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Abstract

Supervised approaches to named entity recog-
nition (NER) are largely developed based
on the assumption that the training data is
fully annotated with named entity information.
However, in practice, annotated data can often
be imperfect with one typical issue being the
training data may contain incomplete annota-
tions. We highlight several pitfalls associated
with learning under such a setup in the con-
text of NER and identify limitations associated
with existing approaches, proposing a novel
yet easy-to-implement approach for recogniz-
ing named entities with incomplete data anno-
tations. We demonstrate the effectiveness of
our approach through extensive experiments.1

1 Introduction

Named entity recognition (NER) (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meul-
der, 2003) as one of the most fundamental tasks
within natural language processing (NLP) has
received significant attention. Most existing
approaches to NER focused on a supervised setup,
where fully annotated named entity information is
assumed to be available during the training phase.
However, in practice, obtaining high-quality
annotations can be a very laborious and expensive
process (Snow et al., 2008). One of the common
issues with data annotations is there may be
incomplete annotations.

Figure 1 shows an example sentence with two
named entities “John Lloyd Jones” and “BBC ra-
dio” of type PER (person) and ORG (organization),
respectively. Following the standard BIOES tag-
ging scheme (Ramshaw and Marcus, 1999; Rati-
nov and Roth, 2009), the corresponding gold la-
bel sequence is shown below the sentence. When
the data annotations are incomplete, certain labels

1Our code and data are available at http://statnlp.
org/research/ie.

Sentence: Chairman John Lloyd Jones said on BBC radio

Gold: O BPER IPER EPER O O BORG EORG

A.1: O BPER - - O - - EORG

(Fernandes and Brefeld, 2011)

A.2: O BPER IPER EPER O O - -
(Carlson et al., 2009)

A.3: - BPER IPER EPER - - - -
Our assumption

Figure 1: An example sentence with gold named entity
annotations and different assumptions (i.e., A.1 to A.3)
on available labels. “-” represents a missing label.

may be missing from the label sequence. Prop-
erly defining the task is important, and we argue
there are two possible potential pitfalls associated
with modeling incomplete annotations, especially
for the NER task.

Several previous approaches assume the incom-
plete annotations can be obtained by simply re-
moving either word-level labels (Fernandes and
Brefeld, 2011) or span-level labels (Carlson et al.,
2009). As shown in Figure 1, under both assump-
tions (i.e., A.1 and A.2), there will be words an-
notated with O labels. The former approach may
even lead to sub-entity level annotations (e.g., “ra-
dio” is annotated as part of an entity). However,
we argue such assumptions can be largely unre-
alistic. In practice, annotators are typically in-
structed to annotate named entities for complete
word spans only (Settles et al., 2008; Surdeanu
et al., 2010). Thus, sub-entity level annotations
or O labels 2 should not be assumed to be avail-

2Why should the O labels be assumed unavailable? This is
because the annotators typically do not actively specify the O
labels when working on annotations. If the annotator chooses
not to annotate a word, it could either mean it is not part of
any entity, or the word is actually part of an entity but the
annotator neglected it in the annotation process (therefore we
have incomplete annotations). However, we note that assign-
ing the O label to a word would precisely indicate it is strictly
not part of any entity, which is not desirable.

http://statnlp.org/research/ie
http://statnlp.org/research/ie
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Figure 3: Graphical illustrations on different assumptions on unavailable labels, where the entity “John Lloyd
Jones” of type PER is labeled but “BBC radio” of type ORG is missing. Each path refers to one possible complete
label sequence, and the density of the color indicates probability (we excluded B and E tags for brevity).

able (A.3). Therefore such approaches are making
sub-optimal assumptions on the available labels.

When the proper assumptions on the available
labels are made, one can typically model the miss-
ing labels as latent variables and train a latent-
variable conditional random fields model (Quat-
toni et al., 2005). One such approach is presented
in (Bellare and McCallum, 2007). Their work fo-
cused on the citation parsing3 (i.e., sequence la-
beling) task which does not suffer from the above
issue as no O label is involved. However, though
the approach was shown effective in the citation
parsing task, we found its effectiveness does not
transfer to the NER task even in the absence of the
above available labels issue. As we would high-
light later, the reason is related to the undesirable
assumptions on the unavailable labels.

In this work, we tackle the incomplete annota-
tion problem when building an NER system, under
a more realistic yet more challenging scenario. We
present a novel, effective, yet easy-to-implement
approach, and conduct extensive experiments on
various datasets and show our approach signifi-
cantly outperforms several previous approaches.

2 Related Work

Previous research efforts on partially anno-
tated data are mostly based on the conditional
random fields (CRF) (Lafferty et al., 2001),
structured perceptron (Collins, 2002) and max-
margin (Tsochantaridis et al., 2005) (e.g. struc-
tural support vector machine) models. Bellare
and McCallum (2007) proposed a missing label
linear-chain CRF4 which is essentially a latent-

3The task is to tag the BibTex records with different labels
(i.e., “title”, “author”, “affiliation” and so on).

4This model was also named as Partial CRF (Carlson
et al., 2009) and EM Marginal CRF (Greenberg et al., 2018).

variable CRF (Quattoni et al., 2005) on citation
parsing (McCallum et al., 2000). This model
had also been used in part-of-speeching tagging
and segmentation task with incomplete annota-
tions (Tsuboi et al., 2008; Liu et al., 2014; Yang
and Vozila, 2014). Yang et al. (2018) showed the
effectiveness of such a model on Chinese NER
with incomplete annotations due to the fact that
they required a certain number of fully annotated
data to perform joint training. Greenberg et al.
(2018) applied this model on a biomedical NER
task and achieved promising performance with in-
complete annotations. However, in their assump-
tion for the incomplete annotations, the O labels
are still considered, which we believe is not real-
istic. Carlson et al. (2009) modified the structured
perceptron algorithm and defined features only on
the tokens with annotated labels in partially la-
beled sequences. Fernandes and Brefeld (2011)
and Lou et al. (2012) proposed to use a large-
margin learning framework similar to structured
support vector machines with latent variables (Yu
and Joachims, 2009).

3 Approach

Given the input word sequence x, the NER task is
to predict a label sequence y that encodes the NER
information (e.g., in a form following the BIOES

tagging scheme). Given a training set that consists
of completely labeled data D, one can tackle this
problem using a standard linear-chain conditional
random field (CRF) (Lafferty et al., 2001) whose
loss function is as follows:5

L(w) = −
∑
i

log pw(y
(i)|x(i)) (1)

5In practice, we also have an L2 regularization term,
which we exclude from the formula for brevity.
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where (x(i),y(i)) is the i-th instance from D.
Now, assume we have an incomplete label se-

quence y
(i)
p . From such a y

(i)
p we should be able

to derive a set of all possible complete label se-
quences that are compatible with (i.e., contain) the
incomplete label sequence, and let us call this set
C(y(i)

p ). We can rewrite the above function as:

L(w) =−
∑
i

log
∑

y∈C(y(i)
p )

qD(y|x(i))pw(y|x(i))

We illustrate in Figure 3 several previous ap-
proaches as well as our approach. In this example,
the entity BBC radio of type ORG is not annotated.
Figure 3(a) shows a single path that corresponds
to the gold label sequence. Figure 3(b) illustrates
a naive approach, where we regard all the miss-
ing labels as O labels. This essentially assumes
that the q distribution in the above equation puts
all probability mass to this single label sequence,
which is an incorrect assumption.

Now let us look at what assumptions on q have
been made by the existing approach of Bellare and
McCallum (2007). The model regards the missing
labels as latent variables and learns a latent vari-
able CRF using the following loss:

−
∑
i

log
∑

y∈C(y(i)
p )

pw(y|x(i)) (2)

The resulting model is called missing label
linear-chain CRF (M-CRF) 6. As we can see from
the above function, this is essentially equivalent
to say q is a uniform distribution that assigns
equal probabilities to all possible complete label
sequences in C(y(i)

p ).
We believe such an assumption on q that de-

scribes unavailable labels can be improved. As we
can see from the above example in Figure 3(d), a
more desirable assumption about q is to put more
probability mass to a path that is close to the gold
path. In practice, their approach worked for the
task of citation parsing, where the q distribution
may not deviate much from the uniform distribu-
tion (Figure 3(c)) in such a task. However, in the
task of NER, we find such a simple treatment to
the q distribution often leads to sub-optimal re-
sults (as we can see in the experiments later) as
the q distribution is highly skewed due to the large

6Similar assumptions have also been made by (Carlson
et al., 2009; Fernandes and Brefeld, 2011), but they used
structured perceptron (Collins, 2002) instead.

Dataset
Training Validation Test Entities

#entity #sent #entity #sent #entity #sent # c (%)

CoNLL-2003 23,499 14,041 5,942 3,250 5,648 3,453 4 23.0
CoNLL-2002 18,796 08,322 4,338 1,914 3,559 1,516 4 12.4
Taobao 29,397 06,000 4,941 0,998 4,866 1,000 4 51.0
Youku 12,754 08,001 1,580 1,000 1,570 1,001 3 41.7

Table 1: Data statistics for the datasets.

amount of O labels. This observation motivates us
to find a proper way to define q that can approxi-
mate the gold label distribution in this work.

3.1 Estimating q

Inspired by the classifier stacking technique used
in Nivre and McDonald (2008), we empirically
found that a reasonable q distribution can be ac-
quired in a k-fold cross-validation fashion.

We first start with an initialization step where
we assign specific labels to words without labels,
forming complete label sequences (we will discuss
our initialization strategy in experiments). Next,
we perform k-fold cross-validation on the training
set. Specifically, each time we train a model with
(k-1) folds of the data and based on the learned
model we define our q distribution.

We describe two different ways of defining the
q distribution, namely the hard approach, and the
soft approach. In the hard approach, the result-
ing q distribution is a collapsed distribution that
assigns probability 1 to a single complete label se-
quence, whereas in the soft approach each possible
label sequence will get a certain probability score.

In the hard approach, after training a model
from (k-1) folds, we apply a constrained Viterbi
procedure 7 to the sentences in the remaining fold.
In the soft approach, we use a constrained version
of the forward-backward procedure and calculate
the marginal probabilities associated with each la-
bel at each unlabeled position. The score of each
complete label sequence can then be calculated as
a product of all such marginal probabilities. We
note that in the above procedure the estimation to
q depends on the initialization. Thus we iterate
the above procedure, which allows us to converge
to an improved q.

4 Experiments

We conduct experiments on two standard NER
datasets – CoNLL-2003 English and CoNLL-2002
Spanish datasets that consist of news articles. We

7The algorithm will ensure the resulting complete label
sequence is compatible with the incomplete label sequence.
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Approach CoNLL-2003 CoNLL-2002 Taobao Youku
P. R. F. P. R. F. P. R. F. P. R. F.

Simple 93.6 68.6 79.2 86.8 57.0 68.8 83.1 46.7 59.8 91.1 49.1 63.8
LSTM-M-CRF 13.0 90.5 22.8 06.2 84.5 11.6 33.0 83.0 47.2 17.6 83.7 29.1
LSTM-Partial Perceptron 27.6 82.0 41.3 22.3 66.3 33.3 26.6 59.7 36.8 19.7 69.0 30.6
LSTM-Transductive Perceptron 11.7 90.5 20.7 06.1 84.3 11.4 32.9 82.2 47.0 16.0 81.9 26.7

Ours (hard) 88.1 89.9 89.0 80.8 82.1 81.5 69.3 77.4 73.1 77.2 79.8 78.5
Ours (soft) 89.0 90.1 89.5 81.3 82.7 82.0 69.7 78.1 73.7 78.1 79.6 78.8

Complete 91.0 90.8 90.9 85.7 85.8 85.8 82.3 82.6 82.4 83.0 81.7 82.4

Table 2: Performance comparison between different baseline models and our approaches on 4 datasets with ρ = 0.5
(for Complete model, ρ = 1.0).

notice that incomplete annotation issue is very
common in the industry setup. Therefore we also
consider two new datasets from industry – Taobao
and Youku datasets8 consisting of product and
video titles in Chinese. We crawled and manu-
ally annotated such data with named entities9. Ta-
ble 1 shows the statistics of the datasets. The last
two columns show the number of entity types and
the percentage of words (i.e., c in Table 1) that are
parts of an NE. Based on our assumption on the
available labels in Section 1, we randomly remove
a certain number of entities as well as all O labels
and use ρ to represent the ratio of annotated enti-
ties. For example, ρ = 0.6 means we keep 60%
of all the entities and remove the annotations of
40% of the entities. Meanwhile, the O labels are
considered unavailable.

We follow Lample et al. (2016) and apply the
bidirectional long short-term memory (Hochreiter
and Schmidhuber, 1997) (BiLSTM) networks as
the neural architecture for all baselines and our ap-
proaches. Specifically, we implement the follow-
ing baselines: a Simple model which is a linear-
chain LSTM-CRF model and we treat all missing
labels as O; the missing label CRF (Bellare and
McCallum, 2007; Greenberg et al., 2018) (LSTM-
M-CRF) model; the partial perceptron (Carlson
et al., 2009) model, which is a structured percep-
tron (Collins, 2002) but only considers the scores
on the words with available labels; the trans-
ductive perceptron (Fernandes and Brefeld, 2011)
model where they introduce a Hamming loss func-
tion during the perceptron training process; lastly,
we train an LSTM-CRF (Lample et al., 2016) with
complete annotations as the upper bound (Com-

8http://www.taobao.com/ and http://www.youku.com/
9Details of all datasets can be found in the supplementary

material.

plete). For English and Spanish, we use ex-
actly the same embeddings used in Lample et al.
(2016). We train our Chinese character embed-
dings on the Chinese Gigaword10 corpus. The
resulting implementation achieves 90.9 and 85.8
F -scores on CoNLL-2003 English and CoNLL-
2002 Spanish datasets, respectively. These bench-
mark results are comparable with the results re-
ported in the state-of-the-art NER systems (Lam-
ple et al., 2016; Ma and Hovy, 2016; Reimers and
Gurevych, 2017).

For initialization in our approaches, we run the
Simple model on each fold and use the results to
initialize our q distribution11. Detailed descrip-
tions on experiment settings (e.g., hidden dimen-
sion of LSTM and optimizer) and baseline systems
are provided in supplementary material.

Main Results Table 2 presents the comparisons
among all approaches on four datasets with ρ =
0.5 and k = 2. Our preliminary experiments
show that a larger k value have a negligible ef-
fect on the results. A similar finding was also re-
ported in Nivre and McDonald (2008). The Sim-
ple model has high precision and low recall as it
treats unknown labels as O. Previous models for
incomplete annotations achieve a much lower F -
score compared to the Simple model and our ap-
proaches. Due to their uniform assumption on q
over the missing labels, these models typically can
recall more entities. The partial perceptron (Carl-
son et al., 2009) among these three models yields
a relatively lower recall as features are not defined
over the words with missing labels.

10https://catalog.ldc.upenn.edu/LDC2003T09
11Similar to the EM procedure, a good initialization is cru-

cial for our approach. We found using random initialization
can lead to substantially worse results and a better initializa-
tion can be used to further improve the results.
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Figure 4: Precision, Recall and F -score with different ρ on CoNLL-2003 dataset.

The difference in F -score between these three
models and the Simple model is more signifi-
cant on the two CoNLL datasets than on Taobao
and Youku. As shown in Table 1, the latter two
datasets have more words labeled as parts of enti-
ties (i.e., a higher c). This means these industrial
datasets have less O labels, making such baseline
models suffer less from their assumptions on the
unavailable labels. With a properly learned q dis-
tribution, our approaches improves the recall score
over the Simple model while preserving a high pre-
cision. Our soft approach consistently achieves a
better F -score compared with the hard approach
on all datasets with p < 0.001. Compared
to the Complete upper bound, our soft approach
are still more than 3% lower in F -score on the
CoNLL-2002, Taobao and Youku datasets. How-
ever, we can see that the soft approach achieves
much higher performance compared to this variant
on other datasets. We attribute this phenomenon
to our approaches’ ability in retrieving most of the
entities in the training set. Empirically, we found
our soft approach can recover 94% of the entities
in the training set of the CoNLL-2003 dataset.

The overall results show the underlying sce-
nario is challenging for commonly adopted mod-
els in handling incomplete annotations and our
approaches can achieve better performance com-
pared with them.

Effect of ρ We conduct experiments with dif-
ferent ρ from 0.1 to 0.9 for our soft approach
against the Simple and LSTM-M-CRF models.
Figure 4 shows how the precision, recall and F -
score on CoNLL-2003 change as we increase ρ.
The F -score of the Simple baseline increases pro-
gressively as ρ increases. LSTM-M-CRF always
maintains a low F -score which is not sensitive to
different ρ values because of their high recall and

low precision values as we can see in Figure 4 (a,
b). The improvement of our approach attributes to
the increase of recall as the precision is constantly
high and stable. We can see that our soft approach
performs particularly well when ρ is larger than
0.3 which indicates a modest amount of missing
labels in practice.

5 Conclusions and Future Work

In this work, we identified several limitations asso-
ciated with previous assumptions when perform-
ing sequence labeling with incomplete annota-
tions, and focused on the named entity recognition
task. We presented a novel and easy-to-implement
solution that works under a realistic and challeng-
ing assumption on the incomplete annotations.
Through extensive experiments and analysis, we
demonstrated the effectiveness of our approach.

Although we focused on the task of named en-
tity recognition in this work, we believe the pro-
posed approach may find applications in some
other sequence labeling tasks or other more gen-
eral structured prediction problems where the is-
sue of incomplete annotations is involved. We
leave them as future work.
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