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Abstract

Adversarial learning is a game-theoretic learn-
ing paradigm, which has achieved huge suc-
cesses in the field of Computer Vision recently.
It is a general framework that enables a variety
of learning models, including the popular Gen-
erative Adversarial Networks (GANs). Due to
the discrete nature of language, designing ad-
versarial learning models is still challenging
for NLP problems.

In this tutorial, we provide a gentle intro-
duction to the foundation of deep adversar-
ial learning, as well as some practical prob-
lem formulations and solutions in NLP. We
describe recent advances in deep adversarial
learning for NLP, with a special focus on gen-
eration, adversarial examples & rules, and dia-
logue. We provide an overview of the research
area, categorize different types of adversarial
learning models, and discuss pros and cons,
aiming to provide some practical perspectives
on the future of adversarial learning for solv-
ing real-world NLP problems.

1 Tutorial Description
Adversarial learning (AdvL) is an emerging research
area that involves a game-theoretical formulation of
the learning problem. Recently, with the introduction
of Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), we have observed some stunning
results in the area of image synthesis in Computer Vi-
sion (Brock et al., 2018).

Comparing to images, even language is discrete, the
general family of adversarial learning methods still
have gained significantly more attentions in NLP in re-
cent years1. In contrast to the focus of GANs in Com-
puter Vision, Natural Language Processing researchers
have taken a broader approach to adversarial learning.
For example, three core technical subareas for adver-
sarial learning include:

1Through a simple ACL anthology search, we found that
in 2018, there were 20+ times more papers mentioning “ad-
versarial”, comparing to 2016. Meanwhile, the growth of all
accepted papers is 1.39 times during this period.

• Adversarial Examples, where researchers fo-
cus on learning or creating adversarial examples
or rules to improve the robustness of NLP sys-
tems. (Jia and Liang, 2017; Alzantot et al., 2018;
Iyyer et al., 2018; Ebrahimi et al., 2018a,b; Shi
et al., 2018b; Chen et al., 2018; Farag et al., 2018;
Ribeiro et al., 2018; Zhao et al., 2018)

• Adversarial Training, which focuses on adding
noise, randomness, or adversarial loss during op-
timization. (Wu et al., 2017; Wang and Bansal,
2018; Li et al., 2018a; Yasunaga et al., 2018; Ponti
et al., 2018; Kurita et al., 2018; Kang et al., 2018;
Li et al., 2018c; Masumura et al., 2018)

• Adversarial Generation, which primarily in-
cludes practical solutions of GANs for processing
and generation natural language. (Yu et al., 2017;
Li et al., 2017; Yang et al., 2018; Wang and Lee,
2018; Xu et al., 2018)

Additionally, we will also introduce other technical
focuses such as negative sampling and contrastive es-
timation (Cai and Wang, 2018; Bose et al., 2018), ad-
versarial evaluation (Elliott, 2018), and reward learn-
ing (Wang et al., 2018c). In particular, we will also
provide a gentle introduction to the applications of ad-
versarial learning in different NLP problems, including
social media (Wang et al., 2018a; Carton et al., 2018),
domain adaptation (Kim et al., 2017; Alam et al., 2018;
Zou et al., 2018; Chen and Cardie, 2018; Tran and
Nguyen, 2018; Cao et al., 2018; Li et al., 2018b), data
cleaning (Elazar and Goldberg, 2018; Shah et al., 2018;
Ryu et al., 2018; Zellers et al., 2018), information ex-
traction (Qin et al., 2018; Hong et al., 2018; Wang et al.,
2018b; Shi et al., 2018a; Bekoulis et al., 2018), and in-
formation retrieval (Li and Cheng, 2018).

Adversarial learning methods could easily combine
any representation learning based neural networks, and
optimize for complex problems in NLP. However, a key
challenge for applying deep adversarial learning tech-
niques to real-world sized NLP problems is the model
design issue. This tutorial draws connections from the-
ories of deep adversarial learning to practical applica-
tions in NLP.

In particular, we start with the gentle introduction to
the fundamentals of adversarial learning. We further
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discuss their modern deep learning extensions such as
Generative Adversarial Networks (Goodfellow et al.,
2014). In the first part of the tutorial, we also out-
line various applications of deep adversarial learning
in NLP listed above. In the second part of the tuto-
rial, we will focus on generation of adversarial exam-
ples and their uses in NLP tasks, including (1) The
inclusion and creation of adversarial examples for ro-
bust NLP; (2) The usage of adversarial rules for inter-
pretable and explainable models; and (3) The relation-
ship between adversarial training and adversarial ex-
amples. In the third part of the tutorial, we focus on
GANs. We start with the general background introduc-
tion of generative adversarial learning. We will intro-
duce an in-depth case study of Generative Adversarial
Networks for NLP, with a focus on dialogue genera-
tion (Li et al., 2017).

This tutorial aims at introducing deep adversarial
learning methods to researchers in the NLP commu-
nity. We do not assume any particular prior knowledge
in adversarial learning. The intended length of the tu-
torial is 3.5 hours, including a coffee break.

2 Outline
Noise-Robust Representation Learning, Adversarial
Learning, and Generation are three closely related re-
search subjects in Natural Language Processing. In this
tutorial, we touch the intersection of all the three re-
search subjects, covering various aspects of the theo-
ries of modern deep adversarial learning methods, and
show their successful applications in NLP. This tutorial
is organized in three parts:

• Foundations of Deep Adversarial Learning.
First, we will provide a brief overview of adversar-
ial learning (RL), and discuss the cutting-edge set-
tings in NLP. We describe methods such as Adver-
sarial Training (Wu et al., 2017), Negative Sam-
pling, and Noise Contrastive Estimation (Cai and
Wang, 2018; Bose et al., 2018). We introduce
domain-adaptation learning approaches, and the
widely used data cleaning and information extrac-
tion methods (Elazar and Goldberg, 2018; Shah
et al., 2018; Ryu et al., 2018; Zellers et al., 2018;
Qin et al., 2018; Hong et al., 2018; Wang et al.,
2018b; Shi et al., 2018a; Bekoulis et al., 2018). In
this part, we also introduce the modern renovation
of deep generative adversarial learning (Goodfel-
low et al., 2014), with a focus on NLP (Yu et al.,
2017; Yang et al., 2018; Wang and Lee, 2018; Xu
et al., 2018).

• Adversarial Examples for NLP Second, we will
focus on the designing practical adversarial exam-
ples for NLP tasks. In particular, we will provide
an overview of recent methods, including their
categorization by whether they are white (e.g.
Ebrahimi et al., 2018a) or black box (e.g. Iyyer
et al., 2018), character- (e.g. Belinkov and Bisk,

2018) or word-based (e.g. Alzantot et al., 2018),
and the tasks they have been applied to. We will
also provide an in-depth analysis of some of the
general techniques for creating adversarial exam-
ples, such as gradient-based (e.g. Ebrahimi et al.,
2018b), manually-designed (e.g. Jia and Liang,
2017), or learned (e.g. Zhao et al., 2018) perturba-
tion techniques. Next, we will focus on practical
applications of adversarial examples, such as ex-
isting work on adversarial rules for interpretable
NLP (Ribeiro et al., 2018). To conclude this part,
we discuss future directions and novel application
areas for adversarial examples in NLP, including
KB completion (Pezeshkpour et al., 2019).

• An In-depth Case Study of GANs in NLP.
Third, we switch from the focuses of adversar-
ial training and adversarial examples to generative
adversarial networks (Goodfellow et al., 2014).
We will discuss why it is challenging to deploy
GANs for NLP problems, comparing to vision
problems. We then focus on introducing Seq-
GAN (Yu et al., 2017), an early solution of tex-
tual models of GAN, with a focus on policy gra-
dient and Monte Carlo Tree Search. Finally,
we provide an in-depth case study of deploying
two-agent GAN models for conversational AI (Li
et al., 2017). We will summarize the lessons
learned, and how we can move forward to inves-
tigate game-theoretical approaches in advancing
NLP problems.

3 History
The full content of this tutorial has not yet been pre-
sented elsewhere, but some parts of this tutorial has
also been presented at the following locations in recent
years:

1. “Deep Reinforcement Learning for NLP”, William
Wang, Jiwei Li, and Xiaodong He presented at the
ACL 2018 Tutorial, Melbourne, AU., Total atten-
dance: 500 (the most popular tutorial).

2. “Scalable Construction and Reasoning of Massive
Knowledge Bases”, Xiang Ren, Nanyun Peng,
William Wang. Tutorial at NAACL 2018, New
Orleans, Total attendance: 300 (the most popular
tutorial).

3. “Questioning Question Answering Answers”,
Sameer Singh, invited talk at the Machine Read-
ing for Question Answering (MRQA) Workshop
at ACL 2018 in Melbourne AU, Total attendance:
200 (one of the most popular workshops).

4. “Teaching a Machine to Converse”, Jiwei Li, pre-
sented at OSU, UC Berkeley, UCSB, Harbin Inst.
of Technology, total attendance: 500.

5. “Local, Model-Agnostic Explanations of Machine
Learning Predictions”, Sameer Singh, invited
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talks and keynotes at various venues, such as
UCSD, KAIST, UC Riverside, FICO, and Caltech,
total attendance: 800.

4 Duration
The intended duration of this tutorial is 3.5 hours plus
a half an hour break.

5 Information About the Presenters
William Wang is an Assistant Professor at the Depart-
ment of Computer Science, University of California,
Santa Barbara. He received his PhD from School of
Computer Science, Carnegie Mellon University. He fo-
cuses on information extraction and he is the faculty
author of KBGAN—the first deep adversarial learn-
ing system for knowledge graph reasoning. He has
presented tutorials at ACL, NAACL, and IJCAI, with
more than 60 published papers at leading conferences
and journals including ACL, EMNLP, NAACL, CVPR,
ECCV, COLING, AAAI, IJCAI, CIKM, ICWSM, SIG-
DIAL, IJCNLP, INTERSPEECH, ICASSP, ASRU, SLT,
Machine Learning, and Computer Speech & Language,
and he has received paper awards and honors from
CIKM, ASRU, and EMNLP. Website: http://www.cs.
ucsb.edu/∼william/

Sameer Singh is an Assistant Professor of Computer
Science at the University of California, Irvine. He
is working on large-scale and interpretable machine
learning applied to information extraction and natu-
ral language processing. Before UCI, Sameer was a
Postdoctoral Research Associate at the University of
Washington. He received his PhD from the Univer-
sity of Massachusetts, Amherst in 2014, during which
he also interned at Microsoft Research, Google Re-
search, and Yahoo! Labs. His group has received
funding from Allen Institute for AI, NSF, Adobe Re-
search, and FICO, and was selected as a DARPA Riser.
Sameer has presented tutorials at WSDM and AAAI,
and published extensively at top-tier machine learning
and natural language processing conferences. Website:
http://sameersingh.org/

Jiwei Li is the co-founder and CEO of Shannon.AI, an
AI startup based in Beijing, China. He spent three years
and received his PhD in Computer Science from Stan-
ford University with Prof. Dan Jurafsky. His research
focuses on deep learning in NLP applications, includ-
ing dialogue, question answering, discourse analysis
and information extraction. He has published more
than 20 lead-author papers at ACL, EMNLP, NAACL
and ICLR, and is the most prolific NLP/ML first au-
thor during 2012-2018. He is the lead author of the
first study in deep reinforcement learning and adver-
sarial learning for dialogue generation. He is the re-
cipient of a Facebook Fellowship in 2015 and he is
named Forbes 30 under 30 in China in 2018. Website:
https://nlp.stanford.edu/∼bdlijiwei/.
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