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1 Content and Relevance

Text production is a key component of many NLP applications.
In data-driven approaches, it is used for instance, to generate dialogue turns from dialogue moves [Wen

et al., 2015, Wen et al., 2016, Novikova et al., 2017], to verbalise the content of Knowledge bases [Gardent
et al., 2017a, Gardent et al., 2017b] or to generate natural English sentences from rich linguistic representations,
such as dependency trees [Belz et al., 2011, Mille et al., 2018] or Abstract Meaning Representations [May and
Priyadarshi, 2017, Konstas et al., 2017, Song et al., ].

In text-driven methods on the other hand, text production is at work in sentence compression [Knight
and Marcu, 2000, Cohn and Lapata, 2008, Filippova and Strube, 2008, Pitler, 2010, Filippova et al., 2015,
Toutanova et al., 2016]; sentence fusion [McKeown et al., 2010, Filippova, 2010, Thadani and McKeown,
2013]; paraphrasing [Dras, 1999, Barzilay and McKeown, 2001, Bannard and Callison-Burch, 2005, Wubben
et al., 2010, Narayan et al., 2016, Dong et al., 2017, Mallinson et al., 2017]; sentence (or text) simplification
[Siddharthan et al., 2004, Zhu et al., 2010, Woodsend and Lapata, 2011, Wubben et al., 2012, Narayan and
Gardent, 2014, Xu et al., 2015, Narayan and Gardent, 2016, Zhang and Lapata, 2017, Narayan et al., 2017],
text summarisation [Wan, 2010, Nenkova and McKeown, 2011, Woodsend and Lapata, 2010, Rush et al., 2015,
Cheng and Lapata, 2016, Nallapati et al., 2016, Chen et al., 2016, Tan and Wan, 2017, See et al., 2017, Nallapati
et al., 2017, Paulus et al., 2017, Yasunaga et al., 2017, Narayan et al., 2018a, Narayan et al., 2018b, Pasunuru
and Bansal, 2018, Celikyilmaz et al., 2018] and end-to-end dialogue systems [Li et al., 2017].

Following the success of encoder-decoder models in modeling sequence-rewriting tasks such as machine
translation [Sutskever et al., 2011, Bahdanau et al., 2014], deep learning models have successfully been applied
to the various text production tasks. For instance, [Rush et al., 2015] utilize a local attention-based model
for abstractive summarisation, [Shang et al., 2015] propose an encoder-decoder model for response genera-
tion, [See et al., 2017] uses a hybrid of encoder-decoder model and pointer network [Vinyals et al., 2015] for
story highlight generation, [Dong et al., 2017] exploits an encoder-decoder model for question rephrasing and
[Konstas et al., 2017] for AMR generation.

In this tutorial, we will cover the fundamentals and the state-of-the-art research on neural models for text
production. Each text production task raises a slightly different communication goal (e.g, how to take the
dialogue context into account when producing a dialogue turn; how to detect and merge relevant information
when summarising a text; or how to produce a well-formed text that correctly capture the information contained
in some input data in the case of data-to-text generation). We will outline the constraints specific to each
subtasks and examine how the existing neural models account for them.

2 Tutorial Outline

The tutorial will review deep learning approaches to text production. It will consider both text-to-text and data-
to-text transformations. It aims to provide the audience with a good knowledge of text production systems, and
a roadmap to get them started with the related work.
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1. Introduction
• Relevance of text production
• Why deep learning for text production

2. Background
• Deep learning basics
• Generating Text using RNN LMs

3. Encoding Input Structure
• Sequential encoders (Sentence compression,

simplification, paraphrase generation and di-
alogue generation)

• Hierarchical encoders (Document summa-
rization)

• Graph Encoders (Abstract Meaning Repre-
sentations to text, structured data such as
OWL, RDF and DB, to text)

4. Decoding and Semantic Adequacy
• Attention and copy mechanism (accuracy)
• Coverage mechanism (covering all the input)

5. Advanced Topics
• Deep Reinforcement learning for text pro-

duction
• Convolutional Seq2Seq and Tranformer

Models
6. Systems, Shared Tasks and Open Challenges
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joining the CNRS, she worked at the Université de Clermont-Ferrand, Saarbrücken Universität and Amsterdam
Universiteit. She received her Ph.D. degree from the University of Edinburgh. Her research interests include
(executable) semantic parsing, natural language generation and simplification and, more recently, the use of
computational linguistics for linguistic analysis. She was nominated Chair of the EACL and acted as program
chair for various international conferences, workshops and summer schools (EACL, ENLG, SemDIAL, SIG-
DIAL, ESSLLI, *SEM). She currently heads the WebNLG project (Nancy, Bolzano, Stanford SRI) and is the
chair of SIGGEN, the ACL Special Interest Group in Natural Language Generation. Recently she co-organised
the WebNLG Shared Task, a challenge on generating text from RDF data.

Shashi Narayan is a research associate at the School of Informatics at the University of Edinburgh. His research
focuses on natural language generation, understanding and structured predictions. A major aim of his research
is to build on the hypothesis that tailoring a model with knowledge of the task structure and linguistic require-
ments, such as syntax and semantics, leads to a better performance. The questions raised in his research are
relevant to various natural language applications such as question answering, paraphrase generation, semantic
and syntactic parsing, document understanding and summarization, and text simplification. He mostly rely
on machine learning techniques such as deep learning and spectral methods to develop NLP frameworks. His
research has appeared in computational linguistics journals (e.g., TACL, Computational Linguistics and Pattern
Recognition Letters) and in conferences (e.g., ACL, EMNLP, NAACL, COLING, EACL and INLG). He was
nominated on the SIGGEN board (2012-14) as a student member. He co-organised the WebNLG Shared Task,
a challenge on generating text from RDF data. Recently, he was nominated as an area co-chair for Generation
at NAACL HLT 2018.

4 Audience, Previous Tutorials and Venue

Based on the recent upsurge of interest in NL generation as witnessed by the increase in submissions in that
domain at the major NLP conferences, we target an audience of 60 to 100 students and researchers from both
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academia and industry. We are not aware of any recent tutorial on the topic of text production. Our preference
for the venue is NAACL and EMNLP.
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