the corresponding word lattice 

[Ortmanns et al. 1997] of kO  obtained using LVCSR, as graphically illustrated in Figure 1; 

kW  is one of the hypothesized word sequences in lat
kW ; ( | )k kP W O  is the posterior 

probability of hypothesis kW  given kO ; ( )kRawAcc W  is the “raw phone accuracy” of 

kW  in comparison to the corresponding reference transcript, which is typically computed as 
the sum of the phone accuracy measures of all phone hypotheses in kW . Then, the objective 
function in Equation (1) can be maximized by applying the Extended Baum-Welch algorithm 
[Gopalakrishnan et al. 1989] to update the mean hmdμ and variance 2

hmdσ  for each 
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where ,lat
kq q h∈ =W  denotes that a phone q  arc belongs to the word lattice lat

kW  and 
physically refers to the HMM h ; k

avgc  is the average phone accuracy over all hypothesized 
word sequences in the word lattice; k

qc  is the expected phone accuracy over all hypothesized 
word sequences containing a phone arc q ; ( )to d  is the observation vector component at 
frame t ; qs and qe are the start and end times of phone arc q ; k

qγ  the posterior 
probability for phone arc q  of utterance k ; )(tk

qmγ  is the posterior probability for mixture 
component m  of phone arc q  of utterance k  at frame t ; num

qmγ , ( )Onum
qmdθ  and 

( )2Onum
qmdθ  are the accumulated training statistics for mixture component m  of phone arc q  

whose k
qc  is larger than k

avgc , and vice-versa for den
qmγ , ( )Oden

qmdθ  and ( )2Oden
qmdθ ; qmdμ  

and 2
qmdσ  are, respectively, the mean and variance estimated in the previous iteration; and 

D  is a constant used to ensure positive variance values. On the other hand, the calculation of 
k
avgc  and k

qc  is actually based on the phone accuracies of phone arcs in the word lattice. For 
example, the raw phone accuracy for each word sequence kW  in the lattice can be calculated 
in terms of the sum of the accuracy of each phone contained in kW  [Povey and Woodland 
2002]: 

( ) ( ),
kk q WR aw A cc W P honeA cc q∈= ∑               (9) 

where ( )PhoneAcc q  is the raw phone accuracy for a phone arc q  in kW , which can be 
defined as follows: 
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Figure 1. An illustration of a word lattice, in which each arc, together with its 

corresponding start and end speech frames, represents a candidate 
word hypothesis. A word arc can be further aligned into a sequence of 
phone arcs for MPE training. 
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where kZ  is the set of phone labels in the corresponding reference transcript, and ( , )je z q  is 
the overlap length in frames (or in time) for a phone label jz  in kZ  and a hypothesized 
phone arc q  in kW , )( jzl  is the length in frames for jz . We can observe from Equations 
(4)-(8), for MPE training, those hypotheses having raw phone accuracies higher than the 
average can provide positive contributions, and vice-versa for those hypotheses with 
accuracies lower than the average. Interested readers can refer to [Povey 2004; Kuo et al. 2006] 
for more derivation details of MPE training. 

3. New Accuracy Functions 

It is known that the standard MPE training approach has some drawbacks [Zheng and Stolcke 
2005]. One of them is that MPE training does not sufficiently penalize deletion errors. In 
general, the original MPE objective function discourages insertion errors more than deletion 
and substitution errors. Inspired by the work of word lattice rescoring (or decoding) using 
frame-level accuracy information [Wessel et al. 2001], in this paper we present an alternative 
phone accuracy function that can look into the frame-level phone accuracies of all 
hypothesized word sequences to replace the original raw phone accuracy function for MPE 
training [Liu et al. 2007a]. The frame-level phone accuracy function (FA) is defined as: 
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where ( )kZ t  is the phone label of the reference transcript kZ  at frame t ; ρ  is a tunable 
positive parameter used to control the penalty if the phone arc q  is incorrect in its label; and 
the value of ( )FrameAcc q  will range from ρ−  to 1. For each frame t , we thus can easily 
evaluate whether the phone arc of each hypothesized word sequence in the word lattice is 
identical to that of the reference transcript or not. Actually, the presented frame-level phone 
accuracy function emphasizes the deletion penalty on the incompletely correct phone arc; 
whereas the insertion and substitution errors of the hypothesized word sequences, as well as 
the errors caused by inaccurate time boundaries of the phone arcs, are also taken into 
consideration evenly. As illustrated in Figure 2, given the reference phone transcript “a-b-c”, 
the first hypothesized phone sequence “a-b-c” will be regarded as partially correct (with a 
score of two) using the original MPE raw phone accuracy function, as shown in Eq. (10); 
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while the presented frame-level phone accuracy function, as shown in Eq. (11), will give it a 
score of 2.56 (with ρ  set to 0.1) by similarly taking into account the incorrect time 
boundaries of the associated phone arcs. On the other hand, for the second hypothesized phone 
sequence “a-c”, it is obvious that there exists a deletion error of the phone arc “b.” 
Nevertheless, the original MPE raw phone accuracy function gives the second hypothesized 
phone sequence a score of two, which is equivalent to that of the first hypothesized phone 
sequence, and the phone arcs (“a” and “c”) of it will be treated as completely correct. While 
using our proposed frame-level phone accuracy function, both of the two phone arcs in the 
second hypothesized phone sequence will instead be treated as partially correct by considering 
the frame-level substitution errors. Thus, the frame-level phone accuracy function will only 
assign a total score of 1.27 (with ρ  set to 0.1) to the second hypothesized phone sequence. 

Another frame-level phone accuracy function that uses the Sigmoid function to 
normalize the phone accuracy value in a range between -1 and 1 is also investigated in this 
paper (SFA): 

2( ) 1,
1 exp( )

SigFrameAcc q
netα

= −
+ − ⋅

                  (13) 
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e
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where ( )( , )kq Z tδ  was previously defined in Eq. (12), α is a positive parameter that controls 
the slope of the Sigmoid function (the larger the value of α , the steeper the slope of the 
function). Notice that, the purpose of the above two new phone accuracy functions is not to 
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Figure 2. An illustration of the frame-level accuracy. The shaded box indicates 
where the frame-level errors occur. 
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approximate the standard Levenshtein distance measure, but instead to sufficiently penalize 
the frame-level substitution errors of each hypothesized phone arc that may be neglected by 
the original raw phone accuracy function. From now on, the proposed improved MPE training 
algorithms, by adopting either one of the two frame-level phone accuracy functions defined in 
Eqs. (11) and (13), are referred to as the maximum frame accuracy training (denoted as MFA) 
and the maximum Sigmoid-based frame accuracy training (denoted as MSFA), respectively. 

In recent years, there also has been considerable independent research on the design of 
new phone accuracy functions for improving MPE training [Zheng and Stolcke 2005; Gibson 
et al. 2006; Du et al. 2006; Povey et al. 2007]. As one example, the minimum phone frame 
error (MPFE) criterion [Zheng and Stolcke 2005] simply counts the number of frames of the 
recognition hypothesis having correct phone labels in comparison to the reference transcript, 
which is quite similar to our proposed frame-level accuracy functions. The major differences 
are that MPFE gives a score of zero (but not a negative value as done by MFA and MSFA) to 
the frames with incorrect phone labels, and the corresponding phone accuracy value is not 
normalized by the phone duration or the Sigmoid function. As another example, the state-level 
minimum Bayes risk (sMBR) criterion [Gibson et al. 2006; Povey et al. 2007] uses the HMM 
state-level information to fulfill label matching. As still another example, the minimum 
divergence (MD) criterion [Jun Du et al. 2006] defines phone accuracy on the basis of the 
Kullback-Leibler divergence between the corresponding acoustic models of the reference and 
hypothesized phone labels. More detailed elucidation and comparison of these alternative 
phone accuracy functions can be found in [Povey et al. 2007]. 

Although a discriminative training approach using the finite state transducer, retaining 
the corresponding recognition hypotheses of the training acoustic vector sequence, for 
calculating the exact Levenshtein distance based word error rate was also proposed recently 
[Heigold et al. 2005], no improved results but only degraded results were demonstrated by the 
approach. 

4. Frame-Level Training Data Selection 

In this section, we elucidate the theoretical roots of frame-level training data selection using 
the entropy information, as well as two variant implementations to achieve this goal. 

4.1 Normalized Frame-Level Entropy 
We propose the use of the entropy information to select the frame-level training statistics for 
the MPE training. The normalized entropy of a training frame sample i  can be defined as 
[Liu et al. 2007b]: 
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2
2

1 1( ) ( ) log ,
log ( )lat

k

k
k qm km qqt qm

E t t
N t

γ
γ∈∈

= ⋅∑ ∑
W

                (15) 

where )(tk
qmγ  is the posterior probability for mixture component m  of phone arc q  at 

frame t , which is calculated from the word lattice; tN  is the number of Gaussian mixtures 
which have nonzero posterior probabilities at frame t  ( 0)( >tk

qmγ ); and the value of  ( )kE t  
will range from zero to one [Misra and Bourlard 2005]. Here, we use a hypothetical example 
of binary classification to illustrate the relationship between the decision boundary and the 
normalized entropy. As shown in Figure 3, the decision boundary constructed based on the 
posterior probability of the class 1C  can discriminate most of the samples belonging to 1C  
(depicted as squares) from those belonging to 2C  (depicted as circles). In general, the 
decision boundary is at the value of 0.5 for the posterior probability of 1C  and the class 
posterior probabilities can be used to calculate the normalized entropies of the samples. Thus, 
the samples (solid circles or squares) located near the decision boundary will have normalized 
entropies close to one, while those (hollow circles or squares) located far away from the 
decision boundary will have normalized entropies close to zero. 

For the speech recognition task, two extreme cases are considered as follows. First, if the 
normalized entropy measure of a frame sample i  is close to zero, it means that the 
corresponding frame-level posterior probabilities will be dominated by one specific mixture 
component. From the viewpoint of frame sample classification using posterior probabilities, 
the difference of probabilities between the true (correct) mixture component and the 
competing (incorrect) ones is larger. That is, the frame sample i  is actually located far from 
the decision boundary. On the other hand, if the normalized entropy measure is close to one, it 
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Figure 3. A hypothetical example of binary classification illustrating the 
relationship between the decision boundary and the normalized 
entropy. 
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means that the posterior probabilities of mixture components tend to be uniformly distributed. 
Then, the frame sample i  is instead located near the decision boundary. In a word, the 
normalized entropy measure to some extent can define a kind of margin for the selection of 
useful training frame samples. Therefore, we may take advantage of the normalized entropy 
measure to make the MPE training focus much more on the training statistics of those frame 
samples that center near the decision boundary for better sample discrimination and model 
generalization [Jiang et al. 2006; Li et al. 2006]. 

4.2 Hard Version of Frame Sample Selection (HS) 
A straightforward implementation of frame-level training data selection is to define a 
threshold of the normalized entropy measure then completely discard the training statistics of 
those frame samples whose normalized entropy values fall below it. This can be viewed as a 
“hard version” of data selection. Figure 4 shows a histogram describing the relationship 
between the normalized entropy and the number of training speech frame samples used in this 
study. For example, the leftmost vertical bar denotes the number of training speech frame 
samples whose normalized entropy values are in the range of 0 to 0.05. The large number of 
frame samples belonging to the leftmost vertical bar also reveals that most of the training 
frame samples in fact are located far from the decision boundary; thus, they can be discarded 
if the threshold is appropriately set. 

4.3 Soft Version of Frame Sample Selection (SS) 
We also attempt an alternative implementation (or a “soft version”) of frame-level training 
data selection to emphasize the training statistics of those frame samples that are located near 

 
 

Figure 4. A plot of the relationship between the normalized entropy and the 
number of training speech frame samples. 
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the decision boundary according to their normalized entropy values using the following 
formula:  

(1 ( )),
MPE MPEk k

q q kE tγ γ ω′ = ⋅ + ⋅                (16) 

where ω  is tunable positive parameter whose value ranges from 0 to 1. As indicated by 
Equation (16), if the normalized entropy value ( )kE t  of a training frame sample i  is higher, 
then its corresponding training statistics will be emphasized. On the contrary, for a frame 
sample with a lower entropy value, its training statistics will be deemphasized when compared 
to those of the frame samples with higher normalized entropy values. 

5. Experiment Setup 

In this section, we describe the speech and text data, as well as the large vocabulary 
continuous speech recognition system, employed in this paper. 

5.1 Speech Corpus and Acoustic Model Training 
The speech corpus consisted of approximately 198 hours of MATBN (Mandarin Across 
Taiwan Broadcast News) Mandarin television news content [Wang et al. 2005], which was 
collected by Academia Sinica and the Public Television Service Foundation of Taiwan 
between November 2001 and April 2003. All the speech materials were manually segmented 
into separate stories, each of which was spoken by one news anchor, several field reporters, 
and interviewees. Some stories contained background noise, speech, and music. All 198 hours 
of speech data were accompanied by corresponding orthographic transcripts, of which about 
25 hours of gender-balanced speech data of the field reporters collected from November 2001 
to December 2002 was used to bootstrap the acoustic training. The training set consisted of 
more than five hundred thousand characters, and the average length of a word was 1.65 
characters. Another set of about 1.5 hours of speech data of the filed reporters (more than 
twenty-six thousand characters) collected during 2003 was reserved for testing. The training 
and test data overlapped in speakers; roughly 30% of the test data was spoken by the field 
reporters whose previous recordings were also included in the 25-hour training data. 

The acoustic models chosen for speech recognition were a silence model, 112 
right-context-dependent INITIAL models, and 38 context-independent FINAL models. Each 
INITIAL model was represented by an HMM with 3 states, while each FINAL model had 4 
states. Note that gender-independent models were used. The Gaussian mixture number per 
state ranged from 2 to 128, depending on the amount of training data. The acoustic models 
were first trained using the ML criterion and the Baum-Welch update formulas. The 
MPE-based acoustic model training was further applied to acoustic models pre-trained by the 
ML criterion. Both silence and short-pause labels were involved in the calculation of the raw 
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phone accuracy of the word sequence hypotheses for the MPE training. 

5.2 Lexicon and N-gram Language Modeling 
Initially, the recognition lexicon consisted of 67K words. A set of about 5K compound words 
was automatically derived using forward and backward bigram statistics [Saon and 
Padmanabhan 2001] and added to the lexicon to form a new lexicon of 72K words. The 
background language models used in this experiment were trigram and bigram models, which 
were estimated according to the ML criterion using a text corpus consisting of 170 million 
Chinese characters collected from the Central News Agency (CNA) in 2001 and 2002 (the 
Chinese Gigaword Corpus released by LDC). In implementation, the n-gram language models 
were trained with the SRI Language Modeling Toolkit [Stolcke 2000]. 

5.3 Speech Recognition System 
The front-end processing for speech recognition was performed with the HLDA-based 
(Heteroscedastic Linear Discriminant Analysis) data-driven Mel-frequency feature extraction 
approach [Kumar 1997] then processed by MLLT (Maximum Likelihood Linear 
Transformation) transformation [Saon et al. 2000] for feature de-correlation. In addition, 
utterance-based feature mean subtraction and variance normalization were applied to all the 
training and test speech. 

The speech recognizer was implemented with a left-to-right frame-synchronous Viterbi 
tree-copy search and a lexical prefix tree of the lexicon [Aubert 2002]. For each speech frame, 
a beam pruning technique, which considered the decoding scores of path hypotheses together 
with their corresponding unigram language model look-ahead scores and syllable-level 
acoustic look-ahead scores [Chen et al. 2005], was used to select the most promising path 
hypotheses. Moreover, if the word hypotheses ending at each speech frame had higher scores 
than a predefined threshold, their associated decoding information, such as the word start and 
end frames, the identities of current and predecessor words, and the acoustic score, were kept 
to build a word lattice for further language model rescoring. We used the word bigram 
language model in the tree search procedure and the trigram language model in the word 
lattice rescoring procedure [Ortmanns et al. 1997]. 

6. Experiment Results 

As it is known that there are no explicit marks, such as spaces or blanks, separating words in 
the Chinese language, the Chinese language often suffers from word tokenization problems. 
The performance evaluation metric used in Mandarin speech recognition usually is the 
character error rate (CER) rather than the word error rate (WER). 
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6.1 Baseline System 
The acoustic models were trained with about 25 hours of speech utterances. The MPE training 
started with the acoustic models trained by 10 iterations of the ML training, and used the 
information contained in the associated word lattices of training utterances to accumulate the 
necessary statistics for model training. The ML-trained acoustic models yields a CER 
(Chinese Character Error Rate) of 23.64%, while the standard MPE training (denoted as MPE) 
indeed can provide a great boost to the acoustic models initially trained by ML consistently at 
all training iterations, as the curve “MPE” depicted in Figure 4 or the results shown in the 
leftmost column of Table 1. 

In the following experiments, for fair comparison between our proposed methods and the 
baseline MPE training, the smoothing constant (i.e., the τ  value of I-smoothing) [Povey and 
Woodland 2002; Povey 2004; Kuo et al. 2006] is set to be the same as that used in the baseline 
MPE training. It is known that this smoothing constant can be regarded as a kind of prior 
information which forces the HMM parameters estimated by the MPE training to center 
around that estimated by the ML training [Povey et al. 2007]. 

6.2 Experiments on Proposed Frame-level Phone Accuracy Functions 
We first evaluate the performance of our proposed two frame-level phone accuracy functions, 
FA (corresponding to the MFA training) and SFA (corresponding to the MSFA training), as 
previously described in Section 3. As can be seen from Figure 5, both MFA and MSFA 

    Table 1. CER results (%) obtained for different parameter settings of the MPE 
training using two variant phone accuracy functions (MFA and MSFA). 

Iterations MPE
MFA 
ρ =0.1 

MFA 
ρ =0.3 

MFA 
ρ =0.5

MFA 
ρ =0.8

MSFA 
ρ =0.1 
=α 0.5

MSFA 
ρ =0.5 
=α 0.5 

MSFA 
ρ =0.1 
=α 1 

MSFA 
ρ =0.5 
=α 1 

1 22.82 22.85 22.73 22.74 22.80 22.88 22.82 22.83 22.77 
2 22.44 22.35 22.33 22.36 22.39 22.37 22.34 22.37 22.38 
3 22.28 22.07 22.13 22.14 22.19 22.06 22.10 22.02 22.05 
4 21.79 21.65 21.50 21.56 21.69 21.52 21.58 21.41 21.56 
5 21.48 21.26 21.14 21.26 21.34 21.23 21.47 21.30 21.52 
6 21.24 20.98 20.97 21.09 21.23 21.05 21.27 21.06 21.32 
7 21.10 20.91 20.87 21.09 21.19 20.89 21.11 20.80 21.19 
8 21.06 20.87 20.81 20.82 20.93 20.50 20.97 20.54 20.98 
9 20.97 20.84 20.74 20.85 20.90 20.58 20.82 20.57 21.03 

10 20.77 20.82 20.80 20.72 20.93 20.46 20.87 20.65 21.10 
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outperform the standard MPE at higher training iterations, and MSFA is slightly better than 
MFA, though the difference between them is negligible at lower training iterations. On the 
other hand, we have observed from a series of experiments that, using the two variants of 
frame-level phone accuracy functions with different settings of the value of their parameter ρ  
will give different penalties for insertions and deletions. For example, if the value of ρ  is set 
to be larger, insertion errors will be discouraged; while, if the value of ρ  is set to be smaller, 
the number of deletion errors will be decreased. More concretely, we can trade off insertion 
and deletion errors by appropriately adjusting the penalty parameter ρ . Table 1 shows the 
results obtained for different parameter settings of the two variant phone accuracy functions, 
where the optimum setting for MFA is ρ =0.5, while for MSFA is ρ =0.1 and α = 0.5. 
MFA ( ρ =0.5) trained with 10 iterations (20.46%) leads to an absolute CER reduction of 
0.31% over MPE trained with the same iterations (20.77%), which is equivalent to a 
condition where about 81 of the character recognition errors have been corrected. A 
significance test based on the standard NIST MAPSSWE [Gillick and Cox 1989] also 
indicates the statistical significance of such an improvement (p-value <0.001). 

6.3 Comparison of Proposed and Other Phone Accuracy Functions 
We then compare our proposed new frame-level phone accuracy function (SFA) with the other 
alternative modifications (i.e., MPFE, sMBR and MD mentioned in Section 3) to the phone 
accuracy function for the MPE-based discriminative training. The corresponding recognition 
results are shown in Figure 5. As mentioned earlier, for MPE training, the smoothing constant 

 
Figure 5. CER results (%) of two new phone accuracy functions in 

comparison with the standard MPE training. 
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(i.e., the τ  value of I-smoothing) is a very important factor and should be properly scaled on 
the basis of the ML training statistics [Povey 2004]. Owing to the different dynamic ranges of 
the phone accuracy values of the other three modified phone accuracy functions, the 
smoothing constant is suggested to be scaled accordingly when different training criteria (or 
phone accuracy functions) are being used. For example, the dynamic range of the phone 
accuracy values of MPFE training is apparently far larger than that of the standard MPE 
training, so the smoothing constant for the MPFE training should be empirically set to be 
larger than that of the standard MPE training. 

As evidenced by Figure 6, the recognition results of MD training are slightly worse than 
the standard MPE training for most of the training iterations. One possible reason for this is 
that the MD objective function is not well optimized, since the statistics for computing the KL 
divergence between any two HMM state-level probability distributions are fixed during the 
training process. Similar observations were also made in [Povey et al. 2007]. Furthermore, the 
corresponding results of the MPFE and sMBR training are also worse than those of the 
standard MPE training, which could be analyzed as follows. The statistics 

MPEk
qγ  of MPE 

training mainly depend on two parts (cf. Eq. (8)). One is the posterior probability k
qγ  of a 

phone arc q , while the other is the difference between the expected phone accuracy k
qc  over 

all hypothesized phone sequences containing q  and the average phone accuracy k
avgc  over 

all hypothesized word sequences in the word lattice (i.e., k k
q avgc c− ). However, due to the 

larger dynamic range of phone accuracy values for the MPFE and the sMBR training, the 
resulting value of 

MPEk
qγ  will probably be dominated by k

avg
k
q cc − . An extremely high 

value of k
avg

k
q cc −  (either positive or negative) would make the frame-level statistics of a 

 
Figure 6. CER results (%) of the MPE training and various modifications 

using different phone accuracy functions. 
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phone arc over-weighted even though its corresponding posterior probability is low. In 
contrast, the performance of our proposed method (MSFA) outperforms standard MPE 
training, as well as the other three modifications. This is because MSFA has a similar dynamic 
range of phone accuracy values to that of the standard MPE training, and all types of 
recognition errors (insertion, substitution, and deletion) are properly considered during the 
training process, unlike in standard MPE training. Actually, if the penalty ρ  is set to zero, 
MFA and MSFA are quite analogous to MPFE. However, the phone accuracy values of MFA 
and MSFA are further normalized by the frame number of a phone arc and the Sigmoid 
function, respectively. 

6.4 Experiments on Data Selection Approaches 
Moreover, we evaluated the effectiveness of our proposed frame-level normalized 
entropy-based training data selection approaches for MPE training. The best recognition 
results for the two variants, i.e., the hard (HS) and soft (SS) versions of frame-level data 
selection, are shown in Table 2 (MPE+HS and MPE+SS, respectively). The corresponding 
threshold value Thr for MPE+HS was empirically set to 0.05, while the weighting parameter 
ω for MPE+SS was empirically set to 1. It is worth mentioning that when threshold value 
Thr for MPE+HS is set to 0.05, the corresponding number of training frame samples used is 
about 4 million, which is 45.88% of the total training frame samples. Moreover, for MPE+HS, 
the frame samples being selected for the MPE training might be different from iteration to 
iteration, since the acoustic models will be updated after each training iteration, which will 
make the entropy value calculated for a given frame sample different from that calculated in 
the previous iteration. 

Table 2. CER results (%) of the data selection approaches. 

Iterations MPE MPE+HS  MPE+SS  MPE+Random 

1 22.82 22.63  22.84  23.02 
2 22.44 22.05  22.40  22.62 
3 22.28 21.60  22.21  22.22 
4 21.79 21.40  21.65  22.16 
5 21.48 21.19  21.34  21.76 
6 21.24 20.92  21.33  21.66 
7 21.10 20.90  21.29  21.74 
8 21.06 20.79  21.00  21.62 
9 20.97 20.97  21.02  21.78 

10 20.77 20.80  20.94  21.84 
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As evidenced by Table 2, data selection (either MPE+HS or MPE+SS) will improve the 
performance of MPE when the acoustic models are trained at the lower iterations, and achieve 
comparable results to that of MPE trained at higher iterations. This means that data selection 
can help reduce the time consumed in training but retain the same performance. However, 
when the acoustic models of the frame-level data selection method are trained at higher 
iterations (e.g., 9 and 10 iterations), the corresponding performance, especially for MPE+HS, 
will become slightly worse than the standard MPE training. One possible reason for this is that 
the normalized entropy value and the amount of data selected by the hard-version data 
selection method (MPE+HS) would decrease through the training iterations, which has the 
side effect of making the training to some extent suffer from the data sparseness problem that 
makes the acoustic models over-trained. Therefore, one of our future research directions is to 
study the analysis of such an effect in more detail and try to dynamically adjust the selection 
threshold value through the iterations. 

On the other hand, we also apply random frame-level training sample selection to the 
MPE training, which randomly selects about 45% of the frame-level training samples for the 
MPE training at each training iteration, and the corresponding results are depicted in Table 2 
(MPE+Random). The selecting capacity of our proposed frame-level data selection method 
can be verified again by comparison with random selection. The above results indeed justify 
our postulation that, with proper integration of data selection into the acoustic model training 
process, we can make the discriminative training algorithms focus much more on the useful 
training samples to achieve a better discrimination capability on the new test set. 

6.5 Experiments on Combination of Frame-level Accuracy Function and 
Data Selection 

Finally, we attempt to combine our proposed frame-level accuracy function and frame-level 
data selection. The two frame-level training data selection approaches, i.e., HS and SS, 
respectively, are integrated with the MSFA training. The corresponding results are shown in 
Table 3. Actually, the data selection approaches are simply based on the entropy information 
of the Gaussian posterior probabilities of phone arcs, without taking any phone accuracy 
information into consideration. Thus, such a combination can be viewed as a loosely coupled 
approach, which to some extent would make the effect of the combination less pronounced. As 
can be seen from Table 3, HS can considerably boost the performance of the MSFA training at 
lower training iterations, while SS only demonstrates marginal improvement. We also 
investigate the combination of HS and SS for the MSFA training, which is achieved using SS 
to emphasize or deemphasize the training samples selected by HS. Such a combination also 
can provide additional performance gains (at lower training iterations) over that obtained by 
using either HS or SS alone. 
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7. Conclusions 

In this paper, we have the explored the use of frame-level information for improved MPE 
training of acoustic models for Mandarin broadcast news recognition. A new phone accuracy 
function directly based on the frame-level accuracy has been presented. Moreover, a novel 
data selection approach using the normalized frame-level entropy of Gaussian posterior 
probabilities has been proposed as well. Promising and encouraging results on the recognition 
of Mandarin broadcast news speech were demonstrated. More in-depth investigation of the 
proposed training data selection, as well as its integration with other discriminative acoustic 
model training algorithms, is also currently being undertaken. 
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