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Abstract

We present a simple approach to improve di-

rect speech-to-text translation (ST) when the

source language is low-resource: we pre-train

the model on a high-resource automatic speech

recognition (ASR) task, and then fine-tune its

parameters for ST. We demonstrate that our

approach is effective by pre-training on 300

hours of English ASR data to improve Spanish-

English ST from 10.8 to 20.2 BLEU when

only 20 hours of Spanish-English ST train-

ing data are available. Through an ablation

study, we find that the pre-trained encoder

(acoustic model) accounts for most of the im-

provement, despite the fact that the shared lan-

guage in these tasks is the target language

text, not the source language audio. Apply-

ing this insight, we show that pre-training on

ASR helps ST even when the ASR language

differs from both source and target ST lan-

guages: pre-training on French ASR also im-

proves Spanish-English ST. Finally, we show

that the approach improves performance on a

true low-resource task: pre-training on a com-

bination of English ASR and French ASR im-

proves Mboshi-French ST, where only 4 hours

of data are available, from 3.5 to 7.1 BLEU.

1 Introduction

Speech-to-text Translation (ST) has many potential

applications for low-resource languages: for exam-

ple in language documentation, where the source

language is often unwritten or endangered (Be-

sacier et al., 2006; Martin et al., 2015; Adams et al.,

2016a,b; Anastasopoulos and Chiang, 2017); or

in crisis relief, where emergency workers might

need to respond to calls or requests in a foreign lan-

guage (Munro, 2010). Traditional ST is a pipeline

of automatic speech recognition (ASR) and ma-

chine translation (MT), and thus requires tran-

scribed source audio to train ASR and parallel text

to train MT. These resources are often unavailable

for low-resource languages, but for our potential

applications, there may be some source language

audio paired with target language text translations.

In these scenarios, end-to-end ST is appealing.

Recently, Weiss et al. (2017) showed that end-

to-end ST can be very effective, achieving an im-

pressive BLEU score of 47.3 on Spanish-English

ST. But this result required over 150 hours of trans-

lated audio for training, still a substantial resource

requirement. By comparison, a similar system

trained on only 20 hours of data for the same

task achieved a BLEU score of 5.3 (Bansal et al.,

2018). Other low-resource systems have similarly

low accuracies (Anastasopoulos and Chiang, 2018;

Bérard et al., 2018).

To improve end-to-end ST in low-resource set-

tings, we can try to leverage other data resources.

For example, if we have transcribed audio in the

source language, we can use multi-task learning

to improve ST (Anastasopoulos and Chiang, 2018;

Weiss et al., 2017; Bérard et al., 2018). But source

language transcriptions are unlikely to be available

in our scenarios of interest.

Could we improve low-resource ST by lever-

aging data from a high-resource language? For

ASR, training a single model on multiple languages

can be effective for all of them (Toshniwal et al.,

2018b; Deng et al., 2013). For MT, transfer learn-

ing (Thrun, 1995) has been very effective: pre-

training a model for a high-resource language pair

and transferring its parameters to a low-resource

language pair when the target language is shared

(Zoph et al., 2016; Johnson et al., 2017). Inspired

by these successes, we show that low-resource ST

can leverage transcribed audio in a high-resource

target language, or even a different language al-

together, simply by pre-training a model for the

high-resource ASR task, and then transferring and

fine-tuning some or all of the model’s parameters

for low-resource ST.
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We first test our approach using Spanish as the

source language and English as the target. After

training an ASR system on 300 hours of English,

fine-tuning on 20 hours of Spanish-English yields

a BLEU score of 20.2, compared to only 10.8 for

an ST model without ASR pre-training. Analyz-

ing this result, we discover that the main benefit

of pre-training arises from the transfer of the en-

coder parameters, which model the input acoustic

signal. In fact, this effect is so strong that we also

obtain improvements by pre-training on a language

that differs from both the source and the target:

pre-training on French and fine-tuning on Spanish-

English. We hypothesize that pre-training the en-

coder parameters, even on a different language,

allows the model to better learn about linguisti-

cally meaningful phonetic variation while normal-

izing over acoustic variability such as speaker and

channel differences. We conclude that the acoustic-

phonetic learning problem, rather than translation

itself, is one of the main difficulties in low-resource

ST. A final set of experiments confirm that ASR pre-

training also helps on another language pair where

the input is truly low-resource: Mboshi-French.

2 Method

For both ASR and ST, we use an encoder-decoder

model with attention adapted from Weiss et al.

(2017), Bérard et al. (2018) and Bansal et al. (2018),

as shown in Figure 1. We use the same model ar-

chitecture for all our models, allowing us to con-

veniently transfer parameters between them. We

also constrain the hyper-parameter search to fit a

model into a single Titan X GPU, allowing us to

maximize available compute resources.

We use a pre-trained English ASR model to ini-

tialize training of Spanish-English ST models, and

a pre-trained French ASR model to initialize train-

ing of Mboshi-French ST models. During ST train-

ing, all model parameters are updated. In these

configurations, the decoder shares the same vocab-

ulary across the ASR and ST tasks. This is practical

for settings where the target text language is high-

resource with ASR data available.

In settings where both ST languages are low-

resource, ASR data may only be available in a third

language. To test whether transfer learning will

help in this setting, we use a pre-trained French

ASR model to train Spanish-English ST models;

and English ASR for Mboshi-French models. In

these cases, the ST languages are different from the

Process
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input:Spanish speech
English reference text or prediction from 
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output: English text prediction

Figure 1: Encoder-decoder with attention model archi-

tecture for both ASR and ST. The encoder input is the

Spanish speech utterance claro, translated as clearly,

represented as BPE (subword) units.

ASR language, so we can only transfer the encoder

parameters of the ASR model, since the dimensions

of the decoder’s output softmax layer are indexed

by the vocabulary, which is not shared.1 Sharing

only the speech encoder parameters is much eas-

ier, since the speech input can be preprocessed in

the same manner for all languages. This form of

transfer learning is more flexible, as there are no

constraints on the ASR language used.

3 Experimental Setup

3.1 Data sets

English ASR. We use the Switchboard Telephone

speech corpus (Godfrey and Holliman, 1993),

which consists of around 300 hours of English

speech and transcripts, split into 260k utterances.

The development set consists of 5 hours that we

removed from the training set, split into 4k utter-

ances.

French ASR. We use the French speech corpus

from the GlobalPhone collection (Schultz, 2002),

which consists of around 20 hours of high quality

read speech and transcripts, split into 9k utterances.

The development set consists of 2 hours, split into

800 utterances.

Spanish-English ST. We use the Fisher Spanish

speech corpus (Graff et al., 2010), which consists of

160 hours of telephone speech in a variety of Span-

ish dialects, split into 140K utterances. To simulate

low-resource conditions, we construct smaller train-

1Using a shared vocabulary of characters or subwords is
an interesting direction for future work, but not explored here.
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ing corpora consisting of 50, 20, 10, 5, or 2.5 hours

of data, selected at random from the full training

data. The development and test sets each consist

of around 4.5 hours of speech, split into 4K utter-

ances. We do not use the corresponding Spanish

transcripts; our target text consists of English trans-

lations that were collected through crowdsourcing

(Post et al., 2013, 2014).

Mboshi-French ST. Mboshi is a Bantu language

spoken in the Republic of Congo, with around

160,000 speakers.2 We use the Mboshi-French par-

allel corpus (Godard et al., 2018), which consists

of around 4 hours of Mboshi speech, split into a

training set of 5K utterances and a development

set of 500 utterances. Since this corpus does not

include a designated test set, we randomly sam-

pled and removed 200 utterances from training to

use as a development set, and use the designated

development data as a test set.

3.2 Preprocessing

Speech. We convert raw speech input to 13-

dimensional MFCCs using Kaldi (Povey et al.,

2011).3 We also perform speaker-level mean and

variance normalization.

Text. The target text of the Spanish-English data

set contains 1.5M word tokens and 17K word types.

If we model text as sequences of words, our model

cannot produce any of the unseen word types in

the test data and is penalized for this, but it can be

trained very quickly (Bansal et al., 2018). If we

instead model text as sequences of characters as

done by Weiss et al. (2017), we would have 7M

tokens and 100 types, resulting in a model that is

open-vocabulary, but very slow to train (Bansal

et al., 2018). As an effective middle ground, we

use byte pair encoding (BPE; Sennrich et al., 2016)

to segment each word into subwords, each of which

is a character or a high-frequency sequence of

characters—we use 1000 of these high-frequency

sequences. Since the set of subwords includes the

full set of characters, the model is still open vocab-

ulary; but it results in a text with only 1.9M tokens

and just over 1K types, which can be trained almost

as fast as the word-level model.

The vocabulary for BPE depends on the fre-

2ethnologue.com/language/mdw
3In preliminary experiments, we did not find much differ-

ence between between MFCCs and more raw spectral repre-
sentations like Mel filterbank features.

quency of character sequences, so it must be com-

puted with respect to a specific corpus. For En-

glish, we use the full 160-hour Spanish-English

ST target training text. For French, we use the

Mboshi-French ST target training text.

3.3 Model architecture for ASR and ST

Speech encoder. As shown schematically in Fig-

ure 1, MFCC feature vectors, extracted using a

window size of 25 ms and a step size of 10ms, are

fed into a stack of two CNN layers, with 128 and

512 filters with a filter width of 9 frames each. In

each CNN layer we stride with a factor of 2 along

time, apply a ReLU activation (Nair and Hinton,

2010), and apply batch normalization (Ioffe and

Szegedy, 2015). The output of the CNN layers

is fed into a three-layer bi-directional long short

term memory network (LSTM; Hochreiter and

Schmidhuber, 1997); each hidden layer has 512

dimensions.

Text decoder. At each time step, the decoder

chooses the most probable token from the output

of a softmax layer produced by a fully-connected

layer, which in turn receives the current state of

a recurrent layer computed from previous time

steps and an attention vector computed over the

input. Attention is computed using the global atten-

tional model with general score function and input-

feeding, as described in Luong et al. (2015). The

predicted token is then fed into a 128-dimensional

embedding layer followed by a three-layer LSTM

to update the recurrent state; each hidden state has

256 dimensions. While training, we use the pre-

dicted token 20% of the time as input to the next

decoder step and the training token for the remain-

ing 80% of the time (Williams and Zipser, 1989).

At test time we use beam decoding with a beam

size of 5 and length normalization (Wu et al., 2016)

with a weight of 0.6.

Training and implementation. Parameters for

the CNN and RNN layers are initialized using

the scheme from (He et al., 2015). For the

embedding and fully-connected layers, we use

Chainer’s (Tokui et al., 2015) default initialition.

We regularize using dropout (Srivastava et al.,

2014), with a ratio of 0.3 over the embedding and

LSTM layers (Gal, 2016), and a weight decay rate

of 0.0001. The parameters are optimized using

Adam (Kingma and Ba, 2015), with a starting alpha

of 0.001.

ethnologue.com/language/mdw
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Following some preliminary experimentation on

our development set, we add Gaussian noise with

standard deviation of 0.25 to the MFCC features

during training, and drop frames with a probabil-

ity of 0.10. After 20 epochs, we corrupt the true

decoder labels by sampling a random output label

with a probability of 0.3.

Our code is implemented in Chainer (Tokui et al.,

2015) and is freely available.4

3.4 Evaluation

Metrics. We report BLEU (Papineni et al., 2002)

for all our models.5 In low-resource settings,

BLEU scores tend to be low, difficult to interpret,

and poorly correlated with model performance.

This is because BLEU requires exact four-gram

matches only, but low four-gram accuracy may ob-

scure a high unigram accuracy and inexact transla-

tions that partially capture the semantics of an utter-

ance, and these can still be very useful in situations

like language documentation and crisis response.

Therefore, we also report word-level unigram preci-

sion and recall, taking into account stem, synonym,

and paraphrase matches. To compute these scores,

we use METEOR (Lavie and Agarwal, 2007) with

default settings for English and French.6 For exam-

ple, METEOR assigns “eat” a recall of 1 against

reference “eat” and a recall of 0.8 against reference

“feed”, which it considers a synonym match.

Naive baselines. We also include evaluation scores

for a naive baseline model that predicts the K most

frequent words of the training set as a bag of words

for each test utterance. We set K to be the value

at which precision/recall are most similar, which

is always between 5 and 20 words. This provides

an empirical lower bound on precision and recall,

since we would expect any usable model to out-

perform a system that does not even depend on

the input utterance. We do not compute BLEU for

these baselines, since they do not predict sequences,

only bags of words.

4 ASR results

Using the experimental setup of Section 3, we pre-

trained ASR models in English and French, and

report their word error rates (WER) on develop-

4github.com/0xSameer/ast
5We compute BLEU with multi-bleu.pl from the

Moses toolkit (Koehn et al., 2007).
6cs.cmu.edu/˜alavie/METEOR

en-100h en-300h fr-20h

WER 35.4 27.3 29.6

Table 1: Word Error Rate (WER, in %) for the ASR

models used as pretraining, computed on Switchboard

train-dev for English and Globalphone dev for French.

ment data in Table 1.7 We denote each ASR model

by L-Nh, where L is a language code and N is the

size of the training set in hours. For example, en-

300h denotes an English ASR model trained on

300 hours of data.

Training ASR models for state-of-the-art perfor-

mance requires substantial hyper-parameter tuning

and long training times. Since our goal is simply to

see whether pre-training is useful, we stopped pre-

training our models after around 30 epochs (3 days)

to focus on transfer experiments. As a consequence,

our ASR results are far from state-of-the-art: cur-

rent end-to-end Kaldi systems obtain 16% WER

on Switchboard train-dev, and 22.7% WER on the

French Globalphone dev set.8 We believe that bet-

ter ASR pre-training may produce better ST results,

but we leave this for future work.

5 Spanish-English ST

In the following, we denote an ST model by S-T-

Nh, where S and T are source and target language

codes, and N is the size of the training set in hours.

For example, sp-en-20h denotes a Spanish-English

ST model trained using 20 hours of data. We use

the code mb for Mboshi and fr for French.

5.1 Using English ASR to improve ST

Figure 2 shows the BLEU and unigram preci-

sion/recall scores on the development set for base-

line Spanish-English ST models and those trained

after initializing with the en-300h model. Corre-

sponding results on the test set (Table 2) reveal very

similar patterns. The remainder of our analysis is

confined to the development set. The naive base-

line, which predicts the 15 most frequent English

words in the training set, achieves a precision/recall

of around 20%, setting a performance lower bound.

Low-resource: 20-50 hours of ST training data.

Our baseline ST models substantially improve over

7We computed WER with the NIST sclite script.
8These WER results taken from respective Kaldi recipes

on GitHub, and may not represent the very best results on
these data sets.

github.com/0xSameer/ast
cs.cmu.edu/~alavie/METEOR
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Figure 2: (top) BLEU and (bottom) Unigram preci-

sion/recall for Spanish-English ST models computed

on Fisher dev set. base indicates no transfer learning;

+asr are models trained by fine-tuning en-300h model

parameters. naive baseline indicates the score when we

predict the 15 most frequent English words in the train-

ing set.

previous results (Bansal et al., 2018) using the same

train/test splits, primarily due to better regulariza-

tion and modeling of subwords rather than words.

Yet transfer learning still substantially improves

over these strong baselines. For sp-en-20h, transfer

learning improves dev set BLEU from 10.8 to 19.9,

precision from 41% to 51%, and recall from 38%

to 49%. For sp-en-50h, transfer learning improves

BLEU from 23.3 to 27.8, precision from 54% to

58%, and recall from 51% to 56%.

Very low-resource: 10 hours or less of ST train-

ing data. Figure 2 shows that without transfer

learning, ST models trained on less than 10 hours of

data struggle to learn, with precision/recall scores

close to or below that of the naive baseline. But

with transfer learning, we see gains in precision

and recall of between 10 and 20 points.

We also see that with transfer learning, a model

trained on only 5 hours of ST data achieves a BLEU

of 9.1, nearly as good as the 10.8 of a model trained

on 20 hours of ST data without transfer learning. In

other words, fine-tuning an English ASR model—

which is relatively easy to obtain—produces similar

results to training an ST model on four times as

N = 0 2.5 5 10 20 50

base 0 2.1 1.8 2.1 10.8 22.7

+asr 0.5 5.7 9.1 14.5 20.2 28.2

Table 2: BLEU scores for Spanish-English ST on the

Fisher test set, using N hours of training data. base: no

transfer learning. +asr: using model parameters from

English ASR (en-300h).

Spanish super caliente pero muy bonito
English super hot but very nice

20h you support it but it was very nice

20h+asr you can get alright but it’s very nice

50h super expensive but very nice

50h+asr super hot but it’s very nice

Spanish sı́ y usted hace mucho tiempo que que vive aquı́
English yes and have you been living here a long time

20h yes i’ve been a long time what did you come here

20h+asr yes and you have a long time that you live here

50h yes you are a long time that you live here

50h+asr yes and have you been here long

Table 3: Example translations on selected sentences

from the Fisher development set, with stem-level n-

gram matches to the reference sentence underlined.

20h and 50h are Spanish-English models without pre-

training; 20h+asr and 50h+asr are pre-trained on 300

hours of English ASR.

much data, which may be difficult to obtain.

We even find that in the very low-resource setting

of just 2.5 hours of ST data, with transfer learning

the model achieves a precision/recall of around

30% and improves by more than 10 points over the

naive baseline. In very low-resource scenarios with

time constraints—such as in disaster relief—it is

possible that even this level of performance may

be useful, since it can be used to spot keywords in

speech and can be trained in just three hours.

Sample translations. Table 3 shows example

translations for models sp-en-20h and sp-en-50h

with and without transfer learning using en-300h.

Figure 3 shows the attention weights for the

last sample utterance in Table 3. For this utter-

ance, the Spanish and English text have a different

word order: mucho tiempo occurs in the middle of

the speech utterance, and its translation, long time,

is at the end of the English reference. Similarly,

vive aquı́ occurs at the end of the speech utterance,

while the translation, living here, is in the middle

of the English reference. The baseline sp-en-50h

model translates the words correctly but doesn’t get
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(a) 50h:baseline

(b) 50h:asr

Figure 3: Attention plots for the final example in Ta-

ble 3, using 50h models with and without pre-training.

The x-axis shows the reference Spanish word positions

in the input; the y-axis shows the predicted English sub-

words. In the reference, mucho tiempo is translated to

long time, and vive aquı́ to living here, but their order

is reversed, and this is reflected in (b).

the English word order right. With transfer learn-

ing, the model produces a shorter but still accurate

translation in the correct word order.

5.2 Analysis

To understand the source of these improvements,

we carried out a set of ablation experiments. For

most of these experiments, we focus on Spanish-

English ST with 20 hours of training data, with and

without transfer learning.

Transfer learning with selected parameters. In

our first set of experiments, we transferred all

parameters of the en-300h model, including the

speech encoder CNN and LSTM; the text decoder

embedding, LSTM and output layer parameters;

and attention parameters. To see which set of pa-

rameters has the most impact, we train the sp-en-

20h model by transferring only selected parameters

from en-300h, and randomly initializing the rest.

The results (Figure 4) show that transferring all

1 10 20 30 40 50 60
training epochs

0
2
4
6
8

10
12
14
16
18
20

BL
EU

+asr:all
+asr:enc

+asr:dec
+asr:cnn

base

Figure 4: Fisher development set training curves

(reported using BLEU) for sp-en-20h using selected

parameters from en-300h: none (base); encoder

CNN only (+asr:cnn); encoder CNN and LSTM only

(+asr:enc); decoder only (+asr:dec); and all: encoder,

attention, and decoder (+asr:all). These scores do not

use beam search and are therefore lower than the best

scores reported in Figure 2.

parameters is most effective, and that the speech

encoder parameters account for most of the gains.

We hypothesize that the encoder learns transferable

low-level acoustic features that normalize across

variability like speaker and channel differences to

better capture meaningful phonetic differences, and

that much of this learning is language-independent.

This hypothesis is supported by other work show-

ing the benefits of cross-lingual and multilingual

training for speech technology in low-resource tar-

get languages (Carlin et al., 2011; Jansen et al.,

2010; Deng et al., 2013; Vu et al., 2012; Thomas

et al., 2012; Cui et al., 2015; Alumäe et al., 2016;

Yuan et al., 2016; Renshaw et al., 2015; Hermann

and Goldwater, 2018).

By contrast, transferring only decoder param-

eters does not improve accuracy. Since decoder

parameters help when used in tandem with encoder

parameters, we suspect that the dependency in pa-

rameter training order might explain this: the trans-

ferred decoder parameters have been trained to ex-

pect particular input representations from the en-

coder, so transferring only the decoder parameters

without the encoder might not be useful.

Figure 4 also suggests that models make strong

gains early on in the training when using transfer

learning. The sp-en-20h model initialized with all

model parameters (+asr:all) from en-300h reaches

a higher BLEU score after just 5 epochs (2 hours)

of training than the model without transfer learn-

ing trained for 60 epochs/20 hours. This again can

be useful in disaster-recovery scenarios, where the



64

0h 100h 300h
# English ASR hours data used

0
3
6
9

12
15
18
21
24
27
30

BL
EU sp-en-2

0h

sp-en-50h

Figure 5: Spanish-to-English BLEU scores on Fisher

dev set, with 0h (no transfer learning), 100h and 300h

of English ASR data used.

time to deploy a working system must be mini-

mized.

Amount of ASR data required. Figure 5 shows

the impact of increasing the amount of English

ASR data used on Spanish-English ST performance

for two models: sp-en-20h and sp-en-50h.

For sp-en-20h, we see that using en-100h im-

proves performance by almost 6 BLEU points. By

using more English ASR training data (en-300h)

model, the BLEU score increases by almost 9

points. However, for sp-en-50h, we only see im-

provements when using en-300h. This implies that

transfer learning is most useful when only a few

tens of hours of training data are available for ST.

As the amount of ST training data increases, the

benefits of transfer learning tail off, although it’s

possible that using even more monolingual data,

or improving the training at the ASR step, could

extend the benefits to larger ST data sets.

Impact of code-switching. We also tried using

the en-300h ASR model without any fine-tuning

to translate Spanish audio to English text. This

model achieved a BLEU score of 1.1, with a pre-

cision of 15 and recall of 21. The non-zero BLEU

score indicates that the model is matching some

4-grams in the reference. This seems to be due to

code-switching in the Fisher-Spanish speech data

set. Looking at the dev set utterances, we find

several examples where the Spanish transcriptions

match the English translations, indicating that the

speaker switched into English. For example, there

is an utterance whose Spanish transcription and

English translation are both “right yeah”, and this

English expression is indeed present in the source

audio. The English ASR model correctly trans-

lates this utterance, which is unsurprising since

the phrase “right yeah” occurs nearly 500 times in

Switchboard.

Overall, we find that in nearly 500 of the 4,000

development set utterances (14%), the Spanish

transcription and English translations share more

than half of their tokens, indicating likely code-

switching. This suggests that transfer learning from

English ASR models might help more than from

other languages. To isolate this effect from transfer

learning of language-independent speech features,

we carried out a further experiment.

5.3 Using French ASR to improve

Spanish-English ST

In this experiment, we pre-train using French ASR

data for a Spanish-English translation task. Here,

we can only transfer the speech encoder parameters,

and there should be little if any benefit due to code-

switching.

Because our French data set (20 hours) is much

smaller than our English one (300 hours), for a fair

comparison we used a 20 hour subset of the English

data for pre-training in this experiment. For both

the English and French models, we transferred only

the encoder parameters.

Table 4 shows that both the English and French

20-hour pre-trained models improve performance

on Spanish-English ST. The English model works

slightly better, as would be predicted given our dis-

cussion of code-switching, but the French model

is also useful, improving BLEU from 10.8 to 12.5.

This result strengthens the claim that ASR pre-

training on a completely distinct third language can

help low-resource ST. Presumably benefits would

be much greater if we used a larger ASR data set,

as we did with English above.

In this experiment, the French pre-trained model

used a French BPE output vocabulary, distinct from

the English BPE vocabulary used in the ST sys-

tem. In the future it would be interesting to try

combining the French and English text to create a

combined output vocabulary, which would allow

transferring both the encoder and decoder param-

eters, and may be useful for translating names or

cognates. More generally, it would also be pos-

sible to pre-train on multiple languages simulta-

neously using a shared BPE vocabulary. There is

evidence that speech features trained on multiple

languages transfer better than those trained on the

same amount of data from a single language (Her-

mann and Goldwater, 2018), so multilingual pre-

training for ST could improve results.
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baseline +fr-20h +en-20h

sp-en-20h 10.8 12.5 13.2

Table 4: Fisher dev set BLEU scores for sp-en-20h.

baseline: model without transfer learning. Last two

columns: Using encoder parameters from French ASR

(+fr-20h), and English ASR (+en-20h).

model pretrain BLEU Pr. Rec.

fr-top-8w – 0 23.5 22.2

fr-top-10w – 0 20.6 24.5

en-300h – 0 0.2 5.7

fr-20h – 0 4.1 3.2

mb-fr-4h

– 3.5 18.6 19.4

fr-20h 5.9 23.6 20.9

en-300h 5.3 23.5 22.6

en + fr 7.1 26.7 23.1

Table 5: Mboshi-to-French translation scores, with and

without ASR pre-training. Pr. is the precision, and

Rec. the recall score. fr-top-8w and fr-top-10w are

naive baselines that, respectively, predict the 8 or 10

most frequent training words. For en + fr, we use en-

coder parameters from en-300h and attention+decoder

parameters from fr-20h

6 Mboshi-French ST

Our final set of experiments test our transfer

method on ST for the low-resource language

Mboshi, where we have only 4 hours of ST training

data: Mboshi speech input paired with French text

output.

Table 5 shows the ST model scores for Mboshi-

French with and without using transfer learning.

The first two rows fr-top-8w, fr-top-10w, show pre-

cision and recall scores for the naive baselines

where we predict the top 8 or 10 most frequent

French words in the Mboshi-French training set.

These show that a precision/recall in the low 20s is

easy to achieve, although with no n-gram matches

(0 BLEU). The pre-trained ASR models by them-

selves (next two lines) are much worse.

The baseline model trained only on ST data actu-

ally has lower precision/recall than the naive base-

line, although its non-zero BLEU score indicates

that it is able to correctly predict some n-grams.

We see comparable precision/recall to the naive

baseline with improvements in BLEU by transfer-

ring either French ASR parameters (both encoder

and decoder, fr-20h) or English ASR parameters

(encoder only, en-300h).

Finally, to achieve the benefits of both the larger

training set size for the encoder and the matching

language of the decoder, we tried transferring the

encoding parameters from the en-300h model and

the decoding parameters from the fr-20h model.

This configuration (en+fr) gives us the best evalua-

tion scores on all metrics, and highlights the flexi-

bility of our framework. Nevertheless, the 4-hour

scenario is clearly a very challenging one.

7 Conclusion

This paper introduced the idea of pre-training an

end-to-end speech translation system involving a

low-resource language using ASR training data

from a higher-resource language. We showed that

large gains are possible: for example, we achieved

an improvement of 9 BLEU points for a Spanish-

English ST model with 20 hours of parallel data

and 300 hours of English ASR data. Moreover, the

pre-trained model trains faster than the baseline,

achieving higher BLEU in only a couple of hours,

while the baseline trains for more than a day.

We also showed that these methods can be

used effectively on a real low-resource language,

Mboshi, with only 4 hours of parallel data. The

very small size of the data set makes the task chal-

lenging, but by combining parameters from an

English encoder and French decoder, we outper-

formed baseline models to obtain a BLEU score of

7.1 and precision/recall of about 25%. We believe

ours is the first paper to report word-level BLEU

scores on this data set.

Our analysis indicates that, other things being

equal, transferring both encoder and decoder pa-

rameters works better than just transferring one or

the other. However, transferring the encoder pa-

rameters is where most of the benefit comes from.

Pre-training using a large ASR corpus from a mis-

matched language will therefore probably work bet-

ter than using a smaller ASR corpus that matches

the output language.

Our analysis suggests several avenues for further

exploration. On the speech side, it might be even

more effective to use multilingual training; or to

replace the MFCC input features with pre-trained

multilingual features, or features that are targeted to

low-resource multispeaker settings (Kamper et al.,

2015, 2017; Thomas et al., 2012; Cui et al., 2015;

Yuan et al., 2016; Renshaw et al., 2015). On
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the language modeling side, simply transferring

decoder parameters from an ASR model did not

work; it might work better to use pre-trained de-

coder parameters from a language model, as pro-

posed by Ramachandran et al. (2017), or shallow

fusion (Gülçehre et al., 2015; Toshniwal et al.,

2018a), which interpolates a pre-trained language

model during beam search. In these methods, the

decoder parameters are independent, and can there-

fore be used on their own. We plan to explore these

strategies in future work.
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