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Abstract

We present data and methods that enable a
supervised learning approach to Open Infor-
mation Extraction (Open IE). Central to the
approach is a novel formulation of Open IE
as a sequence tagging problem, addressing
challenges such as encoding multiple extrac-
tions for a predicate. We also develop a bi-
LSTM transducer, extending recent deep Se-
mantic Role Labeling models to extract Open
IE tuples and provide confidence scores for
tuning their precision-recall tradeoff. Fur-
thermore, we show that the recently re-
leased Question-Answer Meaning Represen-
tation dataset can be automatically converted
into an Open IE corpus which significantly in-
creases the amount of available training data.
Our supervised model, made publicly avail-
able,1 outperforms the state-of-the-art in Open
IE on benchmark datasets.

1 Introduction

Open Information Extraction (Open IE) systems
extract tuples of natural language expressions that
represent the basic propositions asserted by a sen-
tence (see Figure 1). They have been used for
a wide variety of tasks, such as textual entail-
ment (Berant et al., 2011), question answering
(Fader et al., 2014), and knowledge base popu-
lation (Angeli et al., 2015). However, perhaps
due to limited data, existing methods use semi-
supervised approaches (Banko et al., 2007; Wu
and Weld, 2010), or rule-based algorithms (Fader
et al., 2011; Mausam et al., 2012; Del Corro and
Gemulla, 2013). In this paper, we present new data
and methods for Open IE, showing that supervised
learning can greatly improve performance.

∗Work performed while at Bar-Ilan University.
1Our code and models are made publicly available

at https://github.com/gabrielStanovsky/
supervised-oie

Mercury filling, particularly prevalent in the USA,
was banned in the EU, partly because it causes
antibiotic resistance.

(mercury filling; particularly prevalent; in the USA)

(mercury filling; causes; antibiotic resistance)

(mercury filling; was banned; in the EU; partly because it

causes antibiotic resistance)

Figure 1: Open IE extractions from an example
sentence. Each proposition is composed of a tu-
ple with a single predicate position (in bold), and
an ordered list of arguments, separated by semi-
colons.

We build on recent work that studies other
natural-language driven representations of predi-
cate argument structure, which can be annotated
by non-experts. Recently, Stanovsky and Dagan
(2016) created the first labeled corpus for eval-
uation of Open IE by an automatic translation
from question-answer driven semantic role label-
ing (QA-SRL) annotations (He et al., 2015). We
extend these techniques and apply them to the
QAMR corpus (Michael et al., 2018), an open
variant of QA-SRL that covers a wider range of
predicate-argument structures (Section 5). The
combined dataset is the first corpus that is large
and diverse enough to train an accurate extractor.

To train on this data, we formulate Open IE
as a sequence labeling problem. We introduce a
novel approach that can extract multiple, overlap-
ping tuples for each sentence (Section 3), extend-
ing recent deep BIO taggers used for semantic role
labeling (Zhou and Xu, 2015; He et al., 2017).
We also introduce a method to calculate extrac-
tion confidence, allowing us to effectively trade off
precision and recall (Section 4).

Experiments demonstrate that our approach out-
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performs state-of-the-art Open IE systems on sev-
eral benchmarks (Section 6), including three that
were collected independently of our work (Xu
et al., 2013; de Sá Mesquita et al., 2013; Schneider
et al., 2017). This shows that for Open IE, careful
data curation and model design can push the state
of the art using supervised learning.

2 Background

In this section we survey existing Open IE sys-
tems, against which we compare our system, and
available data for the task, that we will use for
training and testing our model.

2.1 Different Open IE Systems and Flavors

Open IE’s original goal (Banko et al., 2007) was
to extend traditional (closed) information extrac-
tion, such that all of the propositions asserted by
a given input sentence are extracted (see Figure
1 for examples). The broadness of this defini-
tion, along with the lack of a standard benchmark
dataset for the task, prompted the development of
various Open IE systems tackling different facets
of the task.

While most Open IE systems aim to extract the
common case of verbal binary propositions (i.e,
subject-verb-object tuples), some systems spe-
cialize in other syntactic constructions, includ-
ing noun-mediated relations (Yahya et al., 2014;
Pal and Mausam, 2016), n-ary relations (Akbik
and Löser, 2012), or nested propositions (Bhutani
et al., 2016).

Many different modeling approaches have also
been developed for Open IE. Some of the early
systems made use of distant supervision (Banko
et al., 2007; Wu and Weld, 2010), while the current
best systems use rule-based techniques to extract
predicate-argument structures as a post-processing
step over an intermediate representation. ReVerb
(Fader et al., 2011) extracts Open IE proposi-
tions from part of speech tags, OLLIE (Mausam
et al., 2012), ClausIE (Del Corro and Gemulla,
2013) and PropS (Stanovsky et al., 2016) post-
process dependency trees, and Open IE42 extracts
tuples from Semantic Role Labeling (SRL) struc-
tures. These systems typically associate a confi-
dence metric with each extraction, which allows
end applications to trade off precision and recall.

2https://github.com/dair-iitd/
OpenIE-standalone

2.2 Open IE Corpora

Recent work addressed the lack of labeled ref-
erence Open IE datasets for comparatively eval-
uating extractors. Stanovsky and Dagan (2016)
created a large Open IE corpus (OIE2016) for
verbal predicates by automatic conversion from
QA-SRL (He et al., 2015), a variant of traditional
SRL that labels arguments of verbs with sim-
ple, template-based natural language questions.
Schneider et al. (2017) aggregated datasets anno-
tated independently in previous Open IE efforts
(WEB and NYT (de Sá Mesquita et al., 2013),
PENN (Xu et al., 2013), and OIE2016) into a
common benchmarking suite.

In addition to these, we create and make avail-
able a new Open IE training corpus, All Words
Open IE (AW-OIE), derived from Question-
Answer Meaning Representation (QAMR)
(Michael et al., 2018), a recent extension of the
QA-SRL paradigm to free-form questions over
a wide range of predicate types (see Section 5).
Table 1 presents more details on these datasets.

3 Task Formulation

In this work, we choose to model an Open IE
proposition as a tuple consisting of a single predi-
cate operating over a non-empty set of arguments,
where the predicate and the arguments are con-
tiguous spans from the sentence. As with tradi-
tional (binary) Open IE, every tuple should be as-
serted by the sentence and the order of the tuple
elements should be such that it would be naturally
interpretable when reading from left to right (for
example, see the third tuple in Figure 1). As we
show in following sections, this formulation intu-
itively lends itself to BIO tagging, while being ex-
pressive enough to capture a wide range of propo-
sitions.

Formally, given an input sentence S =

Dataset Domain #Sent.
#Tuples

Train Dev Test
AW-OIE∗ Wikinews,Wiki 3300 12952 4213 -
OIE2016 News,Wiki 3200 5077 1671 1729
WEB-500 News,Web 500 - - 461
NYT-222 News,Wiki 222 - - 222
PENN-100 Mixed 100 - - 51

Table 1: Datasets used in this work, follow-
ing (Schneider et al., 2017). ∗AW-OIE (All Words
Open IE) was created in the course of this work,
see Section 5 for details.
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Open IE Encoding Examples

(a) The president claimed that he won the majority vote.
(The president; claimed that he won; the majority vote)
TheA0−B presidentA0−I claimedP−B thatP−I heP−I wonP−I theA1−B majorityA1−I voteA1−I

(b) Barack Obama, a former U.S president, was born in Hawaii.
(Barack Obama; was born in; Hawaii)
(a former U.S. president; was born in; Hawaii)
BarackA0−B ObamaA0−I ,O aA0−B formerA0−I U.S.A0−I presidentA0−I ,O wasP−B bornP−I inP−I HawaiiA1−B

(c) Theresa May plans for Brexit, on which the UK has voted last June.
(the UK; has voted on; Brexit; last June)
TheresaO MayO plansO forO BrexitA1−B ,O onO whichO theA0−B UKA0−I hasP−B votedP−I onP−I lastA2−B JuneA2−I

Table 2: Example sentences and respective Open IE extractions. The first line in each example presents
the input pairs (S, p), where S is the input sentence, and the predicate head, p, is denoted with an
underline. Below the inputs we present the corresponding Open IE extractions. The corresponding
encodings are presented below the dashed lines, where subscripts indicate the associated BIO label.
Demonstrating: (a) the encoding of a multi-word predicate, (b) several arguments collapsed into the
same A0 argument position, (c) argument position deviating from the sentence ordering.

(w1, . . . , wn), a tuple consists of (x1, . . . ,xm),
where each xi is a contiguous subspan of S. One
of the xi is distinguished as the predicate (marked
in bold in Figure 1), while the other spans are con-
sidered its arguments. Following this definition,
we reformulate Open IE as a sequence labeling
task, using a custom BIO3 (Ramshaw and Marcus,
1995; Sang and Veenstra, 1999) scheme adapted
from recent deep SRL models (He et al., 2017).

In our formulation, the set of Open IE tuples for
a sentence S are grouped by predicate head-word
p, as shown in Table 2. For instance, example
(b) lists two tuples for the predicate head “born”,
which is underlined in the sentence. Grouping tu-
ples this way allows us to run the model once for
each predicate head, and accumulate the predic-
tions across predicates to produce the final set of
extractions.

Open IE tuples deviate from SRL predicate-
argument structures in two major respects. First,
while SRL generally deals with single-word pred-
icates, Open IE uses multi-word predicates that of-
ten incorporate modals and embedded predicates.
For example, the first tuple in the table includes the
embedded predicate claimed that he won. Sec-
ond, Open IE generates multiple extractions from
a single predicate in certain syntactic construc-
tions (e.g., apposition, co-ordination or corefer-
ence). For instance, example (b) repeats the predi-
cate was born in for the two components of the

3Beginning, Inside, Outside

apposition Barack Obama, a former U.S. presi-
dent.

To model these unique challenges, we introduce
a custom BIO tagging scheme, shown in Table 2
below the dashed lines. Predicates are encoded
using the P label type, while arguments are rep-
resented using Ai labels, where i represents the
argument’s position within the extracted Open IE
tuple. While softer than SRL’s predicate-specific
argument roles (e.g., ARG0), these argument po-
sitions also capture semantic information because
they are arranged such that the tuple can be nat-
urally read as a standalone statement, regardless
of the complications of the source text’s syntax
(such as reorderings and long-distance dependen-
cies). For instance, in the last example in Table
2, the order of the arguments in the Open IE tuple
deviates from the ordering in the original sentence
due to a relative clause construction (headed by the
word Brexit).

Finally, multiple extractions per predicate are
encoded by assigning the same argument index to
all arguments appearing in that position across all
of the predicate’s extractions. For example, note
that the A0 argument label appears twice for the
apposition in example (b). To reconstruct the ex-
tractions from the BIO labels, we produce an ex-
traction for every possible way of choosing one
argument for each index.

887



Obama

P(A0-B)

was

P(P-B)

born

P(P-I)

in

P(A1-B)

America

P(A1-I)

Embeddings

bi-LSTM

Softmax

Figure 2: RNN model architecture. Orange cir-
cles represent current word features: embedding
for word and part of speech. Yellow circles rep-
resent predicate features, duplicated and concate-
nated to all other word features.

O

58%

A1-I

15%

A0-I

9%

A2-I

5%
P-B

3% A0-B
3% A1-B
3% Other
4%

Figure 3: Word label distribution in the training set.

4 Supervised Open IE Model

Our model, named RnnOIE, is a bi-LSTM trans-
ducer, inspired by the state of the art deep learn-
ing approach for SRL suggested by Zhou and Xu
(2015) and He et al. (2017). The architecture is
shown in Figure 2.

Given an input instance of the form (S, p),
where S is the input sentence, and p is the word
index of the predicate’s syntactic head, we extract
a feature vector feat for every word wi ∈ S:

feat(wi, p) = emb(wi)⊕ emb(pos(wi))⊕
⊕ emb(wp)⊕ emb(pos(wp))

Here, emb(w) is a d-dimensional word embed-
ding, emb(pos(w)) is a 5-dimensional embedding
of w’s part of speech, and ⊕ denotes concatena-
tion. We duplicate the predicate head’s features on
all words to allow the model to more directly ac-
cess this information as it makes predicate-specific
word label predictions.

The features are fed into a bi-directional deep
LSTM transducer (Graves, 2012) which computes
contextualized output embeddings. The outputs
are used in softmaxes for each word, producing in-
dependent probability distributions over possible
BIO tags.

The model is trained with gold predicate heads,
using a per-word maximum likelihood objective.
Figure 3 depicts the overall word label distribu-
tion within the training set. The large percentage
of O labels demonstrates Open IE’s tendency to
shorten arguments, compared to SRL which con-
siders full syntactic constitutes as arguments.

Inference At inference time, we first identify
all verbs and nominal predicates in the sen-
tence as candidate predicate heads. We use a
Part Of Speech (POS) tagger to identify verbs,
and Catvar’s subcategorization frames (Habash
and Dorr, 2003) for nominalizations, identifying
nouns which share the same frame with a verbal
equivalent (e.g., acquisition with acquire). We
then generate an input instance for each candi-
date predicate head. For each instance, we tag
each word with its most likely BIO label under
the model, and reconstruct Open IE tuples from
the resulting sequence according to the method de-
scribed in Section 3, with the exception that we ig-
nore malformed spans (i.e., if an A0-I label is not
preceded by A0-I or A0-B, we treat it as O).

Assigning extraction confidence It is beneficial
for an Open IE system to associate a confidence
value with each predicted extraction to allow for
tuning its precision-recall tradeoff. Our model
does not directly produce confidence values for ex-
tractions, but it does assign probabilities to each
BIO label that it predicts. We experimented with
several heuristics to combine these predictions to
an extraction-level confidence metric. The best
performance on the development set was achieved
by multiplying the probabilities of the B and I la-
bels participating in the extraction.4 This metric
prefers shorter extractions, which correlates well
with the requirements of Open IE (Bhutani et al.,
2016).

Implementation details We implemented the
model using the Keras framework (Chollet, 2015)
with TensorFlow backend (Abadi et al., 2015). All

4We also tried taking the maximum or minimum observed
single word-label probability.

888



Mercury filling, particularly prevalent in the USA, was banned in the EU, partly because it causes antibiotic resistance.

Predicate QA-SRL QAMR Open IE

made - What is the filling made of? mercury -

prevalent - What was particularly prevalent in
the USA? mercury filling

(mercury filling; partic-
ularly prevalent; in the
USA)

banned

What was banned?
mercury filling
Where was something banned?
the EU

What was banned in the EU partly
because it causes antibiotic resis-
tance? mercury filling

(mercury filling; was
banned; in the EU;
partly because it causes
antibiotic resistance)

Why was something banned? partly
because it causes antibiotic resistance

causes What caused something? mercury
filling

What did mercury filling cause? an-
tibiotic resistance

(mercury filling; caused;
antibiotic resistance)

What did something cause? antibiotic
resistance

Table 3: Comparison of QA-SRL, QAMR, and desired Open IE annotations for an example sentence,
adapted from the QAMR corpus.

hyperparameters were tuned on the OIE2016 de-
velopment set. The bi-LSTM transducer has 3 lay-
ers and each LSTM cell uses 128 hidden units and
a linear rectifier (ReLU) (Nair and Hinton, 2010)
activation function. The model was trained for
100 epochs in mini batches of 50 samples, with
10% word-level dropout. The word-embeddings
were initialized using the GloVe 300-dimensions
pre-trained embeddings (Pennington et al., 2014)
and were kept fixed during training. The part of
speech embeddings were randomly initialized and
updated during training. Finally, we use the av-
erage perceptron part-of-speech tagger (as imple-
mented in spaCy5) to predict parts of speech for
input features and verb predicate identification.

5 Open IE from QAMR

This section describes our approach for automat-
ically extracting Open IE tuples from QAMR
(Michael et al., 2018), a recent extension of QA-
SRL. While QA-SRL uses question templates cen-
tered on verbs, QAMR annotates free-form ques-
tions over arbitrary predicate types. The QAMR
corpus consists of annotations over 5, 000 sen-
tences. By extending the OIE2016 training set
with extractions from QAMR, we more than triple
the available amount of training data.

The extraction algorithm, as well as the
resulting corpus, are made publicly available
at https://github.com/gabrielStanovsky/

5https://spacy.io

supervised-oie.

5.1 The QAMR Corpus
Question-Answer Meaning Representation, or
QAMR (Michael et al., 2018), was recently pro-
posed as an extension of QA-SRL. Like QA-
SRL, QAMR represents predicate-argument struc-
ture with a set of question-answer pairs about a
sentence, where each answer is a span from the
sentence. However, while QA-SRL restricts ques-
tions to fit into a particular verb-centric template,
QAMR is more general, allowing any natural lan-
guage question that begins with a wh-word and
contains at least one word from the sentence. This
allows QAMR to express richer, more complex re-
lations. Consider, for example, the first two entries
for QAMR in Table 3. The first explicates the im-
plicit relation made of from the noun compound
mercury filling, and the second identifies the ad-
jectival predicate prevalent. Neither of these can
be represented in QA-SRL.

5.2 Extraction Algorithm
While QAMR’s broader scope presents an oppor-
tunity to vastly increase the number and coverage
of annotated Open IE tuples, it also poses addi-
tional challenges for the extraction algorithm. The
free-form nature of QAMR questions means that
some are over-expressive for Open IE, while in
many other cases it is less obvious how to extract a
predicate and a list of arguments from a question-
answer pair.
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What was banned in the EU partly because it causes antibiotic resistance ? mercury filling
P-B P-I A1-B A1-I A1-I A2-B A2-I A2-I A2-I A2-I A2-I A0-B A0-I

ROOT

aux

nsubjpass
pobj

advcl

substituted by

(mercury filling; was banned; in the EU; partly because it causes antibiotic resistance)

Figure 4: A QAMR (top) to Open IE (bottom) conversion example. The BIO labels for our encoding of
the Open IE tuple appear below the text. The root of the question’s dependency tree is the predicate,
while its syntactic constituents are the arguments. The answer appears as the first argument of the Open
IE tuple due to the passive construction.

Over-expressiveness The QAMR formalism al-
lows many constructions that diverge from Open
IE extractions, which generally are drawn verba-
tim from the source text. For example, the predi-
cate made is introduced in the QAMR for the sen-
tence in Table 3, despite not appearing in the sen-
tence. To circumvent this issue, we filter out ques-
tions which: (1) introduce new content words,6 (2)
have more than one wh-word, (3) do not start with
who, what, when or where, or (4) ask what did X
do?, delegating the predicate to the answer.

Detecting predicates and arguments While a
QA-SRL question has a designated predicate and
a single argument as the answer, in QAMR, the
predicate can appear anywhere in the question and
its arguments are spread between the question and
answer. For example, extracting an Open IE tuple
for the predicate banned in Table 3 requires de-
coupling the predicate and its arguments in the EU
and partly because it causes antibiotic resistance.
Our solution to this problem is illustrated in Figure
4. We first run each question through a syntactic
dependency parser. We then identify the predicate
as the head of the question’s dependency tree ex-
tended to include all dependents with an auxiliary
relation (e.g., aux, neg, or prt). The predicted ar-
guments are the predicate’s constituent argument
subtrees, while the answer to the question replaces
the subtree headed by the wh-word. Finally, we
employ similar heuristics to those used convert-
ing verbal QA-SRL to Open IE to find the correct
argument position for the answer (Stanovsky and
Dagan, 2016). For example, the passive construc-

6We do not count inflected forms of verbs from the sen-
tence, such as caused in the last entry of the table, as new
words.

QAMR Open IE Tuples

(The treaty of Brussels; was signed; on 17 March
1948; by Belgium, the Netherlands, Luxembourg,
France, and the UK)

(The treaty of Brussels; is the precursor to; the
NATO agreement)

(The scope of publishing; has expanded to in-
clude; websites, blogs, and the like.)

Table 4: Tuples from the All Words Open IE Cor-
pus, exemplifying n-ary extractions (top example),
non-verbal predicates (middle), and multi-word
predicates (bottom).

tion in Figure 4 implies that the answer should be
placed in the first argument position, while the ex-
istence of a prepositional object in, e.g., What did
he put on the table? signals that the answer should
be placed in the second argument position.

5.3 The All Words Open IE Corpus

As described by Michael et al. (2018), QAMR an-
notations were gathered via crowdsourcing in a
two-stage pipeline over Wikipedia and Wikinews
text. We use the training partition of the QAMR
dataset, which consists of 51,063 QA pairs over
3,938 sentences. Our filtering and conversion
from the QAMR corpus yields 12,952 Open IE
tuples (2.5 times the size of OIE2016’s training
corpus), composed of 7,470 (58%) verbal pred-
icates, 4,952 (38%) nominal predicates, and 530
(4%) adjectival predicates. See Table 4 for exam-
ple tuples, taken from the converted corpus.

Examining the results, we found that they are
not accurate enough to constitute a gold test cor-
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pus, partly because some relations were missed by
the annotators of QAMR and partly because of
noise introduced in the automatic extraction pro-
cess. Instead, we use this corpus to extend the train
partition of OIE2016. In the following section,
we show its usefulness in significantly improving
the precision and recall of our Open IE model.

6 Evaluation

We evaluate the performance of our model on the
four test sets discussed in Section 2.

6.1 Experimental Setup

Metrics We evaluate each system according to
three metrics. First, as is typical for Open IE, we
compute a precision-recall (PR) curve by evalu-
ating the systems’ performance at different extrac-
tion confidence thresholds. This curve is useful for
downstream applications which can set the thresh-
old according to their specific needs (i.e., recall
oriented versus precision oriented). Second, we
compute the area under the PR curve (AUC) as
a scalar measurement of the overall system per-
formance. Finally, for each system, we report a
single F1 score using a confidence threshold opti-
mized on the development set. This can serve as a
preset threshold for out-of-the-box use.

Matching function Similar to other cases in
NLP, we would like to allow some variability in
the predicted tuples. For example, for the sen-
tence The sheriff standing against the wall spoke
in a very soft voice we would want to treat both
(The Sheriff; spoke; in a soft voice) and (The sher-
iff standing against the wall; spoke; in a very soft
voice) as acceptable extractions. To that end, we
follow He et al. (2015) which judge an argument
as correct if and only if it includes the syntac-
tic head of the gold argument (and similarly for
predicates). For OIE2016, we use the available
Penn Treebank gold syntactic trees (Marcus et al.,
1993), while for the other test sets, we use pre-
dicted trees instead. While this metric may some-
times be too lenient, it does allow a more balanced
and fair comparison between systems which can
make different, but equally valid, span boundary
decisions.

Baselines We compare our model (RnnOIE)
against the top-performing systems of those eval-
uated most recently in Stanovsky and Dagan
(2016) and in Schneider et al. (2017): Open

IE4,7 ClausIE (Del Corro and Gemulla, 2013), and
PropS (Stanovsky et al., 2016).

6.2 Results

Table 5 reports the AUC and F1 scores of all of
the systems on the 4 test sets. In addition, the PR
curves for the two largest test sets (OIE2016 and
WEB) are depicted in Figures 5a and 5b. We re-
port results for two versions of our model: one
trained on the OIE2016 training set containing
only verbal predicates (RnnOIE-verb), and an-
other on the extended training set that includes the
automatic conversion of QAMR outlined in Sec-
tion 5 (RnnOIE-aw).

Overall, RnnOIE-aw outperforms the other sys-
tems across the datasets. On the larger test sets
(OIE2016 and WEB) it provides the best perfor-
mance in terms of AUC and F1, with a superior
precision-recall curve. On each of the smaller test
sets, it performs best on one metric and competi-
tively on the other.

Furthermore, on all of the test sets, extending
the training set significantly improves our model’s
performance, showing that it benefits from the ad-
ditional data and types of predicates available in
the QAMR dataset. While this is most notable in
the test sets which include nominalizations (WEB,
NYT, and PENN), it also improves the performance
on OIE2016, which is composed solely of verb
predicates.

6.3 Performance Analysis

In our analysis, we find that RnnOIE generalizes
to unseen predicates, produces more and shorter
arguments on average than are in the gold extrac-
tions, and, like all of the systems we tested, strug-
gles with nominal predicates.

Unseen predicates We split the propositions in
the gold and predicted OIE2016 test set into
two partitions, seen and unseen, based on whether
the predicate head’s lemma appears in the training
set. The unseen part contains 145 unique predi-
cate lemmas in 148 extractions, making up 24%
out of the 590 unique predicate lemmas and 7%
out of the 1993 total extractions in the test set.
We then evaluated RnnOIE-aw on each part sep-
arately. The resulting PR curves (Figure 5c) de-
pict overall good performance also on the unseen
part, competitive with previous Open IE systems.

7https://github.com/dair-iitd/
OpenIE-standalone

891



OIE2016 WEB NYT PENN
AUC F1 (P, R) AUC F1 (P, R) AUC F1 (P, R) AUC F1 (P, R)

ClausIE .38 .59 (.49, .74) .40 .45 (.39,.53) .23 .30 (.24, .39) .28 .34 (.24, .61)

PropS .34 .56 (.64, .49) .45 .59 (.44, .89) .22 .37 (.25, .77) .28 .39 (.26, .81)

Open IE4 .42 .60 (.64, .56) .45 .56 (.63, .50) .24 .38 (.26, .74) .28 .43 (.37, .50)

RnnOIE-verb .45 .59 (.57, .62) .23 .46 (.38, .58) .09 .25 (.20,.33) .21 .38 (.35, .40)

RnnOIE-aw .48 .62 (.61, .64) .47 .67 (.83, .56) .25 .35 (.24,.67) .26 .44 (.31,.75)

Table 5: Performance of the OIE extractors on our test sets. Each system is tested in terms of Area Under
the PR Curve (AUC), and F1 (precision and recall in parenthesis).

(a) OIE2016 (b) WEB (c) Seen vs. unseen

Figure 5: Precision-recall curves of the different OIE systems on OIE2016 (5a), WEB (5b) and seen vs.
unseen predicates in RnnOIE-aw on OIE2016 (5c). See details in Section 6.

System # Tuples Args/Prop Words/Arg

Gold 1730 2.45 5.38

ClausIE 2768 2.00 5.78
PropS 1551 2.68 5.8
Open IE4 1793 3.07 4.55
RnnOIE-aw 1993 3.19 4.68

Table 6: Output statistics of the different systems
on OIE2016, versus the gold data.

This indicates that our model generalizes beyond
memorization of specific predicate templates.

Argument length and number In Table 6 we
compare statistics on the the outputs of the Open
IE systems on OIE2016 and the gold data. The
best performing systems, RnnOIE and OpenIE4,
tend to produce more arguments, and each argu-
ment tends to be shorter on average, in comparison
to other systems and gold.

Runtime analysis Since Open IE is intended to
be usable at web scale, we timed the different

Open IE systems on a batch of 3200 sentences
from OIE2016, running on a Xeon 2.3GHz CPU.
The results are presented in Table 8.8 We find
that our system fares well, processing only 12%
fewer sentences per second than the fastest sys-
tem, Open IE 4.0. Further, while these numbers
are reported on CPU for the sake of fair compari-
son, running our neural model on a GPU (NVIDIA
GeForce GTX 1080 Ti) boosts speed by a factor of
more than 10 (149.25 sentences per second, on av-
erage).

Error analysis All of the systems still lack in
recall across all tested corpora. We examined a
random sample of 100 recall errors shared by all
of the extractors across the tested datasets and
found several common error types, shown in Table
7. Notably, noun and nominalized predicates still
pose a challenge, appearing in 51% of the recall
errors (whereas they make up 24% of all extrac-
tions). 19% of the examined errors required some

8PropS and ClausIE’s relatively slow performance is in
part due to their hard-coded use of the Stanford parser, which
took on average 0.2 seconds per sentence. Using a faster
parser (e.g., spaCy) may improve this performance.
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Phenomenon % Example (sentence / gold tuple)

Noun 38
Andre Agassi did a similar thing in his hometown of Las Vegas a few years ago.
(Andre Agassi; hometown; Las Vegas)

Sent.-level
Inference

19
John Steinbeck also earned alot of awards, one being the Pulitzer Prize in 1940.
(John Steinbeck; earned; Pulitzer Prize)

Long sentence 14

“I don’t see any radical change for our company”, said David Westin, the president of
production for Capital CitiesABC Inc. “But in the next year or so, I would expect you
might see all sorts of new deals between networks and studios, joint ventures and
creative financing of programs.”
(David Westin; president; Capital Cities/ABC Inc.)

Nominalization 13
We first heard about this when the Google-Youtube acquisition news broke, and wrote
briefly about it here
(Google; acquisition; Youtube)

Noisy
Informal

13
But who knows, with Google’s “owning” of YouTube now ..they are now in the ‘media’
department with that deal... so who knows if they will move on to music stuff next :P
(Google; owning; YouTube)

PP-attachment 10
The novelist Franz Kafka was born of Jewish parentage in Prague in 1883.
(Franz Kafka; born; Prague)

Table 7: Analysis of frequently-occuring recall errors for all tested systems on a random sample of
100 sentences. For each phenomenon we list the percentage of sentences in which it occurs (possibly
overlapping with other phenomena), and a protoypical example, taken from the WEB corpus.

ClausIE PropS Open IE4 RnnOIE

CPU 4.07 4.59 15.38 13.51
GPU — — — 149.25

Table 8: Runtime analysis, measured in sentences
per second, of the different systems on 3200
sentences from the OIE2016 corpus on Xeon
2.3GHz CPU (top) and on an NVIDIA GeForce
GTX 1080 Ti (bottom). Baselines were only run
on CPU as they are currently not optimized for
GPU.

form of sentence level inference, such as determin-
ing event factuality or pronoun resolution. 14%
of the errors involved long sentences with over 40
words (where the average word count per sentence
is 29.4).

7 Conclusions and Future Work

We present a supervised model for Open IE, for-
mulating it as a sequence tagging problem and ap-
plying a bi-LSTM transducer to produce a state-
of-the-art Open IE system. Along the way, we
address several task-specific challenges, includ-
ing the BIO encoding of predicates with multiple

extractions and confidence estimation in our se-
quence tagging model. To train the system, we
leverage a recently published large scale corpus
for Open IE (Stanovsky and Dagan, 2016), and
further extend it using a novel conversion of the
QAMR corpus (Michael et al., 2018), which cov-
ers a wider range of predicates.

In addition to these contributions, this work
shows that Open IE can greatly benefit from future
research into the QA-SRL paradigm. For example,
Open IE would directly benefit from an automatic
QA-SRL extractor, while a more exhaustive or ex-
tensive annotation of QAMR would improve Open
IE’s performance on a wider range of predicates.
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ary facts in open information extraction. In NAACL-
HLT 2012: Proceedings of the The Knowledge Ex-
traction Workshop.

Gabor Angeli, Melvin Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extrac-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015).

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, 2007. pages 2670–2676.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
Proceedings of ACL. Portland, OR.

Nikita Bhutani, HV Jagadish, and Dragomir Radev.
2016. Nested propositions in open information ex-
traction. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics, Austin, Texas, pages 55–64.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.
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