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Abstract

Voice search is increasingly popular, espe-
cially for local business directory assistance.
However, speech recognition accuracy on
business listing names is still low, leading to
user frustration. In this paper, we present a
new algorithm for geo-centric language model
generation for local business voice search for
mobile users. Our algorithm has several ad-
vantages: it provides a language model for
any user in any location; the geographic area
covered by the language model is adapted to
the local business density, giving high recog-
nition accuracy; and the language models can
be pre-compiled, giving fast recognition time.
In an experiment using spoken business list-
ing name queries from a business directory
assistance service, we achieve a 16.8% abso-
lute improvement in recognition accuracy and
a 3-fold speedup in recognition time with geo-
centric language models when compared with
a nationwide language model.

1 Introduction

Voice search is an increasingly popular application
of speech recognition to telephony. In particular,
in the last two years several companies have come
out with systems for local business voice search
(LBVS). In this type of application, the user pro-
vides a desired location (city/state) and a business
name, and the system returns one or more match-
ing business listings. The most traditional LBVS
applications are commercial 411 services, which are
implemented as a speech-only two-exchange dialog
such as the one in Figure 1. In this approach to

LBVS, the speech recognizer (ASR) uses one gram-
mar to recognize city/state, and then uses separate
grammars for recognizing listings in each local area.
This gives relatively high recognition accuracy.

Advancements in ASR and search technology
have made a more information retrieval-style LBVS
feasible. In this approach, the ASR typically uses
a large stochastic language model that permits the
user to specify location and listing name or cate-
gory together in a single utterance, and then sub-
mits recognition results to a search engine (Natara-
jan et al., 2002). This gives the user more flexibility
to “say anything at any time”. However, in recent
evaluations of one-exchange LBVS we have found
that locations are recognized with much higher ac-
curacy than listing names1. This may mean that the
user has to repeat both location and listing several
times (while in a traditional two-exchange interac-
tion only one piece of information would have to be
repeated). In effect, system developers have traded
recognition accuracy for interaction flexibility, po-
tentially increasing user frustration.

Advances in mobile phone technology make it
possible for us to combine the advantages of two-
exchange and one-exchange LBVS. The newest
smart phones come with global positioning system
(GPS) receivers and/or with the ability to determine
location through cell tower triangulation or wi-fi. If
we know the location of a LBVS user, we can use
a geo-centric language model to achieve improved
speech recognition accuracy and speed. This ap-
proach unobtrusively exploits the benefits of two-

1The vocabulary size for listing names is larger than that for
cities and states in the USA.
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S City and state?
U Glendale California
S What listing?
U pizza

Figure 1: Example 411-search dialog

exchange voice search applications, while maintain-
ing the flexibility of one-exchange systems.

In this paper, we present an efficient algorithm
for constructing geo-centric language models from
a business listing database and local business search
logs. Our algorithm has several advantages: it pro-
vides a language model for any user in any location;
the geographic area covered by the language model
is adapted to the local business density, giving high
recognition accuracy; and the language models can
be pre-compiled, giving fast recognition time. In
an experiment using LBVS queries, we achieve: a
16.8% absolute improvement in recognition accu-
racy and a 3-fold speedup in recognition time with
geo-centric language models when compared with a
nationwide language model (such as those used in
one-exchange LBVS); and a 4.4% absolute increase
in recognition accuracy and a 16% speedup in recog-
nition time with geo-centric language models when
compared with local area language models (such as
those used in two-exchange LBVS).

The rest of this paper is structured as follows: In
Section 2 we discuss related work on voice-driven
local search. In Section 3 we present the motivation
for and architecture of a LBVS application. In Sec-
tion 4 we present our algorithm for generating geo-
centric language models. In Section 5 we describe
an evaluation of the performance of our geo-centric
language models on business listing name queries
from a deployed voice-driven search application. In
Section 6 we conclude and present future work.

2 Related Work

LBVS is the most recent variation on automated di-
rectory assistance (Buntschuh et al., 1998). ASR
for directory assistance is difficult for several rea-
sons: the vocabulary is large and includes foreign
words; there may be multiple possible pronuncia-
tions for many words; and the frequency distribu-
tion of words in the vocabulary is unusual, with a
few words occurring very often and the rest, rarely.
These difficulties are compounded by directory size.

For example, Kamm et al. (1995), in experiments
on personal name directories, showed that ASR ac-
curacy decreases from 82% for a 200 name directory
to 16.5% for a 1.5 million name directory.

One way to reduce the directory size is to cover a
smaller geographic area. For example, early LBVS
covered only one city (Seide and Kellner, 1997;
Collingham et al., 1997). Later, two-exchange, ap-
plications required the user to specify their desired
location in the first exchange. This information was
then used to select a local area grammar or language
model for recognition of the listing name (Acero et
al., 2008; Bacchiani et al., 2008; Yu et al., 2007;
Georgila et al., 2003). In our research, we have cre-
ated a novel method for constructing language mod-
els that cover a very small geographic area specific
to the user’s geo-location.

Another way to reduce the directory size is to drop
listings that are unlikely to be requested. For exam-
ple, Kamm et al. (1995), in their analysis of 13,000
directory assistance calls, found that a mere 245 list-
ings covered 10% of the call volume, and 870 list-
ings covered 20%. Chang et al. (2008) found that in
their data sets, 19-25% of the call volume was cov-
ered by the top 200 listings. We take a different ap-
proach: we add frequent nationwide listings to our
geo-centric language models to increase coverage.

Other work related to ASR in automated direc-
tory assistance has looked at ways in which users
refer to locations (Gupta et al., 1998) and listings
(Li et al., 2008; Scharenborg et al., 2001; Yu et al.,
2007), confidence scoring for directory assistance
search results (Wang et al., 2007), and ways of han-
dling recognition errors through multimodal confir-
mation and correction (Acero et al., 2008; Chang et
al., 2008; Paek et al., 2008). We do not address these
issues here.

3 Local Business Voice Search

The current generation of smart phones contains
GPS and/or can run applications that can detect the
user’s geo-location using cell tower triangulation or
wi-fi. We hypothesize that this geo-location infor-
mation can be used in mobile LBVS to improve
recognition accuracy without sacrificing interaction
flexibility. Our analysis of a directory assistance
data set shows that in the majority of cases, users
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Figure 2: Architecture of a voice-driven local search ap-
plication

request local listings. It is frustrating for the user of
a LBVS who cannot retrieve information for a busi-
ness right around the corner. So, a LBVS should
maximize accuracy for local listings2.

Figure 2 shows the architecture of a mobile
LBVS. It includes ASR (in a speech-only or multi-
modal interface), search, and presentation of results
(through speech, text and/or graphics). It also in-
cludes location information from GPS, cell tower tri-
angulation or wi-fi, or the user’s query history (from
previous dialogs, or previous turns in this dialog).

4 Using Location to Tailor Language
Models

There are two ways to use geo-location informa-
tion in ASR for LBVS. One way is to use the user’s
geo-location to automatically determine the nearest
city. City and state can then be used to select a lo-
cal area language model (LM) for recognizing list-
ing names. The advantages of this approach include:
human knowledge about location can be included in
the design of the local areas; and local areas can be

2Of course, a LBVS should also give the user the option of
specifying a different location, and/or should be able to recog-
nize listings users are most likely to ask for that may not exist
in their local area.

designed to produce a minimal number of local area
LMs. However, if the user is near the edge of the
pre-defined local area, the selected LM may exclude
businesses close to the user and include businesses
far away from the user. Also, some local area LMs
contain many more directory listings than others.

Another way is to construct a geo-centric LM
covering businesses in a given radius around the
user’s geo-location. This approach has the advan-
tage that listings included in the language model
will certainly be close to the user. However, on-
the-fly computation of geo-centric language models
for large numbers of users is too computationally
demanding given current database and processing
technology. It is equally impractical to pre-compile
all possible geo-centric language models, since com-
mercial GPS provides coordinates accurate to about
20 feet. Here we present an algorithm for approxi-
mating true geo-centric language modeling in a way
that is computationally feasible and user relevant.

4.1 Local Area Language Models

Telecommunications companies have long under-
stood that customers may not know the exact town
in which a desired listing is, or may be interested in
listings from several nearby towns. Considerable ef-
fort has been devoted to defining local service areas
(LSAs) for telephone directories. In the directory
service that provided the database we use, business
listings are organized into about 2000 LSAs, each
consisting either of several adjacent small towns or
of one big city. For example, the Morristown, NJ
LSA includes Morristown itself as well as 53 ad-
jacent localities and neighborhoods spanning from
Pine Brook in the north-east to Mendham in the
south-west. By contrast, the New York, NY LSA
contains only New York City, which includes sev-
eral hundred neighborhoods. The Morristown, NJ
LSA contains 50000 business listings while the New
York, NY LSA contains more than 200000 listings.

We construct one LM for each LSA, giving
roughly 2000 local area LMs for the whole of the
USA.

4.2 Geo-Centric Language Models

To construct a a geo-centric LM for a user, we need
geo-coordinates (for the center of the LM) and a
search radius (to determine the extent of the LM). It

391



Figure 3: Geo-centric areas in New York City

is computationally infeasible to either pre-compute
geo-centric LMs for each uniquely identifiable set
of geo-coordinates in the USA, or to compute them
on-the-fly for large numbers of users. Fortunately,
the number of business geo-coordinates in the USA
is much sparser than the number of possible user
geo-coordinates. There are about 17 million name-
address unique businesses in the USA; assuming 8-
digit geo-code accuracy they are located at about 8.5
million unique geo-coordinates3. So we build LMs
for business geo-coordinates rather than user geo-
coordinates, and at run-time we map a user’s geo-
coordinates to those of their closest business.

To determine the search radius, we need a work-
ing definition of “local listing”. However, “local”
varies depending on one’s location. In New York
City, a local listing may be one up to ten blocks
away (covering a smaller geographic area than the
LSA), while in Montana a local listing may be one
that one can drive to in 45 minutes (covering a larger
geographic area than the LSA). Compare Figures 3
and 4. “Local” is clearly related to business den-
sity at a particular location. So we compute business
density and use this to determine the radius of our
geo-centric LMs.

We can do even better than this, however. Busi-
nesses are clustered geographically (in towns, shop-
ping malls, etc.). This means that the set of listings
local to one business is likely to be very similar to
the set of listings local to a nearby business. So we
do not need to build a separate LM for each business
listing; instead, we can pre-determine the number of
businesses we want to be different from one LM to
another. Then we can “quantize” the business geo-

3The area of the USA with the highest business density is
New York, NY, where about 270000 businesses share about
43000 geo-coordinates.

Figure 4: Geo-centric area near Vaughn, Montana

coordinates so that those that have fewer than that
number of businesses different between their search
radii end up sharing a single LM.

Our algorithm for constructing geo-centric LMs
starts with LSAs. It proceeds in two stages: first, the
business centers for the LMs are found. Second, a
search radius is computed for each LM center; and
third, the data for the LM is extracted.

The LM center finding algorithm uses two param-
eters: r1 (radius within an LSA; should be a little
smaller than average LSA radius) and Nq (number
of businesses that should be different between two
different geo-centric LMs). For each LSA:

1. Find mean latitude and longitude for the LSA:
Compute mean and standard deviation for lati-
tude (µlb, σlb) and longitude (µgb, σgb) over all
businesses in the LSA.

2. Exclude national businesses which are listed in
the LSA with their out-of-LSA address and geo-
coordinates: Compute mean and standard de-
viation of latitude and longitude, (µl, σl) and
(µg, σg) respectively, using all geo-coordinates
(l, g) where: (l, g) is within a r1-mile radius of
(µlb, µgb); l is within σlb of µlb; and g is within
σgb of µgb.

3. Compute business density in the most business-
dense region in the LSA: find a minimum
and maximum longitude (gm, gM ) and lati-
tude (lm, lM ) for all businesses that are within
(±1

2σg) and (±1
2σl) of µg and µl respectively.

Business density per square mile (d2) is equal
to the number of businesses in the rectangle de-
fined by the low-left (gm, lm) and upper-right
(gM , lM ) corner. Business density per mile is
d1 =

√
d2.
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4. Compute geo-location quantization accuracy:
Choose a desired number of business listings
Nq that will fall to the same geo-coordinates
when the quantization is applied. This corre-
sponds roughly to the minimum desired num-
ber of different businesses in two adjacent
geo-centric LMs. Quantization accuracy, in
miles, δqm, then follows from the business den-
sity d1: δqm = Nq/d1. Quantization ac-
curacy for the longitude δg satisfies equation
distance((µg, µl), (µg+δg, µl)) = δqm. δl sat-
isfies a similar equation.

5. Quantize geo-coordinates for each business in
the LSA: Compute quantized geo-coordinates
(lq, gq) for each business in the LSA. gq =
int(g/δg)×δg; lq = int(l/δl)×δl. Each unique
(lq, gq) is a LM center.

The LM radius finding algorithm also uses two
parameters: r2 (maximum search radius for an LM);
and Np (minimum number of businesses within a
geo-centric language model, should be smaller than
average number of businesses per LSA). For each
LM center:

1. Count the number of businesses at 1-mile ra-
dius increments of the LM center

2. Choose the smallest radius containing at least
Np listings (or the r2 radius if there is no
smaller radius containing at least Np listings)

3. Extract data for all listings within the radius.
Build LM from this data.

The number of geo-centric LMs can be arbitrar-
ily small, depending on the parameter values. We
believe that any number between 10K and 100K
achieves good accuracy while maintaining tractabil-
ity for LM building and selection. In the experi-
ments reported here we used r1 = 3.5, Nq = 50,
r2 = 3 and Np = 1000, giving about 15000 LMs
for the whole USA.

To summarize: we have described an algorithm
for building geo-centric language models for voice-
driven business search that: gives a local language
model for any user anywhere in the country; uses
business density determine “local” for any location
in the country; can be pre-compiled; and can be

tuned (by modifying the parameters) to maximize
performance for a particular application

5 Experiments

In this section we report an evaluation of geo-centric
language models on spoken business listing queries
from an existing directory assistance application.
We compare the recognition accuracy and recogni-
tion speed for geo-centric LMs to those of local area
LMs, of a national LM, and of combined LMs.

5.1 Data
Our test data comes from an existing two-exchange
directory assistance application. It comprises 60,000
voice queries, each consisting of a city and state
in the first exchange, followed by a business listing
name in the second exchange.

We wanted to test using queries for which we
know there is a matching listing in the city/state pro-
vided by the caller. So we used only the 15000
queries for which there was a match in our nation-
wide business listing database4. We categorized
each query as nationwide or local by looking up
the listing name in our database. We considered any
listing name that occurred five or more times to be
nationwide; the remaining listings were considered
to be local. This method fails to distinguish between
national chains and different companies that happen
to have the same name. (However, from a recog-
nition point of view any listing name that occurs in
multiple locations across the country is in fact na-
tionwide, regardless of whether the businesses to
which it refers are separate businesses.) It is also
quite strict because we used string equality rather
than looser name matching heuristics. Example na-
tional queries include Wal-mart and Domino’s Pizza.
Example local queries include Sauz Taco (Glendale,
CA); Dempsey’s Restaurant (Adrian, MI); and Con-
cord Farmers Club (Saint Louis, MO). Some queries
contain street names, e.g. Conoco on South Divi-
sion; uh Wal-Mart on five thirty five; and Chuy’s
Mesquite Broiler off of Rosedale.

For each query in our data, we say that its local
area LM is the local area LM that comes from its

4A query matched an entry in our database if there was a
business listing in our database starting with the listing name
portion of the query, in the city/state from the location portion
of the query.
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city and state, and that contains its listing name. Its
geo-centric LM is defined similarly.

5.2 Language Model Construction
We constructed two baseline LMs. The first is a Na-
tional LM. To take advantage of the non-uniform
distribution of queries to listings (see Section 2), we
also build a Top 2000 LM containing only informa-
tion about the top 2000 most frequently requested
listing names nationwide5 . We expected this LM to
perform poorly on its own but potentially quite well
in combination with local LMs.

For national, top 2000, local area and geo-
centric LMs, we build trigram Katz backoff lan-
guage models using AT&T’s Watson language mod-
eling toolkit (Riccardi et al., 1996). The models
are built using the listing names and categories in
our nationwide listing database. Listing names are
converted to sentences containing the listing name,
street address, neighborhood and city/state.

We predict that location-specific LMs will
achieve high accuracy on local listings but will not
be very robust to national listings. So we also exper-
iment with combination LMs: local area combined
with top 2000; geo-centric combined with top 2000;
local area combined with national; and geo-centric
combined with national. We use two combination
stategies: count merging and LM union.

5.2.1 Count Merging
The count merging approach can be viewed as an

instance of maximum a posteriori (MAP) adapta-
tion. Let hw be a n-gram ending in word w and with
a certain context h, and let cL(hw) and CT (hw)
be its counts in the geo-centric/local area corpus L
and top 2000 corpus T respectively. Then p(w|h) is
computed as:

p(w|h) =
λLcL(hw) + (1− λL)cT (hw)
λLcL(h) + (1− λL)cT (h)

(1)

where λL is a constant that controls the contribution
of each corpus to the combined model. We applied
this combination strategy to local area/geo-centric
and top 2000 only, not to local area/geo-centric and
nationwide.

5We computed listing frequencies from query logs and used
listings from the left-hand side of the frequency distribution
curve before it flattens out; there were about 2000 of these.

5.2.2 LM Union

The LM union approach uses a union of language
models at runtime. Let W = w0w1 . . . w|W | be a
sentence, pL(W ) be the probability ofW in the geo-
centric/local area corpus L, and pT (W ) be the prob-
ability ofW in the top 2000/national corpus T . Then
p(W ) is computed as:

p(W ) = max(λLpL(W ), (1− λL)pT (W )) (2)

λL is a constant that controls the contribution of each
corpus to the combined model. We applied this com-
bination strategy to local area/geo-centric and top
2000, and to local area/geo-centric and nationwide.

Given the small size of our test set relative to the
large number of local LMs it is unfeasible to train
λL on held-out data. Instead, we selected a value
for λL such that the adjusted frequency of the top
business in the top 2000 corpus becomes similar to
the frequency of the top business in the local LM.
We anticipate that if we did have data for training λL

more weight would be given to the local area/geo-
centric LM.

5.3 Experimental Method

In our experiments we use AT&T’s Watson speech
recognizer with a general-purpose acoustic model
trained on telephone speech produced by American
English speakers (Goffin et al., 2005). We ran all
tests on a research server using standard settings for
our speech recognizer for large vocabulary speech
recognition. For each LM we report recognition ac-
curacy (string accuracy and word accuracy) overall,
on nationwide listings only, on local listings only,
and on queries that contain street names only. We
also report recognition time (as a fraction of real
time speed).

5.4 Results

Results are given in Table 1. Comparing the base-
line (National LM) to our geo-centric LMs, we see
that we achieve a 16.8% absolute increase in overall
sentence accuracy with a 3-fold speedup. Most of
the improvement in sentence accuracy is due to bet-
ter performance on local queries; however, we also
achieve a 2.9% absolute increase in sentence accu-
racy on nationwide queries.
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LM Recognition accuracy: String/Word [%] Real time speed
Overall Nationwide Local Queries with

queries queries street name
Nationwide language models

National 51.3/58.0 59.9/60.8 40.3/54.1 17.9/47.3 1.05
Top 2000 23.2/31.6 40.6/43.3 9.5/25.8 1.3/18.3 0.44

Local language models
Local area 63.7/69.7 60.8/63.2 69.5/77.2 22.4/53.4 0.42
Geo-centric 68.1/73.0 62.8/65.0 75.0/81.7 15.1/49.7 0.36

Combined language models, LM union
Local area, national 58.9/64.5 61.4/62.3 57.9/67.1 21.8/50.6 0.84
Geo-centric, national 64.7/69.1 63.6/64.5 67.2/74.5 23.2/52.1 0.78
Local area, top 2000 60.0/67.0 62.1/65.8 61.8/71.3 20.6/50.3 0.45
Geo-centric, top 2000 64.7/70.7 63.4/66.7 68.8/76.5 14.7/48.2 0.42

Combined language models, count merging
Local area, top 2000 66.7/72.2 69.2/71.5 67.8/75.7 22.5/54.0 0.50
Geo-centric, top 2000 67.7/72.6 68.3/70.5 70.4/77.7 13.2/46.9 0.44

Table 1: Results on mobile 411 data (total listings 14235; national listings 4679; local listings 2495; listings with street
addresses 1163)

Now we look at the performance of different ap-
proaches to nationwide and local language model-
ing. First we compare the two nationwide LMs. As
expected, we see that the overall sentence accuracy
for the National LM is more than twice as high as
that of the Top 2000 LM, but the recognition time is
more than twice as slow. Next we compare the two
local language modeling approaches. We see that
geo-centric LMs achieve a 4.4% absolute increase
in overall sentence accuracy compared to local area
LMs and a 5.5% increase in sentence accuracy on
local listings, while using less processing time.

Next we look at combination language models.
When we combine local and nationwide LMs us-
ing LM union, we get small increases in sentence
accuracy for nationwide queries compared to local
LMs alone. However, sentence accuracy for local
listings decreases. Also, these models use more pro-
cessing time than the local LMs. When we com-
bine local and national LMs using count merging,
we get larger increases in sentence accuracy for na-
tionwide queries over local LMs alone, and smaller
decreases for local queries, compared to using LM
union. LMs trained using count merging use more
processing time than those trained using LM union,
but still less than the National LM.

We conclude that: geo-centric language model-
ing leads to increased recognition accuracy and im-
provements in recognition time, compared to us-

ing a national language model; geo-centric language
modeling leads to increased recognition accuracy
and improvements in recognition time, compared to
using local area language models; and geo-centric
language models can be combined with a “most fre-
quently asked-for” nationwide language model to
get increased recognition accuracy on nationwide
queries, at the cost of a small increase in recognition
time and a slight decrease in recognition accuracy
for local listings.

Further analysis of our results showed another
interesting phenomenon. While geo-centric LMs
achieve higher recognition accuracy than the Na-
tional LM and local area LMs on nationwide and
local queries, recognition accuracy on queries that
contain a street name decreases. The likely reason
is that small local LMs do not have rich street name
coverage and people often do not refer to a street ad-
dress precisely. A person might use a route number
instead of a street name; if a single road has dif-
ferent names at different points they might use the
wrong name; or they might use a variation on the
actual name. For example, the query “Conoco on
South Divison” is correctly recognized by our na-
tional LM but not with a geo-centric LM. The clos-
est matching listing in our database for that loca-
tion is “Conoco Convenience Store on South Boule-
vard”. We note that we did not make any attempt
to generalize over the street names in our LMs, sim-
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ply pulling one street name for each listing from the
database. Slightly more robust handling of street
names may cause this phenomenon to disappear.

6 Conclusions and Future Work

Smart phones are able to give system developers
increasingly detailed information about their users.
This information can and should be exploited to give
improved robustness and performance in customer
services. In this paper, we explored the use of lo-
cation information (from GPS or cell tower triangu-
lation) to improve ASR accuracy in LBVS. We pre-
sented an algorithm for geo-centric language model
generation that: adapts to the local business density;
enables good local listing coverage; and requires
only a limited number of language models. We com-
pared the performance of our geo-centric language
modeling to an alternative “local” language model-
ing approach and to a nationwide language model-
ing approach, and showed that we achieve signifi-
cant improvements in recognition accuracy (a 4.4%
absolute increase in sentence accuracy compared to
local area language modeling, and a 16.8% absolute
increase compared to the use of a national language
model) with significant speedup.

We are currently testing our geo-centric language
models in a LBVS prototype. In future work, we
will optimize the parameters in our algorithm for
geo-centric LM computation and merging. We also
plan to explore the impact of integrating language
modeling with search, and to examine the impact
of these different language modeling approaches on
performance of a trainable dialog manager that takes
n-best output from the speech recognizer.
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