
Proceedings of NAACL-HLT 2018, pages 69–81
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Parsing Speech: A Neural Approach to Integrating
Lexical and Acoustic-Prosodic Information
Trang Tran∗1, Shubham Toshniwal∗2, Mohit Bansal3,

Kevin Gimpel2, Karen Livescu2, Mari Ostendorf1

1Electrical Engineering, University of Washington
2Toyota Technological Institute at Chicago

3Department of Computer Science, UNC Chapel Hill

{ttmt001, ostendor}@uw.edu, mbansal@cs.unc.edu,
{shtoshni, kgimpel, klivescu}@ttic.edu

Abstract

In conversational speech, the acoustic signal
provides cues that help listeners disambiguate
difficult parses. For automatically parsing spo-
ken utterances, we introduce a model that in-
tegrates transcribed text and acoustic-prosodic
features using a convolutional neural network
over energy and pitch trajectories coupled with
an attention-based recurrent neural network
that accepts text and prosodic features. We
find that different types of acoustic-prosodic
features are individually helpful, and together
give statistically significant improvements in
parse and disfluency detection F1 scores over
a strong text-only baseline. For this study
with known sentence boundaries, error anal-
yses show that the main benefit of acoustic-
prosodic features is in sentences with disfluen-
cies, attachment decisions are most improved,
and transcription errors obscure gains from
prosody.

1 Introduction

While parsing has become a relatively mature tech-
nology for written text, parser performance on
conversational speech lags behind. Speech poses
challenges for parsing: transcripts may contain er-
rors and lack punctuation; even perfect transcripts
can be difficult to handle because of disfluencies
(restarts, repetitions, and self-corrections), filled
pauses (“um”, “uh”), interjections (“like”), paren-
theticals (“you know”, “I mean”), and sentence
fragments. Some of these phenomena can be han-
dled in standard grammars, but disfluencies typi-
cally require extensions of the model. Different ap-
proaches have been explored in both constituency
parsing (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) and dependency parsing (Rasooli
and Tetreault, 2013; Honnibal and Johnson, 2014).

∗Equal Contribution.

Despite these challenges, speech carries helpful
extra information – beyond the words – associ-
ated with the prosodic structure of an utterance
and encoded via variation in timing and intonation.
Speakers pause in locations that are correlated with
syntactic structure (Grosjean et al., 1979), and lis-
teners use prosodic structure in resolving syntac-
tic ambiguities (Price et al., 1991). Prosodic cues
also signal disfluencies by marking the interruption
point (Shriberg, 1994). However, most speech pars-
ing systems in practice take little advantage of these
cues. Our study focuses on this last challenge, aim-
ing to incorporate prosodic cues in a neural parser,
handling disfluencies as constituents via a neural
attention mechanism.

A challenge of incorporating prosody in pars-
ing is that multiple acoustic cues interact to signal
prosodic structure, including pauses, lengthening,
fundamental frequency modulation, and spectral
shape. These cues also vary with the phonetic seg-
ment, emphasis, emotion and speaker, so feature ex-
traction typically involves multiple time windows
and normalization techniques. The most success-
ful constituent parsers have mapped these features
to prosodic boundary posteriors by using labeled
training data (Kahn et al., 2005; Hale et al., 2006;
Dreyer and Shafran, 2007). The approach proposed
here takes advantage of advances in neural net-
works to automatically learn a good feature repre-
sentation without the need to explicitly represent
prosodic constituents. To narrow the scope of this
work and facilitate error analysis, our experiments
use known transcripts and sentence segmentation.

Our work offers the following contributions.
We introduce a framework for directly integrat-
ing acoustic-prosodic features with text in a neural
encoder-decoder parser that does not require hand-
annotated prosodic structure. We demonstrate im-
provements in constituent parsing of conversational

69

speech over a high-quality text-only parser and pro-
vide analyses showing where prosodic features help
and that assessment of their utility is affected by
human transcription errors.

2 Task and Model Description

Our model maps a sequence of word-level in-
put features to a linearized parse output sequence.
The word-level input feature vector consists of the
concatenation of (learnable) word embeddings ei
and several types of acoustic-prosodic features, de-
scribed in Section 2.3.

2.1 Task Setup

We assume the availability of a training treebank
of conversational speech (in our case, Switchboard-
NXT (Calhoun et al., 2010)) and corresponding
constituent parses. The transcriptions are prepro-
cessed by removing punctuation and lower-casing
all text to better mimic the speech recognition set-
ting. Following Vinyals et al. (2015), the parse
trees are linearized, and pre-terminals are normal-
ized as “XX” (see Appendix A.1).

2.2 Encoder-Decoder Parser

Our attention-based encoder-decoder model is sim-
ilar to the one used by Vinyals et al. (2015). The
encoder is a deep long short-term memory recur-
rent neural network (LSTM-RNN) (Hochreiter and
Schmidhuber, 1997) that reads in a word-level in-
puts,1 represented as a sequence of vectors x =
(x1, · · · ,xTs), and outputs high-level features h =
(h1, · · · ,hTs) where hi = LSTM(xi,hi−1).2

The parse decoder is also a deep LSTM-RNN
that predicts the linearized parse sequence y =
(y1, · · · , yTo) as follows:

P (y|x) =
To∏

t=1

P (yt|h,y<t)

In attention-based models, the posterior distribu-
tion of the output yt at time step t is given by:

P (yt|h,y<t) = softmax(W s[ct;dt] + bs),

where vector bs and matrix W s are learnable pa-
rameters; ct is referred to as a context vector that
summarizes the encoder’s output h; and dt is the

1As in Vinyals et al. (2015) the input sequence is processed
in reverse order, as shown in Figure 1.

2For brevity we omit the LSTM equations. The details can
be found, e.g., in Zaremba et al. (2014).

decoder hidden state at time step t, which captures
the previous output sequence context y<t.

uit = v
> tanh(W 1hi +W 2dt + ba)

αt = softmax(ut) ct =

Ts∑

i=1

αtihi

where vectors v, ba and matrices W 1, W 2 are
learnable parameters; ut and αt are the attention
score and attention weight vector, respectively, for
decoder time step t.

The above attention mechanism is only content-
based, i.e., it is only dependent on hi, dt. It is not
location-aware, i.e., it does not consider the “loca-
tion” of the previous attention vector. For parsing
conversational text, location awareness is benefi-
cial since disfluent structures can have duplicate
words/phrases that may “confuse” the attention
mechanism.

In order to make the model location-aware, the
attention mechanism takes into account the pre-
vious attention weight vector αt−1. In particu-
lar, we use the attention mechanism proposed by
Chorowski et al. (2015), in which αt−1 is repre-
sented via a feature vector f t = F ∗αt−1, where
F ∈ Rk×r represents k learnable convolution fil-
ters of width r. The filters are used for performing
1-D convolution over αt−1 to extract k features
f ti for each time step i of the input sequence. The
extracted features are then incorporated in the align-
ment score calculation as:

uit = v
> tanh(W 1hi +W 2dt +W ff ti + ba)

where W f is another learnable parameter ma-
trix. Finally, the decoder state dt is computed as
dt = LSTM([ỹt−1; ct−1],dt−1), where ỹt−1 is
the embedding vector corresponding to the previ-
ous output symbol yt−1. As we will see in Sec. 4.1,
the location-aware attention mechanism is espe-
cially useful for handling disfluencies.

2.3 Acoustic-Prosodic Features
In previous work using encoder-decoder models for
parsing (Vinyals et al., 2015; Luong et al., 2016),
vector xi is simply the word embedding ei of the
word at position i of the input sentence. For parsing
conversational speech, we can incorporate acoustic-
prosodic features. Here we explore four types of
features widely used in computational models of
prosody: pauses, duration lengthening, fundamen-
tal frequency, and energy. Since prosodic cues are

70

w1

…

w2

Acoustic
features

…s1 s2

CNN filters

…

wt

wt

type 1 type 2 type 3

…
N
filters}

maxpool

…

sTs

wTs

… …… ……

Etotal
Elow
Ehigh

NCCF
log(f0)
log(f0)

. ..

.

x3 x1x2xTs

Attention Layer

dtd1hTs
h3

∗ F

αt−1

αt

ct

Encoder Decoder

yt

h1h2

concat
e1

… �1

Figure 1: Left – An attention-based encoder-decoder reading the input x1, · · · ,xTs , where xi = [ei φi si] is
composed of word embeddings ei, prosodic features φi, and learned (CNN-based) features si. The encoder reads
the input in reverse order and the decoder outputs the linearized parse y1, · · · , yt, · · · . Right – Detailed illustration
of acoustic-prosodic feature learning module. CNN features are computed from input energy and pitch features;
here the CNN filter parameters are m = 3 and w = [3, 4, 5].

at sub- and multi-word time scales, they are in-
tegrated with the encoder-decoder using different
mechanisms.

All features are extracted from transcriptions that
are time-aligned at the word level.3 We use time
alignments associated with the corpus to be consis-
tent with other studies. In a small number of cases,
the time alignment for a particular word boundary
is missing. Some cases are due to tokenization. For
example, contractions, such as don’t in the original
transcript, are treated as separated words for the
parser (do and n’t), and the internal word boundary
time is missing. In such cases, these internal times
are estimated. In other cases, there are transcription
mismatches that lead to missing time alignments,
where we cannot estimate times. For the roughly
1% of sentences where time alignments are missing,
we simply back off to the text-based parser.

Pause. The pause feature vector pi for word i is
the concatenation of pre-word pause feature ppre,i
and post-word pause feature ppost,i, where each
subvector is a learned embedding for 6 pause cat-
egories: no pause, missing, 0 < p ≤ 0.05 s,
0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1 s, and p > 1 s
(including turn boundaries). The bins are chosen
based on the observed distribution (see Appendix
A.1). We did not use (real-valued) pause duration
directly, for two main reasons: (1) to handle miss-
ing time alignments; and (2) duration of pause does

3The assumption of known word alignments is standard for
prosodic feature extraction in many spoken language process-
ing studies. Time alignments can be obtained as a by-product
of recognition or from forced alignment.

not matter beyond a threshold (e.g. p > 1 s).

Word duration. Both word duration and word-
final duration lengthening are strong cues to
prosodic phrase boundaries (Wightman et al., 1992;
Pate and Goldwater, 2013). The word duration fea-
ture δi is computed as the actual word duration
divided by the mean duration of the word, clipped
to a maximum value of 5. The sample mean is used
for frequent words (count ≥ 15). For infrequent
words we estimate the mean as the sum over the
sample means for the phonemes in the word’s dic-
tionary pronunciation. We refer to the manually
defined prosodic feature pair of pi and δi as φi.

Fundament frequency (f0) and Energy (E) con-
tours (f0/E). We use a CNN to automatically
learn the mapping from the time series of f0/E
features to a word-level vector. The contour fea-
tures are extracted from 25-ms frames with 10-ms
hops using Kaldi (Povey et al., 2011). Three f0
features are used: warped Normalized Cross Corre-
lation Function (NCCF), log-pitch with Probability
of Voicing (POV)-weighted mean subtraction over
a 1.5-second window, and the estimated derivative
(delta) of the raw log pitch. Three energy features
are extracted from the Kaldi 40-mel-frequency fil-
ter bank features: Etotal, the log of total energy
normalized by dividing by the speaker side’s max
total energy; Elow, the log of total energy in the
lower 20 mel-frequency bands, normalized by total
energy, and Ehigh, the log of total energy in the
higher 20 mel-frequency bands, normalized by to-
tal energy. Multi-band energy features are used as a

71

simple mechanism to capture articulatory strength-
ening at prosodic constituent onsets (Fourgeron and
Keating, 1997).

Figure 1 summarizes the feature learning ap-
proach. The f0 and E features are processed at
the word level: each sequence of frames corre-
sponding to a time-aligned word (and potentially
its surrounding context) is convolved with N filters
of m sizes (a total of mN filters). The motiva-
tion for the multiple filter sizes is to enable the
computation of features that capture information
on different time scales. For each filter, we per-
form a 1-D convolution over the 6-dimensional
f0/E features with a stride of 1. Each filter out-
put is max-pooled, resulting in mN -dimensional
speech features si. Our overall acoustic-prosodic
feature vector is the concatenation of pi, δi, and si
in various combinations.

3 Experiments

3.1 Dataset

Our core corpus is Switchboard-NXT (Calhoun
et al., 2010), a subset of the Switchboard corpus
(Godfrey and Holliman, 1993): 2,400 telephone
conversations between strangers; 642 of these were
hand-annotated with syntactic parses and further
augmented with richer layers of annotation facil-
itated by the NITE XML toolkit (Calhoun et al.,
2010). Our sentence segmentations and syntactic
trees are based on the annotations from the Tree-
bank set, with a few manual corrections from the
NXT release. This core dataset consists of 100K
sentences, totaling 830K tokens forming a vocabu-
lary of 13.5K words. We use the time alignments
available from NXT, which is based on a corrected
word transcript that occasionally differs from the
Treebank, leading to some missing time alignments.
We follow the sentence boundaries defined by the
parsed data available,4 and the data split (90% train;
5% dev; 5% test) defined by related work done on
Switchboard (Charniak and Johnson, 2001; Kahn
et al., 2005; Honnibal and Johnson, 2014).

3.2 Evaluation Metrics and Baselines

The standard evaluation metric for constituent pars-
ing is the parseval metric which uses bracketing
precision, recall, and F1, as in the canonical im-
plementation of EVALB.5 For written text, punc-

4Note that these sentence units can be inconsistent with
other layers of Switchboard annotations, such as slash units.

5http://nlp.cs.nyu.edu/evalb/

tuation is sometimes represented as part of the se-
quence and impacts the final score, but for speech
the punctuation is not explicitly available so it does
not contribute to the score. Another challenge
of transcribed speech is the presence of disfluen-
cies. Speech repairs are indicated under “EDITED”
nodes in Switchboard parse trees, which include
structure under these nodes that is not of interest
for simple text clean-up. Therefore, some stud-
ies report flattened-edit parseval F1 scores (“flat-
F1”), which is parseval computed on trees where
the structure under edit nodes has been eliminated
so that all leaves are immediate children. We re-
port both scores for the baseline text-only model
showing that the differences are small, then use the
standard parseval F1 score for most results.6

Disfluencies are particularly problematic for sta-
tistical parsers, as explained by Charniak and John-
son (2001), and some systems incorporate a sep-
arate disfluency detection stage. For this reason,
and because it is useful for understanding system
performance, most studies also report disfluency
detection performance, which is measured in terms
of the F1 score for detecting whether a word is in
an edit region. Our approach does not involve a
separate disfluency detection stage, but identifies
disfluencies implicitly via the parse structure. Con-
sequently, the disfluency detection results are not
competitive with work that directly optimize for
disfluency detection. We report disfluency detec-
tion scores primarily as a diagnostic.

Most previous work on integrating prosody and
parsing has used the Switchboard corpus, but it
is still difficult to compare results because of dif-
ferences in constraints, objectives and the use of
constituent vs. dependency structure, as discussed
further in Section 6. The most relevant prior studies
(on constituent parsing) that we compare to are a
bit old. The text-only result from our neural parser
represents a stronger baseline and is important for
decoupling the impact of prosody vs. the parsing
framework.

3.3 Model Training and Inference
Both the encoder and decoder are 3-layer deep
LSTM-RNNs with 256 hidden units in each layer.
For the location-aware attention, the convolution
operation uses 5 filters of width 40 each. We
use 512-dimensional embedding vectors to repre-

6A variant of the “flat-F1” score is used in (Charniak and
Johnson, 2001; Kahn et al., 2005), which uses a relaxed edited
node precision and recall but also ignores filled pauses.

72

sent words and linearized parsing symbols, such as
“(S”.7

A number of configurations are explored for the
acoustic-prosodic features, tuning based on dev
set parsing performance. Pause embeddings are
tuned over {4, 16, 32} dimensions. For the CNN,
we try different configurations of filter widths
w ∈ {[10, 25, 50], [5, 10, 25, 50]} and number of
filters N ∈ {16, 32, 64, 128} for each filter width.8

These filter size combinations are chosen to cap-
ture f0 and energy phenomena on various levels:
w = 5, 10 for sub-word, w = 25 for word, and
w = 50 for word and extended context. Our best
model uses 32-dimensional pause embeddings and
N = 32 filters of widthsw = [5, 10, 25, 50], which
corresponds to m = 4 and 128 filters.

For optimization we use Adam (Kingma and Ba,
2014) with a minibatch size of 64. The initial learn-
ing rate is 0.001 which is decayed by a factor of
0.9 whenever training loss, calculated after every
500 updates, degrades relative to the worst of its
previous 3 values. All models are trained for up
to 50 epochs with early stopping. For regulariza-
tion, dropout with 0.3 probability is applied on the
output of all LSTM layers (Pham et al., 2014).

For inference, we use a greedy decoder to gen-
erate the linearized parse. The output token with
maximum posterior probability is chosen at every
time step and fed as input in the next time step. The
decoder stops upon producing the end-of-sentence
symbol. We use TensorFlow (Abadi et al., 2015) to
implement all models.9

4 Results

4.1 Text-only Results

Model F1 flat-F1 fluent disf
Berkeley 85.41 85.91 90.52 83.08
C-attn 83.33 83.20 90.86 79.94
CL-attn 87.85 87.68 92.07 85.95

Table 1: Scores of text-only models on the dev set:
2044 fluent and 3725 disfluent sentences. C-attn
denotes content-only attention; CL-attn denotes con-
tent+location attention.

7The number of layers, dimension of hidden units, dimen-
sion of embedding, and convolutional attention filter param-
eters of the text-only parser were explored in earlier experi-
ments on the development set and then fixed as described.

8Note that a filter of width 10 has size 6 × 10, since the
features are of dimension 6.

9Our code resources can be found in Appendix A.1.

Model Parse Disf
Berkeley (text only) 85.41 62.45
CL-attn (text only) 87.85 79.50
CL-attn text and
+ p 88.37 80.24
+ δ 88.04 77.41
+ p + δ 88.21 80.84
+ f0/E-CNN 88.52 80.81
+ p + f0/E-CNN 88.45 81.19
+ δ + f0/E-CNN 88.44 80.09
+ p + δ + f0/E-CNN 88.59 80.84

Table 2: Parse and disfluency detection F1 scores on the
dev set. Flat-F1 scores were consistently 0.1%-0.3%
lower for our models, but 0.2% higher for the Berkeley
parser (85.64).

We first show our results on the model using
only text (i.e. xi = ei) to establish a strong
baseline, on top of which we can add acoustic-
prosodic features. We experiment with the content-
only attention model used by Vinyals et al. (2015)
and the content+location attention of Chorowski
et al. (2015). For comparison with previous non-
neural models, we use a high-quality latent-variable
parser, the Berkeley parser (Petrov et al., 2006), re-
trained on our Switchboard data. Table 1 compares
the three text-only models. In terms of F1, the con-
tent+location attention beats the Berkeley parser
by about 2.5% and content-only attention by about
4.5%. Flat-F1 scores for both encoder-decoder
models is lower than their corresponding F1 scores,
suggesting that the encoder-decoder models do
well on predicting the internal structure of EDIT
nodes while the reverse is true for the Berkeley
parser.

To explain the gains of content+location atten-
tion over content-only attention, we compare their
scores on fluent (without EDIT nodes) and disfluent
sentences, shown in Table 1. It is clear that most of
the gains for content+location attention are from
disfluent sentences. A possible explanation is the
presence of duplicate words or phrases in disfluent
sentences, which can be problematic for a content-
only attention model. Since our best model is the
content+location attention model, we will hence-
forth refer to it as the “CL-attn” text-only model.
All models using acoustic-prosodic features are ex-
tensions of this model, which provides a strong
text-only baseline.

73

Model Parse Disf
CL-attn 87.79 (0.11) 78.65 (0.46)
best model 88.15 (0.41) 80.48 (0.70)

Table 3: Parse and disfluency detection F1 scores on
the dev set: mean (and standard deviation) over 10 runs
for the baseline text-only model (CL-attn) and the best
model with prosody.

Model Parse Disfl
Berkeley 85.87 63.44
CL-attn 87.99 76.69
best model 88.50 77.47

Table 4: Parse and disfluency detection F1 scores on
the test set. The best model has statistically significant
gains over the text-only baseline with p-value < 0.02.

4.2 Adding Acoustic-Prosodic Features

We extend our CL-attn model with the three kinds
of acoustic-prosodic features: pause (p), word du-
ration (δ), and CNN mappings of fundamental fre-
quency (f0) and energy (E) features (f0/E-CNN).

The results of several model configurations on
our dev set are presented in Table 2. First, we note
that adding any combination of acoustic-prosodic
features (individually or in sets) improves perfor-
mance over the text-only baseline. However, cer-
tain combinations of acoustic-prosodic features are
not always better than their subsets. The text + p +
δ + f0/E-CNN model that uses all three types of fea-
tures has the best performance with a gain of 0.7%
over the already-strong text-only baseline. We will
henceforth refer to the text + p + δ + f0/E-CNN
model as our “best model”.

As a robustness check, we report results of av-
eraging 10 runs on the CL-attn text-only and the
best model in Table 3. We performed a bootstrap
test (Efron and Tibshirani, 1993) that simulates 105

random test draws on the models giving median
performance on the dev set. These median models
gave a statistically significant difference between
the text-only and best model (p-value < 0.02). Ad-
ditionally, a simple t-test over the two sets of 10
results also shows statistical significance p-value
< 0.03.

Table 4 presents the results on the test set. Again,
adding the acoustic-prosodic features improves
over the text-only baseline. The gains are statis-
tically significant for the best model with p-value
< 0.02, again using a bootstrap test with simulated
105 random test draws on the two models.

Model Parse Disfl
Text Only

Kahn et al. (2005) 86.4 78.2
Hale et al. (2006) 71.16 41.7
CL-attn (text only) 87.99 76.7

Text + Prosody
Kahn et al. (2005) 86.6 78.2
Hale et al. (2006) 71.05 36.2
best model 88.50 77.5

Table 5: Parse and disfluency detection F1 scores on
the test set comparing to other reported results.

0−5 6−10 11−20 21−40 41−100
Sentence Length

70

75

80

85

90

95

100

F
-s

co
re

in
%

2666
1285

1242

511

65

Text-only

Best

Figure 2: F1 scores of the text-only model and our best
model as a function of sentence length.

Table 5 includes results from prior studies that
compare systems using text alone with ones that
incorporate prosody, given hand transcripts and
sentence segmentation. It is difficult to compare
systems directly, because of the many differences
in the experimental set-up. For example, the origi-
nal Charniak and Johnson (2001) result (reporting
F=85.9 for parsing and F=78.2 for disfluencies)
leverages punctuation in the text stream, which is
not realistic for speech transcripts and not used in
most other work. Our work benefits from more
text training material than others, but others benefit
from gold part-of-speech tags. Kahn et al. (2005)
use a modified sentence segmentation. There are
probably minor differences in handling of word
fragments and scoring edit regions. Thus, this table
primarily shows that our framework leads to more
benefits from sentence-internal prosodic cues than
others have obtained.

5 Analysis

Effect of sentence length. Figure 2 shows per-
formance differences between our best model and
the text-only model for varying sentence lengths.

74

S

S

NP

NP

XX

the

XX

county

SBAR

S

EDITED

S

NP

XX

i

VP

XX

am

NP

XX

i

VP

XX

’m

PP

XX

in

NP

XX

the

XX

minorities

VP

XX

are

ADVP

XX

mostly

ADJP

XX

hispanic

S

S

NP

NP

XX

the

XX

county

SBAR

S

EDITED

S

NP

XX

i

VP

XX

am

NP

XX

i

VP

XX

’m

PP

XX

in

NP

XX

the

XX

minorities

VP

XX

are

ADVP

XX

mostly

ADJP

XX

hispanic

pause

Figure 3: An example sentence from development data – the county i am i ’m in [pause] the minorities are mostly
hispanic. The text-only parser (on the left) makes a PP Attachment error. The prosody-enhanced parser (on the
right) uses the pause indicator to correctly predict a constituent change after the word in.

Model fluent disfluent
text-only 92.07 85.90
best model 92.03 87.02

Table 6: Dev set F1-score of text-only and best model
on fluent (2029) vs. disfluent (3689) sentences.10

Both models do worse on longer sentences, as ex-
pected since the corresponding parse trees tend
to be more complex. The performance difference
between our best model and the text-only model
increases with sentence length. This is likely be-
cause longer sentences more often have multiple
prosodic phrases and disfluencies.

Effect of disfluencies. Table 6 presents parse
scores on the subsets of fluent and disfluent sen-
tences, showing that the performance gain is in the
disfluent set (65% of the dev set sentences). Be-
cause sentence boundaries are given, and so many
fluent sentences in spontaneous speech are short,
there is less potential for benefit from prosody in
the fluent set.

Types of errors. We use the Berkeley Parser An-
alyzer (Kummerfeld et al., 2012) to compare the
types of errors made by the different parsers.10 Ta-
ble 7 presents the relative error reductions over the
text-only baseline achieved by the text + p model
and our best model for disfluent sentences. The two
models differ in the types of error reductions they
provide. Including pause information gives largest
improvements on PP attachment and Modifier at-

10This analysis omits the 1% of the sentences that did not
have timing information.

Error Type
Disfluent Sentences

text + p best model
Clause Att. 5.7% 1.3%
Diff. Label 7.6% 4.2%
Modifier Att. 9.7% 19.1%
NP Att. -2.7% 14.5%
NP Internal 7.8% 7.4%
PP Att. 10.1% 7.8%
1-Word Phrase 6.3% 6.8%
Unary -1.1% 8.9%
VP Att. 0.0% 12.0%

Table 7: Relative error reduction over the text-only
baseline in the disfluent subset (3689 sentences) of the
development set. Shown here are the most frequent er-
ror types (with count ≥ 100 for the text-only model).

tachment errors. Adding the remaining acoustic-
prosodic features helps to correct more types of
attachment errors, especially VP and NP attach-
ment. Figure 3 demonstrates one case where the
pause feature helps in correcting a PP attachment
error made by a text-only parser. Other interest-
ing examples (see Appendix A.2) suggest that the
learned f0/E features help reduce NP attachment
errors where the audio reveals a prominent word at
the constituent boundary, even though there is no
pause at that word.

Effect of transcription errors. The results and
analyses so far have assumed that we have reliable
transcripts. In fact, the original transcripts con-
tained errors, and the Treebank annotators used
these without reference to audio files. Mississippi
State University (MS-State) ran a clean-up project

75

that produced more accurate word transcripts and
time alignments (Deshmukh et al., 1998). The NXT
corpus provides reconciliation between Treebank
and MS-State transcripts in terms of annotating
missed/extra/substituted words, but parses were not
re-annotated. The transcript errors mean that the
acoustic signal is inconsistent with the “gold” parse
tree. Below are some examples of “fluent” sen-
tences (according to the Treebank transcripts) with
transcription errors, for which prosodic features
“hurt” parsing. Words that transcribers missed are
in brackets and those inserted are underlined.
S1: and because <uh> like if your spouse died <all of
a sudden you be> all alone it ’d be nice to go some-
place with people similar to you to have friends

S2: uh uh <i have had> my wife ’s picked up a couple
of things saying uh boy if we could refinish that ’d be a
beautiful piece of furniture

Multi-syllable errors are especially problematic,
leading to serious inconsistencies between the text
and the acoustic signal. Further, the missed words
lead to an incorrect attachment in the “gold” parse
in S1 and a missing restart edit in S2. Indeed, for
sentences with consecutive transcript errors, which
we expect to impact the prosodic features, there is
a statistically significant (p-value < 0.05) negative
effect on parsing with prosody. Not included in
this analysis are sentence boundary errors, which
also change the “gold” parse. Thus, prosody may
be more useful than results here indicate.

6 Related Work

Related work on parsing conversational speech has
mainly addressed four problems: speech recogni-
tion errors, unknown sentence segmentation, dis-
fluencies, and integrating prosodic cues. Our work
addresses the last two problems, which involve
studies based on hand-transcribed text and known
sentence boundaries, as in much speech parsing
work. The related studies are thus the focus of this
discussion. We describe studies using the Switch-
board corpus, since it has dominated work in this
area, being the largest source of treebanked English
spontaneous speech.

One major challenge of parsing conversational
speech is the presence of disfluencies, which are
grammatical and prosodic interruptions. Disfluen-
cies include repetitions (‘I am + I am’), repairs
(‘I am + we are’), and restarts (‘What I + Today is
the...’), where the ‘+’ corresponds to an interruption
point. Repairs often involve parallel grammatical

constructions, but they can be more complex, in-
volving hedging, clarifications, etc. Charniak and
Johnson (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) demonstrated that disfluencies are
different in character than other constituents and
that parsing performance improves from combining
a PCFG parser with a separate module for disflu-
ency detection via parse rescoring. Our approach
does not use a separate disfluency detection mod-
ule; we hypothesized that the location-sensitive at-
tention model helps handle these differences based
on analysis of the text-only results (Table 1). How-
ever, more explicit modeling of disfluency pattern
match characteristics in a dependency parser (Hon-
nibal and Johnson, 2014) leads to better disfluency
detection performance (F = 84.1 vs. 76.7 for our
text only model). Pattern match features also ben-
efit a neural model for disfluency detection alone
(F = 87.0) (Zayats et al., 2016), and similar gains
are observed by formulating disfluency detection
in a transition-based framework (F = 87.5) (Wang
et al., 2017). Experiments with oracle disfluencies
as features improve the CL-attn text-only parsing
performance from 87.85 to 89.38 on the test set,
showing that more accurate disfluency modeling is
a potential area of improvement.

It is well known that prosodic features play a role
in human resolution of syntactic ambiguities, with
more than two decades of studies seeking to incor-
porate prosodic features in parsing. A series of stud-
ies looked at constituent parsing informed by the
presence (or likelihood) of prosodic breaks at word
boundaries (Kahn et al., 2004, 2005; Hale et al.,
2006; Dreyer and Shafran, 2007). Our approach
improves over performance of these systems using
raw acoustic features, without the need for hand-
labeling prosodic breaks. The gain is in part due to
the improved text-based parser, but the incremental
benefit of prosody here is similar to that in these
prior studies. (In prior work using acoustic feature
directly (Gregory et al., 2004), prosody actually de-
graded performance.) Our analyses of the impact
of prosody also extends prior work.

Prosody is also known to provide useful cues
to sentence boundaries (Liu et al., 2006), and au-
tomatic sentence segmentation performance has
been shown to have a significant impact on pars-
ing performance (Kahn and Ostendorf, 2012). In
our study, sentence boundaries are given so as to
focus on the role of prosody in resolving sentence-
internal parse ambiguity, for which prior work had

76

obtained smaller gains. Studies have also shown
that parsing lattices or confusion networks can
improve ASR performance (Kahn and Ostendorf,
2012; Yoshikawa et al., 2016). Our analysis of per-
formance degradation for the system with prosody
when the gold transcript and associated parse are in
error suggests that prosody may have benefits for
parsers operating on alternative ASR hypotheses.

The results we compare to in Section 4 are rel-
atively old. More recent parsing results on spon-
taneous speech involve dependency parsers using
only text (Rasooli and Tetreault, 2013; Honnibal
and Johnson, 2014; Yoshikawa et al., 2016), with
the exception of a study on unsupervised depen-
dency parsing (Pate and Goldwater, 2013). With
the recent success of transition-based neural ap-
proaches in dependency parsing, researchers have
adapted transition-based ideas to constituent pars-
ing (Zhu et al., 2013; Watanabe and Sumita, 2015;
Dyer et al., 2016). These approaches have not
yet been used with speech, to our knowledge, but
we expect it to be straightforward to extend our
prosody integration framework to these systems,
both for dependency and constituency parsing.

7 Conclusion

We have presented a framework for directly in-
tegrating acoustic-prosodic features with text in
a neural encoder-decoder parser that does not re-
quire hand-annotated prosodic structure. On con-
versational sentences, we obtained strong results
when including word-level acoustic-prosodic fea-
tures over using only transcriptions. The acoustic-
prosodic features provide the largest gains when
sentences are disfluent or long, and analysis of error
types shows that these features are especially help-
ful in repairing attachment errors. In cases where
prosodic features hurt performance, we observe a
statistically significant negative effect caused by im-
perfect human transcriptions that make the “ground
truth” parse tree and the acoustic signal inconsis-
tent, which suggests that there is more to be gained
from prosody than observed in prior studies. We
thus plan to investigate aligning the Treebank and
MS-State versions of Switchboard for future work.

Here, we assumed known sentence boundaries
and hand transcripts, leaving open the question of
whether increased benefits from prosody can be
gained by incorporating sentence segmentation in
parsing and/or in parsing ASR lattices. Most prior
work using prosody in parsing has been on con-

stituent parsing, since prosodic cues tend to align
with constituent boundaries. However, it remains
an open question as to whether dependency, con-
stituency or other parsing frameworks are better
suited to leveraging prosody. Our study builds on a
parser that uses reverse order text processing, since
it provides a stronger text-only baseline. However,
the prosody modeling component relies only on a
1 second lookahead of the current word (for pause
binning), so it could be easily incorporated in an
incremental parser.

Acknowledgement

We thank the anonymous reviewers for their help-
ful feedback. We also thank Pranava Swaroop
Madhyastha, Hao Tang, Jon Cai, Hao Cheng, and
Navdeep Jaitly for their help with initial discus-
sions and code setup. This research was partially
funded by a Google Faculty Research Award to
Mohit Bansal, Karen Livescu, and Kevin Gimpel;
and NSF grant no. IIS-1617176. The opinions ex-
pressed in this work are those of the authors and
do not necessarily reflect the views of the funding
agency.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, . . . , and Xiaoqiang Zheng. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous
Systems.

Sasha Calhoun, Jean Carletta, Jason M. Brenier, Neil
Mayo, Dan Jurafsky, Mark Steedman, and David
Beaver. 2010. The NXT-format Switchboard Cor-
pus: a rich resource for investigating the syntax, se-
mantics, pragmatics and prosody of dialogue. Lan-
guage Resources and Evaluation 44(4).

Eugene Charniak and Mark Johnson. 2001. Edit De-
tection and Parsing for Transcribed Speech. In Proc.
NAACL.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
KyungHyun Cho, and Yoshua Bengio. 2015.
Attention-Based Models for Speech Recognition.
CoRR abs/1506.07503.

Neeraj Deshmukh, Andi Gleeson, Joseph Picone, Ar-
avind Ganapathiraju, and Jonathan Hamaker. 1998.
Resegmentation of SWITCHBOARD. In Proc. IC-
SLP.

Markus Dreyer and Izhak Shafran. 2007. Exploiting
prosody for PCFGs with latent annotations. In Proc.
Interspeech.

77

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work Grammars. In Proc. NAACL.

Bradley Efron and Robert J. Tibshirani. 1993. An In-
troduction to the Bootstrap. Chapman & Hall/CRC.

Cécile Fourgeron and Patricia A. Keating. 1997. Artic-
ulatory strengthening at edges of prosodic domains.
Journal of the Acoustical Society of America 101(6).

John J. Godfrey and Edward Holliman. 1993.
Switchboard-1 Release 2. Linguistic Data Consor-
tium.

Michelle L Gregory, Mark Johnson, and Eugene Char-
niak. 2004. Sentence-Internal Prosody Does not
Help Parsing the Way Punctuation Does. In Proc.
NAACL.

Franćois Grosjean, Lysiane Grosjean, and Harlan Lane.
1979. The patterns of silence: Performance struc-
tures in sentence production. Cognitive Psychology
.

John Hale, Izhak Shafran, Lisa Yung, Bonnie Dorr,
Mary Harper, Anna Krasnyanskaya, Matthew Lease,
Yang Liu, Brian Roark, Mathew Snover, and Robin
Stewart. 2006. PCFGs with Syntactic and Prosodic
Indicators of Speech Repairs. In Proc. COLING-
ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation 9(8).

Matthew Honnibal and Mark Johnson. 2014. Joint
Incremental Disfluency Detection and Dependency
Parsing. TACL .

Mark Johnson and Eugene Charniak. 2004. A TAG-
based Noisy Channel Model of Speech Repairs. In
Proc. ACL.

Jeremy G. Kahn, Matthew Lease, Eugene Charniak,
Mark Johnson, and Mari Ostendorf. 2005. Effective
Use of Prosody in Parsing Conversational Speech.
In Proc. HLT/EMNLP.

Jeremy G. Kahn and Mari Ostendorf. 2012. Joint
reranking of parsing and word recognition with auto-
matic segmentation. Computer Speech & Language
.

Jeremy G. Kahn, Mari Ostendorf, and Ciprian Chelba.
2004. Parsing Conversational Speech Using En-
hanced Segmentation. In Proc. NAACL.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR
abs/1412.6980.

Jonathan K. Kummerfeld, David Hall, James R. Curran,
and Dan Klein. 2012. Parser Showdown at the Wall
Street Corral: An Empirical Investigation of Error
Types in Parser Output. In Proc. EMNLP.

Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Osten-
dorf, and M. Harper. 2006. Enriching Speech Recog-
nition with Automatic Detection of Sentence Bound-
aries and Disfluencies. IEEE TASLP 14.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task Se-
quence to Sequence Learning. In Proc. ICLR.

John Pate and Sharon Goldwater. 2013. Unsupervised
Dependency Parsing with Acoustic Cues. TACL 1.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In Proc. COLING-
ACL.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérôme Louradour. 2014. Dropout improves Re-
current Neural Networks for Handwriting Recogni-
tion. In Proc. ICFHR.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The Kaldi Speech Recognition
Toolkit. In Proc. ASRU.

Patti Price, Mari Ostendorf, Stefanie Shattuck-
Hufnagel, and Cynthia Fong. 1991. The Use
of Prosody in Syntactic Disambiguation. In
Proc. Workshop on Speech and Natural Language.

Mohammad Sadegh Rasooli and Joel Tetreault. 2013.
Joint Parsing and Disfluency Detection in Linear
Time. In Proc. EMNLP.

Elizabeth Shriberg. 1994. Preliminaries to a theory
of speech disfluencies. Ph.D. thesis, Department of
Psychology, University of California, Berkeley, CA.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a Foreign Language. In Proc. NIPS.

Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan
Zhang, and Ting Liu. 2017. Transition-based Dis-
fluency Detection using LSTMs. In Proc. EMNLP.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based Neural Constituent Parsing. In Proc. ACL.

Colin W. Wightman, Stefanie Shattuck-Hufnagel, Mari
Ostendorf, and Patti J. Price. 1992. Segmental du-
rations in the vicinity of prosodic phrase boundaries.
Journal of the Acoustical Society of America 91(3).

Masashi Yoshikawa, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2016. Joint Transition-based Dependency
Parsing and Disfluency Detection for Automatic
Speech Recognition Texts. In Proc. EMNLP.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent Neural Network Regularization.
CoRR abs/1409.2329.

78

Victoria Zayats, Hannaneh Hajishirzi, and Mari Osten-
dorf. 2016. Disfluency Detection using a Bidirec-
tional LSTM. In Proc. Interspeech.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and Accurate Shift-
Reduce Constituent Parsing. In Proc. ACL.

A Appendix

A.1 Miscellany

Our main model code is available at
https://github.com/shtoshni92/
speech_parsing. Most of the data prepro-
cessing code is available at https://github.
com/trangham283/seq2seq_parser/
tree/master/src/data_preps. Part of
our data preprocessing pipeline also uses https:
//github.com/syllog1sm/swbd_tools.

Table 8 shows statistics of our Switchboard
dataset. As defined, for example, in (Charniak
and Johnson, 2001; Honnibal and Johnson, 2014),
the splits are: conversations sw2000 to sw3000 for
training, sw4500 to sw4936 for validation (dev),
and sw4000 to sw4153 for evaluation (test). In
addition, previous work has reserved sw4154 to
sw4500 for “future use” (dev2), but we added this
set to our training set. That is, all of our models
are trained on Switchboard conversations sw2000
to sw3000 as well as sw4154 to sw4500.

Section # sentences # words
Train 97,113 729,252
Dev 5,769 50,445
Test 5,901 48,625

Table 8: Data statistics.

Figure 4 illustrates the data preprocessing step.
On the decoder end, we also use a post-processing
step that merges the original sentence with the de-
coder output to obtain the standard constituent tree
representation. During inference, in rare cases (and
virtually none as our models converge), the de-
coder does not generate a valid parse sequence, due
to the mismatch in brackets and/or the mismatch
in the number of pre-terminals and terminals, i.e.,
num(XX) 6= num(tokens). In such cases, we sim-
ply add/remove brackets from either end of the
parse, or add/remove pre-terminal symbols XX in
the middle of the parse to match the number of
input tokens.

Figure 5 shows the distribution of pause dura-
tions in our training data. Our pause buckets of

Original parse tree

S FRAG

PP

NP PRP yourself

IN about

INTJ UH uh

Linearized parse tree
(S (FRAG (INTJ (UH uh)) (PP (IN about)

(NP (PRP yourself)))))

Final POS-normalized linearized parse tree
(S (FRAG (INTJ XX) (PP XX (NP XX))))

Figure 4: Data preprocessing. Trees are linearized;
POS tags (pre-terminals) are normalized as “XX”. Also
note the annotation standard used for Switchboard data:
The root node of the tree is an “S” node although it is
not a complete sentence.

0 < p ≤ 0.05 s, 0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1
s, and p > 1 s described in the main paper were
based on this distribution of pause lengths.

0 1 2 3 4 5
Pause Duration (in sec.)

0.0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Histogram of inter-word pause durations in
our training set. As expected, most of the pauses are
less than 1 second. Further binning of pause durations
≤ 1 second reveals that the plot peaks around 0.2 sec-
onds and continuously decays from there on. In some
very rare cases, pauses of 5+ seconds occur within a
sentence.

Table 9 shows the comprehensive error counts
in all error categories defined in the Berkeley Parse
Analyzer (Kummerfeld et al., 2012) in both the
fluent and disfluent subsets.

A.2 Tree Examples
In figures 6, 7, and 8, we follow node correction
notations as in (Kummerfeld et al., 2012). In partic-
ular, missing nodes are marked in blue on the gold
tree, extra nodes are marked red in the predicted
tree, and yellow nodes denote crossing.

79

Fluent Subset Disfluent Subset
Error Type text-only text + p best model text-only text + p best model
Clause Attach. 126 132 123 631 595 600
Co-ordination 1 2 1 10 10 5
Different label 112 116 124 288 266 300
Modifier Attach. 119 127 112 320 289 325
NP Attach. 92 89 94 332 341 283
NP Internal 71 61 65 231 213 232
PP Attach. 171 152 149 524 471 470
1-Word Phrase 334 342 328 1054 988 1030
UNSET add 86 81 64 353 352 356
UNSET move 85 93 95 466 447 439
UNSET remove 73 70 56 334 324 318
Unary 246 239 236 1088 1100 1074
VP Attach. 36 41 25 167 167 172
XoverX Unary 36 35 34 54 57 54

Table 9: Parse error counts comparison on the fluent (2029 sentences) and disfluent (3689 sentences) subsets of
the development set across three parsers.

S

S

XX

but

NP

XX

i

VP

XX

’ve

NP

NP

XX

two

XX

kids

XX

and

NP

XX

all

S

S

XX

but

NP

XX

i

VP

VP

XX

’ve

NP

XX

two

XX

kids

XX

and

NP

XX

all

Figure 6: An example sentence from development data – but i ’ve two kids and all. Even though there are no
pauses between all words, the word kids is lengthened in the audio sample, helping the prosody-enhanced parser
(right) to recognize a major syntactic boundary, avoiding the NP Attachment error made by the text-only parser
(left).

80

S

S

NP

XX

she

VP

XX

had

NP

NP

XX

two

XX

kids

PP

XX

of

NP

XX

her

XX

own

XX

and

NP

XX

everything

S

S

NP

XX

she

VP

VP

XX

had

NP

NP

XX

two

XX

kids

PP

XX

of

NP

XX

her

XX

own

XX

and

NP

XX

everything

Figure 7: An example sentence from development data – she had two kids of her own and everything. There were
no pauses between all words in this sentence, the audio sample showed that the word own was both lengthened and
raised in intonation, giving the prosody-enhanced parser (right) a signal that own is on a syntactic boundary. On
the other hand, the text-only parser (left) had no such information and made an NP-attachment error. This sentence
also illustrates an interesting case where, in isolation, the text-only parse makes sense (i.e. everything being an
object of had). However, in the context of this conversation (the speaker was talking about another person in an
informal manner), and everything acts more like filler - e.g. “i play the violin and stuff ”

S

S

NP

XX

television

ADVP

XX

sure

VP

XX

makes

NP

XX

child

XX

rearing

ADVP

XX

easy

PP

XX

on

NP

XX

you

S

S

NP

XX

television

ADVP

XX

sure

VP

XX

makes

S

NP

XX

child

XX

rearing

ADJP

XX

easy

PP

XX

on

NP

XX

you

Figure 8: An example sentence from development data – television sure makes child rearing easy on you. This
is an example where our prosody-enhanced parser (left) did worse than the text-only parser (right), which made
no errors. The error type illustrated here is Different Label and Modifier Attachment. In the first iteration, the
analyzer identifies a Different Label error (ADVP node), and in the second pass identifies the Modifier Attachment
error.

81

