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Abstract

Multi-task learning is the problem of maxi-
mizing the performance of a system across a
number of related tasks. When applied to mul-
tiple domains for the same task, it is similar to
domain adaptation, but symmetric, rather than
limited to improving performance on a target
domain. We present a more principled, better
performing model for this problem, based on
the use of a hierarchical Bayesian prior. Each
domain has its own domain-specific parame-
ter for each feature but, rather than a constant
prior over these parameters, the model instead
links them via a hierarchical Bayesian global
prior. This prior encourages the features to
have similar weights across domains, unless
there is good evidence to the contrary. We
show that the method of (Daumé III, 2007),
which was presented as a simple “prepro-
cessing step,” is actually equivalent, except
our representation explicitly separates hyper-
parameters which were tied in his work. We
demonstrate that allowing different values for
these hyperparameters significantly improves
performance over both a strong baseline and
(Daumé III, 2007) within both a conditional
random field sequence model for named en-
tity recognition and a discriminatively trained
dependency parser.

1 Introduction

The goal ofmulti-task learningis to improve perfor-
mance on a set of related tasks, when provided with
(potentially varying quantities of) annotated data for
each of the tasks. It is very closely related todomain
adaptation, a far more common task in the natural
language processing community, but with two pri-
mary differences. Firstly, in domain adaptation the

different tasks are actually just different domains.
Secondly, in multi-task learning the focus is on im-
proving performance acrossall tasks, while in do-
main adaptation there is a distinction betweensource
data andtargetdata, and the goal is to improve per-
formance on the target data. In the present work we
focus on domain adaptation, but like the multi-task
setting, we wish to improve performance acrossall
domains and not a singletargetdomains. The word
domainis used here somewhat loosely: it may refer
to a topical domain or to distinctions that linguists
might term mode (speech versus writing) or regis-
ter (formal written prose versus SMS communica-
tions). For example, one may have a large amount
of parsed newswire, and want to use it to augment
a much smaller amount of parsed e-mail, to build a
higher quality parser for e-mail data. We also con-
sider the extension to the task where the annotation
is not the same, but is consistent, across domains
(that is, some domains may be annotated with more
information than others).

This problem is important because it is omni-
present in real life natural language processing tasks.
Annotated data is expensive to produce and limited
in quantity. Typically, one may begin with a con-
siderable amount of annotated newswire data, some
annotated speech data, and a little annotated e-mail
data. It would be most desirable if the aggregated
training data could be used to improve the perfor-
mance of a system on each of these domains.

From the baseline of building separate systems
for each domain, the obvious first attempt at domain
adaptation is to build a system from the union of the
training data, and we will refer to this as a second
baseline. In this paper we propose a more principled,
formal model of domain adaptation, which not only
outperforms previous work, but maintains attractive
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performance characteristics in terms of training and
testing speed. We also show that the domain adapta-
tion work of (Daumé III, 2007), which is presented
as an ad-hoc “preprocessing step,” is actually equiv-
alent to our formal model. However, our representa-
tion of the model conceptually separates some of the
hyperparameters which are not separated in (Daumé
III, 2007), and we found that setting these hyperpa-
rameters with different values from one another was
critical for improving performance.

We apply our model to two tasks, named entity
recognition, using a linear chain conditional random
field (CRF), and dependency parsing, using a dis-
criminative, chart-based model. In both cases, we
find that our model improves performance over both
baselines and prior work.

2 Hierarchical Bayesian Domain
Adaptation

2.1 Motivation

We call our modelhierarchical Bayesian domain
adaptation, because it makes use of a hierarchical
Bayesian prior. As an example, take the case of
building a logistic classifier to decide if a word is
part of a person’s name. There will be a param-
eter (weight) for each feature, and usually there is
a zero-mean Gaussian prior over the parameter val-
ues so that they don’t get too large.1 In the stan-
dard, single-domain, case the log likelihood of the
data and prior is calculated, and the optimal pa-
rameter values are found. Now, let’s extend this
model to the case of two domains, one containing
American newswire and the other containing British
newswire. The data distributions will be similar for
the two domains, but not identical. In our model,
we have separate parameters for each feature in each
domain. We also have a top level parameter (also
to be learned) for each feature. For each domain,
the Gaussian prior over the parameter values is now
centered around these top level parameters instead
of around zero. A zero-mean Gaussian prior is then
placed over the top level parameters. In this ex-
ample, if some feature, sayword=‘Nigel,’ only ap-
pears in the British newswire, the corresponding
weight for the American newswire will have a sim-
ilar value. This happens because the evidence in
the British domain will push the British parameter

1This can be regarded as a Bayesian prior or as weight reg-
ularization; we adopt the former perspective here.

to have a high value, and this will in turn influence
the top-level parameter to have a high value, which
will then influence the American newswire to have
a high value, because there will be no evidence in
the American data to override the prior. Conversely,
if some feature is highly indicative ofisName=true
for the British newswire, and ofisName=falsefor
the American newswire, then the British parameter
will have a high (positive) value while the American
parameter will have a low (negative) value, because
in both cases the domain-specific evidence will out-
weigh the effect of the prior.

2.2 Formal Model

Our domain adaptation model is based on a hierar-
chical Bayesian prior, through which the domain-
specific parameters are tied. The model is very
general-purpose, and can be applied to any discrim-
inative learning task for which one would typically
put a prior with a mean over the parameters. We will
build up to it by first describing a general, single-
domain, discriminative learning task, and then we
will show how to modify this model to construct
our hierarchical Bayesian domain adaptation model.
In a typical discriminative probabilistic model, the
learning process consists of optimizing the log con-
ditional likelihood of the data with respect to the pa-
rameters,Lorig(D ;θ). This likelihood function can
take on many forms: logistic regression, a condi-
tional Markov model, a conditional random field, as
well as others. It is common practice to put a zero-
mean Gaussian prior over the parameters, leading to
the following objective, for which we wish to find
the optimal parameter values:

argmax
θ

(
Lorig(D ;θ)−∑

i

θ2
i

2σ2

)
(1)

From a graphical models perspective, this looks like
Figure 1(a), whereµ is the mean for the prior (in our
case, zero),σ2 is the variance for the prior,θ are the
parameters, or feature weights, andD is the data.
Now we will extend this single-domain model into
a multi-domain model (illustrated in Figure 1(b)).
Each feature weightθi is replicated once for each
domain, as well as for a top-level set of parame-
ters. We will refer to the parameters for domain
d as θd, with individual componentsθd,i , the top-
level parameters asθ∗, and all parameters collec-
tively as θ . All of the power of our model stems
from the relationship between these sets of param-
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Figure 1:(a) No domain adaptation. The model parameters,θ , are normally distributed, with meanµ (typically zero)
and varianceσ2. The likelihood of the data,D , is dependent on the model parameters. The form of the data distribution
depends on the underlying model (e.g., logistic regression, or a CRF).(b) Our hierarchical domain adaptation model.
The top-level parameters,θ∗, are normally distributed, with meanµ (typically zero) and varianceσ2

∗ . There is a plate
for each domain. Within each plate, the domain-specific parameters,θd are normally distributed, with meanθ∗ and
varianceσ2

d . (c) Our hierarchical domain adaptation model, with an extra level of structure. In this example, the
domains are further split into text and speech super-domains, each of which has its own set of parameters (θtxt andσtxt

for text andθsp andσsp for speech).θd is normally distributed with meanθtxt if domaind is in the text super-domain,
andθsp if it is in the speech super-domain.

eters. First, we place a zero-mean Gaussian prior
over the top level parametersθ∗. Then, these top
level parameters are used as the mean for a Gaussian
prior placed over each of the domain-specific param-
etersθd. These domain-specific parameters are then
the parameters used in the original conditional log
likelihood functions for each domain. The domain-
specific parameter values jointly influence an appro-
priate value for the higher-level parameters. Con-
versely, the higher-level parameters will largely de-
termine the domain-specific parameters when there
is little or no evidence from within a domain, but can
be overriden by domain-specific evidence when it
clearly goes against the general picture (for instance
Leedsis normally alocation, but within thesports
domain is usually anorganization(football team)).

The beauty of this model is that the degree of in-
fluence each domain exerts over the others, for each
parameter, is based on the amount of evidence each
domain has about that parameter. If a domain has
a lot of evidence for a feature weight, then that evi-
dence will outweigh the effect of the prior. However,
when a domain lacks evidence for a parameter the
opposite occurs, and the prior (whose value is deter-
mined by evidence in the other domains) will have a

greater effect on the parameter value.
To achieve this, we modify the objective func-

tion. We now sum over the log likelihood for all do-
mains, including a Gaussian prior for each domain,
but which is now centered aroundθ∗, the top-level
parameters. Outside of this summation, we have a
Gaussian prior over the top-level parameters which
is identical to the prior in the original model:

Lhier(D ;θ) = (2)

∑
d

(
Lorig(Dd;θd)−∑

i

(θd,i −θ∗,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗

whereσ2
d and σ2

∗ are variances on the priors over
the parameters for all the domains, as well as the
top-level parameters. The graphical models repre-
sentation is shown in Figure 1(b).

One potential source of confusion is with respect
to the directed or undirected nature of our domain
adaptation model, and the underlying model of the
data. Our hierarchical Bayesian domain adaptation
model isdirected, as illustrated in Figure 1. How-
ever, somewhat counterintuitively, the underlying
(original) model of the data can be eitherdirected
or undirected, and for our experiments we use undi-
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rected, conditional random field-based models. The
directed domain adaptation model can be viewed
as a model of the parameters, and those parameter
weights are used by the underlying data model. In
Figure 1, the entire data model is represented by a
single node,D , conditioned on the parameters,θ or
θd. The form of that model can then be almost any-
thing, including an undirected model.

From an implementation perspective, the objec-
tive function is not much more difficult to implement
than the original single-domain model. For all of our
experiments, we optimized the log likelihood using
L-BFGS, which requires the function value and par-
tial derivatives of each parameter. The new partial
derivatives for the domain-specific parameters (but
not the top-level parameters) utilize the same par-
tial derivatives as in the original model. The only
change in the calculations is with respect to the pri-
ors. The partial derivatives for the domain-specific
parameters are:

∂Lhier(D ;θ)
∂θd,i

=
∂Ld(Dd,θd)

∂θd,i
− θd,i −θ∗,i

σ2
d

(3)

and the derivatives for the top level parametersθ∗
are:

∂Lhier(D ;θ)
∂θ∗,i

=

(
∑
d

θ∗,i −θd,i

σ2
d

)
− θ∗,i

σ2∗
(4)

This function is convex. Once the optimal param-
eters have been learned, the top level parameters
can be discarded, since the runtime model for each
domain is the same as the original (single-domain)
model, parameterized by the parameters learned for
that domain in the hierarchical model. However, it
may be useful to retain the top-level parameters for
use in adaptation to further domains in the future.

In our model there ared extra hyper-parameters
which can be tuned. These are the variancesσ2

d for
each domain. When this value is large then the prior
has little influence, and when set high enough will be
equivalent to training each model separately. When
this value is close to zero the prior has a strong in-
fluence, and when it is sufficiently close to zero then
it will be equivalent to completely tying the param-
eters, such thatθd1,i = θd2,i for all domains. Despite
having many more parameters, for both of the tasks
on which we performed experiments, we found that
our model did not take much more time to train that
a baseline model trained on all of the data concate-
nated together.

2.3 Model Generalization

The model as presented thus far can be viewed
as a two level tree, with the top-level parameters
at the root, and the domain-specific ones at the
leaves. However, it is straightforward to generalize
the model to any tree structure. In the generalized
version, the domain-specific parameters would still
be at the leaves, the top-level parameters at the root,
but new mid-level parameters can be added based
on beliefs about how similar the various domains
are. For instance, if one had four datasets, two of
which contained speech data and two of which con-
tained newswire, then it might be sensible to have
two sets of mid-level parameters, one for the speech
data and one for the newswire data, as illustrated in
Figure 1(c). This would allow the speech domains
to influence one another more than the newswire do-
mains, and vice versa.

2.4 Formalization of (Daumé III, 2007)

As mentioned earlier, our model is equivalent to that
presented in (Daumé III, 2007), and can be viewed
as a formal version of his model.2 In his presenta-
tion, the adapation is done through feature augmen-
tation. Specifically, for each feature in the original
version, a new version is created for each domain, as
well as a general, domain-independent version of the
feature. For each datum, two versions of each orig-
inal feature are present: the version for that datum’s
domain, and the domain independent one.

The equivalence between the two models can be
shown with simple arithmetic. Recall that the log
likelihood of our model is:

∑
d

(
Lorig(Dd;θd)−∑

i

(θd,i −θ∗,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗
We now introduce a new variableψd = θd −θ∗, and
plug it into the equation for log likelihood:

∑
d

(
Lorig(Dd;ψd + θ∗)−∑

i

(ψd,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗
The result is the model of (Daumé III, 2007), where
theψd are the domain-specific feature weights, and
θd are the domain-independent feature weights. In
his formulation, the variancesσ2

d = σ2
∗ for all do-

mainsd.
This separation of the domain-specific and inde-

pendent variances was critical to our improved per-
formance. When using a Gaussian prior there are

2Many thanks to David Vickrey for pointing this out to us.
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two parameters set by the user: the mean,µ (usu-
ally zero), and the variance,σ2. Technically, each
of these parameters is actually a vector, with an en-
try for each feature, but almost always the vectors
are uniform and the same parameter is used for each
feature (there are exceptions, e.g. (Lee et al., 2007)).
Because Daumé III (2007) views the adaptation as
merely augmenting the feature space, each of his
features has the same prior mean and variance, re-
gardless of whether it is domain specific or indepen-
dent. He could have set these parameters differently,
but he did not.3 In our presentation of the model,
we explicitly represent different variances for each
domain, as well as the top level parameters. We
found that specifying different values for the domain
specific versus domain independent variances sig-
nificantly improved performance, though we found
no gains from using different values for the differ-
ent domain specific variances. The values were set
based on development data.

3 Named Entity Recognition

For our first set of experiments, we used a linear-
chain, conditional random field (CRF) model,
trained for named entity recognition (NER). The use
of CRFs for sequence modeling has become stan-
dard so we will omit the model details; good expla-
nations can be found in a number of places (Lafferty
et al., 2001; Sutton and McCallum, 2007). Our fea-
tures were based on those in (Finkel et al., 2005).

3.1 Data

We used three named entity datasets, from the
CoNLL 2003, MUC-6 and MUC-7 shared tasks.
CoNLL is British newswire, while MUC-6 and
MUC-7 are both American newswire. Arguably
MUC-6 and MUC-7 should not count as separate
domains, but because they were annotated sepa-
rately, for different shared tasks, we chose to treat
them as such, and feel that our experimental results
justify the distinction. We used the standard train
and test sets for each domain, which for CoNLL cor-
responds to the (more difficult) testb set. For details
about the number of training and test words in each
dataset, please see Table 1.

One interesting challenge in dealing with both
CoNLL and MUC data is that the label sets differ.

3Although he alludes to the potential for something similar
in the last section of his paper, when discussing the kerneliza-
tion interpretation of his approach.

# Train # Test
Words Words

MUC-6 165,082 15,032
MUC-7 89,644 64,490
CoNLL 203,261 46,435

Table 1: Number of words in the training and test sets for
each of the named entity recognition datasets.

CoNLL has four classes:person, organization, lo-
cation, andmisc. MUC data has seven classes:per-
son, organization, location, percent, date, time, and
money. They overlap in the three core classes (per-
son, organization, and location), but CoNLL has
one additional class and MUC has four additional
classes.

The differences in the label sets led us to perform
two sets of experiments for the baseline and hier-
archical Bayesian models. In the first set of exper-
iments, at training time, the model allows any la-
bel from the union of the label sets, regardless of
whether that label was legal for the domain. At test
time, we would ignore guesses made by the model
which were inconsistent with the allowed labels for
that domain.4 In the second set of experiments, we
restricted the model at training time to only allow
legal labels for each domain. At test time, the do-
main was specified, and the model was once again
restricted so that words would never be tagged with
a label outside of that domain’s label set.

3.2 Experimental Results and Discussion

In our experiments, we compared our model to sev-
eral strong baselines, and the full set of results is in
Table 2. The models we used were:

TARGET ONLY. Trained and tested on only the data
for that domain.

ALL DATA . Trained and tested on data from all do-
mains, concatenated into one large dataset.

ALL DATA *. Same as ALL DATA , but restricted
possible labels for each word based on domain.

DAUME07. Trained and tested using the same tech-
nique as (Daumé III, 2007). We note that they
present results using per-token label accuracy,
while we used the more standard entity preci-
sion, recall, and F score (as in the CoNLL 2003
shared task).

4We treated them identically to the background symbol. So,
for instance, labelling a word adatein the CoNLL data had no
effect on the score.

606



Named Entity Recognition
Model Precision Recall F1

MUC-6
TARGET ONLY 86.74 80.10 83.29
ALL DATA * 85.04 83.49 84.26
ALL DATA 86.00 82.71 84.32
DAUME07* 87.83 83.41 85.56
DAUME07 87.81 82.23 85.46
HIER BAYES* 88.59 84.97 86.74
HIER BAYES 88.77 85.14 86.92

MUC-7
TARGET ONLY 81.17 70.23 75.30
ALL DATA * 81.66 76.17 78.82
ALL DATA 82.20 70.91 76.14
DAUME07* 83.33 75.42 79.18
DAUME07 83.51 75.63 79.37
HIER BAYES* 82.90 76.95 79.82
HIER BAYES 83.17 77.02 79.98

CoNLL
TARGET ONLY 85.55 84.72 85.13
ALL DATA * 86.34 84.45 85.38
ALL DATA 86.58 83.90 85.22
DAUME07* 86.09 85.06 85.57
DAUME07 86.35 85.26 85.80
HIER BAYES* 86.33 85.06 85.69
HIER BAYES 86.51 85.13 85.81

Table 2: Named entity recognition results for each of the
models. With the exception of the TARGET ONLY model,
all three datasets were combined when training each of
the models.

DAUME07*. Same as DAUME07, but restricted
possible labels for each word based on domain.

HIER BAYES. Our hierarchical Bayesian domain
adaptation model.

HIER BAYES*. Same as HIER BAYES, but re-
stricted possible labels for each word based on
the domain.

For all of the baseline models, and for the top
level-parameters in the hierarchical Bayesian model,
we usedσ = 1. For the domain-specific parameters,
we usedσd = 0.1 for all domains.

The HIER BAYES model outperformed all base-
lines for both of the MUC datasets, and tied with
the DAUME07 for CoNLL. The largest improvement
was on MUC-6, where HIER BAYES outperformed
DAUME07*, the second best model, by 1.36%. This
improvement is greater than the improvement made
by that model over the ALL DATA * baseline. To as-
sess significance we used a document-level paired
t-test (over all of the data combined), and found that

HIER BAYES significantly outperformed all of the
baselines (not including HIER BAYES*) with greater
than 95% confidence.

For both the HIER BAYES and DAUME07 mod-
els, we found that performance was better for the
variant which did not restrict possible labels based
on the domain, while the ALL DATA model did ben-
efit from the label restriction. For HIER BAYES and
DAUME07, this result may be due to the structure
of the models. Because both models have domain-
specific features, the models likely learned that these
labels were never actually allowed. However, when
a feature does not occur in the data for a particular
domain, then the domain-specific parameter for that
feature will have positive weight due to evidence
present in the other domains, which at test time can
lead to assigning an illegal label to a word. This
information that a word may be of some other (un-
known to that domain) entity type may help prevent
the model from mislabeling the word. For example,
in CoNLL, nationalities, such asIraqi and Ameri-
can, are labeled asmisc. If a previously unseen na-
tionality is encountered in the MUC testing data, the
MUC model may be tempted to label is as alocation,
but this evidence from the CoNLL data may prevent
that, by causing it to instead be labeledmisc, a label
which will subsequently be ignored.

In typical domain adaptation work, showing gains
is made easier by the fact that the amount of train-
ing data in thetargetdomain is comparatively small.
Within the multi-task learning setting, it is more
challenging to show gains over the ALL DATA base-
line. Nevertheless, our results show that, so long as
the amount of data in each domain is not widely dis-
parate, it is possible to achieve gains on all of the
domains simultaneously.

4 Dependency Parsing

4.1 Parsing Model

We also tested our model on an untyped dependency
parsing task, to see how it performs on a more struc-
turally complex task than sequence modeling. To
our knowledge, the discriminatively trained depen-
dency model we used has not been previously pub-
lished, but it is very similar to recent work on dis-
criminative constituency parsing (Finkel and Man-
ning, 2008). Due to space restrictions, we cannot
give a complete treatment of the model, but will give
an overview.
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We built a CRF-based model, optimizing the like-
lihood of the parse, conditioned on the words and
parts of speech of the sentence. At the heart of
our model is the Eisner dependency grammar chart-
parsing algorithm (Eisner, 1996), which allows for
efficient computation of inside and outside scores.
The Eisner algorithm, originally designed for gen-
erative parsing, decomposes the probability of a de-
pendency parse into the probabilities of each attach-
ment of a dependent to its parent, and the proba-
bilities of each parent stopping taking dependents.
These probabilities can be conditioned on the child,
parent, and direction of the dependency. We used
a slight modification of the algorithm which allows
each probability to also be conditioned on whether
there is a previous dependent. While the unmodified
version of the algorithm includes stopping probabil-
ities, conditioned on the parent and direction, they
have no impact on which parse for a particular sen-
tence is most likely, because all words must eventu-
ally stop taking dependents. However, in the modi-
fied version, the stopping probability is also condi-
tioned on whether or not there is a previous depen-
dent, so this probability does make a difference.

While the Eisner algorithm computes locally nor-
malized probabilities for each attachment decision,
our model computes unnormalized scores. From
a graphical models perspective, our parsing model
is undirected, while the original model is directed.5

The score for a particular tree decomposes the same
way in our model as in the original Eisner model,
but it is globally normalized instead of locally nor-
malized. Using the inside and outside scores we can
compute partial derivatives for the feature weights,
as well as the value of the normalizing constant
needed to determine the probability of a particular
parse. This is done in a manner completely analo-
gous to (Finkel and Manning, 2008). Partial deriva-
tives and the function value are all that is needed to
find the optimal feature weights using L-BFGS.6

Features are computed over each attachment and
stopping decision, and can be conditioned on the

5The dependencies themselves are stilldirected in both
cases, it is just the underlying graphical model used to compute
the likelihood of a parse which changes from a directed model
to an undirected model.

6In (Finkel and Manning, 2008) we used stochastic gradient
descent to optimize our weights because our function evaluation
was too slow to use L-BFGS. We did not encounter this problem
in this setting.

parent, dependent (or none, if it is a stopping deci-
sion), direction of attachment, whether there is a pre-
vious dependent in that direction, and the words and
parts of speech of the sentence. We used the same
features as (McDonald et al., 2005), augmented with
information about whether or not a dependent is the
first dependent (information they did not have).

4.2 Data

For our dependency parsing experiments, we used
LDC2008T04 OntoNotes Release 2.0 data (Hovy
et al., 2006). This dataset is still in development,
and includes data from seven different domains, la-
beled for a number of tasks, including PCFG trees.
The domains span both newswire and speech from
multiple sources. We converted the PCFG trees
into dependency trees using the Collins head rules
(Collins, 2003). We also omitted the WSJ portion
of the data, because it follows a different annotation
scheme from the other domains.7 For each of the
remaining six domains, we aimed for an 75/25 data
split, but because we divided the data using the pro-
vided sections, this split was fairly rough. The num-
ber of training and test sentences for each domain
are specified in the Table 3, along with our results.

4.3 Experimental Results and Discussion

We compared the same four domain adaptation
models for dependency parsing as we did for the
named entity experiments, once again settingσ =
1.0 andσd = 0.1. Unlike the named entity experi-
ments however, there were no label set discrepencies
between the domains, so only one version of each
domain adaptation model was necessary, instead of
the two versions in that section.

Our full dependency parsing results can be found
in Table 3. Firstly, we found that DAUME07, which
had outperformed the ALL DATA baseline for the
sequence modeling task, performed worse than the

7Specifically, all the other domains use the “new” Penn
Treebank annotation style, whereas the WSJ data is still in the
“traditional” annotation style, familiar from the past decade’s
work in Penn Treebank parsing. The major changes are in
hyphenation and NP structure. In the new annotation style,
many hyphenated words are separated into multiple tokens, with
a new part-of-speech tag given to the hyphens, and leftward-
branching structure inside noun phrases is indicated by useof
a new NML phrasal category. The treatment of hyphenated
words, in particular, makes the two annotation styles inconsis-
tent, and so we could not work with all the data together.
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Dependency Parsing
Training Testing TARGET ALL HIER

Range # Sent Range # Sent ONLY DATA DAUME07 BAYES

ABC 0–55 1195 56–69 199 83.32% 88.97% 87.30% 88.68%
CNN 0–375 5092 376–437 1521 85.53% 87.09% 86.41%87.26%
MNB 0–17 509 18–25 245 77.06% 86.41% 84.70%86.71%
NBC 0–29 552 30–39 149 76.21% 85.82% 85.01% 85.32%
PRI 0–89 1707 90–112 394 87.65% 90.28% 89.52%90.59%
VOA 0–198 1512 199–264 383 89.17%92.11% 90.67% 92.09%

Table 3: Dependency parsing results for each of the domain adaptation models. Performance is measured as unlabeled
attachment accuracy.

baseline here, indicating that the transfer of infor-
mation between domains in the more structurally
complicated task is inherently more difficult. Our
model’s gains over the ALL DATA baseline are
quite small, but we tested their significance using a
sentence-level paired t-test (over all of the data com-
bined) and found them to be significant atp< 10−5.
We are unsure why some domains improved while
others did not. It is not simply a consequence of
training set size, but may be due to qualities of the
domains themselves.

5 Related Work

We already discussed the relation of our work to
(Daumé III, 2007) in Section 2.4. Another piece of
similar work is (Chelba and Acero, 2004), who also
modify their prior. Their work is limited to two do-
mains, a source and a target, and their algorithm has
a two stage process: First, train a classifier on the
source data, and then use the learned weights from
that classifier as the mean for a Gaussian prior when
training a new model on just the target data.

Daumé III and Marcu (2006) also took a Bayesian
approach to domain adaptation, but structured their
model in a very different way. In their model, it is
assumed that each datum within a domain is either a
domain-specific datum, or a general datum, and then
domain-specific and general weights were learned.
Whether each datum is domain-specific or general
is not known, so they developed an EM based algo-
rithm for determining this information while simul-
taneously learning the feature weights. Their model
had good performance, but came with a 10 to 15
times slowdown at training time. Our slowest de-
pendency parser took four days to train, making this
model close to infeasible for learning on that data.

Outside of the NLP community there has been
much similar work making use of hierarchical

Bayesian priors to tie parameters across multiple,
similar tasks. Evgeniou et al. (2005) present a sim-
ilar model, but based on support vector machines,
to predict the exam scores of students. Elidan et
al. (2008) make us of anundirectedBayesian trans-
fer hierarchy to jointly model the shapes of differ-
ent mammals. The complete literature on related
multi-task learning is too large to fully discuss here,
but we direct the reader to (Baxter, 1997; Caruana,
1997; Yu et al., 2005; Xue et al., 2007). For a more
general discussion of hierarchical priors, we recom-
mend Chapter 5 of (Gelman et al., 2003) and Chap-
ter 12 of (Gelman and Hill, 2006).

6 Conclusion and Future Work

In this paper we presented a new model for domain
adaptation, based on a hierarchical Bayesian prior,
which allows information to be shared between do-
mains when information is sparse, while still allow-
ing the data from a particular domain to override the
information from other domains when there is suf-
ficient evidence. We outperformed previous work
on a sequence modeling task, and showed improve-
ments on dependency parsing, a structurally more
complex problem, where previous work failed. Our
model is practically useful and does not require sig-
nificantly more time to train than a baseline model
using the same data (though it does require more
memory, proportional to the number of domains). In
the future we would like to see if the model could be
adapted to improve performance on data from a new
domain, potentially by using the top-level weights
which should be less domain-dependent.
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