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Abstract

Grice characterized communication in terms
of the cooperative principle, which enjoins
speakers to make only contributions that serve
the evolving conversational goals. We show
that the cooperative principle and the associ-
ated maxims of relevance, quality, and quan-
tity emerge from multi-agent decision theory.
We utilize the Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP)
model of multi-agent decision making which
relies only on basic definitions of rationality
and the ability of agents to reason about each
other’s beliefs in maximizing joint utility. Our
model uses cognitively-inspired heuristics to
simplify the otherwise intractable task of rea-
soning jointly about actions, the environment,
and the nested beliefs of other actors. Our
experiments on a cooperative language task
show that reasoning about others’ belief states,
and the resulting emergent Gricean commu-
nicative behavior, leads to significantly im-
proved task performance.

1 Introduction

Grice (1975) famously characterized communica-
tion among rational agents in terms of an overarch-
ing cooperative principle and a set of more specific
maxims, which enjoin speakers to make contribu-
tions that are truthful, informative, relevant, clear,
and concise. Since then, there have been many at-
tempts to derive the maxims (or perhaps just their ef-
fects) from more basic cognitive principles concern-
ing how people make decisions, formulate plans,
and collaborate to achieve goals. This research

traces to early work by Lewis (1969) on signaling
systems. It has recently been the subject of ex-
tensive theoretical discussion (Clark, 1996; Merin,
1997; Blutner, 1998; Parikh, 2001; Beaver, 2002;
van Rooy, 2003; Benz et al., 2005; Franke, 2009)
and has been tested experimentally using one-step
games in which the speaker produces a message and
the hearer ventures a guess as to its intended refer-
ent (Rosenberg and Cohen, 1964; Dale and Reiter,
1995; Golland et al., 2010; Stiller et al., 2011; Frank
and Goodman, 2012; Krahmer and van Deemter,
2012; Degen and Franke, 2012; Rohde et al., 2012).

To date, however, these theoretical models and ex-
periments have not been extended to multi-step in-
teractions extending over time and involving both
language and action together, which leaves this work
relatively disconnected from research on planning
and goal-orientation in artificial agents (Perrault
and Allen, 1980; Allen, 1991; Grosz and Sidner,
1986; Bratman, 1987; Hobbs et al., 1993; Allen
et al., 2007; DeVault et al., 2005; Stone et al.,
2007; DeVault, 2008). We attribute this in large
part to the complexity of Gricean reasoning itself,
which requires agents to model each other’s belief
states. Tracking these as they evolve over time in re-
sponse to experiences is extremely demanding. Our
approach complements slot-filling dialog systems,
where the focus is on managing speech recogni-
tion uncertainty (Young et al., 2010; Thomson and
Young, 2010).

However, recent years have seen significant ad-
vances in multi-agent decision-theoretic models and
their efficient implementation. With the current pa-
per, we seek to show that the Decentralized Par-
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tially Observable Markov Decision Process (Dec-
POMDP) provides a robust, flexible foundation for
implementing agents that communicate in a Gricean
manner. Dec-POMDPs are multi-agent, partially-
observable models in which agents maintain be-
lief distributions over the underlying, hidden world
state, including the beliefs of the other players, and
speech actions change those beliefs. In this setting,
informative, relevant communication emerges as the
best way to maximize joint utility.

The complexity of pragmatic reasoning is still
forbidding, though. Correspondingly, optimal de-
cision making in Dec-POMDPs is NEXP complete
(Bernstein et al., 2002). To manage this issue, we
introduce several cognitively-plausible approxima-
tions which allow us to simplify the Dec-POMDP to
a single-agent POMDP, for which relatively efficient
solvers exist (Spaan and Vlassis, 2005). We demon-
strate our algorithms on a variation of the Cards task,
a partially-observable collaborative search problem
(Potts, 2012). Spatial language comprises the bulk
of communication in the Cards task, and we dis-
cuss a model of spatial semantics in Section 3. Us-
ing this task and a model of the meaning of spatial
language, we next discuss two agents that play the
game: ListenerBot (Section 4) makes decisions us-
ing a single-agent POMDP that does not take into
account the beliefs or actions of its partner, whereas
DialogBot (Section 5) maintains a model of its part-
ner’s beliefs. As a result of the cooperative structure
of the underlying model and the effects of commu-
nication within it, DialogBot’s contributions are rel-
evant, truthful, and informative, which leads to sig-
nificantly improved task performance.

2 The Cards Task and Corpus

The Cards corpus consists of 1,266 transcripts1 from
an online, two-person collaborative game in which
two players explore a maze-like environment, com-
municating with each other via a text chat window
(Figure 1). A deck of playing cards has been dis-
tributed randomly around the environment, and the
players’ task is to find six consecutive cards of the
same suit. Our implemented agents solve a sim-
plified version of this task in which the two agents

1Released by Potts (2012) at http://cardscorpus.
christopherpotts.net

Figure 1: The Cards corpus gameboard. Player 1’s
location is marked “P1”. The nearby yellow boxes
mark card locations. The dialogue history and chat
window are at the top. This board, the one we use
throughout, consists of 231 open grid squares.

must both end up co-located with a single card, the
Ace of Spades (AS). This is much simpler than the
six-card version from the human–human corpus, but
it involves the same kind of collaborative goal and
forces our agents to deal with the same kind of par-
tial knowledge about the world as the humans did.
Each agent knows its own location, but not his part-
ner’s, and a player can see the AS only when co-
located with it. The agents use (simplified) English
to communicate with each other.

3 Spatial Semantics

Much of the communication in the Cards task in-
volves referring to spatial locations on the board.
Accordingly, we focus on spatial language for our
artificial agents. In this section, we present a model
of spatial semantics, which we create by leveraging
the human–human Cards transcripts. We discuss the
spatial semantic representation, how we classify the
semantics of new locative expressions, and our use
of spatial semantics to form a high-level state space
for decision making.

3.1 Semantic Representation
Potts (2012) released annotations, derived from the
Cards corpus, which reduce 599 of the players’
statements about their locations to formulae of the
form δ (ϕ1 ∧ ·· · ∧ ϕk), where δ is a domain and
ϕ1, . . . ,ϕk are semantic literals. For example, the ut-
terance “(I’m) at the top right of the board” is anno-
tated as BOARD(top∧ right), and “(I’m) in bottom
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of the C room” is annotated as C room(bottom). Ta-
ble 1 lists the full set of semantic primitives that ap-
pear as domain expressions and literals.

Because the Cards transcripts are so highly struc-
tured, we can interpret these expressions in terms
of the Cards world itself. For a given formula
σ = δ (ϕ1 ∧ ·· · ∧ ϕk), we compute the number of
times that a player identified its location with (an
utterance translated as) σ while standing on grid
square (x,y). These counts are smoothed using
a simple 2D-smoothing scheme, detailed in (Potts,
2012), and normalized in the usual manner to form a
distribution over board squares Pr((x,y)|σ). These
grounded interpretations are the basis for commu-
nication between the artificial agents we define in
Section 4.

BOARD, SQUARE, right, middle, top, left, bot-
tom, corner, approx, precise, entrance, C room,
hall, room, sideways C, loop, reverse C,
U room, T room, deadend, wall, sideways F

Table 1: The spatial semantic primitives.

3.2 Semantics Classifier

Using the corpus examples of utterances paired with
their spatial semantic representations, we learn a set
of classifiers to predict a spatial utterance’s semantic
representation. We train a binary classifier for each
semantic primitive ϕi using a log-linear model with
simple bag of words features. The words are not
normalized or stemmed and we use whitespace tok-
enization. We additionally train a multi-class clas-
sifier for all possible domains δ . At test time, we
use the domain classifier and each primitive binary
classifier to produce a semantic representation.

3.3 Semantic State Space

The decision making algorithms that we discuss in
Section 4 are highly sensitive to the size of the state
space. The full representation of the game board
consists of 231 squares. Representing the location
of both players and the location of the card requires
3233 = 12,326,391 states, well beyond the capabil-
ities of current decision-making algorithms.

To ameliorate this difficulty, we cluster squares
together using the spatial referring expression cor-

Figure 2: Semantic state space clusters with k = 16.

pus. This approach follows from research that
shows that humans’ mental spatial representations
are influenced by their language (Hayward and Tarr,
1995). Our intuition is that human players do not
consider all possible locations of the card and play-
ers, but instead lump them into semantically coher-
ent states, such as “the card is in the top right cor-
ner.” Following this intuition, we cluster states to-
gether which have similar referring expressions, al-
lowing our agents to use language as a cognitive
technology and not just a tool for communication.

For each board square (x,y) we form a vector
φ(x,y) with φi(x,y) = Pr((x,y)|σi), where σi is the
ith distinct semantic representation in the corpus.
This forms a 136-dimensional vector for each board
square. We then use k-means clustering with a Eu-
clidean distance metric in this semantic space to
cluster states which are referred to similarly.

Figure 2 shows a clustering for k = 16 which we
utilize for the remainder of the paper. Denoting the
board regions by {1, . . . ,Nregions}, we compute the
probability of an expression σ referring to a region
r by averaging over the squares in the region:

Pr(r|σi) ∝ ∑
(x,y)∈ region r

Pr((x,y)|σi)

|{(x,y)|(x,y) ∈ region r}|

4 ListenerBot

We first introduce ListenerBot, an agent that does
not take into account the actions or beliefs of its
partner. ListenerBot decides what actions to take
using a Partially Observable Markov Decision Pro-
cess (POMDP). This allows ListenerBot to track its
beliefs about the location of the card and to incor-
porate linguistic advice. However, ListenerBot does
not produce utterances.
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A POMDP is defined by a tuple
(S,A,T,O,Ω,R,b0,γ). We explicate each com-
ponent with examples from our task. Figure 3(a)
provides the POMDP influence diagram.

States S is the finite state space of the world. The
state space S of ListenerBot consists of the location
of the player p and the location of the card c. As
discussed above in Section 3.3, we cluster squares of
the board into Nregions semantically coherent regions,
denoted by {1, . . . ,Nregions}. The state space over
these regions is defined as

S := {(p,c)|p,c ∈ {1, . . . ,Nregions}}
Two regions r1 and r2 are called adjacent, written
adj(r1,r2), if any of their constituent squares touch.

Actions A is the set of actions available to the
agent. ListenerBot can only take physical actions
and has no communicative ability. Physical actions
in our region-based state space are composed of two
types: traveling to a region and searching a region.
• travel(r): travel to region r
• search: player exhaustively searches the cur-

rent region

Transition Distributions The transition distribu-
tion T (s′|a,s) models the dynamics of the world.
This represents the ramifications of physical actions
such as moving around the map. For a state s =
(p,c) and action a = travel(r), the player moves to
region r if it is adjacent to p, and otherwise stays in
the same place:

T ((p′,c′)|travel(r),(p,c))=



1 adj(r, p)∧ p′ = r
∧c = c′

1 ¬adj(r, p)∧ p = p′

∧c = c′

0 otherwise
Search actions are only concerned with observations
and do not change the state of the world:2

T ((p′,c′)|search,(p,c)) = 1
[
p′ = p∧ c′ = c

]
The travel and search high-level actions are trans-
lated into low-level (up, down, left, right) actions
using a simple A∗ path planner.

Observations Agents receive observations from
a set O according to an observation distribution

2
1[Q] is the indicator function, which is 1 if proposition Q

is true and 0 otherwise.

Ω(o|s′,a). Observations include properties of the
physical world, such as the location of the card, and
also natural language utterances, which serve to in-
directly change agents’ beliefs about the world and
the beliefs of their interlocutors.

Search actions generate two possible observa-
tions: ohere and o¬here, which denote the presence
or absence of the card from the current region.

Ω(ohere|(p′,c′),search) = 1
[
p′ = c′

]
Ω(o¬here|(p′,c′),search) = 1

[
p′ 6= c′

]
Travel actions do not generate meaningful observa-
tions:

Ω(o¬here|(p′,c′), travel) = 1

Linguistic Advice We model linguistic advice as
another form of observation. Agents receive mes-
sages from a finite set Σ, and each message σ ∈ Σ

has a semantics, or distribution over the state space
Pr(s|σ). In the Cards task, we use the semantic dis-
tributions defined in Section 3. To combine the se-
mantics of language with the standard POMDP ob-
servation model, we apply Bayes’ rule:

Pr(σ |s) =
Pr(s|σ)Pr(σ)

∑σ ′ Pr(s|σ ′)Pr(σ ′)
(1)

The prior, Pr(σ), can be derived from corpus data.
By treating language as just another form of ob-
servation, we are able to leverage existing POMDP
solution algorithms. This approach contrasts with
previous work on communication in Dec-POMDPs,
where agents directly share their perceptual obser-
vations (Pynadath and Tambe, 2002; Spaan et al.,
2008), an assumption which does not fit natural lan-
guage.

Reward The reward function R(s,a) : S→ R rep-
resents the goals of the agent, who chooses actions
to maximize reward. The goal of the Cards task is
for both players to be on top of the card, so any ac-
tion that leads to this state receives a high reward R+.
All other actions receive a small negative reward R−,
which gives agents an incentive to finish the task as
quickly as possible.

R((p,c),a) =

{
R+ p = c
R− p 6= c

Lastly, γ ∈ [0,1) is the discount factor, specifying
the trade-off between immediate and future rewards.
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(a) ListenerBot POMDP
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s s′

o o′a

R

s̄ s̄′

(c) DialogBot POMDP

Figure 3: The decision diagram for the ListenerBot POMDP, the full Dec-POMDP, and the DialogBot ap-
proximation POMDP. The ListenerBot (a) only considers his own location p and the card location c. In the
full Dec-POMDP (b), both agents receive individual observations and choose actions independently. Opti-
mal decision making requires tracking all possible histories of beliefs of the other agent. In diagram (c), Di-
alogBot approximates the full Dec-POMDP as single-agent POMDP. At each time step, DialogBot marginal-
izes out the possible observations ō that ListenerBot received, yielding an expected belief state b̄.

Initial Belief State The initial belief state, b0 ∈
∆(S), is a distribution over the state space S. Lis-
tenerBot begins each game with a known initial lo-
cation p0 but a uniform distribution over the location
of the card c:

b0(p,c) ∝

{
1

Nregions
p = p0

0 otherwise

Belief Update and Decision Making The key de-
cision making problem in POMDPs is the construc-
tion of a policy π : ∆(S)→ A, a function from beliefs
to actions which dictates how the agent acts. Deci-
sion making in POMDPs proceeds as follows. The
world starts in a hidden state s0 ∼ b0. The agent
executes action a0 = π(b0). The underlying hid-
den world state transitions to s1 ∼ T (s′|a0,s0), the
world generates observation o0 ∼ Ω(o|s1,a0), and
the agent receives reward R(s0,a0). Using the obser-
vation o0, the agent constructs a new belief b1 ∈∆(S)
using Bayes’ rule:

bat ,ot
t+1 (s′) = Pr(s′|at ,ot ,bt)

=
Pr(ot |at ,s′,bt)Pr(s′|at ,bt)

Pr(ot |bt ,at)

=
Ω(ot |s′,at)∑s∈S T (s′|at ,s)bt(s)

∑s′′ Ω(ot |s′′,at)∑s∈S T (s′′|at ,s)bt(s)
This process is referred to as belief update and is
analogous to the forward algorithm in HMMs. To in-
corporate communication into the standard POMDP

model, we consider observations (o,σ) ∈ O × Σ

which are a combination of a perceptual observation
o and a received message σ . The semantics of the
message σ is included in the belief update equation
using Pr(s|σ), derived in Equation 1:

bat ,ot ,σt
t+1 (s′) =

Ω(o|s′,a) Pr(s′|σ)Pr(σ)
∑σ ′∈Σ

Pr(s′|σ ′)Pr(σ ′) ∑s∈S T (s′|a,s)bt(s)

∑s′′∈S Ω(o|s′′,a) Pr(s′′|σ)Pr(σ)
∑σ ′∈Σ

Pr(s′′|σ ′)Pr(σ ′) ∑s∈S T (s′′|a,s)bt(s)

Using this new belief state b1, the agent selects an
action a1 = π(b1), and the process continues.

An initial belief state b0 and a policy π to-
gether define a Markov chain over pairs of states
and actions. For a given policy π , we define a
value function V π : ∆(S)→ R which represents the
expected discounted reward with respect to that
Markov chain:

V π(b0) =
∞

∑
t=0

γ
t E[R(bt ,at)|b0,π]

The goal of the agent is find a policy π∗ which max-
imizes the value of the initial belief state:

π
∗ = argmax

π

V π(b0)

Exact computation of π∗ is PSPACE-complete (Pa-
padimitriou and Tsitsiklis, 1987), making approx-
imation algorithms necessary for all but the sim-
plest problems. We use Perseus (Spaan and Vlassis,
2005), an anytime approximate point-based value it-
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eration algorithm.

5 DialogBot

We now introduce DialogBot, a Cards agent which
is capable of producing linguistic advice. To decide
when and how to speak, DialogBot maintains a dis-
tribution over its partner’s beliefs and reasons about
the effects his utterances will have on those beliefs.
To handle these complexities, DialogBot models
the world as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Bernstein
et al., 2002). See Figure 3(b) for the influence dia-
gram. The definition of Dec-POMDPs mirrors that
of the POMDP, with the following changes.

There is a finite set I of agents, which we re-
strict to two. Each agent takes an action ai at
each time step, forming a joint action ~a = (a1,a2).
Each agent receives its own observation oi accord-
ing to Ω(o1,o2|a1,a2,s′). The transition distribu-
tions T (s′|a1,a2,s) and the reward R(s,a1,a2) both
depend on both agents’ actions.

Optimal decision making in Dec-POMDPs re-
quires maintaining a probability distribution over
all possible sequences of actions and observations
(ā1, ō1, . . . , āt , ōt) that the other player might have
received. As t increases, we have an exponential in-
crease in the belief states an agent must consider.
Confirming this informal intuition, decision mak-
ing in Dec-POMDPs is NEXP-complete, a complex-
ity class above P-SPACE (Bernstein et al., 2002).
This computational complexity limits the applica-
tion of Dec-POMDPs to very small problems. To
address this difficulty we make several simplifying
assumptions, allowing us to construct a single-agent
POMDP which approximates the full Dec-POMDP.

Firstly, we assume that other agents do not take
into account our own beliefs, i.e., the other agent
acts like a ListenerBot. This bypasses the infinitely
nested belief problem by assuming that other agents
track one less level of nested beliefs, a common
approach (Goodman and Stuhlmüller, 2012; Gmy-
trasiewicz and Doshi, 2005).

Secondly, instead of tracking the full tree of pos-
sible observation histories, we maintain a point es-
timate b̄ of the other agent’s beliefs, which we
term the expected belief state. Rather than track-
ing each possible observation/action history of the

other agent, at each time step we marginalize out
the observations they could have received. Figure 4
compares this approach with exact belief update.

Thirdly, we assume that the other agent acts ac-
cording to a variant of the QMDP approximation
(Littman et al., 1995). Under this approximation, the
other agent solves a fully-observable MDP version
of the ListenerBot POMDP, yielding an MDP pol-
icy π̄ : S→ A. This critically allows us to approxi-
mate the other agent’s belief update using a specially
formed POMDP, which we detail next.

State Space To construct the approximate single-
agent POMDP from the full Dec-POMDP problem,
we formulate the state space as S× S. (See Figure
3(c) for the influence diagram.) We write a state
(s, s̄) ∈ S× S, where s is DialogBot’s beliefs about
the true state of the world, and s̄ is DialogBot’s esti-
mate of the other agent’s beliefs.

Transition Distribution The main difficulty
in constructing the approximate single-agent
POMDP is specifying the transition distribu-
tion T ((s′, s̄′)|a,(s, s̄)). To address this, we
break this distribution into two components:
T ((s′, s̄′)|a,(s, s̄)) = T̄ (s̄′|s′,a,(s, s̄))T (s′|a,s, s̄).
The first term dictates how DialogBot updates its
beliefs about the other agent’s beliefs:

T̄ (s̄′|s′,a,(s, s̄)) = Pr(s̄′|s′,a,(s, s̄))

= ∑
ō∈O

Pr(s̄′|a, ō, s̄,s)Pr(ō|s′,a, π̄(s̄))

= ∑
ō∈O

(
Ω(ō|s̄′,a, π̄(s̄))T (s̄′|a, π̄(s̄), s̄)

∑s̄′′ Ω(ō|s̄′′,a, π̄(s̄))T (s̄′′|a, π̄(s̄), s̄)

×Ω(ō|s′,a, π̄(s̄))
)

We sum over all observations ō the other agent could
have received, updating our probability of s̄′ as Lis-
tenerBot would have, multiplied by the probability
that ListenerBot would have received that observa-
tion, Ω(ō|s′, π̄(s̄)). The QMDP approximation al-
lows us to simulate ListenerBot’s belief update in
T̄ (s̄′|s′,a,(s, s̄)). Exact belief update would require
access to b̄: by using π̄(s̄) we can estimate the action
that ListenerBot would have taken.

In cases where s̄ contradicts s such that for all ō ei-
ther Ω(ō|s′, π̄(s̄)) = 0 or Ω(ō|s̄′, π̄(s̄)) = 0, we redis-
tribute the belief mass uniformly: T̄ (s̄′|s′,a,(s, s̄)) ∝
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t+1
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t+2
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(a) Exact multi-agent belief tracking

b̄t
o1

o2
o1

o2

b̄t+1
o1

o2
o1

o2

b̄t+2

(b) Approximate multi-agent belief tracking

Figure 4: Exact multi-agent belief tracking compared with our approximate approach. Each node represents
a belief state. In exact tracking (a), the agent tracks every possible history of observations that its partner
could have received, which grows exponentially in time. In approximate update (b), the agent considers each
possible observation and then averages the resulting belief states, weighted by the probability the other agent
received that observation, resulting in a single summary belief state b̄t+1. Under the QMDP approximation,
the agent considers what action the other agent would have taken if it completely believed the world was in
a certain state. Thus, there are four belief states resulting from b̄t , as opposed to two in the exact case.

1 ∀s̄′ 6= s̄. This approach to managing contradiction
is analogous to logical belief revision (Alchourronón
et al., 1985; Gärdenfors, 1988; Fermé and Hansson,
2011).

Speech Actions Speech actions are modeled by
how they change the beliefs of the other agent.
The effects of a speech actions are modeled in
T̄ (s̄′|s′,a,(s, s̄)), our model of how ListenerBot’s be-
liefs change. For a speech action a = say(σ) with
σ ∈ Σ,

T̄ (s̄′|s′,a,(s, s̄)) =

∑
ō∈O

(
Ω(ō|s̄′,a, π̄(s̄))Pr(σ |s̄′)T (s̄′|a, π̄(s̄), s̄)

∑s̄′′ Ω(ō|s̄′′,a, π̄(s̄))Pr(σ |s̄′′)T (s̄′′|a, π̄(s̄), s̄)

×Ω(ō|s′,a, π̄(s̄))
)

DialogBot is equipped with the five most
frequent speech actions: BOARD(middle),
BOARD(top), BOARD(bottom), BOARD(left),
and BOARD(right). It produces concrete utterances
by selecting a sentence from the training corpus
with the desired semantics.

Reward DialogBot receives a large reward when
both it and its partner are located on the card, and a
negative cost when moving or speaking:

R((p,c, p̄, c̄),a) =

{
R+ p = c∧ p̄ = c
R− p 6= c∨ p̄ 6= c

DialogBot’s reward is not dependent on the beliefs
of the other player, only the true underlying state of
the world.

6 Experimental Results

We now experimentally evaluate our semantic clas-
sifiers and the agents’ task performance.

6.1 Spatial Semantics Classifiers

We report the performance of our spatial seman-
tics classifiers, although their accuracy is not the fo-
cus of this paper. We use 10-fold cross validation
on a corpus of 577 annotated utterances. We used
simple bag-of-words features, so overfitting the data
with cross validation is not a pressing concern. Of
the 577 utterances, our classifiers perfectly labeled
325 (56.3% accuracy). The classifiers correctly pre-
dicted the domain δ of 515 (89.3%) utterances. The
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precision of our binary semantic primitive classifiers
was 969

1126 = .861 and recall 969
1242 = .780, yielding F1

measure .818.

6.2 Cards Task Evaluation

We evaluated our ListenerBot and DialogBot agents
in the Cards task. Using 500 randomly generated
initial player and card locations, we tested each
combination of ListenerBot and DialogBot partners.
Agents succeeded at a given initial position if they
both reached the card within 50 moves. Table 2
shows how many trials each dyad won and how
many high-level actions they took to do so.

Agents % Success Moves

LB & LB 84.4% 19.8
LB & DB 87.2% 17.5
DB & DB 90.6% 16.6

Table 2: The evaluation for each combination of
agents. LB = ListenerBot; DB = DialogBot.

Collaborating DialogBots performed the best,
completing more trials and using fewer moves than
the ListenerBots. The DialogBots initially explore
the space in a similar manner to the ListenerBots,
but then share card location information. This leads
to shorter interactions, as once the DialogBot finds
the card, the other player can find it more quickly.
In the combination of ListenerBot and DialogBot,
we see about half of the improvement over two Lis-
tenerBots. Roughly 50% of the time, the Listener-
Bot finds the card first, which doesn’t help the Di-
alogBot find the card any faster.

7 Emergent Pragmatics

Grice’s original model of pragmatics (Grice, 1975)
involves the cooperative principle and four maxims:
quality (“say only what you know to be true”), rela-
tion (“be relevant”), quantity (“be as informative as
is required; do not say more than is required”), and
manner (roughly, be clear and concise).

In most interactions, DialogBot searches for the
card and then reports its location to the other agent.
These reports obey quality in that they are made only
when based on actual observations. The behavior
is not hard-coded, but rather emerges, because only

accurate information serves the agents’ goals. In
contrast, sub-optimal policies generated early in the
POMDP solving process sometimes lie about card
locations. Since this behavior confuses the other
agent and thus has a lower utility, it gets replaced
by truthful communication as the policies improve.

We also capture the effects of relation and the first
clause of quantity, because the nature of the reward
function and the nested belief structures ensure that
DialogBot offers only relevant, informative informa-
tion. For instance, when DialogBot finds the card in
the lower left corner, it alternates saying “left” and
“bottom”, effectively overcoming its limited gener-
ation capabilities. Again, early sub-optimal policies
sometimes do not report the location of the card at
all, thereby failing to fulfill these maxims.

We expect these models to produce behavior con-
sistent with manner and the second clause of quan-
tity, but evaluating this claim will require a richer ex-
perimental paradigm. For example, if DialogBot had
a larger and more structured vocabulary, it would
have to choose between levels of specificity as well
as more or less economical forms.

8 Conclusion

We have shown that cooperative pragmatic behavior
can arise from multi-agent decision-theoretic mod-
els in which the agents share a joint utility func-
tion and reason about each other’s belief states.
Decision-making in these models is intractable,
which has been a major obstacle to achieving exper-
imental results in this area. We introduced a series
of approximations to manage this intractability: (i)
combining low-level states into semantically coher-
ent high-level ones; (ii) tracking only an averaged
summary of the other agent’s potential beliefs; (iii)
limiting belief state nesting to one level, and (iv)
simplifying each agent’s model of the other’s be-
liefs so as to reduce uncertainty. These approxima-
tions bring the problems under sufficient control that
they can be solved with current POMDP approxi-
mation algorithms. Our experimental results high-
light the rich pragmatic behavior this gives rise to
and quantify the communicative value of such be-
havior. While there remain insights from earlier the-
oretical proposals and logic-based methods that we
have not fully captured, our current results support
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the notion that probabilistic decision-making meth-
ods can yield robust, widely applicable models that
address the real-world difficulties of partial observ-
ability and uncertainty.
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