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Abstract 

This paper presents a new Chinese chunking method based on maximum entropy 
Markov models. We firstly present two types of Chinese chunking specifications 
and data sets, based on which the chunking models are applied. Then we describe 
the hidden Markov chunking model and maximum entropy chunking model. Based 
on our analysis of the two models, we propose a maximum entropy Markov 
chunking model that combines the transition probabilities and conditional 
probabilities of states. Experimental results for two types of data sets show that this 
approach achieves impressive accuracy in terms of the F-score: 91.02% and 
92.68%, respectively. Compared with the hidden Markov chunking model and 
maximum entropy chunking model, based on the same data set, the new chunking 
model achieves better performance. 

Keywords: Chinese Chunking, Maximum Entropy Markov Models, Chunking 
Specification, Feature Template, Smoothing Algorithm 

1. Introduction 

Text chunking is a useful step and a relatively tractable median stage in full parsing. Abney 
[1991] proposed to divide sentences into labeled, non-overlapping sequences of words based 
on superficial analysis and local information. Ramshaw and Marcus [1995] regarded chunking 
as a tagging problem and used a machine learning method to resolve it. A uniform standard of 
English chunking, including the chunking specification, data set, and evaluation method, was 
developed in the CoNLL-2000 shared task [Kim Sang and Buchholz 2000], which extracted 
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chunks from the English Penn Treebank [Marcus et al. 1993]. Parts of the sparkle project 
focused on finding various sorts of chunks in English, Italian, French and German texts 
[Carroll et al. 1997]. Chunking is required by many natural language processing applications, 
such as information retrieval, question and answering, information extraction, and machine 
translation, and has been one of the most interesting problems in natural language processing. 

The Chinese chunking task involves two research issues that we address in this paper. 
The first is the chunking specification used to define chunk types and to build a data set for 
supervised learning. Compared with English chunking in the CoNLL-2000 shared task, there 
are also several types of Chinese chunking specifications and data sets. One is extracting 
chunks directly from the Chinese Penn Treebank (CPTB) [Xia et al. 2000]. Luo [2003] and 
Fung [2004] regarded chunking as an intermediate step between POS tagging and full parsing, 
and defined chunks as the lowest non-terminal, that is, a constituent whose children are all 
preterminals, and they used it in statistical Chinese full parsing [Bikel and Chiang 2000; Xu 
2002]. Li [2003] also provided a definition of Chinese chunks and several rules for extracting 
chunks from CPTB, but she did some manual checking following extraction and pruning. The 
others types are not based on CPTB. Zhao and Huang [1999] defined Chinese base noun 
phrases. Based on the inner structure of phrases, Zhou [2002] defined 9 types of Chinese base 
phrases. At Microsoft Research Asia (MSRA), Li and Huang [2004] defined another chunking 
specification for annotating all of the chunks in the open Peking University corpus [Yu et al. 
1996]. In this paper, we select two chunking specifications and the corresponding data sets: 
the lowest non-terminals corpus extracted from CPTB and the annotated chunking Peking 
University corpus by MSRA. For the sake of brevity, the former is referred to here as the 
CPTB chunking specification, and the latter as the MSRA chunking specification. We use 
them to compare the performance of different chunking models. We select two specifications, 
not just one, in order to verify that our proposed model is independent of the chunking 
specifications. We selected these two types of corpus because they are both based on open 
corpora, but their chunk specifications are quite different: the former consists of rules for 
extracting from a tree, while the latter is a guide for annotating chunks from a segmented and 
POS tagged corpus. 

The second research issue is chunking algorithms. Many algorithms have been applied to 
perform chunking. Koeling [2000] and Osborne [2000] utilized the maximum entropy model 
which was defined 24 feature templates. Kudoh and Matsumoto [2000] applied weighted 
voting of 8 support vector machines (SVM) systems trained with distinct chunk 
representations. Park and Zhang [2003] employed a hybrid of hand-drafted rules and a 
memory-based learning algorithm (MBL). Kinyon [2001] used a rule-based chunking model, 
which can be used to generate a robust chunking model for any language. Other algorithms 
have also been utilized, such as the Sparse Network of Winnows (SNoW) [Li and Roth 2001], 
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and MBL [Bosch and Buchholz 2002]. With the CPTB and MSRA Chinese chunking 
specifications and data sets, we implement a chunking system based on maximum entropy 
Markov models (MEMM), which combine the transition probabilities and conditional 
probabilities of states. In open tests, we obtained F-scores of 92.68% with the CPTB data set 
and 91.02% with the MSRA data set; both results are better than those obtained by Li [2004] 
with the hidden Markov models (HMM) and maximum entropy model (MEM) under the same 
training and test data sets. 

Section 2 describes two types of chunking specifications that were used in our 
experiments. Section 3 describes in detail the MEMM chunking model and compares it with 
the MEM chunking model and HMM chunking model. Section 4 presents experimental results 
obtained with our system, based on two types of chunking data sets. Finally, we draw some 
conclusions. 

2. Chinese Chunking Specification 

For the sake of comparing the results of different chunking models, two types of chunking 
specifications and data sets mentioned in Section 1 are defined below. 

The following constraints that guarantee feasible consistency and make chunks more 
applicable are obeyed in both chunking specifications. 

1) No chunk can destroy phrase structures. In particular, object-predicate and verb-argument 
structures cannot be included in one chunk. 

2) Any phrase composed of chunks has a flat structure. Neither the relations between chunks 
nor the words’ relations in chunks are divided. 

2.1 CPTB Chunking Specification 
Guided by Luo’s [2003] definition of chunks, we define a chunk as a constituent whose 
children are all preterminals. Twenty-three types of chunks can be extracted directly from 
CPTB without performing any pre- and post extraction process. Table 1 shows the tag of each 
chunk type in the CPTB specification. The tags and tag descriptions are the same as those for 
CPTB syntactic tags [Xue and Xia 2000]. 

Table 1. The tag of each chunk type in the CPTB specification 
Chunk tag 

ADJP ADVP CLP CP 
DNP DP DVP FRAG 

IP LCP LST NP 
PP PRN QP UCP 
VP VCD VCP VNV 

VPT VRD VSB  
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In order to identify the boundaries of each chunk in sentences, we define two boundary 
types, which are denoted by B and I. Let B be the beginning of a chunk, and let I be the 
interior of a chunk. 

To sum up, combining chunk types with boundary types, the CPTB specification 
contains forty-six tags. The following is an example tagged based on the CPTB specification: 

 

Example 1 

布朗/B-NP (Brown) 表示/B-VP (denoted)，/I-VP 双方/B-NP (two parties) 可以

/B-VP (can) 在/B-PP(in) 运输/B-NP(transportation) 、/I-NP 电讯/I-NP 
(telecommunication) 、/I-NP 发电/I-NP(generate electricity) 、/I-NP 金融

/I-NP(finance) 服务业/I-NP(service) 等/I-NP(etc.) 方面/B-NP(aspect) 取得

/B-VP(acquire) 进一步/B-ADJP(more) 的/B-DNP(of) 合作/B-NP(cooperation)。 
/B-IP 

(Brown indicated that the two parties can improve cooperation in terms of 
transportation, telecommunications, electric power, finance, services, etc..) 

 

With this specification, the CPTB chunking data set can be automatically extracted from 
CPTB. 

2.2 MSRA Chunking Specification 
Guided by the CoNLL-2000 English chunking specification and the characteristics of Chinese, 
eleven chunk types are defined in the MSRA chunking specification. Table 2 shows the tag, 
description and examples for each chunk type. 

Table 2. The tag, description and examples for each chunk type in the MSRA 
chunking specification 

Chunk tag Chunk description Examples 

NP Noun chunk 
[NP 风雨/n (wind and rain) 电闪/n (lightning)], [NP 13 亿
/m (1.3 billion) 中国/n (Chinese) 人/n (people)] 

VP Verb chunk 
[VP 迷/v (lose) 了/u 路/n (one’s way)], [VP 总/d (always) 
也/d (also) 忘/v (forget) 不/d (never) 了/u] 

ADJP Adjective chunk 
[ADJP 最为/d (the most) 出色/a (excellent)], [ADJP 勇
敢/a (courageous)] 

ADVP Adverb chunk 
[ADVP 无愧/v (with a clear conscience) 地/u], [ADVP 
也/d (also) 早已/d (for a long time)] 

PP Prepositional 
chunk 

[PP 从/p (from) 柜子/n (cupboard) 里/f (in)], [PP 自/p 
(since) 1997 年/t (1997) 7 月/t (July) 1 日/t (1st) 以来/f] 
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MP Numerical chunk 
[MP 数/m (several) 千/m (thousand) 余/m (about) 件/q 
(piece)], [MP 十/m (ten) 次/q (time)] 

TP Temporal chunk 
[TP 最近/t (recently)], [TP 1998 年/t (1998) 10 月/t 
(October) 1 日/t (1st)] 

SP Spatial chunk 
[SP 建国/v (the foundation of the state) 以来/f (after) ], 
[SP 最后/f (finally)] 

CONJP Conjunction chunk [CONJP 而是/c (while)], [CONJP 但/c (but) 总的说来/c 
(generally speaking)] 

INTJP Interjection chunk [INTJP 吗/y], [INTJP 了/y 吧/y] 

INDP Independent chunk
[INDP 新华社/n (Xinhua News Agency) 北京/n (Beijing) 
1 月/t (January) 19 日/t (19th) 电/n (dispatch) ] 

In order to identify the boundaries of each chunk in sentences, we define four boundary 
types, which are denoted by B, I, E, S. Let B be the beginning of a chunk, let I be the interior 
of a chunk, let E be the ending of a chunk and let S be a single word chunk. 

Besides the above types, some special function words (‘的/of’, ‘和/and’, ‘与/and’, ‘或
/or’) in Chinese cannot be divided into any chunk types. We use O to tag these words and the 
punctuations as outside of any chunks. 

To sum up, combining chunk types with boundary types, the MSRA specification 
contains forty-five tags plus O. The following is an example tagged based on the MSRA 
specification: 

 

Example 2 

中央/B-NP (central) 电视台/E-NP (television) 得到/S-VP (receive) 一/B-MP (a) 
批/E-MP (passel) 思想性/S-NP (ideological nature) 强/S-ADJP (strong) 、/O 艺

术性/S-NP (artistic quality) 高/S-ADJP (high) 的/O 好/B-NP (excellent) 作品

/E-NP (work) ，/O 其中/S-NP (thereinto) 已/B-VP (already) 有/E-VP (have) 八

/B-NP (eight) 部/I-NP (measure word) 作品/E-NP (work) 开始/S-VP (start) 作

/S-VP (do) 投拍/S-NP (put to shot) 的/O 准备/S-NP (preparation) 。/O 

(Central Television has received a passel of excellent works of strong ideological 
nature and high artistic quality, of which eight have being prepared to put to shot.) 

 

With this specification, all the chunks can be manually annotated in the Peking 
University corpus which has been segmented and tagged with POS tag manually. 



 

 

120                                                       Guang-Lu Sun et al. 

3. Chunking Model2 

Through the use of the chunk tags described in Section 2, the Chinese chunking problem can 
be abstracted as a classification problem. Below, we briefly introduce the HMM chunking 
model and MEM chunking model, and discuss these models’ limitations. To overcome these 
limitations, we propose the MEMM chunking model and describe it in detail. 

3.1 HMM for Chunking 
HMM is a statistical structure with stochastic transitions and observations [Rabiner 1989]. It 
can be used to solve classification problems involved in modeling sequential data. Li [2004] 
proposed the Chinese chunking model based on conventional HMM. 

Given a word sequence W = w1, w2, … , wk and its POS sequence T = t1, t2, … , tk, where 
k is the number of words in the sentence, the result of chunking is assumed to be a sequence, 
in which the words are grouped into chunks as follows: 

 

... [wi wi+1 ... wi+m] [wi+m+1 wi+m+2 ... wi+m+h] ... 

 

The corresponding POS tag sequence is grouped as follows: 

 

C =... [ti ti+1 ... ti+m ] [ti+m+1 ti+m+2 ... ti+m+h ] ... 

 ...   cj             cj+1         ... 

 

Here cj corresponds to the POS tag sequence of a chunk. [ti ti+1 ... ti+m ]  cj may also be 
thought of as a chunk rule. Therefore, C is a sequence of eleven possible chunk rules and some 
outside words, which we refer to as O. The chunking task is, thus, converted to that of finding 
a rule sequence. According to Bayes’ rule, it can be computed as follows [Xun et al. 2000]: 

* arg max ( / , )

     = arg max ( / , ) ( , )

     = arg max ( / , ) ( )

c

c

c

C P C W T

P W C T P C T

P W C T P C

=

.                                          (1) 

Here, ( )P C is the probability of transition. It is seen as the rule’s n-gram model. A 
tri-gram among chunks are used to approximate 
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           Chinese Chunking Based on Maximum Entropy Markov Models          121 

1 2 1 1 2
3

( ) ( ) ( / ) ( / , )
k

i i i
i

P C P c P c c P c c c− −
=

≈ ∏ .                                  (2) 

Smoothing follows application of the method proposed by Gao et al. [2002]. 

( / , )P W C T is the probability of emission. The employed independent assumption is that 
the current word iw  is related to the current POS tag it , the current word’s boundary type 

im  (including B, I, E, S, and O), and the current word’s chunk type ix (including eleven 
types of chunks). It is approximated as follows: 

1( / , ) ( / , , )m
i i i iiP W C T P w t m x== ∏ .                                          (3) 

If the triple ( , , , )i i i iw t m x  is unseen, formula (4) is used: 

2
,

( , , )
( / , , )

max( ( , , ))
i i i

i i i i
i j k

j k

count t m x
P w t m x

count t m x
= ,                                    (4) 

where ( , , )i i icount t m x  is the frequency when the triple ( , , )i i it m x  occurs. 

There are three problems with the HMM chunking model. Firstly, HMM is a generative 
model focusing on the joint probability of states and observations. But the chunking problem 
is a conditional probability problem when observations are given. Secondly, independent 
assumption of HMM makes the current observation relevant to the current state and irrelevant 
to the context observation; however, context words should have an impact on chunking. 
Thirdly, many representations give the observation a particular description by means of 
overlapping features that are not independent of each other. These representations cannot be 
used in HMM. 

3.2 MEM for Chunking 
As an alternative to HMM, MEM is proposed to solve the chunking problem. MEM is an 
exponential model that offers the flexibility of integrating multiple sources of knowledge into 
a model [Berger 1996]. One of the main advantages of using MEM is the ability to incorporate 
various features into the conditional probability framework. Furthermore, the conditional 
probability model focuses on the modeling of tagging sequence, replacing the modeling of 
observation sequence. 

Let H denote the histories that consist of W and T. Given H, the goal of MEM is to find 
the optimal chunk tag sequence S = s1, s2, … , sk that contains forty-five chunk tags. The 
model decomposes ( / )P S H  into the product of probabilities of individual chunk actions 

( / )i iP s H . iH  represents the histories of is . 
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The conditional entropy of a distribution ( / )P s h  is defined as 

,
( ) ( ) ( | ) log ( | )

s S h H
H p p h p s h p s h

∈ ∈
= − ∑ .                                     (5) 

By maximizing the conditional entropy subject to certain constraints, we can estimate 
( / )P s h  based on the maximum entropy theory [Ratnaparkhi 1996]. The constraints are 

defined as follows: 

{ | , }p j p j jP p E f E f f= = ∀ ,                                               (6) 

( | ) 1
s

p s h =∑ ,                                                            (7) 

where jf  is the feature function of MEM. p jE f  is the model’s expectation of jf . p jE f  
is the empirical expectation of jf . They are defined as follows: 

 1     *     *
( , )

0                       
j

j
if h h and s s

f s h
otherwise

= =⎧⎪= ⎨
⎪⎩

,                                     (8) 

,
( ) ( | ) ( , )p j j

s h
E f p h p s h f s h= ∑ ,                                             (9) 

,
( , ) ( , )p j j

s h
E f p s h f s h= ∑ .                                                (10) 

Let s* be a certain chunk tag, and let h* be a certain instance of context. The model’s 
distribution ( / )P s h  can be inferred by means of Lagrange transformation: 

1( | ) exp ( , )
( ) j j

j
p s h f s h

Z h
λ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ,                                         (11) 

( ) exp ( , )j j
s j

Z h f s hλ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ,                                              (12) 

where ( )Z h  is the normalization constant. iλ  is the multiplier parameter with respect to 
each feature function.  

Given a set of features and a corpus of training data, the Improved Iterative Scaling 
algorithm [Della Pietra 1997] can be used to find the optimal parameters { iλ }. 

3.3 MEMM for Chunking 
MEM, which combines independent and dependent overlapping features together to predict 
chunk tags, can overcome the deficiency of HMM mentioned above. However, it does not 
apply the relations between each tags because MEM labels each word separately without 
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considering the probability of neighboring chunk tag transition. For chunking, the neighboring 
tags are dependent; for example the chunk tag next to B-NP should be I-NP or E-NP. To 
overcome this shortcoming, MEMM has been proposed. In it, the current state is  depends 
not only on the previous state 1is −  but also on the observation sequence O, as shown in 
Figure 1 [McCallum 2000]. 

 
Figure 1. The dependency relation for HMM, MEM, and MEMM 

MEMM combines the emission probability and transition probability of HMM into a 
unified function, 1( | , )i iP s s O− , where is  is a chunk tag and O consists of W and T. 
McCallum [2000] proposed an algorithm to solve the unified function. As the previous state 

1is −  is assigned to a certain s*, 1( | , )i iP s s O−  is divided into S  separately trained 
functions, *( | )s iP s O , where S  is the size of the state space. Each separate function is 
trained using an exponential model. Thus, the number of states increases, and the data 
sparseness problem becomes more serious. Because there are forty-five types of chunk tags 
and some tags occur rarely in training data, it is hard to build forty-five separate, conformable 
exponential models. 

As a possible solution, a simplified method can be used to solve the unified function 

1( | , )i iP s s O− . We split 1( | , )i iP s s O−  into two functions in order to reduce the complexity of 
the model. 1( | , )i iP s s O−  is estimated as follows: 

 1 1( | , ) ( | ) ( | )i i i i i iP s s O P s s P s H− −= ,                                       (13) 

where ( | )i iP s H  is the conditional probability of a state. Let iH  be histories of is . The 
previous state 1is −  is seen as one of the histories in MEM, just like the representations of the 
observation sequence O. With this method, forty-five separate exponential models are 
replaced with one exponential model. Meanwhile, MEM, described in Section 3.2, is used to 
estimate ( | )i iP s H . 

1( | )i iP s s −  is the transition probability of a state. Because only some chunk tag pairs 
occur in the training data, a smoothing algorithm is needed to solve the data sparseness 
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problem of the tag bi-gram. Since not all chunk tags can be followed between each other, three 
transition restricted rules are used to reduce the number of tag pairs. This can make smoothing 
more reliable. Let X be a certain chunk type, and let Y be a random chunk type. B, I, E, S, and 
O were defined in Section 2.2. Thus: 

1) B-X can be followed by I-X or E-X; 

2) I-X can be followed by I-X or E-X; 

3) E-X, S-X, and O can be followed by B-Y, S-Y, or O. 

Through three rules, five hundred and seventy-three types of tag pairs can be enumerated. 
Interpolation smoothing is used, and 1( | )i iP s s −  is estimated as follows: 

1 1( | ) * '( | ) (1 )* ( )i i i i iP s s P s s P sλ λ− −= + − .                                  (14) 

Maximum Likelihood Estimation (MLE) is used to estimate the empirical probability 

1'( | )i iP s s −  and the tag unigram ( )iP s . We set the empirical value λ  to 0.7 in the MSRA 
data set. 

Finally, 1( | , )i iP s s O− can be estimated by means of ( | )i iP s H  and 1( | )i iP s s − . If iH  
includes the previous state 1is − , then ( | )i iP s H  and ( )Z h  vary as the previous state 1is −  
changes in 1( | )i iP s s − . By means of this method, ( | )i iP s H and 1( | )i iP s s −  can be 
combined dynamically. The Viterbi algorithm is used to search for the optimal sequence of 
states. Figure 2 shows the structure of the Chinese chunking model based on MEMM. 

 
Figure 2. The structure of the MEMM Chinese chunking model 
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3.4 Features in MEMM and MEM 
MEM and MEMM are both highly dependent on feature templates. For the sake of making a 
fair comparison between MEM and MEMM, both MEM and MEMM use the same feature 
template. The histories of the current state are a source for feature collection. The lexical and 
POS information of the current word, the left context consisting of two words, and the right 
context consisting of two words are regarded as histories. In addition, the affix information of 
the current word and the chunk tag of the previous word are atomic features [Ratnaparkhi 
1996; Koeling 2000]. Table 3 shows the atomic features. 

Table 3. Atomic features in MEMM and MEM 

Feature tag Feature explanation 

Wi Current word 

Wi-1 The previous word 

Wi-2 The previous but one word 

Wi+1 The next word 

Wi+2 The next but one word 

Pi Current POS tag 

Pi-1 POS tag of the previous word 

Pi-2 POS tag of the previous but one word 

Pi+1 POS tag of the next word 

Pi+2 POS tag of the next but one word 

Si-1 Chunk tag of the previous word 

PFi Two-character prefix of the current word 

AFi Two-character suffix of the current word 

In order to compare the effectiveness of different types of features, we selected three 
types of feature templates. Table 4 shows the template based on lexical information only. 
Table 5 shows the template based on POS information only. Table 6 shows the template based 
on both lexical and POS information. Results obtained using different feature templates will 
be given in Section 4. 

The heuristic that low frequency features are not reliable was used to cut off the features 
that occurred less than three times. Through feature selection, more reliable features could be 
used. 
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Table 4. Feature template based on lexical information 

Feature type Features 

Atomic features Wi, Wi-1, Wi-2, Wi+1, Wi+2, Si-1, PFi, AFi 

Combined features 
Wi-1Wi, Wi-2Wi-1, WiWi+1, Wi+1Wi+2, Wi-1Wi+1, 

Wi-1WiWi+1, Wi-2Wi-1Wi, WiWi+1Wi+2, 

Table 5. Feature template based on POS information 
Feature type Features 

Atomic features Pi, Pi-1, Pi-2, Pi+1, Pi+2, Si-1 

Combined features 
Pi-1Pi, Pi-2Pi-1, PiPi+1, Pi+1Pi+2, Pi-1Pi+1,  

Pi-1PiPi+1, Pi-2Pi-1Pi, PiPi+1Pi+2, 

Table 6. Feature template based on both lexical and POS information 
Feature type Features 

Atomic features 
Wi, Wi-1, Wi-2, Wi+1, Wi+2,  

Pi, Pi-1, Pi-2, Pi+1, Pi+2, Si-1, PFi, AFi 

Combined features 
Wi-1Wi, WiWi+1, Wi-1Wi+1, Pi-1Pi, Pi-2Pi-1, PiPi+1, Pi-1Pi+1, 

Pi-1PiPi+1, Pi-2Pi-1Pi, PiPi+1Pi+2, WiPi+1, WiPi+2, PiWi-1, Wi-2 Pi-1Pi, 
PiWi+1Pi+1, Pi-1WiPi, Si-1PiPi+1, Si-1Pi, Si-1Pi-1Pi, PiWi+1, 

4. Evaluation and Discussion 

We will firstly describe in detail our Chinese chunking data set. Then we will present the 
chunking performance and discuss it. 

4.1 Data Set 
The CPTB chunking data set is based on data automatically extracted from CPTB, which has a 
total of around 100,000 word tokens. Following Bikel’s [2000] division, sections 001-270 
(approximately 90% of the CPTB) were used for training, and sections 271-300 
(approximately 10%) for testing. The remaining sections (301-325) were held for later 
development/tuning purposes. The CPTB chunking data set consisted of 3,822 sentences with 
74,587 chunks and 92,729 word tokens. Thirty-one types of POS tags and forty-one types of 
chunk tags occurred in the data set. The average length (AL) of the chunks is 1.243 word 
tokens. Table 7 shows details of the training and test data sets. 

Table 7. CPTB chunking training and test data sets 

Data set Number of sentences Number of chunks Number of word tokens 

Training 3474 68162 84749 

Test 348 6425 7980 
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The MSRA chunking data set is based on the Peking University corpus, which has been 
segmented, POS tagged, and chunk annotated manually. The data set consisted of 18,239 
sentences with 243,868 chunks and 473,179 word tokens. The vocabulary size was 34,793. 
Forty-two types of POS tags and forty-three types of chunk tags occurred in the data set. The 
AL of the chunks is 1.377 word tokens3. Table 8 shows details of the training and test data sets. 
Table 9 shows the distribution of each type of chunk in the data set. 

Table 8. MSRA chunking training and test data sets 

Data set Number of 
sentences 

Number of 
chunks 

Number of 
word tokens Number of O 

Training 17,253 229,989 444,777 92,839 

Test 986 13,879 28,382 5,493 

Table 9. The distribution of each type of MSRA chunk 

Chunk type AL Percentage (%) 

NP 1.649 45.94 

VP 1.416 29.82 

PP 1.221 6.59 

MP 1.818 3.69 

ADJP 1.308 3.77 

SP 1.167 2.71 

TP 1.251 2.59 

CONJP 1.000 2.22 

INDP 4.297 1.41 

ADVP 1.117 1.06 

INTJP 1.016 0.23 

ALL 1.507 100 

4.2 Experimental Results 
Following the measurement approach adopted in CoNLL-2000, we measured the performance 
of Chinese chunking in terms of the precision (P), recall (R), and F-score (F). All the results 
were obtained in open tests. 
                                                 
3 The AL of chunks includes the length of O. Without O, the AL is 1.507 word tokens. 
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For the CPTB chunking data set, the results are listed in Table 10. The results for HMM 
[Li 2004] are listed in the first row of Table 10. The second and third rows list the results for 
MEM and MEMM, respectively, where the same feature template defined in Table 6 was used. 
The empirical value λ  mentioned in Section 3.3 was set to 0.65, based on the training data. 
It can be seen that, MEMM achieved the best results on the CPTB chunking data set. 

Table 10. Chunking performance achieved by applying different systems to the 
CPTB data set 

Model P(%) R(%) F (%) 

HMM 89.07 90.82 89.94 

MEM 92.33 90.93 91.62 

MEMM Lexical and POS features 93.20 92.17 92.68 

In order to test the feature impact on MEMM, we tested MEMM chunking on the CPTB 
data set with the different types of feature templates described in Section 3.4. Table 11 shows 
the results. The chunk tag that had maximum occurrence probability for each word token was 
used to chunk its corresponding token. With this method, we got the baseline results listed in 
the first row of Table 11. The results obtained using the feature template in Table 4 are listed 
in the second row of Table 11, and then the third and fourth row is for Table 5 and Table 6. It 
can be seen that, the performance achieved using POS information only is much better than 
the performance achieved using lexical information only. The performance achieved using 
lexical and POS information is much better than the performance achieved using POS 
information only. 

Table 11. MEMM chunking performance achieved by applying different feature 
templates to the CPTB data set 

Model P(%) R(%) F (%) 

Baseline 59.22 65.76 62.32 

MEMM Lexical features 74.45 72.05 73.23 

MEMM POS features 88.92 87.80 88.35 

MEMM Lexical and POS features 93.20 92.17 92.68 

Table 12 shows the performance of different chunk types for the CPTB chunking data set 
when the total MEMM F-score in total was 92.68%. As shown, some chunk types achieved 
much poorer performance, such as PRN, UCP, VNV, and VSB. The reason was that they rarely 
occurred in the training data set, so it was difficult to tag them correctly. NP was the most 
frequent chunk type, but its performance was much poorer than the average performance. The 
reason is that the boundary of NP is difficult to distinguish. 
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Table 12. The performance of each chunk type for the CPTB data set 

For the MSRA chunking data set, Table 13 shows the chunking results. As before, 
MEMM and MEM used the same feature template, defined in Table 6. The experimental 
results show that the MEMM chunking model was more efficient for resolving the Chinese 
chunking problem. The reason is that MEMM chunking model uses sufficient context 
information that can describe actual language phenomena effectively, as explained in Section 
3.3. 

Table 14 shows the MEMM chunking results for the MSRA data set with different types 
of feature templates. The baseline and feature templates were defined the same as in Table 11. 
The performance achieved using POS information only was again much better than the 
performance achieved using lexical information only. One reason is that the model using 
lexical features has a more serious data sparseness problem than the model using POS features 

Chunk type P (%) R (%) F (%) 

ADJP 97.03 98.86 97.94 

ADVP 99.40 99.70 99.55 

CLP 99.26 99.26 99.26 

CP 98.05 98.53 98.29 

DNP 100 100 100 

DP 100 100 100 

FRAG 98.31 100 99.15 

IP 92.19 90.17 91.17 

LCP 98.08 100 99.03 

NP 88.72 85.97 87.32 

PP 99.11 100 99.55 

PRN 0.00 0.00 0.00 

QP 100 98.88 99.44 

UCP 0.00 0.00 0.00 

VCD 50.00 33.33 40.00 

VNV 0.00 0.00 0.00 

VP 93.97 96.11 95.03 

VRD 80.00 40.00 53.33 

VSB 0.00 0.00 0.00 

ALL 93.20 92.17 92.68 
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does. The other reason is that POS tags have a stronger ability to predict chunk tags and that 
POS tag are the gold standard (because they are manually annotated). The performance 
achieved using lexical and POS information was again better than the performance achieved 
using POS information only. This means that lexical information can improve chunking 
accuracy because it provides sufficient context information for predicting the current chunk 
tag. 

Table 13. Chunking performance achieved by applying different systems to the MSRA 
data set 

Model P(%) R(%) F (%) 

HMM 87.47 89.61 88.53 

MEM 90.95 88.74 89.83 

MEMM Lexical and POS features 91.36 90.68 91.02 

Table 14. MEMM chunking performance achieved by applying different feature 
templates to the MSRA data set 

Model P(%) R(%) F (%) 

Baseline 64.27 72.12 67.97 

MEMM Lexical features 74.91 75.37 75.14 

MEMM POS features 85.47 85.28 85.38 

MEMM Lexical and POS features 91.36 90.68 91.02 

Table 15 shows the performance of different chunk types for HMM and MEM when the 
total MEMM F-score in total was 91.02% on the MSRA data set. Because NP and VP chunks 
accounted for 75.76% of all chunks, their performance dominated the overall chunking 
performance. As shown, the performance of VP was somewhat better, while the performance 
of NP was much lower than average, just as in the experimental results for the CPTB data set 
(shown in Table 12). The performance of PP, CONJP, and INTJP was somewhat better 
because most of them are single words. For almost all the chunk types, the performance of 
MEMM is the best. HMM was better for the INDP chunk type because the AL of INDP was 
4.297 and the HMM method can classify chunk types that have longer AL. 

In order to show the relationship between MEMM and the data set size, we split the 
MSRA training data set into parts with different sizes. Figure 3 shows the results for different 
sizes of training data sets with the feature template shown in Table 6. When the size of the 
training data set increased to 6,900 sentences, that is, forty percent of the whole training data 
set, the F-score was 90%. However, when the size of the training data set increased to 17,253 
sentences, the F-score only increased by one percent. Thus, it can be seen that expanding the 
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scale of the training data set helps the chunking performance very little after the data set 
reaches a certain scale. 

Table 15. The performance of each chunk type for the MSRA data set 
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MEMM MEMM MEMM HMM MEM 
Chunk type 

P (%) R (%) F (%) F (%) F (%) 

NP 88.64 87.48 88.06 85.95 87.59 

VP 95.25 96.81 96.03 92.60 94.96 

PP 93.98 93.88 93.93 92.86 94.27 

MP 88.69 83.71 86.13 88.35 84.84 

ADJP 92.26 84.76 88.35 84.17 86.03 

SP 82.99 85.60 84.28 77.93 83.51 

TP 92.02 92.02 92.02 89.91 84.57 

CONJP 99.34 94.62 96.92 97.65 89.35 

INDP 78.76 83.96 81.28 91.28 54.82 

ADVP 91.98 79.68 85.39 76.84 83.73 

INTJP 95.65 95.65 95.65 79.31 86.25 

ALL 91.36 90.68 91.02 88.53 89.93 

Figure 3. The results for MSRA training data sets of different sizes using the 
feature template shown in Table 6 



 

 

132                                                       Guang-Lu Sun et al. 

Figure 4 shows the results for training data sets of different sizes using the feature 
template shown in Table 4, which only has lexical information. When the entire training data 
set was used, the F-score was 74.27%. But the curve shows that the F-score could still 
improve significantly if the scale of the training data set were increased. This means that there 
is much room to improve the accuracy if we enlarge the training corpus further. 
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Figure 4. The results for MSRA training data sets of different sizes using the 

feature template shown in Table 4 

Table 16. The distribution of each type of error in the MSRA data set 

Error type Wrong 
labeling 

Under- 
combining 

Over- 
combining Overlapping 

No. of the 
Errors 55 591 316 70 

HMM 
Percentage 

(%) 5.3 57.3 30.6 6.9 

No. of the 
Errors 32 530 305 69 

MEM 
Percentage 

(%) 3.4 56.6 32.6 7.4 

No. of the 
Errors 25 431 330 66 

MEMM 
Percentage 

(%) 2.9 50.6 38.7 7.7 
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Table 16 shows the number and percentage of each type of error in the MEMM results, 
compared with those in the HMM and MEM results. Four types of Chinese chunking errors 
are defined: wrong labeling, under-combining, over-combining, and overlapping. Since one 
chunking error can possibly result in two chunk tagging errors, there were 852 chunking errors. 
Under-combining and over-combining errors amounted to almost 90% in all the errors for all 
three models, so identifying the boundaries of chunks is important to get better performance. 
The reason why MEMM has the best performance is that the numbers of the two types of 
errors decrease when the sequential relations of the chunk tags are considered. 

5. Conclusion 

In this paper we have proposed a new method of Chinese chunking based on MEMM. The 
transition probabilities of chunk tags are estimated using the Markov model. A smoothing 
algorithm is applied to deal with the data sparseness problem of the chunk tag bi-gram. The 
conditional probabilities of chunk tags along with histories are estimated through MEM. The 
two probabilities are combined dynamically in MEMM. 

For the purpose of comparing the performance of different models, chunking models 
were applied to both the CPTB chunking data set and MSRA chunking data set. The 
experiments on the PTCB data set showed that the new model achieved an F-score of 92.68%, 
which was better than the F-scores of HMM and MEM in Chinese chunking. The 
improvement was 2.74% and 1.06%, respectively. The experiments on the MSRA data set 
showed that the new model had an F-score of 91.02%, which was also better than the F-scores 
of HMM and MEM. The improvement in this case was 2.49% and 1.19%, respectively. The 
reasons for the improvement have been analyzed through error analysis. We have also 
discussed the effects of different feature types and different sizes of training data sets on the 
performance of MEMM. 
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