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Abstract 

Dictionary-based translation is a traditional approach in use by cross-language 
information retrieval systems. However, significant performance degradation is 
often observed when queries contain words that do not appear in the dictionary. 
This is called the Out of Vocabulary (OOV) problem. In recent years, Web mining 
has been shown to be one of the effective approaches for solving this problem. 
However, the questions of how to extract Multiword Lexical Units (MLUs) from 
the Web content and how to select the correct translations from the extracted 
candidate MLUs are still two difficult problems in Web mining based automated 
translation approaches. 

Most statistical approaches to MLU extraction rely on statistical information 
extracted from huge corpora. In the case of using Web mining techniques for 
automated translations, these approaches do not perform well because the size of 
the corpus is usually too small and statistical approaches that rely on a large sample 
can become unreliable. In this paper, we present a new Chinese term measurement 
and a new Chinese MLU extraction process that work well on small corpora. We 
also present our approach to the selection of MLUs in a more accurate manner. Our 
experiments show marked improvement in translation accuracy over other 
commonly used approaches. 

Keywords: Cross-Language Information Retrieval, CLIR, Query Translation, Web 
Mining, OOV Problem, Term Extraction 

1. INTRODUCTION 

As more and more documents written in various languages become available on the Internet, 
users increasingly wish to explore documents that were written in either their native language 
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or some language other than English. Cross-language information retrieval (CLIR) systems 
allow users to retrieve documents written in more than one language through queries written 
in a different language. This is a helpful end-user feature. Obviously, translation is needed in 
the CLIR process; either translating the query into the document language, or translating the 
documents into the query language. The common approach is to translate the query into the 
document language using a dictionary. Dictionary-based translation has been adopted in 
cross-language information retrieval because bilingual dictionaries are widely available, 
dictionary-based approaches are easy to implement, and the efficiency of word translation 
with a dictionary is high. However, due to the vocabulary limitation of dictionaries, very often 
the translations of some words in a query cannot be found in a dictionary. This problem is 
called the Out of Vocabulary (OOV) problem. Very often, the OOV terms are proper names or 
newly created words. Even using the best dictionary, the OOV problem is unavoidable. As 
input queries are usually short, query expansion does not provide enough information to help 
recover the missing words. Furthermore, in many cases, it is exactly the OOV terms that are 
the crucial words in the query. For example, a query “SARS, CHINA” may be entered by a 
user in order to find information about SARS in China. However, SARS is a newly created 
term and may not be included in a dictionary published only a few years ago. If the word 
SARS is left out of the translated query, it is most likely that the user will be unable to find 
any relevant documents. Moreover, a phrase cannot always be translated by translating each 
individual word in the phrase. For example, an idiom is a phrase and should not be translated 
by combining translations of the individual words because the correct translation may be a 
specific word which is not the combination of individual word translations of the original 
phrase. 

Another problem with the dictionary-based translation approach is the translation 
disambiguation problem. The problem is more serious for a language which does not have 
word boundaries, such as Chinese. Translation disambiguation refers to finding the most 
appropriate translation from several choices in the dictionary. For example, the English word 
STRING has over 20 different translations in Chinese, according to the Kingsoft online 
dictionary (www.kingsoft.com). One approach is to select the most likely translation [Eijk 
1993] – usually the first one offered by a dictionary. However, even if the choices are ordered 
based on some criteria and the most likely a-priori translation is picked, in general, such an 
approach has a low probability of success. Another solution is to use all possible translations 
in the query with the OR operator. However, while this approach is likely to include the 
correct translation, it also introduces noise into the query. This can lead to the retrieval of 
many irrelevant documents which is, of course, undesirable. [Jang et al. 1999] and [Gao et al. 
2001] report that this approach has precision that is 50% lower than the precision that is 
obtained by human translation. 
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In this paper, we present a Web-based approach to term extraction and translation 
selection. Specifically, we introduce a statistics-based approach to extracting terms and a 
translation disambiguation technique to improve the precision of the translations. The 
remainder of this paper is structured as follows: in Section 2, we present the existing 
approaches to query translation; in Section 3 we present our approach. Experimental 
evaluation and results discussion are presented in Section 4 and Section 5, respectively. 
Finally, we conclude the paper in Section 6. 

2. PREVIOUS WORK 

2.1 Translation 
Dictionary-based query translation is one of the conventional approaches in CLIR. The 
appearance of OOV terms is one of the main difficulties arising with this approach. In very 
early years, OOV terms were not translated at all, leaving out the original terms in the 
translated query. This approach may significantly limit retrieval performance. In this section, 
several existing approaches to OOV translation are reviewed. 

2.1.1 Transliteration 
Proper names, such as personal names and place names, are a major source of OOV terms 
because many dictionaries do not include such terms. It is common for foreign names to be 
translated word-by-word based on phonetic pronunciations. In this manner, a name in one 
language will be pronounced similarly in another language – this is called transliteration. Such 
translation is usually done by a human when a new proper name is introduced from one 
language to another language. 

Some researchers [Paola et al. 2003; Yan et al. 2003] have applied the rule of 
transliteration to automatically translate proper names. Basically, the transliteration will first 
convert words in one language into phonetic symbols, then convert the phonetic symbols into 
another language. Some researchers have found that transliteration is quite useful in proper 
name translation [Paola et al. 2003; Yan et al. 2003]. However, transliteration is useful in only 
a few language pairs. When dealing with language pairs for which there are many phonemes 
in one language that are not present in the other, such as Chinese and English, the problem is 
exacerbated. There are even more problems when translating English to Chinese. First, as 
there is no standard for name translation in Chinese, different communities may translate a 
name in different ways. For example, the word “Disney” is translated as “迪斯尼” in mainland 
China but is translated as“迪士尼” in Taiwan. Both are pronounced similarly in Chinese, but 
use different Chinese characters. Even a human interpreter would have difficulty in 
unambiguously choosing which character should be used. Second, at times, the Chinese 
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translation only uses some of the phonemes of the English names. For example, the translation 
of “American” is “美国” which only uses the second syllable of “American”. Finally, the 
translation of a name is not limited to only using translation but also to transliteration.  
Sometimes, the translation of a proper name may even use a mixed form of translation and 
transliteration. For example, the translation of “New Zealand” in mainland China is “新西兰”, 
where “新” is the translation of “New” and “西兰” is the transliteration of “Zealand”. 

2.1.2 Parallel Text Mining 
Parallel text is a text in one language together with its translation in another language. The 
typical way to use parallel texts is to generate translation equivalence automatically, without 
using a dictionary. It has been used in several studies [Eijk 1993; Kupiec 1993; Smadja et al. 
1996; Nie et al. 1999] on multilingual related tasks such as machine translation or CLIR. 

The idea of parallel text mining is straightforward. Since parallel texts are texts in two 
languages, it should be possible to identify corresponding sentences in two languages. When 
the corresponding sentences have been correctly identified, it is possible to learn the 
correspondence translation of each term in the sentence using statistical information since the 
term’s translation will always appear in the corresponding sentences. Therefore, an OOV term 
can be translated by mining parallel corpora. Many researchers have also reported that parallel 
text mining based translation can significantly improve the CLIR performance [Eijk 1993; 
Kupiec 1993; Smadja et al. 1996; Nie et al. 1999]. 

In the very early stages, parallel text based translation approaches were word-by-word 
based and only domain specific noun terms were translated. In general, these approaches [Eijk 
1993; Kupiec 1993] first align the sentences in each corpus, then noun phrases are identified 
by a part-of-speech tagger. Finally, noun terms are mapped using simple frequency 
calculations. In such translation models, phrases, especially verb phrases, are very hard to 
translate. As phrases in one language may have different word order in another language, 
phrases cannot be translated on a word-by-word basis. This problem in parallel text based 
translation is called the collocation problem. 

Some later approaches [Smadja et al. 1996; Nie et al. 1999] started to use more complex 
strategies such as statistical association measurement or probabilistic translation models to 
solve the collocation problem. Smadja et al. [Smadja et al. 1996] proposed an approach that 
can translate word pairs and phrases. In particular, they used a statistical association measure 
of the Dice coefficient to deal with the problem of collocation translation. Nie et al. [Nie et al. 
1999] proposed an approach based on a probabilistic model that demonstrates another 
approach to solving the collocation problem. Using parallel texts, their translation model can 
return p(t|S), which is the probability of having the term t of the target language in the 
translation of the source sentence S. As the probability model does not consider the order and 



 

 

               Web-Based Query Translation for English-Chinese CLIR               65 

 

the position of words, collocation is no longer a problem. 

Some of the advantages of the parallel text based approaches include the very high 
accuracy of translation without using bilingual dictionaries and the extraction of multiple 
transitions with equivalent meaning that can be used for query expansion. However, the 
sources of parallel corpora tend to be limited to some particular domain and language pairs. 
Currently, large-scale parallel corpora are available only in the form of government 
proceedings, e.g. Canadian parliamentary proceedings in English and French, or Hong Kong 
government proceedings in Chinese and English. Obviously, such corpora are not suitable for 
translating newly created terms or domain-specific terms that are outside the domains of the 
corpora. As a result, current studies of parallel text based translation are focusing on 
constructing large-scale parallel corpora in various domains from the Web. 

2.1.3 Web Mining 
Web mining for automated translation is based on the observation that there are a large 
number of Web pages on the Internet that contain parallel text in several languages. 
Investigation has found that when a new English term, such as a new technical term or a 
proper name, is introduced into Chinese, the Chinese translation to this term and the original 
English term very often appear together in literature publications in an attempt to avoid 
misunderstanding. Some earlier studies have already addressed the problem of extracting 
useful information from the Internet using Web search engines such as Google and Yahoo. 
These search engines search for English terms on pages in a certain language, e.g., Chinese or 
Japanese. The results of Web search engines are normally a long, ordered list of document 
titles and summaries to help users locate information. Mining the result lists can help find 
translations to the unknown query terms. Some studies [Cheng et al. 2004; Zhang et al. 2004] 
have shown that such approaches are rather effective for proper name translation. 

Generally, Web-based translation extraction approaches consist of three steps: 

1. Web document retrieval: use a Web search engine to find the documents in the target 
language that contain the OOV term in the original language and collect the text (i.e. the 
summaries) in the result pages returned from the Web search engine. 

2. Term extraction: extract the meaningful terms in the summaries where the OOV term 
appears and record the terms and their frequency in the summaries. As a term in one 
language could be translated to a phrase or even a sentence, the major difficulty in term 
extraction is the identification of correct MLUs in the summaries (refer to Section 2.2 for 
the definition of MLUs). 

3. Translation selection: select the appropriate translation from the extracted words. As the 
previous steps may produce a long list of terms, translation selection has to find the correct 
translation from the extracted terms. 
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The existing term extraction techniques in the second step fall into two main categories: 
approaches that are based on lexical analysis or dictionary-based word segmentation, and 
approaches that are based on co-occurrence statistics. When translating Chinese text into 
English, Chinese terms should be correctly detected first. As there are no word boundaries in 
Chinese text, the mining system has to perform segmentation of the Chinese sentences to find 
the candidate words. The quality of the segmentation greatly influences the quality of the term 
extraction because incorrect segmentation of the Chinese text may break the correct 
translation of an English term into two or more words so that the correct word is lost. The 
translation selection in the third step also suffers from the problem that selection of the most 
frequent word or the longest word, which is the more popular techniques, does not always 
produce a correct translation. The term extraction and translation selection problems will be 
further addressed in subsequent sections. 

2.2 Term Extraction 
Term extraction is mainly the task of finding MLUs in the corpus. The concept of MLU is 
important for applications that exploit language properties, such as Natural Language 
Processing (NLP), information retrieval and machine translation. An MLU is a group of words 
that always occur together to convey a specific meaning. For example, compound nouns like 
Disneyland, phrasal verbs like take into account, adverbial locutions like as soon as possible, 
and idioms like cutting edge are MLUs. In most cases, it is necessary to extract MLUs rather 
than individual words from a corpus because the meaning of an MLU is not always the 
combination of individual words in the MLU. The meaning of the MLU ‘cutting edge’ is not 
the combination of the meaning of individual words, ‘cutting’ and ‘edge’. 

Finding MLUs from the summaries returned by a search engine is important in Web 
mining based automated translation. If only words are extracted from the summaries, the 
following process may not be able to find the correct translation since the translation might be 
a phrase rather than a word. For Chinese text, a word consisting of several characters is not 
explicitly delimited since Chinese text contains sequences of Chinese characters without 
spaces between them. Chinese word segmentation is the process of marking word boundaries. 
The Chinese word segmentation is actually similar to the extraction of MLUs in English 
documents as the MLU extraction in English documents also needs to mark the lexical 
boundaries between MLUs. Therefore, term extraction in Chinese documents can be 
considered as Chinese word segmentation. Many existing systems use lexicon-based or 
dictionary-based segmentation techniques to determine word boundaries in Chinese text. 
However, in the case of Web mining for automated translation, as an OOV term is an 
unknown term to the system, the dictionary-based segmenters usually cannot correctly identify 
the OOV terms in the sentence. Therefore, the translation of an OOV term cannot be found in 
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a later process. Some researchers have suggested approaches that are based on co-occurrence 
statistics model for Chinese word segmentation to avoid this problem [Chen et al. 2000; 
Maeda et al. 2000; Gao et al. 2001; Pirkola et al. 2001]. 

2.2.1 Mutual Information and its Variations 
One of the most popular statistics-based extraction approaches is to use mutual information 
[Chien 1997; Silva et al. 1999]. Mutual information is defined as: 

( , ) ( , )
2 2( ) ( ) ( ) ( )( , ) log logp x y Nf x y

p x p y f x f yMI x y = = ,                                         (1) 

The mutual information measurement quantifies the distance between the joint distribution of 
terms X and Y and the product of their marginal distributions. When using mutual information 
in Chinese segmentation, x, y are two Chinese characters; f(x), f(y), f(x,y) are the frequencies 
that x appears, y appears, and x and y appear together, respectively; N is the size of the corpus. 
A string XY will be judged as a term if the MI value is greater than a predefined threshold. 

Chien [Chien 1997] suggests a variation of the mutual information measurement called 
significance estimation to extract Chinese keywords from corpora. The significance estimation 
of a Chinese string is defined as: 
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where c is a Chinese string with n characters; a and b are the two longest composed substrings 
of c with length n-1; f is the function to calculate the frequency of a string. Two thresholds are 
predefined: THF and THSE. This approach identifies a Chinese string as an MLU by the 
following steps. For the whole string c, if f(c)>THF, c is considered a Chinese term. For the 
two (n-1)-substrings a and b of c, if SE(c)>=THSE, both a and b are not a Chinese term. If 
SE(c)<THSE, and f(a)>>f(b) or f(b)>>f(a) , a or b is a Chinese term, respectively. Then, for 
each a and b, the method is recursively applied to determine whether their substrings are 
terms. 

2.2.2 Local Maxima Based Approaches 
All mutual information based approaches require tuning the thresholds for generic use. Silva 
and Lopes suggest an approach called Local Maxima to extract MLU from corpora without 
using any predefined threshold [Silva et al. 1999]. The equation used in Local Maxima is 
known as SCP and is defined as follows: 
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where S is an n-gram string and w1,…,wi is the substring of S. A string is judged as an MLU if 
the SCP value is greater than or equal to the SCP value of all the substrings of S and also 
greater than or equal to the SCP value of its antecedent and successor. The antecedent of S is 
an (n-1)-gram substring of S. The successor of S is a string where S is its antecedent. 

Although Local Maxima should be a language-independent approach, Jenq-Haur Wang 
et al. [Cheng et al. 2004] found that it does not work well in Chinese word extraction. They 
introduced context dependency (CD) used together with the Local Maxima. The new approach 
is called SCPCD. The rank for a string uses the function: 
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where S is the input string, w1..wi is the substring of S, and LC() and RC() are functions to 
calculate the number of unique left or right adjacent characters of S. A string is judged as a 
Chinese term if the SCPCD value is greater than or equal to the SCPCD value of all the 
substrings of S. 

In summary, statistics-based approaches are widely used in Chinese term extraction for 
translation. The main reason is that Chinese terms are required to be extracted from search 
engine result pages. However, search engine results are usually partial sentences, which makes 
the traditional Chinese word segmentation hard to apply in this situation. 

Current statistics-based approaches still have weaknesses. Web pages returned from a 
search engine are used for search engine based OOV term translation. In most cases, only a 
few hundred of the top result snippets on the result pages are used for translation extraction. 
Consequently, the corpus size for search engine based approaches is quite small. In a small 
collection, the frequencies of strings very often are too low to be used in the approaches 
reviewed. In Section 3.2, we will describe our approach to addressing this difficulty in detail. 

3. Web-Based Query Translation 

Our approach is based on earlier work by Chen [Chen et al. 2000] and Zhang [Zhang et al. 
2004]. Both approaches submit English queries (usually an English term) to a Web search 
engine and the top returned results (i.e., summaries in Chinese) are segmented into a word list. 
Each of the words in the list is then assigned a rank calculated from term frequency. The word 
with the highest rank in the word list is selected as the translation of the English term. 
However, observations have shown that the correct translation does not always have the 
highest frequency, even though it very often has a high frequency. The most appropriate 
translation is not necessarily the term with the highest rank. 

As in previous work, we adopted the same idea of finding the OOV term’s translation 
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through a Web search engine. However, our approach differs in term ranking and selection 
strategy. The aim of our approach is to find the most appropriate translation from the word list 
regardless of term frequency, which is the basic measurement used in previous work. Our 
approach combines translation disambiguation technology and Web-based translation 
extraction technology. Web-based translation extraction usually returns a list of words in a 
target language. As those words are all extracted from the result snippets returned by the Web 
search engine, it is reasonable to assume that these words are relevant to the English terms that 
were submitted to the Web search engine. If we assume all these words are potential 
translations of the English terms, we can apply the translation disambiguation technique to 
select the most appropriate word as the translation of the English terms. 

Our translation extraction approach contains three major modules: collecting Web 
document summaries, word extraction, and translation selection. For easier understanding, we 
will use an example of finding the translation to the term “Stealth Fighter” to demonstrate our 
approach. 

3.1 Collecting Web Document Summaries 
First, we collect the top 100 document summaries returned from Google that contain both 
English and Chinese words. The English queries entered into Google will be enclosed in 
double quotation marks to ensure Google only returns results with the exact phrase. Sample 
document summaries are shown in Figure 1. 

Figure 1. Three sample document summaries for “Stealth Fighter” 
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Figure 1 shows that Stealth Fighter and its translation in Chinese 隱形戰機 always 
appear together. The Chinese translation of Stealth Fighter appears either before or after the 
English words. In the example summaries shown in Figure 1, the translation and the English 
term “Stealth Fighter” are highlighted in red. 

Although the query submitted to Google is asking for Chinese documents, Google may 
still return some documents purely in English. Therefore, we need to filter out the documents 
that are written in English only. The documents that contain both the English terms and 
Chinese characters are kept. Also, all the html tags are removed, and only the plain text is 
kept. 

Second, from the document summaries returned by the search engine, we collect the 
sentences in the target language; for example, we can collect three Chinese sentences from the 
three sample document summaries in Figure 1. Each sentence must contain the English term 
and the Chinese characters before and after the term. From the summaries given in Figure 1, 
we get the following Chinese sentences shown in Figure 2. 

Figure 2. Sample output of Chinese string collection 

3.2 Word/Phrase Extraction 
In order to calculate the statistical information of the Chinese terms, the Chinese sentences 
have to be correctly segmented. The term extraction approaches reviewed in Section 2.2 have 
been widely used on large corpora. However, in our experiments, the performance of those 
approaches is not always satisfactory for search engine based OOV term translation 
approaches. 

In this section, we describe a term extraction approach specifically designed for search 
engine based translation extraction, which uses term frequency change as an indicator to 
determine term boundaries and also uses the similarity comparison between individual 
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character frequencies instead of terms to reduce the impact of low term frequency in small 
collections. Together with the term extraction approach, we also describe a bottom-up term 
extraction algorithm that can help to increase the extraction quality. 

3.2.1 Frequency Change Measurement 
The approaches mentioned in Section 2 use a top-down approach that starts with examining 
the whole sentence and then examining substrings of the sentence to extract MLUs until the 
substring becomes empty. We propose using a bottom-up approach that starts with examining 
the first character and then examining super strings. Our approach is based on the following 
observations for small document collections: 

 

Observation 1: In a small collection of Chinese text, such as a collection of Web pages returned 
from a search engine, the frequencies of the characters in an MLU are similar. This is due to the 
nature of the sample: in a small collection of text, there are a small number of MLUs and the 
characters appearing in one MLU may not appear in other MLUs. We also found that some 
different MLUs with similar meanings very often share similar characters and those characters 
are unlikely to be used in other unrelated MLUs. For example, 戰機 (Fighter Aircraft) and 戰

鬥機 have the same meaning in Chinese. They share similar Chinese characters. Therefore, 
although the term frequency is low in a small collection, the individual characters of the term 
might still be relatively high and also have similar frequencies. The high frequency can help in 
term extraction. 

 

Observation 2: When a correct Chinese term is extended with an additional character, the 
frequency of the extended term very often drops significantly. 

  

According to Observation 1, the frequencies of a term and each character in the term 
should be similar. We propose to use the root mean square error (RMSE) given in Equation (5) 
to measure the similarity between the character frequencies. 

21

1
( )

n
in

i
x xσ

=
= −∑ .                                                     (5) 

For a given Chinese character sequence with n characters, xi is the frequency of each character 
in the sequence and x is the average frequency of all the characters in the sequence. Although 
the frequency of a string is low in small corpora, the frequencies of Chinese characters still 
have relatively high values. According to Observation 1, if a given sequence is an MLU, the 
characters in the sequence should have a similar frequency, in other words, σ should be small. 
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If the frequencies of all the characters in a Chinese sequence are equal, then σ = 0. Since σ 
represents the average frequency deviation from the mean of individual characters in the 
sequence, according to Observation 1, in an MLU, the longer substring of that MLU will have 
smaller average frequency error. 

According to Observation 1, an MLU can be identified by Equation 5. However, as 
Equation 5 only measures the frequency similarity between individual characters, any 
character combinations may be identified as MLUs if their frequencies are similar, even when 
they are not occurring together. To avoid this problem, we introduce sequence frequency f(S) 
into the formula. With this addition, if the characters are not occurring together, they will not 
be considered as a sequence, causing f(S) = 0. Thus, any character combination can be 
identified if it appears as a sequence in the corpus. 

Finally, we combine the sequence frequency and the RMSE measurement. We designed 
the following equation to measure the possibility of S being a term: 
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,                                         (6) 

where S is a Chinese sequence; f(S) is the frequency of s in the corpus. We use σ +1 as the 
denominator instead of using σ to avoid 0 denominators. 

Let S be a Chinese sequence with n characters; S= a1a2….an. And S’ is a substring of S 
with length n-1; S’ = a1a2….an-1. According to Observation 1, if S is an MLU, we should 
have f(S) ≈ f(S’), and the longer S is, the smaller σ should be. Therefore, in the case where 
S’ is a substring of S with length n-1, we would have σ<σ’. As a result we will have 
R(S)>R(S’). Consider another case where S’ is a substring of S and S’ is an MLU while S is 
not. In other words, S adds an additional character to an MLU. In this case, we will have f(S) 
<f(S’) and the frequency of the additional character makes σ larger, so σ>σ’ and R(S) 
<R(S’). 

In summary, for a string S and its substring S’, the one with higher R value would most 
likely be an MLU. Table 1 gives the R value of each possible term in a Chinese sentence 
chosen from a small collection of summaries returned from a search engine: “隱形戰機/是/一
種/靈活度/極差/的/戰機” (“/” indicates the lexicon boundary given by a human). 
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Table 1. Chinese strings and R(S) 
String S R(S) 
隱形 26.00 

隱形戰 0.94 

戰機 2.89 

戰機是 0.08 

一種 0.44 

一種靈 0.21 

靈活 2.00 

靈活度 2.00 

靈活度極 1.07 

極差 0.8 

極差的 0.07 

戰機 2.89 

This example clearly shows that, if a Chinese MLU has an additional character, its R value 
will be significantly smaller than the R value of the MLU. For example, 一種, 靈活, and 靈

活度 are valid MLUs, but 一種靈 and 靈活度極 are not. 

In Table 1, we have: 

R(一種)=0.44 > R(一種靈)=0.21, R(靈活)=R(靈活度)=2.00>R(靈活度極)=1.07, 

which shows the R value drop from 一種 to 一種靈, and from 靈活 and 靈活度 to 靈活度

極. 

This example indicates that it is reasonable to segment the Chinese sentence at the 
positions where the string’s R value drops greatly. For the example sentence, it would be 
segmented as: “隱形/戰機/是/一種/靈活度/極差/的/戰機” by the proposed method. The only 
difference between the human segmented sentence and the automatic segmented sentence is 
that “隱形戰機” (Stealth Fighter) is segmented into two words “隱形” (Stealth) and “戰機” 
(Fighter) by the proposed method. However, this is still an acceptable segmentation because 
those two words are meaningful words in Chinese and have the same meaning as the 
combination of the two words. 

3.2.2 A Bottom-Up Term Extraction Strategy 
As mentioned in Section 3.1, the top-down strategy is to first check whether the whole 
sentence is an MLU, then reduce the sentence size by 1 and recursively check sub-sequences. 
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It is reported that over 90% of meaningful Chinese terms consist of less than 4 characters [Wu 
2004], and, on average, the number of characters in a sentence is much larger than 4. 
Obviously, a whole sentence is unlikely to be an MLU. Therefore, checking the whole 
sentence for an MLU is unnecessary. In this section, we describe a bottom-up strategy that 
extracts terms starting from the first character in the sentence. The basic idea is to determine 
the boundary of a term in a sentence by examining the frequency change (i.e., the change of 
the R value defined in Equation (6)) when the size of the term is increasing. If the R value of a 
term with size n+1 drops compared with its largest sub term with size n, the sub term with size 
n is extracted as an MLU. For example, in Table 1, there is a big drop between the R value of 
the third term “靈活度” (2.00) and its super term “靈活度極” (1.07). Therefore, “靈活度” is 
considered as an MLU. 

The following algorithm describes the bottom-up term extraction strategy: 

 

Algorithm BUTE(s) 

Input: s=a1a2….an is a Chinese sentence with n Chinese characters 

Output: M, a set of MLUs 

Check each character in s, if it is a stop character such as 是(is, are)，的(of) ，了…, remove it 
from s. After removing all stop characters, s becomes a1a2….am, m≤n. 

Let b=1, e=1, and M=φ 

Let t1= aba2….ae,  t2= aba2….a(e+1).  

       If R(t1) >R(t2), then M=M∪ (t1), b=e+1. 

e=e+1, if e+1>m, return M, otherwise go to step 3.  

 

Once a sequence is identified as an MLU, the algorithm BUTE will not check its 
subsequences for other possible MLUs (i.e., b=e+1 in step 3 makes it so the next valid 
checkable sequence doesn’t contain t1, which was just extracted as an MLU). However, when 
using the bottom-up strategy, some longer terms might be missed when the longer term 
contains several shorter terms. As shown in our example, “隱形戰機” (Stealth Fighter) 
consists of two terms “隱形” and “戰機”. When using bottom-up strategy, “隱形戰機” would 
not be extracted because the composite term has been segmented into two terms. To avoid this 
problem, we set up a fixed number ω which specifies the maximum number of characters to be 
examined before reducing the size of the checkable sequence. The modified algorithm is given 
below: 
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Algorithm BUTE-M(s) 

Input: s=a1a2….an is a Chinese sentence with n Chinese characters 

Output: M, a set of MLUs 

Check each character in s, if it is a stop character such as 是，了，的…, remove it from s. After 
removing all stop characters, s becomes a1a2….am, m≤n. 

Let b=1, e=1, First-term = true, and M= φ 

Let t1= aba2….ae, t2= aba2….a(e+1).  

       If R(t1) >R(t2), 

      then M:=M∪ {t1) 

          If First-term = true 

            then first-position:= e and First-term:= false 

     If e-b+1 ≥ ω 

       then e:=first-position, b:=e+1, First-term:=true. 

e=e+1, if e+1>m, return M, otherwise go to step 3 

 

In algorithm BUTE-M, the variable first-position gives the ending position of the first 
identified MLU. Only when ω characters have been examined will the first identified MLU be 
removed from the next valid checkable sequence, otherwise the current sequence is still being 
checked for a possible MLU even if it contains an extracted MLU. Therefore, not only will the 
terms “隱形” and “戰機” be extracted, but also the longer term “隱形戰機” (Stealth Fighter) 
will be extracted. 

3.3 Translation Selection 
At this point, we have a list of translation candidates for the query term. The final step is to 
find the correct translation from the candidate list. 

As we have described in another paper [Lu et al. 2007], the traditional translation 
selection approaches select the translation based on word frequency and word length [Chen et 
al. 2003; Zhang et al. 2004]. We have proposed an approach to determining the most 
appropriate translation from the extracted word list using the documents in the collection 
dataset regardless of term frequency. Using this approach, even a low-frequency word might 
be selected. Our experiments in that paper show that in some cases, the most appropriate 
translation can be a word with low frequency. 

First, we retrieve the documents that contain each candidate translation from the 
collection. Then, we calculate the frequency of each candidate translation in the collection. 
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For instance, suppose we have an English query with three terms A,B,C and A1,A2…, 
B1,B2…, and C1,C2… are the candidate translations for A, B, and C, respectively, and the 
frequency of A1, A2, …, B1, B2, …, C1,C2… in the collection is f(A1), f(A2),… f(B1), 
f(B2)…, and so on. Second, we retrieve the documents that contain all the possible 
combinations of the candidate translations and calculate the frequencies. For example, the 
frequency of combination A1B1C1 is f(A1B1C1), A1B2C1 is f(A1B2C1), and A1B2C3 is 
f(A1B2C3)… and so on. Finally, we calculate the co-occurrence of all the possible 
combinations using the following equation: 
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where xi is a candidate translation for the ith query term, f(xi) is the frequency of word xi 
appearing in the corpus, x1x2…xn is a combination of the candidate translation, 

)...( 321 nxxxxf  is the frequency that  x1x2…xn  appears in the corpus. N is the size of the 
corpus. 

For the example query with three terms A, B, C, the co-occurrence of three candidate 
translation A1B1C1 is calculated by: 
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The translation combination with the highest total correlation value C is selected as the 
correct translation for that query. 

4. Experiments 

We have conducted experiments to evaluate our proposed query translation approach. The 
Web search engine used in the experiments was Google. 

4.1 Test Set 
Queries, document collection, and relevance judgments provided by NTCIR 
(http://research.nii.ac.jp/ntcir/) are used in the experiments. The NTCIR6 Chinese test 
document collection was used as our test collection. The articles in the collection are news 
articles published on United Daily News (udn), United Express (ude), MingHseng News 
(mhn), and Economic Daily News (edn) in 2000-2001, for a total of 901,446 articles. 

Queries used in the experiments are from NTCIR5 and NTCIR6 CLIR tasks. Altogether, 
there are 100 queries created by researchers from Taiwan, Japan, and Korea. NTCIR provided 
both English queries and corresponding Chinese queries. The Chinese queries are translated 
by human translators and are, thus, correct translations of the corresponding English queries. 
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In our experiments, English queries are extracted from English description fields by human 
experts. The corresponding Chinese translations are transcribed from the Chinese title fields 
by humans. 

Yahoo’s online English-Chinese dictionary (http://tw.dictionary.yahoo.com/) is used in 
the experiments. We first translate the English queries using the Yahoo’s online 
English-Chinese dictionary. The terms that could not be translated by the online dictionary 
were used as the input queries to evaluate the performance of our proposed Web-based query 
translation approach. There are 108 OOV terms that cannot be translated by the online 
dictionary and, therefore, are used in the experiments. 

4.2 Retrieval System 
The documents were indexed using a character-based inverted file index. In the inverted file, 
the indexer records each Chinese character, its position in the document, and the document ID. 
Chinese phrase is determined by each Chinese character position and document ID. Only 
when character positions are consecutive and have the same document ID will the character 
sequence be considered as a phrase in the document. English words and numbers in the 
document are also recorded in the inverted file. 

The retrieval model that is used in the system is an extended Boolean model with tf-idf 
weighting schema which is used in GPX by [Geva 2006]. Document rank for a query Q is 
calculated by the equation below: 

5
rank i iD n tf idf= ∗∑  

Here, n is the number of the unique query terms in the document. tfi is the frequency of the ith 
term in the document and idfi is the inverse document frequency of the ith term in the 
collection. This equation can ensure two things: first, the more unique query terms that match 
in a document, the higher rank the document has. For example, the document that contains 
five unique query terms will always have higher rank than the document that contains four 
query terms, regardless of the query terms frequency in the document; second, when 
documents contain the same number of unique terms, the score of a document will be 
determined by the sum of query terms’ tf-idf, as traditional information retrieval does. 

We do not employ relevance feedback in the retrieval system. Also, all the retrieval 
results are initial search results without query expansion. 

4.3 Experiment Design 
We designed two sets of experiments to evaluate our approach. The first set of experiments 
was designed to evaluate the effectiveness of term extraction for OOV translation, and the 
second set of experiments was designed to evaluate the effectiveness of translation selection 
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for OOV translation. 

4.3.1 Experiment Set 1 
In this experiment, we compared the performance of our proposed translation extraction 
approach (denoted as SQUT) with the approaches reviewed in Section 2.2, including the 
Mutual Information method (denoted as MI), the approach introduced by [Chien 1997] 
(denoted as SE), the Local Maxima method introduced by [Silva et al. 1999] (denoted as SCP), 
and the approach introduced by [Cheng et al. 2004] (denoted as SCPCD). 

The OOV term is translated via the following steps: 

 

Send the OOV term as a query to Google; from the result pages returned from Google, use the 
five different term extraction approaches to produce five Chinese term lists. 

 

If a Chinese word can be translated to an English word using a dictionary, the English 
word must not be an OOV word. This means, the Chinese word must not be a translation of 
the queried English OOV word. Therefore, for each term list obtained in Step 1, remove the 
terms which can be translated to English by Yahoo’s online dictionary. After this step, only 
OOV terms remain. 

Select the top 20 terms in the new term list as translation candidates. Select the final 
translation from the candidate list using our translation selection approach described in 3.3. 

Finally, we have five sets of OOV translations produced by the five approaches, 
respectively. A sample of the translation is given in Appendix 1. 

Translation accuracy will be determined by human experts. Chinese queries will be used 
as reference only. As we were using the same corpus and the same translation selection 
approach, the difference in translation accuracy is the result of using different term extraction 
approaches. Thus, we can claim that the approach with the higher translation accuracy has 
higher extraction accuracy. 

4.3.2 Experiment Set 2 
This experiment is to retrieve Chinese documents for a given English query. The following 
experiments were conducted: 

1. Mono: in this run, we use the original Chinese queries form NTCIR5. Only the title field is 
used and the Chinese terms are segmented by a human. This run provides the baseline 
result for comparison with all other runs. 

2. IgnoreOOV: in this run, the English queries are translated using the online Yahoo 
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English-Chinese dictionary with the disambiguation technology proposed in 3.3. If a 
translation is not found in the dictionary, the query will keep the original English word. 

3. SimpleSelect: similar to IgnoreOOV, English queries are translated using the online Yahoo 
English-Chinese dictionary with disambiguation technology. If a term cannot be translated 
by the dictionary, it will be translated by the proposed Web mining based approach. 
However, in the translation selection step, the longest and the highest frequency string were 
selected as its translation. This run simulates the previous Web translation selection 
approaches. 

4. TQUT: like SimpleSelect, except that the translation for the “missing word” is selected 
with the disambiguation technology that is discussed in 3.3. Actually, TQUT uses the same 
translation technology as SQUT which we used in Experiment Set 1. We named it TQUT 
here simply to distinguish the concept that TQUT is an information retrieval task while 
SQUT is a translation task. 

Although NTCIR gives 190 queries, only 100 of them have relevance judgments. 
Therefore, we are only able to evaluate the retrieval performance using those 100 queries in 
Experiment Set 2. 

5. Results and Discussion 

5.1 Experiment Set 1 
For the 108 OOV terms, using the five different term extraction approaches, we obtained the 
translation results shown in Table 2. As we were using the same corpus and the same 
translation selection approach, the difference in translation accuracy is the result of different 
term extraction approaches. Thus, we can claim that the approach with the higher translation 
accuracy has higher extraction accuracy. 

As we can see from Table 2, below, SQUT has the highest translation accuracy. SCP and 
SCPCD provided similar performance. The approaches based on Mutual Information provided 
lowest performance. 

Table 2. OOV translation accuracy 
 Correct Accuracy (%) 

MI 48 44.4 
SE 58 53.7 

SCP 73 67.6 
SCPCD 74 68.5 
SQUT 84 77.8 
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5.1.1 Mutual Information Based Approaches 
In the experiment, the MI based approaches were unable to determine the Chinese term 
boundaries well. The term lists produced by the MI based approaches contain a huge number 
of partial Chinese terms. It is quite often the case that partial Chinese terms were chosen as the 
translation of OOV terms. Some partial Chinese terms selected by our system are listed in 
Table 3. 

Table 3. Some Extracted terms by MI 
OOV Terms Extracted terms Correct terms 
Embryonic Stem Cell 胚胎幹細 胚胎幹細胞 

consumption tax 費稅 消費稅 

Promoting Academic Excellence 卓越發 卓越發展計畫 

The performance of the Mutual Information based term extraction approaches, such as 
MI and SE, is affected by many factors. These approaches rely on predefined thresholds to 
determine the lexicon boundaries. Those thresholds can only be adjusted experimentally. 
Therefore, they can be optimized in fixed corpora. However, in OOV term translation, the 
corpus is dynamic. It is almost impossible to optimize thresholds for general use. As a result, 
the output quality is not guaranteed. 

In addition, Mutual Information based approaches seem unsuitable in Chinese term 
extraction. As there are no word boundaries between Chinese words, the calculation of MI 
values in Chinese is based on Chinese characters but not words as in English. On average, a 
high school graduate in the U.S. has a vocabulary of 27,600 words [Salovesh 1996]. Unless 
stemming or lemmatizing is used, the number of English word variations in a corpus is much 
greater. In contrast, the cardinality of the commonly used Chinese character set is under 3000. 
Due to the small set of Chinese characters, Chinese characters have much higher frequencies 
than English words. This means that one Chinese character could be used in many MLUs 
while an English word will have a much lower probability of being used in Multiple MLUs. 
As a result, an English MLU will have much higher MI value than a Chinese MLU. The subtle 
difference in MI values between MLUs and non-MLUs in Chinese makes the thresholds hard 
to tune for general use. 

 Some filtering techniques are used in SE to minimize the affect of thresholds. In our 
experiment, there is a 17.2% improvement in translation accuracy. Obviously, the 
improvement comes from the higher quality of extracted terms. However, the limitation of 
thresholds is not avoidable. 
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5.1.2 Local Maxima Based Approaches 
Without using thresholds, Local Maxima based approaches have much better flexibility than 
the MI based approaches in various corpora, achieving higher translation accuracy in our 
experiment. Comparing the two, the SCP approach tries to extract longer MLUs while the 
SCPCD approach tries to extract shorter ones. The translation of “Autumn Struggle”, “Wang 
Dan”, “Masako” and “Renault” are all 2-character Chinese terms. SCPCD can extract the 
translation with no problem while SCP always has difficulty with them. As over 90% of the 
Chinese terms are short terms, this is a problem for SCP in Chinese term extraction. 
Conversely, SCPCD has difficulty in extracting long terms. Overall, the two Local Maxima 
based approaches have similar performance. However, since most of the translation of OOV 
terms are long terms in our experiment, SCP’s performance is a little better than that of 
SCPCD. 

Local Maxima based approaches use string frequencies in the calculation of 
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∑ . In a small corpus, the frequency of a string becomes very low, 

which makes the calculation of string frequencies less meaningful. Local Maxima based 
approaches are not effective in a small corpus. In comparison, our approach calculates the 
difference between character frequencies. In a small corpus, characters still have a relatively 
high value. As a result, our approach performs better than Local Maxima based approaches in 
small corpora. For example, local maxima based approaches were unable to extract the 
translation of “Nissan Motor Company” because the corpus is too small-Google only returns 
73 results for the query “Nissan Motor Company”. 

5.1.3 SQUT Approach 
Most of the translations can be extracted by the SQUT algorithm. As our approach monitors 
the change in R value to determine MLUs rather than using the absolute value of R, it does not 
have the difficulty of using predefined thresholds. In addition, the use of single character 
frequencies in RMSE calculation makes our approach suitable in small corpora. Therefore, we 
have much higher translation accuracy than the MI-based approaches and also about 10% 
improvement over the Local Maxima based approaches. 

However, the SQUT algorithm has difficulty in extracting the translation of “Wang Dan”. 
In analyzing the result summaries, we found that the Chinese character “王” (“Wang”) is a 
very high-frequency character in the summaries. It is also used in other terms such as “霸王” 
(the Conqueror), “帝王” (regal); “國王” (king); “女王” (queen) and “王朝” (dynasty). Those 
terms also appear frequently in the result summaries. In our approach, where we are using the 
count of individual characters, the very high frequency of “王” breaks Observation 2. Thus, 
the translation of “Wang Dan” cannot be extracted. However, in most cases, our observations 
are true in small corpora as demonstrated by the high translation accuracy of our approach in 
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query expansion from Chinese/English Web search summaries. 

5.2 Experiment Set 2 
Table 4 below gives the results from the four runs defined in Section 4.3.2. 

Table 4. NTCIR 5 retrieval performance 
 Average precision Percentage of MonoRun  
Mono 0. 3713 - 
IgnoreOOV 0.1312 35.3% 
SimpleSelect 0.2482 66.8% 
TQUT 0.2978 79.3% 

5.2.1 IgnoreOOV 
The performance of the IgnoreOOV is 0.1312 which is only 35.3% of the monolingual 
retrieval performance. This result shows the extent to which an OOV term can affect a query. 
By looking at the translated queries, we found that 62 queries out of 100 have OOV terms. By 
removing all 62 queries, the Mono’s average precision becomes 0.3026 and the IgnoreOOV’s 
average precision becomes 0.2581 which is about 85.3% of the Mono’s precision. This is a 
reasonable result and indicates that our disambiguation technique works well to find the 
correct translations. The reason that we cannot get 100% precision is mainly due to the limited 
coverage of the dictionary introducing inappropriate translations. By “inappropriate 
translation”, we mean that the translation is a valid translation in some other context but not in 
the current query context. In query 24: for “space station, Mir”, 儲存信息暫存器 (Memory 
Information Register) is the only translation returned from the dictionary. However, it should 
be translated to 和平號太空站 here. In this case, when a dictionary only returns one 
translation, it is difficult to tell if it is suitable in the context. As the dictionary only gives one 
translation, we have no opportunity to correct this translation error using a disambiguation 
technique. Some translations from the dictionary are inappropriate in some given contexts 
because the translations are different in different regions. For example, the query “mad cow 
disease” is translated to 瘋牛病 in the dictionary which is used in mainland China and Hong 
Kong. However, in the NTCIR collection which is obtained from Taiwan, “mad cow disease” 
is translated to 狂牛症  or to 狂牛病 . We also find the same problem in query 24 
“syndrome”. Its translation is 症候群 in Taiwan. The translations given in the dictionary, 
though, are 併發症狀 and 綜合症狀, which are used in Hong Kong and mainland China. 
With these inappropriate translations, the retrieval precision for these queries is very low, thus 
it is impossible to achieve 100% of Mono performance. 
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5.2.2 SimpleSelect 
The performance of SimpleSelect, which achieved 0.2482 in precision, was much better than 
IgnoreOOV and it is 66.8% of the Mono performance. This result shows quite clearly that 
some of the OOV terms in English are found and translated to Chinese correctly. 

Table 5. Retrieval performance on queries that contains OOV terms only 
 Average precision Percentage of Mono Run  
Mono 0.4134 - 
SimpleSelect 0.2149 52.0% 
TQUT 0.2946 71.3% 

The results of the 62 queries that have OOV terms are given in Table 5. From Table 5, 
we can see that the precision of Mono is 0.4134 and the precision of SimpleSelect is 0.2149 
which is 52.0% of the Mono’s precision. This indicates that just choosing the longest and 
highest frequency terms as the translation of OOV terms results in performance that is actually 
lower than looking them up the dictionary. The performance is quite close to the performance 
of looking up terms in a dictionary without translation disambiguation technology reported by 
other researchers. However, some of our results show that this approach is quite useful in 
looking up proper names. As there is no standard for name translation in Chinese, it is quite 
common that a person’s name might be translated into different forms with similar 
pronunciation (akin to phonetic form). Different people may choose different translations due 
to their custom. As our test collection contains articles from four different news agents, if we 
only choose one of the translations, we may not retrieve all the relevant documents. 

For example, in query 12, the precision of SimpleSelect is 0.3528 and the precision of 
Mono is 0.0508 which means SimpleSelect’s performance is vastly superior to Mono. This is a 
notable performance boost. The English OOV term in query 12 is Jennifer Capriati (the name 
of a tennis player). The human translation is 卡普莉雅蒂. The translations from our approach 
are 卡普裏亞蒂, 卡普莉雅蒂, 卡普裏雅蒂 and 雅蒂. They are all correct translations. It is 
clear that we miss many relevant documents when we only use the translation 卡普莉雅蒂. 
When we take a deep look into the collection, actually three out of four news agents have 
sports news. Those three news agents use three different translations for Jennifer Capriati. 
These translations are 卡普莉雅蒂 in the mhn, 凱普莉雅蒂 in the ude and 卡普莉亞蒂 in 
the udn. Obviously, our translated query takes advantage of adding 雅蒂. Since we use a 
character-based index for our collection, the documents containing 雅蒂 will include the 
documents that contain both 卡普莉雅蒂 and 凱普莉雅蒂. Therefore, although we cannot 
find the correct translation 凱普莉雅蒂, we can still retrieve the documents that contain 凱普

莉雅蒂 by using 雅蒂. 

Although using part of the translation might improve the retrieval performance, it also 
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introduces noise information and the noise information may make it harder for the search 
engine to find the relevant documents. For example, America Online is translated as 美國線上 
in Taiwan but 美國在線 in mainland China. If we only choose 美國 (American) as the 
translation, we lose the information of the term. If it is the only term in the query, obviously, 
we are not going to retrieve any relevant documents. 

5.2.3 TQUT 

Table 6. OOV translation accuracy NTCIR5&6 
 Correct No. of OOV Accuracy (%)

TQUT 50 71 70 
SimpleSelect 43 71 60 

Table 6 shows that, using translation disambiguated technology in Web Translation Extraction, 
we can get more accurate translation than in previous approaches. We have 65% accuracy of 
the translation while the simulation of previous approach only achieves 51%. The IR 
performance of disambiguated queries achieved 79.3% of the Mono which is 0.2978. If we 
only look at the results of 62 queries that contain OOV terms, the precision is 0.2846 which is 
71.3% of the Mono’s precision. This result is much higher than the result in SimpleSelect, 
which is only 52% of Mono. There are 71 OOV terms over 100 queries. 50 of the OOV terms’ 
translations can be found using our proposed approach. And 43 of the translations are 
equivalent to the human translation. It is about 70% in precision. 

There are many reasons for not being able to get 100% precision. The first reason is the 
different translation customs that we described earlier. Since we cannot control from where 
the Web search engine gets the documents and to whom the Web search engine returns 
documents, we cannot guarantee the translation will be suitable for the collection. For 
example, we may be able to find the translation for an OOV term from the Internet, but this 
translation may be used only in Hong Kong and is not suitable for a collection from Taiwan. 
The translation of the term “Kursk” is a good example. Our Web translation extraction method 
only returns one translation 庫爾斯克 as the translation of “Kursk”. This result shows that 
most of the documents over the Internet use 庫爾斯克  as the translation of “Kursk”. 
However, the NTCIR5 collection uses 科斯克 as its translation. This kind of inappropriate 
translation is very hard to avoid even by human interpreters. Another good example is the 
translation of “National Council of Timorese Resistance”. We believe 帝汶抵抗全國委員會 
(from our Web translation extraction system) and 東帝汶人抗爭國家委員會 (from NTCIR 
human translation) are both correct. The difference of the two translations comes from the 
different customs of translation. However, when using the two translations as two queries, our 
IR system cannot retrieve any documents. This means that the documents in the NTCIR5 
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collection use a different translation for “National Council of Timorese Resistance”. Actually 
the translation in the NTCIR5 collection is: 東帝汶全國反抗會議. 

Another reason that we cannot get 100% precision is that our Web translation extraction 
system does not consider the query context. As we described before, we only put the OOV 
terms into a Web search engine. This may lead to a situation where we get a translation 
suitable for other context. For instance, in query 36, we are looking for some articles about the 
use of a robot for remote operation in a medical context. “Remote operation” is an OOV term 
in this query. Our Web translation extraction method returns the term 遠程操作服務 as its 
translation. Disregarding the query context, this is a correct translation. However, this 
translation is only correct when it is used in computer science. If we do not consider the query 
context, 27 of the translations are correct with about 87% precision. This result is close to the 
disambiguated queries of dictionary translations which is 85%. 

6. Conclusion and Future Work 

In this paper, first, we reviewed some existing popular OOV translation approaches. Then, we 
described an approach to tackling the OOV problem in English-Chinese information retrieval. 
As the first step of this approach, we proposed a bottom-up term extraction approach suitable 
for small corpora for generating candidate translations for query OOV terms. This method 
introduces a new measurement of a Chinese string based on frequency and RMSE, together 
with a Chinese MLU extraction process based on the change to a new string measurement that 
does not rely on any predefined thresholds. The method considers a Chinese string as a term 
based on the change of R’s value when the size of the string increases rather than based on the 
absolute value of R. Our experiments show that this approach is effective for translation 
extraction of unknown query terms. 

We also proposed a simple translation selection approach to improve translation accuracy. 
Our experimental results show that OOV terms can significantly affect the performance of 
CLIR systems. Using the translation extraction method proposed in this paper, the overall 
performance can be boosted by almost 174% relative to the case of not processing OOV terms. 
With our proposed translation selection approach, the accuracy of OOV term translation can 
be improved by up to 85%. The overall performance shows about 200% improvement relative 
to the case of not processing OOV terms. Also, it is about 120% relative to our 
implementation of previous approaches. 

Although our proposed approach shows impressive accuracy for OOV term translation, 
there is still some work to be done in the future. First, our experiments were conducted using a 
relatively small scale test set from NTCIR5 and NTCIR6 along with CLIR task queries which 
only have 108 OOV terms. It is necessary to test our approach to a larger-scale test set such as 
a test set that has over 1000 OOV terms. Second, inappropriate translation is still a problem in 
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query translation. The main reasons include the limited size of the dictionary, different 
customs of translation, and ignoring query context. Some work should be done to minimize 
these problems. Our experiments provide hints for some possible approaches. If we have a 
large amount of resources, we may be able to find all the possible translations. For translation 
selection, if some of the translations hit a similar number of documents, we may keep all of 
them as correct translations. It may be useful to include more results from the Google search 
for instance or combining different translation result together. We will validate these ideas in 
the future. 
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Appendix 1 

Sample translations of OOV terms from NTCIR 
OOV term SQUT SCP SCPCD SE MI 
Chiutou:      
Autumn Struggle: 秋鬥大遊 從秋鬥 秋鬥 秋鬥 秋鬥 

Jonnie Walker: 約翰走路 約翰走路 黑次元 高雄演唱 高雄演唱 

Charity Golf 
Tournament: 

慈善高爾夫

球賽 
慈善高爾夫

球賽  慈善高 慈善高 

Embryonic Stem 
Cell: 

胚胎幹細胞 胚胎幹細胞 胚胎幹細胞   

Florence Griffith 
Joyner: 花蝴蝶 葛瑞菲絲 葛瑞菲絲 花蝴蝶 花蝴蝶 

FloJo: 
佛羅倫薩格

里菲斯 花蝴蝶 花蝴蝶 花蝴蝶 花蝴蝶 

Michael Jordan: 麥可喬丹 麥可喬丹 喬丹 喬丹 喬丹 

Torrijos Carter 
Treaty:      

Viagra:      
Hu Jin tao: 胡錦濤 胡錦濤 胡錦濤 胡錦濤 胡錦濤 

Wang Dan:  天安門 王丹 王丹 王丹 

Tiananmen 天安門廣場 天安門 天安門 天安門 天安門 

Akira Kurosawa: 黑澤明 黑澤明 黑澤明 黑澤明 黑澤明 

Keizo Obuchi: 小淵惠三 小淵惠三 小淵惠三 小淵惠三 小淵惠三 

Environmental 
Hormone: 

環境荷爾蒙 環境荷爾蒙 環境荷爾蒙 環境荷爾蒙  

Acquired Immune 
Deficiency 
Syndrome: 

後天免疫缺

乏症候群 
愛滋病 愛滋病 愛滋病 愛滋 

Social Problem: 社會問題 社會問題 社會問題   

Kia Motors: 起亞汽車 起亞汽車 起亞汽車 起亞 起亞 

Self Defense Force: 自衛隊 自衛隊 自衛隊 自衛隊 自衛隊 

Animal Cloning 
Technique: 

動物克隆技

術 
動物克隆技

術    

Political Crisis: 政治危機 政治危機 政治危機   

Public Officer: 公職人員 公職人員 公職人員 公職人員  
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Research Trend: 研究趨勢 研究趨勢 研究趨勢 研究趨勢  

Foreign Worker: 外籍勞工 外籍勞工 外籍勞工 外籍勞工  

World Cup: 世界盃 世界盃 世界盃 世界盃 世界盃 

Apple Computer: 蘋果公司 蘋果電腦 蘋果電腦 蘋果電腦 蘋果電腦 

Weapon of Mass 
Destruction: 

大規模毀滅

性武器 
大規模毀滅

性武器 性武器   

Energy Consumption: 能源消費 能源消費 能源消費   
International Space 
Station: 

國際太空站 國際太空站 國際太空站   

President Habibie: 哈比比總統 哈比比總統 哈比比總統 哈比比  
Underground Nuclear 
Test: 

地下核試驗 地下核試驗 地下核試   

F117: 戰鬥機 隱形戰鬥機 隱形戰 隱形戰 隱形戰 

Stealth Fighter: 隱形戰機 隱形戰機 形戰鬥機 形戰鬥機 形戰鬥機 

Masako: 雅子 太子妃 雅子 雅子 雅子 

Copyright Protection: 版權保護 版權保護 版權保護 版權保護 版權保護 

Daepodong: 大浦洞 大浦洞 大浦洞 大浦洞 大浦洞 

Contactless SMART 
Card: 

智慧卡 非接觸式智

慧卡 
非接觸式智慧

卡 非接觸式 非接觸式 

Han Dynasty: 漢朝 大漢風 漢朝 漢朝 漢朝 

Promoting Academic 
Excellence: 

學術追求卓

越發展計畫
卓越計畫 卓越發展計畫 卓越發展計畫 卓越發 

China Airlines: 中華航空 中華航空 中華航空 中華航空 長榮 

ST1:      
El Nino 聖嬰 聖嬰現象 聖嬰現象 聖嬰 聖嬰 

Mount Ali: 阿里山 阿里山 阿里山 阿里山 阿里山 

Kazuhiro Sasaki: 佐佐木主浩 佐佐木主浩 佐佐木 佐佐木 佐佐木 

Seattle Mariners: 西雅圖水手 西雅圖水手 西雅圖水手   

Takeshi Kitano: 北野武 北野武 北野武 北野武 北野武 

European monetary 
union: 

歐洲貨幣聯

盟 
歐洲貨幣聯

盟 歐洲貨幣 歐洲貨幣 歐洲貨幣 

capital tie up:      

Nissan Motor 
Company: 

日產汽車公

司 汽車公司 汽車公司 處經濟 處經濟 

Renault: 雷諾 休旅車 雷諾 雷諾 雷諾 
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Pol Pot: 波布 紅高棉 紅高棉 紅高棉 紅高棉 

war crime: 戰爭罪 戰爭罪 戰爭罪 戰爭罪  

Kim Dae Jung: 金大中 金大中 金大中 金大中 金大中 

Clinton: 克林顿 克林顿 克林顿   

New Year Holiday: 新年假期 新年假期 新年假期   

Drunken Driving: 醉後駕車 醉後駕車 醉後駕車 醉後駕車 後駕車 

Science Camp: 科學營 科學營 科學營 科學營  

Nelson Mandela: 曼德拉 曼德拉 曼德拉 曼德拉 曼德拉 

Kim Il Sung: 金日成 金日成 金日成 金日成 金日成 

anticancer drug: 抗癌藥物     

consumption tax: 消費稅 消費稅 消費稅 消費稅 費稅 

Uruguay Round: 烏拉圭回合 烏拉圭回合 烏拉圭回合   

Kim Jong Il: 金正日 金正日 金正日 金正日 金正日 

Time Warner 時代華納 時代華納 時代華納 時代華納 時代華納 

American Online 美國線上 美國線上 美國線上 美國線上 美國線上 

Alberto Fujimori 藤森 藤森 藤森 藤森 藤森 

Taliban 塔利班 塔利班 塔利班 塔利班 塔利班 

Tiger Woods 老虎伍茲 老虎伍茲 老虎伍茲 老虎伍茲 伍茲 

Harry Potter 哈利波特 哈利波特 哈利波特 哈利波特 哈利波特 

Greenspan 葛林斯班 葛林斯班 葛林斯班 葛林斯  

monetary policy 貨幣政策 貨幣政策 貨幣政策 貨幣政策  

abnormal weather 天氣異常 天氣異常 天氣異常 天氣異常 天氣 

National Council of 
Timorese Resistance 

帝汶抵抗全

國委員會 
帝汶抵抗全

國委員會 
帝汶抵抗全國

委員會 
帝汶抵抗全國

委員會 
帝汶抵抗

全國委員

會 

 

 


