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Comparing User Simulation Models For Dialog Strategy Learning

Hua Ai Joel R. Tetreault Diane J. Litman
University of Pittsburgh University of Pittsburgh University of Pittsburgh
Intelligent Systems Program LRDC Dept. of Computer Science

Pittsburgh PA, 15260, USA
hua@cs.pitt.edu

Abstract

This paper explores what kind of user sim-
ulation model is suitable for developing
a training corpus for using Markov Deci-
sion Processes (MDPs) to automatically
learn dialog strategies. Our results sug-
gest that with sparse training data, a model
that aims to randomly explore more dialog
state spaces with certain constraints actu-
ally performs at the same or better than a
more complex model that simulates real-
istic user behaviors in a statistical way.

1 Introduction

Recently, user simulation has been used in the de-
velopment of spoken dialog systems. In contrast to
experiments with human subjects, which are usually
expensive and time consuming, user simulation gen-
erates a large corpus of user behaviors in a low-cost
and time-efficient manner. For example, user sim-
ulation has been used in evaluation of spoken dia-
log systems (Lépez-Coézar et al., 2003) and to learn
dialog strategies (Scheffler, 2002). However, these
studies do not systematically evaluate how helpful a
user simulation is. (Schatzmann et al., 2005) pro-
pose a set of evaluation measures to assess the re-
alness of the simulated corpora (i.e. how similar
are the simulated behaviors and human behaviors).
Nevertheless, how realistic a simulated corpus needs
to be for different tasks is still an open question.

We hypothesize that for tasks like system eval-
uation, a more realistic simulated corpus is prefer-
able. Since the system strategies are evaluated and

1
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adapted based on the analysis of these simulated dia-
log behaviors, we would expect that these behaviors
are what we are going to see in the test phase when
the systems interact with human users. However,
for automatically learning dialog strategies, it is not
clear how realistic versus how exploratory (Singh et
al., 2002) the training corpus should be. A train-
ing corpus needs to be exploratory with respect to
the chosen dialog system actions because if a cer-
tain action is never tried at certain states, we will
not know the value of taking that action in that state.
In (Singh et al., 2002), their system is designed to
randomly choose one from the allowed actions with
uniform probability in the training phase in order to
explore possible dialog state spaces. In contrast,we
use user simulation to generate exploratory training
data because in the tutoring system we work with,
reasonable tutor actions are largely restricted by stu-
dent performance. If certain student actions do not
appear, this system would not be able to explore a
state space randomly .

This paper investigates what kind of user simula-
tion is good for using Markov Decision Processes
(MDPs) to learn dialog strategies. In this study,
we compare three simulation models which differ in
their efforts on modeling the dialog behaviors in a
training corpus versus exploring a potentially larger
dialog space. In addition, we look into the impact of
different state space representations and different re-
ward functions on the choice of simulation models.

2 System and Corpus

Our system is a speech-enabled Intelligent Tutor-
ing System that helps students understand qualita-

Proceedings of NAACL HLT 2007, Companion Volume, pages 1-4,
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tive physics questions. The dialog policy was deter-
ministic and hand-crafted in a finite state paradigm
(Ai et al., 2006). We collected 130 dialogs (1019
student utterances) with 26 human subjects. Cor-
rectness (correct(c), incorrect(ic)) is automatically
judged by the system! and kept in the system’s logs.
Percent incorrectness (ic%) is also automatically
calculated and logged. Each student utterance was
manually annotated for certainty (certain, uncer-
tain, neutral, mixed) in a previous study? based on
both lexical and prosodic information. In this study,
we use a two-way classification (certain(cert), not-
certain(ncert)), where we collapse uncertain, neu-
tral, and mixed to be ncert to balance our data. An
example of coded dialog between the tutor (T) and a
student (S) is given in Table 1.

3 Experimental Setup
3.1 Learning Task

Our current system can only respond to the cor-
rectness of a student’s utterances; the system thus
ignores other underlying information, for exam-
ple, certainty which is believed to provide use-
ful information for the tutor. In our corpus, the
strength of the tutor’s minimal feedback (defined be-
low) is in fact strongly correlated with the percent-
age of student certainty (chi-square test, p<0.01).
Strong Feedback (SF) is when the tutor clearly states
whether the student’s answer is correct or incor-
rect (i.e., “This is great!”); Weak Feedback (WF)
is when the tutor does not comment on the correct-
ness of a student’s answer or gives slightly negative
feedback such as “well”. Our goal is to learn how
to manipulate the strength of the tutor minimal feed-
back in order to maximize student’s overall certainty
in the entire dialog. We keep the other parts of the
tutor feedback (e.g. explanations, questions) so the
system’s original design of maximizing the percent-
age of student correct answers is utilized.

3.2 Simulation Models

All three models we describe below are trained from
the real corpus we collected. We simulate on the
word level because generating student’s dialog acts
alone does not provide sufficient information for

"Kappa of 0.79 is gained comparing to human judgements.
ZKappa of 0.68 is gained in a preliminary agreement study.
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T1:  Which law of motion would you use?

S1: Newton’s second law? [ic, ic%=1, ncert]

T2:  Well... The best law to use is Newton’s
third law. Do you recall what it says?

S2:  For every action there is an equal and
opposite reaction? [c, ic%=50%, ncert]

Table 1: Sample coded dialog excerpt.

our tutoring system to decide the next system’s ac-
tion. Thus, the output of the three models is a stu-
dent utterance along with the student certainty (cert,
ncert). Since it is hard to generate a natural lan-
guage utterance for each tutor’s question, we use the
student answers in the real corpus as the candidate
answers for the simulated students (Ai et al., 2006).
In addition, we simulate student certainty in a very
simple way: the simulation models output the cer-
tainty originally associated with that utterance.

Probabilistic Model (PM) is meant to capture re-
alistic student behavior in a probabilistic way. Given
a certain tutor question along with a tutor feedback,
it will first compute the probabilities of the four
types of student answers from the training corpus: ¢
and cert, ¢ and ncert, ic and cert, and ic and ncert.
Then, following this distribution, the model selects
the type of student answers to output, and then it
picks an utterance that satisfies the correctness and
certainty constraints of the chosen answer type from
the candidate answer set and outputs that utterance.
We implement a back-off mechanism to count pos-
sible answers that do not appear in the real corpus.

Total Random Model (TRM) ignores what the
current question is or what feedback is given. It ran-
domly picks one utterance from all the utterances in
the entire candidate answer set. This model tries to
explore all the possible dialog states.

Restricted Random Model (RRM) differs from
the PM in that given a certain tutor question and a
tutor feedback, it chooses to give a ¢ and cert, ¢ and
ncert, ic and cert, or ic and ncert answer with equal
probability. This model is a compromise between
the exploration of the dialog state space and the re-
alness of generated user behaviors.

3.3 MDP Configuration

A MDP has four main components: states, actions,
a policy, and a reward function. In this study, the ac-
tions allowed in each dialog state are SF and WF;



the policy we are trying to learn is in every state
whether the tutor should give SF and WF in order
to maximize the percent certainty in the dialog.

Since different state space representations and re-
ward functions have a strong impact on the MDP
policy learning, we investigate different configura-
tions to avoid possible bias introduced by certain
configurations. We use two state space representa-
tions: SSR1 uses the correctness of current student
turn and percent incorrectness so far; and SSR2 adds
in the certainty of the current student turn on top of
SSR1. Two reward functions are investigated: in
RF1, we assign +100 to every dialog that has a per-
cent certainty higher than the median from the train-
ing corpus, and -100 to every dialog that has a per-
cent certainty below the median; in RF2, we assign
different rewards to every different dialog by multi-
plying the percent certainty in that dialog with 100.
Other MDP parameter settings are the same as de-
scribed in (Tetreault et al., 2006).

3.4 Methodology

We first let the three simulation models interact with
the original system to generate different training cor-
pora. Then, we learn three MDP policies in a fixed
configuration from the three training corpora sep-
arately. For each configuration, we run the sim-
ulation models until we get enough training data
such that the learned policies on that corpus do not
change anymore (40,000 dialogs are generated by
each model). After that, the learned new policies are
implemented into the original system respectively .
Finally, we use our most realistic model, the PM,
to interact with each new system 500 times to eval-
uate the new systems’ performances. We use two
evaluation measures. EM1 is the number of dialogs
that would be assigned +100 using the old median
split. EM2 is the average of percent certainty in ev-
ery single dialog from the newly generated corpus.
A policy is considered better if it can improve the
percentage of certainty more than other policies, or
has more dialogs that will be assigned +100. The
baseline for EM1 is 250, since half of the 500 di-
alogs would be assigned +100 using the old median

3For example, the policy learned from the training corpus
generated by the RRM with SSR1 and RF1 is: give SF when
the current student answer is ic and ic% >50%, otherwise give
WF.

split. The baseline for EM2 is 35.21%, which is
obtained by calculating the percent certainty in the
corpus generated by the 40,000 interactions between
the PM and the original system.

4 Results and Discussion

Table 2 summarizes our results. There are two
columns under each “state representation+reward
function” configuration, presenting the results using
the two evaluation approaches. EM1 measures ex-
actly what RF1 tries to optimize; while EM2 mea-
sures exactly what RF2 tries to optimize. However,
we show the results evaluated by both EM1 and
EM2 for all configurations since the two evaluation
measures have their own practical values and can
be deployed under different design requirements.
All results that significantly* outperform the corre-
sponding baselines are marked with .

When evaluating using EM1, the RRM signifi-
cantly* outperforms the other two models in all con-
figurations (in bold in Table 2). Also, the PM per-
forms better (but not statistically significantly) than
the TRM. When evaluating on EM2, the RRM sig-
nificantly* outperforms the other two when using
SSR1 and RF1 (in bold in Table 2). In all other
configurations, the three models do not differ signif-
icantly. It is not surprising that the RRM outper-
forms the PM in most of the cases even when we
test on the PM. (Schatzmann et al., 2005) also ob-
serve that a good model can still perform well when
tested on a poor model.

We suspect that the performance of the PM is
harmed by the data sparsity issue in the real cor-
pus that we trained the model on. Consider the case
of SSR1: 25.8% of the potentially possible dialog
states do not exist in the real corpus. Although we
implement a back-off mechanism, the PM will still
have much less chance to transition to the states that
are not observed in the real corpus. Thus, when we
learn the MDP policy from the corpus generated by
this model, the actions to take in these less-likely
states are not fully learned. In contrast, the RRM
transitions from one state to each of the next possible
states with equal probability, which compensates for
the data sparsity problem. We further examine the
results obtained using SSR1 and RF1 and evaluated

4Using 2-sided t-test with Bonferroni correction, p<0.05.



Model Name SSRI1+RF1 SSR2+RF1 SSRI1+RF2 SSR2+RF2
EM1 EM2 EM1 EM2 EM1 EM2 EM1 EM2
Probabilistic Model 222 36.30% 217 | 37.63% | 197 | 40.78%x* | 197 | 40.01%x*
Total Random Model 192 36.30% 211 | 38.57% | 188 | 40.21%x* | 179 | 40.21%x
Restricted Random Model | 390« | 46.11%x | 368« | 37.27% | 309 | 40.21%x* | 301 | 40.21%x

Table 2: Evaluation of the new policies trained with the three simulation models

by EM1 to confirm our hypothesis. When looking
into the frequent states, 70.1% of them are seen fre-
quently in the training corpus generated by the PM,
while 76.3% are seen frequently in the training cor-
pus generated by the RRM. A higher percentage in-
dicates the policy might be better trained with more
training instances. This explains why the RRM out-
performs the PM in this case.

While the TRM also tries to explore dialog state
space, only 65.2% of the frequent states in testing
phase are observed frequently in the training phase.
This is because the Total Random Model answers
90% of the questions incorrectly and often goes
deeply down the error-correction paths. It does ex-
plore some states that are at the end of the paths,
but since these are the infrequent states in the test
phase, exploring these states does not actually im-
prove the model’s performance much. On the other
hand, while the student correctness rate in the real
corpus is 60%, the RRM prevents itself from being
trapped in the less-likely states on incorrect answer
paths by keeping its correctness rate to be 50%.

Our results are preliminary but suggest interest-
ing points in building simulation models: 1. When
trained from a sparse data set, it may be better to
use a RRM than a more realistic PM or a more ex-
ploratory TRM; 2. State space representation may
not impact evaluation results as much as reward
functions and evaluation measures, since when us-
ing RF2 and evaluating with EM2, the differences
we see using RF1 or EM1 become less significant.

In our future work, we are going to further investi-
gate whether the trends shown in this paper general-
ize to on-line MDP policy learning. We also want to
explore other user simulations that are designed for
sparse training data (Henderson et al., 2005). More

>We define frequent states to be those that comprise at least
1% of the entire corpus. These frequent states add up to more
than 80% of the training/testing corpus. However, deciding the
threshold of the frequent states in training/testing is an open
question.

importantly, we are going to test the new policies
with the other simulations and human subjects to
validate the learning process.
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Abstract

The work' we present here is concerned
with the acquisition of deep grammati-
cal information for nouns in Spanish.
The aim is to build a learner that can
handle noise, but, more interestingly,
that is able to overcome the problem of
sparse data, especially important in the
case of nouns. We have based our work
on two main points. Firstly, we have
used distributional evidences as fea-
tures. Secondly, we made the learner
deal with all occurrences of a word as a
single complex unit. The obtained re-
sults show that grammatical features of
nouns is a level of generalization that
can be successfully approached with a
Decision Tree learner.

1 Introduction

Our work aims to the acquisition of deep gram-
matical information for nouns, because having in-
formation such as countability and complementa-
tion is necessary for different applications, espe-
cially for deep analysis grammars, but also for
question answering, topic detection and tracking,
etc.

Most successful systems of deep lexical acquisi-
tion are based on the idea that distributional fea-
tures (i.e. the contexts where words occur) are as-
sociated to concrete lexical types. The difficulties

! This research was supported by the Spanish Ministerio de Educacion y Cien-
cia: project AAILE, HUM2004-05111-C02-01/FILO, Ramon y Cajal, Juan de la
Cierva Programs and PTA-CTE/1370/2003 with Fondo Social Europeo,.
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are, on the one hand, that some filtering must be
applied to get rid of noise, that is, contexts wrongly
assessed as cues of a given type and, on the other
hand, that for a pretty large number of words, their
occurrences in a corpus of any length are very few,
making statistical treatment very difficult.

The phenomenon of noise is related to the fact
that one particular context can be a cue of different
lexical types. The problem of sparse data is pre-
dicted by the Zipfian distribution of words in texts:
there is a large number of words likely to occur a
very reduced number of times in any corpus. Both
of these typical problems are maximized in the
case of nouns.

The aim of the work we present here is to build
a learner that can handle noise, but, more interest-
ingly, that is able to overcome the problem of
sparse data. The learner must predict the correct
type both when there is a large number of occur-
rences as well as when there are only few occur-
rences, by learning on features that maximize gen-
eralization capacities of the learner while control-
ling overfitting phenomena.

We have based our work on two main points.
Firstly, we have used morphosyntactic information
as features. Secondly, we made the learner deal
with all occurrences of a word as a complex unit.
In our system, linguistic cues of every occurrence
are collected in the signature of the word (more
technically a pair lema + part of speech) in a par-
ticular corpus. In the next sections we give further
details about the features used, as well as about the
use of signatures.

The rest of the paper is as follows. Section 2
presents an overview of the state of the art in deep
lexical acquisition. In section 3, we introduce de-
tails about our selection of linguistically motivated

Proceedings of NAACL HLT 2007, Companion Volume, pages 5-8,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



cues to be used as features for training a Decision
Tree (DT). Section 4 shortly introduces the meth-
odology and data used in the experiments whose
results are presented in section 5. And in section 6
we conclude by comparing with the published re-
sults for similar tasks and we sketch future re-
search.

2  State of the art

Most of the work on deep lexical information
acquisition has been devoted to verbs. The existing
acquisition systems learn very specialized linguis-
tic information such as verb subcategorization
frame®. The results for verb subcategorization are
mostly around the 0.8 of precision. Briscoe & Car-
roll (1997) reported a type precision of 0,76 and a
type recall of 0.43. Their results were improved by
the work of Korhonen (2002) with a type precision
of 0.87 and a recall of 0.68 using external re-
sources to filter noise. Shulte im Walde (2002) re-
ports a precision of 0.65 and a recall of 0.58.
Chesley & Salmon-Alt (2006) report a precision of
0.86 and a recall of 0.54 for verb subcategorization
acquisition for French.

Lexical acquisition for nouns has been con-
cerned mainly with ontological classes and has
mainly worked on measuring semantic similarity
on the basis of occurrence contexts. As for gram-
matical information, the work of Baldwin and
Bond (2003) in acquisition of countability features
for English nouns also tackles the very important
problem of feature selection. Other work like Car-
roll and Fang’s (2004) and Baldwin’s (2005) have
focused on grammatical information acquisition
for HPSG based computational grammars. The
latter is the most similar exercises to our work.
Baldwin (2005) reports his better results in terms
of type accuracy has been obtained by using syn-
tactic information in a chunked and parsed corpus.
The type F-scores for the different tested catego-
ries for English were: for verbs 0.47, for nouns 0.6
and for adjectives 0.832.

3 Feature selection

One of the most important tasks in developing
machine learning applications is the selection of

% Given the argument-adjunct distinction, subcategorization
concerns the specification for a predicate of the number and
type of arguments which it requires for well-formedness.

the features that leads to the smallest classification
error. For our system, we have looked at distribu-
tional motivated features that can help in discrimi-
nating the different types that we ultimately use to
classify words.

The lexical types used in deep analysis gram-
mars are linguistic generalizations drawn from the
distributional characteristics of particular sets of
words. For the research we present here, we have
taken the lexicon of a HPSG-based grammars de-
veloped in the LKB platform (Copestake, 2002) for
Spanish, similarly to the work of Baldwin (2005).
In the LKB grammatical framework, lexical types
are defined as a combination of features. Lexical
typology of nouns for Spanish, for instance, can be
seen as a cross-classification of noun countability
vs. mass distinctions, and subcategorization frame
or valence, including prepositional selection. For
example nouns as “temor” (‘fear’) and “adiccion”
(“adiction) belong to the type
n_ppde_pconp_a_count as they take two com-
plements: one with de and the other with a bound
preposition a, as in “El temor de la nifia a los fan-
tasmas” (‘The girl’s fear to ghosts’) vs. “La adic-
cion a la cocaina” (‘The addiction to cocaine’).

We decided to carry out the classification for
each of the grammatical features that conform the
cross-classified types as a better level of generali-
zation than the type: mass and countable, on the
one hand and, on the other hand, for subcategoriza-
tion information three further basic features: trans,
for nouns with thematic complements introduced
by the preposition de, intrans, when the noun can
appear with no complements and pcomp for nouns
having complements introduced by a bound prepo-
sition. The complete type can be recomposed with
the assigned features. “Temor” and “adiccion” will
be examples of trans and pcomp a. They both
have also to be assigned the feature countable. The
combination of features assigned corresponds to
the final type which is a definition of the complete
behaviour of the noun with respect, for instance,
optional complements.

We have used 23 linguistic cues, that is, the pat-
terns of contexts that can be indicative of a particu-
lar feature. The most frequent cue that can be re-
lated to countable is for the noun to be found with
plural morphology. A singular noun without de-
terminer after a verb or a preposition is a cue of the
noun being mass: “hay barro en el salén” (‘there is
mud in the living room”) vs. “hay hombres en el



salon” (“there are men in the living room”). A fur-
ther cue for mass is the presence of particular
quantifiers, such as “mas” (‘more’), “menos”
(‘less’), etc. But these cues, based on a collection
of lexical items, are less productive than other
characteristics such as morphological number or
presence of determiners, as they appear very
scarcely in texts. Nevertheless, we should mention
that most of mass nouns in Spanish can also appear
in the contexts of countables, as in the case of
“beer” when in constructions such as “three beers,
please”.

More difficult was to find cues for identifying
the transitive nature of a noun. After some empiri-
cal work, we found a tendency of argumental com-
plements to have a definite article: “temor de la
nifia” (‘fear of the girl’), while modifiers tend to
appear without determiners: “mesa de juegos” (‘ta-
ble of games’). Besides, we have taken as a cue the
morphological characteristics of deverbal nouns.
Suffixes such as “-cidén”, “-si6én”, and “-miento”,
are very much indicative of transitive nouns. Fi-
nally, to find the bound preposition of comple-
ments, we used a pattern for each possible preposi-
tion found after the noun in question.

We used Regular Expressions to implement the
linguistic motivated patterns that check for the in-
formation just mentioned in a part of speech tagged
corpus. The various patterns determine whether the
linguistic cues that we have related to syntactic
features are found in each occurrence of a particu-
lar word in a corpus. The positive or negative re-
sults of the n pattern checking are stored as binary
values of a n dimensional vector, one for each oc-
currence. All vectors produced, one per occurrence
of the word in question, are stored then in a kind of
vector of vectors that we have called its signature.
The term signature wants to capture the notion that
the data it embodies is truly representative of a par-
ticular item, and that shows the details of its typical
behavior. Particularly, we wanted linguistic cues
appearing in different occurrences of the same
word to be observed as related information. We
have not dealt with ambiguity at all, however. One
of the reasons was our focus on low frequency
nouns.

4 Methodology and data

We have worked with the Corpus Teécnic de
[’IULA, a multilingual part of speech tagged corpus

which consists of domain specific texts. The sec-
tion used for our evaluation was the Spanish with
1,091,314 words in the domain of economy and
4,301,096 for medicine. A dataset of 289 nouns,
present in both subcorpora, was selected. It was
important to compare the behavior of the same
nouns in both corpus to check whether the learner
was subject to unwanted overfitting.

We used the data for building a C4.5 DT clas-
sifier’. DT’s are one well known and successful
technique for this class of tasks when there is
enough pre-annotated data available. DT’s have
the additional benefit that the results can be in-
spected. The signatures of the words in the Gold-
Standard lists were extracted from the corpus of
medicine and of the economy one. There was a
further test set of 50 nouns with a single occur-
rence in the corpus of economy for testing pur-
poses. The DT was trained with the signatures of
the economy corpus, and the medicine ones as well
as the singles set were used for testing.

5 Evaluation

The purpose of the evaluation was to validate our
system with respect to the two problems men-
tioned: noise filtering and generalization capacity
by measuring type precision and type recall. We
understand type precision as a measure of the noise
filtering success, and recall as a measure of the
generalization capacity.

In the following tables we present the results of
the different experiments. In Table 1, there is a
view of the results of the experiment after training
and testing with the signatures got in the smaller
corpus. The results are for the assignment of the
grammatical feature for the two values, yes and no.
And the column named global refers to the total
percentage of correctly classified instances.

yes no
It global |prec. |rec. |F rec. |rec. |F

MASS 0.67 | 0.4 [0.26]/0.31] 0.73 |0.83|0.78
COUNT 0.96 | 0.97 [0.99]0.98| 0 0] 0
TRANS 0.85 | 0.73 |0.45(0.55| 0.86 |0.95|0.91
INT 0.81 | 0.84 [0.94]0.89| 0.64 [0.32|0.48
PCOMP 0.9 | 0.4 |0.08/0.13] 0.91 |0.98]0.95

Table 1. DT results of economy signatures for
training and test

3 We have used WEKA J48 decision tree classifier (Witten and Frank, 2005).



The most difficult task for the learner is to iden-
tify nouns with bound prepositions. Note that there
are only 20 nouns with prepositional complements
of the 289 test nouns, and that the occurrence of
the preposition is not mandatory, and hence the
signatures are presented to the learner with very
little information.

Table 2 shows the results for 50 nouns with only
one occurrence in the corpus. The performance
does not change significantly, showing that the
generalization capacity of the learner can cope
with low frequency words, and that noise in larger
signatures has been adequately filtered.

es no
it |global |prec. |rec. |[F  |prec. |rec. |F

MASS 0.71 | 0.5 [0.16|0.25| 0.73 |0.93|0.82
COUNT 0.97 |097| 1 1098 0 | 0 | O
TRANS 0.85 | 0.75(0.46|0.57| 0.87 |0.96|0.91
INT 0.83 | 0.85[0.95/0.89| 0.70 |0.41]0.52
PCOMP 091 ] 0 [ 0| 0O O91] 1 ]0.95

Table 2. DT results for training with signatures of
the economy corpus and testing 50 unseen nouns
with a single occurrence as test

Table 3 shows that there is little variation in the
results of training with signatures of the economy
corpus and testing with ones of the medicine cor-
pus. As expected, no variation due to domain is
relevant as the information learnt should be valid
in all domains.

yes no
It global |prec.|rec.| F |prec.|rec.| F
MASS 0.65 | 0.44 |0.53]|0.48| 0.77 |0.70/0.73
COUNT 0.97 |097| 1 [0.98] O 0] 0
TRANS 0.82 | 0.62 |0.47]0.54| 0.86 [0.92|0.89
INT 0.78 | 0.82 {0.92|0.86| 0.58 [0.35/0.43
PCOMP 0.81 | 0.31]0.28/0.29] 0.92 |0.93|0.93

Table 3. DT results for training with economy sig-
natures and testing with medicine signatures

6 Conclusions

The obtained results show that the learning of
grammatical features of nouns are learned success-
fully when using distributional linguistic informa-
tion as learning features that allow the learner to

generalize so as to maintain the performance in
cases of nouns with just one occurrence.

There are however issues that should be further
investigated. Grammatical features with low preci-
sion and recall results (mass and pcomp) show that
some more research should be carried out for find-
ing relevant linguistic cues to be used as learning
features. In that respect, the local cues based on
morphosyntactic tagging have proved to be useful,
minimizing the text preprocessing requirements for
getting usable results.
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Abstract

We describe ConQuest, an open-source,
reusable spoken dialog system that pro-
vides technical program information dur-
ing conferences. The system uses a
transparent, modular and open infrastruc-
ture, and aims to enable applied research
in spoken language interfaces. The con-
ference domain is a good platform for ap-
plied research since it permits periodical
redeployments and evaluations with a real
user-base. In this paper, we describe the
system’s functionality, overall architec-
ture, and we discuss two initial deploy-
ments.

1 Introduction

Conducting applied spoken language interface re-
search is generally a costly endeavor. Developing,
deploying and maintaining real-world spoken lan-
guage interfaces requires an existing infrastructure,
a significant amount of engineering effort, and can
greatly benefit from the availability of certain re-
sources such as transcribed in-domain data.

In an effort to enable applied research and to
lower this high cost of entry, we have developed
ConQuest (Conference Questions) an open-source
spoken dialog system that provides access to
schedule and technical program information during
conferences. We believe the conference domain
has a number of good properties for applied re-
search: it includes a number of tasks of different
complexities, it provides regular access to a real-
world user population; it permits periodical rede-

9

ployments and evaluations and therefore can pro-
vide a natural common evaluation task for the
spoken language interfaces community.

The ConQuest system is constructed on top of
the open, transparent and modular Olympus dialog
system framework (2007), and can be easily reused
across different conferences. To date, the system
has been deployed in two conferences: InterSpeech
2006 and 1JCAI 2007. Together with corpora col-
lected from these deployments, the system is freely
available for download (Conquest, 2007).

We begin by describing the ConQuest function-
ality in the next section. Then, in section 3 we pro-
vide an overview of the system architecture and
discuss the development process. In section 4 we
briefly discuss the two deployment efforts. Finally,
in section 5 we discuss related work and draw a
number of conclusions.

2 Functionality

As Figure 1 illustrates, ConQuest is a mixed-
initiative spoken dialog system that provides ac-
cess to schedule and technical program information
during conferences.

Users can browse the schedule and find details
about various papers or sessions of interest by pro-
viding identifying information, such as topics, ses-
sion names, special events, paper titles, author
names, specific dates and times, specific locations,
or a combination thereof (e.g. turns 2, 4, 14). Addi-
tionally, the system also allows uses to listen to
current announcements and to cast their votes for a
Best Paper Award (e.g. turns 10-17).

The interaction is mixed-initiative; at any point,
the user may switch the current focus of the con-
versation (e.g. turn 8). ConQuest employs an adap-
tive information presentation strategy that allows

Proceedings of NAACL HLT 2007, Companion Volume, pages 9—12,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



1 'S:  Welcome to ConQuest [...] | can give you information about papers, sessions, special events and announcements at Inter-
Speech 2006. You can also cast a vote for the best paper award. How can | help you?
2 U: arethere any papers on spoken dialog systems today
8 S:  There are 23 papers on spoken dialog systems today. These papers are being presented in 3 sessions: Dialog and Discourse,
Language Modeling for Spoken Dialog Systems and Spoken Dialog Systems I. To browse this list of papers, please tell me the
author name, the paper title, the time or the venue you're looking for. If you're not interested in any of these papers say ‘quit’.
4 U: which ones are in the afternoon
5 S: There will be 11 papers on spoken dialog systems this afternoon. Would you like to hear information about all these papers?
6 U vyes
7 S: Thelist of papers on spoken dialog systems this afternoon is: Paper 1 - “Dynamic Extension of a Grammar-based Dialogue
System: Constructing an All-Recipes Knowing Robot”, Paper 2 — [...] Would you like more information about any of these?
8 U: tell me more about the third one
9 S: Paper 3is titled “System- versus user-initiative dialog strategy for driver information systems”, and was presented yesterday at 2
pm in the poster session in Allegheny Ballroom Foyer. This paper was written by Chantal Ackermann, and Marion Libossek.
Would you like more information about any of these?
8 U: nowhen is the banquet
9 S: The Banquet will be held Wednesday from 7pm to 9:30 pm in the Heintz History Center. The Heinz History Center is located on
Smallman street between 12t and 13 streets. The History Center is a museum that relates and interprets 250 years of history
in the Western Pennsylvania area. Is there anything else | can do for you?
10 U: vyesIdlike to castavote
11 S Please tell me the title of the paper you'd like to vote for..
12 U: Idon'treally know the title but | think it had Diane as one of the main authors = [non-understanding]
13 S Sorry, | didn't catch that. Please dial the first six letters from the title of the paper you would like to vote for.
14 U: Idon'tknow itit's a paper by Diane Litman
15 S:  There are 3 papers by Diane Litman. Paper 1 - “Discourse Structure and Speech Recognition Problems”, Paper 2 - [....], Paper
3-[...] Would you like to vote for any of these?
16 U: Discourse Structure and Speech Recognition Problems
17 S:  Okay, I've recorded your vote for the paper entitled “Discourse Structure and Speech Recognition Problems” What else can | do
for you?
8 U ]

Figure 1. A sample interaction with ConQuest

users to easily navigate the schedule (see turns 3, 5
and 15). The system uses a rich repertoire of error
recovery strategies to handle potential errors, in-
cluding several fall-back strategies (e.g. turn 13).

3  System Architecture

The ConQuest system was built using RavenClaw/
Olympus (2007), an open-source framework that
facilitates research and development in task ori-
ented conversational spoken language interfaces.
Olympus consists of a collection of components
for recognition, language understanding, dialog
management, language generation, speech synthe-
sis, etc., and the corresponding communication
infrastructure. To date, Olympus has been used to
develop and deploy a number of other systems
spanning different domains and interaction types
(Bohus and Rudnicky, 2003).

A key characteristic of the Olympus framework
is a clear separation between the domain independ-
ent programs (or components) and domain specific
resources. This decoupling promotes reusability
and significantly lessens the system development
effort. In ConQuest, the authoring effort was fo-
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cused on developing resources such as the lexicon,
language model, grammar, dialog task specifica-
tion, etc. Some interesting, unanticipated engineer-
ing challenges we faced during development were
dealing with foreign names and accented charac-
ters and performing text normalization on various
fields (e.g. Alex Smith and Alexander Smith are
the same author), while at the same time ensuring
consistency between these various resources. Be-
low, we briefly comment of each component and
the corresponding resources. Figure 2 provides a
top-level architectural view.

Speech Recognition. ConQuest uses a recogni-
tion server coupled to a set of parallel recognition
engines: two SPHINX-II decoders (Huang et al.,
1992) that use gender-specific acoustic models,
and a DTMF (touch-tone decoder). Each recogni-
tion engine uses class-based (e.g. paper titles, au-
thor names, etc.), state-specific trigram-language
models. We started with an initial language model
built using data collected with an early text-only
prototype. We then internally deployed a speech
based system, collected more data, transcribed it,
and used it to retrain the language models. The
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Figure 2. The Olympus dialog system reference architecture (a typical system)

final language models used during the InterSpeech
deployment were trained from on a corpus of 6350
utterances. The system operated with a lexicon of
4795 words, which included 659 lexicalized (con-
catenated) paper titles, and 1492 lexicalized author
names, and 78 lexicalized session names. The pro-
nunciations were generated using CMU Dictionary
and later manually corrected.

Language understanding. The system uses the
Phoenix (Ward and lIssar, 1994) robust parser to
extract concepts from the recognition results. A
domain-specific shallow semantic grammar was
developed and concatenated with a domain-
independent grammar for generic expressions like
[Yes], [No], [Date], [Time], etc.

Dialog management. ConQuest uses a Raven-
Claw-based dialog manager (Bohus and Rudnicky,
2003). We developed a dialog task specification
for the conference schedule domain, expressed as a
hierarchical plan for the interaction, which the
RavenClaw engine uses to drive the dialog. In the
process, the RavenClaw engine automatically pro-
vides additional generic conversational skills such
as error recovery strategies and support for various
universal dialog mechanisms (e.g. repeat, start-
over, what-can-1-say, etc.)

Backend/Database. A backend agent looks up
schedule information from the database (stored as
a flat text file). The backend agent also performs
domain specific pre-lookup normalization (e.g.
mapping author names to their canonical forms),
and post-lookup processing of the returned records
(e.g. clustering papers by sessions). The database
file serves as starting point for constructing a
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number of other system resources (e.g. language
model classes, lexicon, etc.)

Temporal reference resolution agent. Apart
from the database agent, the dialog manager also
communicates with an agent that resolves temporal
expressions (e.g. tomorrow at four p.m.) into ca-
nonical forms.

Language generation. ConQuest uses Rosetta,
a template-based language generation component.
The authoring effort at this level consisted of writ-
ing various templates for the different system ques-
tions and information presentation prompts.

Speech synthesis. ConQuest uses the Cepstral
(2005) speech synthesis engine, configured with an
open-domain unit selection voice. We manually
checked and corrected pronunciations for author
names, various technical terms and abbreviations.

4  Development and Deployment

The first development of ConQuest system was
done for the Interspeech 2006 conference held in
Pittsburgh, PA. The iterative development process
involved regular interaction with potential users
i.e. researchers who regularly attend conferences.
Seven developers working half time participated in
this development for about three months. An esti-
mated one man-year of effort was spent. This esti-
mate does not include the effort involved in
transcribing the data collected after the conference.

Two systems were deployed at the Interspeech
2006 conference: a desktop system using a close-
talking microphone placed by the registration desk,
and a telephone-based system. Throughout the
conference we collected a corpus of 174 sessions.
We have orthographically transcribed the user ut-



terances and are currently analyzing the data; we
plan to soon release it to the community, together
with detailed statistics, the full system logs as well
as the full system source code (Conguest, 2007).

Following Interspeech 2006, ConQuest was re-
deployed at 1JCAI 2007 conference held in Hy-
derabad, India. The second deployment took an
estimated two man-months: three developers work-
ing half-time for over a month. The significant
parts of the second deployment involved incorpo-
rating scheduling data for the IJCAI 2007 and im-
plementing two new requirements i.e. support for
workshops and Indian English speech recognition.
The 1JCAI development had fewer iterations than
the first effort. The two desktop systems set up at
the conference venue collected 129 sessions of
data. This data is currently being transcribed and
will soon be released to the community through the
Conguest website (Conquest, 2007).

Through these two deployments of ConQuest
the system specifications have been refined and we
expect the development time to asymptote to less
than a month after a few more deployments.

5 Discussion and Conclusion

Our primary goal in developing ConQuest was to
enable research by constructing and releasing an
open-source, full-fledged dialog system, as well as
an initial corpus collected with this system. The
system is built on top of an open, transparent and
modular infrastructure that facilitates research in
spoken language interfaces (Olympus, 2007).
There have been a number of other efforts to
collect and publish dialog corpora, for instance
within the DARPA Communicator project. A more
recent project, that operates in a domain similar to
ConQuest is DiSCoH, a Dialog System for Confer-
ence Help developed by researchers at AT&T,
ICSI and Edinburgh University, and deployed dur-
ing the SLT-2006 workshop (Adreani et al., 2006).
While their goals are similar, i.e. to enable re-
search, DiSCoH and ConQuest differ in a number
of dimensions. Functionality-wise, DiSCoH offers
general conference information about the venue,
accommodation options and costs, paper submis-
sion, etc., while ConQuest provides access to the
technical schedule and allows participants to vote
for a best paper award. DiSCoH is built using
AT&T technology and a call-routing approach;
ConQuest relies on a plan-based dialog manage-
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ment framework (RavenClaw) and an open-source
infrastructure (Olympus). Finally, the DiSCoH ef-
fort aims to develop a richly annotated dialog cor-
pus to be used for research; ConQuest’s aim is to
provide both the full system and an initial tran-
scribed and annotated corpus to the community.

The conference domain is interesting in that it
allows for frequent redeployment and in theory
provides regular access to a certain user-base. It
should therefore facilitate research and periodical
evaluations. Unfortunately, the dialog corpora col-
lected so far using DiSCoH and ConQuest have
been somewhat smaller than our initial expecta-
tions. We believe this is largely due to the fact that
the systems provide information that is already
accessible to users by other means (paper confer-
ence program, web-sites, etc.). Perhaps combining
the functionalities of these two systems, and ex-
panding into directions where the system provides
otherwise hard-to-access information (e.g. local
restaurants, transportation, etc.) would lead to in-
creased traffic.
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Abstract In one study that broke the independence assump-
tion (Chang et al., 2001), the investigators devel-
opedconditional detectorsMLP detectors of acous-
tic phonological features that are hierarchically de-
pendent on a different phonological class. In (Ra-
jamanohar and Fosler-Lussier, 2005) it was shown
that such a conditional training of detectors tended
to have correlated frame errors, and that improve-
ments in detection could be obtained by training
joint detectors. For many features, the best detector
can be obtained by collapsing MLP phone posteriors
into feature classes by marginalizing across phones
within a class. This was shown only for frame-level
classification rather than phone recognition.
Posterior estimates of phonological feature
classes, as in Table 1, particularly those derived
from MLPs, have been used as input to HMMs
(Launay et al., 2002), Dynamic Bayesian Networks
(DBNs) (Frankel et al., 2004; Livescu, 2005),
Phonological features have received attention asaamd Conditional Random Fields (CRFs) (Morris
linguistically-based representation for sub-word inand Fosler-Lussier, 2006). Here we evaluate
formation in automatic speech recognition. Thesphonological feature detectors created from MLP
sub-phonetic features allow for a more refined reprgghone posterior estimators (joint feature models)
sentation of speech by allowing for temporal desyrrather than the independently trained MLP feature
chronization between articulators, and help accounletectors used in previous work.
for some phonological changes common in sponta-
neous speech, such as devoicing (Kirchhoff, 199¢ Conditional Random Fields
Livescu, 2005). A.numberof.methods ha}ve been d%fRFs (Lafferty et al., 2001) are a joint model of
veloped for detectln_g acoustic phoqologlcal featureg label sequence conditioned on a set of inputs.
an_d relatec_i acoustic landmarks d_|rectly from datﬁlo independence is assumed among the input; the
gil;goxl\Jllélc_:I'[_(;iryl\(;;(:Ph?;Zesp(tLOanssegg:\li\r/g-]\?g:r’ws%)?]gmft)' RF model discriminates between hypothesized la-
2005: Sharenborg et al., 2006). or Hidden Markoy &l sequences according to an exponential function

i . f weighted feature functions:
Models (Li and Lee, 2005). These techniques = o o oorie UNCHONS

typically assume that acoustic phonological feature p g DT . 1
events are independent for ease of modeling. (ylx) oc exp 21: (86 ey ) @)

We compare the effect of joint modeling
of phonological features to independent
feature detectors in a Conditional Random
Fields framework. Joint modeling of fea-
tures is achieved by deriving phonological
feature posteriors from the posterior prob-
abilities of the phonemes. We find that
joint modeling provides superior perfor-
mance to the independent models on the
TIMIT phone recognition task. We ex-
plore the effects of varying relationships
between phonological features, and sug-
gest that in an ASR system, phonological
features should be handled as correlated,
rather than independent.

1 Introduction
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Class Feature Values

SONORITY | Vowel, Obstruent, Sonorant, Syllabic, Silence

VOICE \oiced, Unvoiced, N/A

MANNER Fricative, Stop, Stop-Closure, Flap, Nasal, Approximant, Nasalflap, [N/A
PLACE Labial, Dental, Alveolar, Palatal, \elar, Glottal, Lateral, Rhotic, N/A
HEIGHT High, Mid, Low, Lowhigh, Midhigh, N/A

FRONT Front, Back, Central, Backfront, N/A

ROUND Round, Nonround, Roundnonround, Nonroundround, N/A

TENSE Tense, Lax N/A

Table 1: Phonetic feature classes and associated values

where P(y|x) is the probability of label sequence experiments, they are generated by training MLP
y given an input frame sequeneas i is the frame phone detectors, by evaluating the feature informa-
index, and Sand T are a set of state feature functiofi®n inherent in the MLP phone posteriors, and by
and a set of transition feature functions, defined astraining independent MLPs to detect the various fea-
tures within the classes described. The use of CRFs

S(x,y,i) = Z Ajsi(y,z,i), and (2)  allows usto explore the dependencies among feature
J classes, as well as the usefulness of phone posteriors
T(x,y, 1) = > ptr(yi1, vi, 2, 1) (3) versus feature classes as inputs.

k

3 Experimental Setup
where) andy are weights determined by the learn-

ing algorithm. In NLP applications, the componeniVe use the TIMIT speech corpus for all training and
feature functions; andt, are typically realized as testing (Garofolo et al., 1993). The acoustic data
binary indicator functions indicating the presence ois manually labeled at the phonetic level, and we
absence of a feature, but in ASR applications it ipropagate this phonetic label information to every
more typical to utilize real-valued functions, such arame of data. For the feature analyses, we employ
those derived from the sufficient statistics of Gausa lookup table that defines each phone in terms of
sians (e.g., (Gunawardana et al., 2005)). 8 feature classes, as shown in Table 1. We extract

We can use posterior estimates of phone classesastoustic features in the form of 12th order PLP fea-
phonological feature classes from MLPs as featuriéires plus delta coefficients. We then use these as
functions (inputs) within the CRF model. A moreinputs to several sets of neural networks using the
detailed description of this CRF paradigm can béCSI QuickNet MLP neural network software (John-
found in (Morris and Fosler-Lussier, 2006), whichson, 2004), with the 39 acoustic features as input, a
shows that the results of phone recognition usingarying number of phone or feature class posteriors
CRFs is comparable to that of HMMs or Tanden@s output, and 1000 hidden nodes.

systems, with fewer constraints being imposed on . )
the model. State feature functions in our system afe JOint Phone Posteriors vs. Independent

defined such that Feature Posteriors
. NNg(z;), ify;i=¢ The first experiment contrasts joint versus indepen-
S, 7 (Yir X,1) = { 0, otherwise @ dent feature modeling within the CRF system. We

compare a set of phonological feature probabilities
where the MLP output for featurg at time: is derived from the phone posteriors (a joint model)
NN¢(x;). This allows for an association betweerwith MLP phone posteriors and with independently
a phonep and a feature’ (even if f is traditionally trained MLP phonological feature posteriors.
not associated with). The inputs to the first CRF are sets of 61 state fea-
In this study, we experiment with different meth-ture functions from the phonemic MLP posteriors,
ods of generating these feature functions. In variousach function is an estimate of the posterior proba-
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Input Type. | Phn. Accuracy, Phn. Correct Class Removed Feats.| Phn. Acc.| Phn. Corr.
Phones 67.27 68.77 None 44 | 65.25 66.65
Features 65.25 66.65 Sonority 39 | 65.15 66.58

Phn.— Feat. 66.45 67.94 \Voice 41 | 63.60* 65.03*
Table 2: Results for Exp. 1: Phone and feature pos- ~ Manner 36 | 58.92 60.60*
teriors as input to the CRF phone recognition Place 35 | 53.22% ) 55.13*

Height 38 62.58* 64.07*
bility of one phone. The inputs to the second CRF ~ Front 39 | 64.51* | 65.95*
model are sets of 44 functions corresponding to the Round 39 | 65.19 66.64
phonological features listed in Table 1. The CRF___ Tense 41 | 64.20* | 65.65

models are trained to associate these feature func-P=-05, different from no features removed

tions with phoneme labels, incorporating the pat_-l_ ble 3 R | ‘fE > R ing 1
terns of variation seen in the MLPs. able 3: Results of Exp. 2: Removing feature

The results show that phone-based postercl:-Iasses from the input

ors produce better phone recognition results thagpom the input to the CRF. The original functions
independently-trained phonological features. Thigre the output of the independently-trained feature
could be due in part to the larger number of paramy|ass MLPs. The phone recognition accuracy for the
eters in the system, but it could also be due to therF having removed each class is shown in Table 3.
joint modeling that occurs in the phone classifier. |n Table 4 we show how removing each feature class
In order to equalize the feature spaces, we use thects the labeling of vowels and consonants.
output of the phoneme classifier to derive phonolog- \janner provides an example of the influence of a

ical feature posteriors. In each frame we sum thgqe feature class. Both the Accuracy and Correct-
MLP phone posteriors of all phones that contain degs scores decrease significantly when features as-
given feature. For instance, in the first frame, fogqciated with Manner are removed. Manner features

the feature LOW, we sum the posterior estimates afjistinguish consonants but not vowels, so the effect
tributed to the phonesa, aeandao. This is repeated s concentrated on the recognition of consonants.

for each feature in each frame. The CRF model is The results of Experiment 2 show that certain fea-

trained on_the;_e data and tested accordingly. Th_e 'ftive classes are redundant from the point of view of
sults are significantly better £n001) than the previ- phone recognition. In English, Round is correlated

ous features model, but are significantly worse tha\W/ith Front. When we remove Round, the phonemes

the phone posteriors {p005). remain uniquely identified by the other classes. The

The results of Experiment 1 confirm the hypoth, e s trye for the Sonority class. The results show

esIS of (Raj_amanc_)har and Fosler-Lussier, 200_5) th@fat the inclusion of these redundant features is not
joint modeling using several types of feature inforyeimental to the recognition accuracy. Accuracy

mation is superior to individual modeling in phone, g correctness improve non-significantly when the

recognition, where only phoneme information isredundant features are included
used. The difference between the phone posteriors

and individual feature posteriors seems to be relateq . .
; Streams are not truly independent. Otherwise, per-
both to the larger CRF parameter space with Iarg%

. - . . rmance would decrease overall as we removed
input, and the joint modeling provided by phone . e
posteriors each feature class, assuming predictiveness.

Removal of Place causes a slight worsening of
5 Phonological Feature Class Analysis recognition of vowels. This is surprising, because
Place does not characterize vowels. An analysis of
In the second experiment, we examine the influendbe MLP activations showed that the detector for
of each feature class on the accuracy of the recoflace=N/A is a stronger indicator for vowels than
nizer. We iteratively remove the set of state feais the Sonority=Vowel detector. This is especially
ture functions corresponding to each feature clageue for the vowebkx, which is frequent in the data,

Clearly, the “independent” phonological feature
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Class Removed Percent Correct: References
Vowels | Consonants

S. Chang, S. Greenberg, and M. Wester. 2001. An eli-

None 62.68 | 68.91 tist approach to articulatory-acoustic feature classifica-
Sonority 62.18 | 69.08 tion. InInterspeech

\oice 62.39 | 66.53" J. Frankel, M. Wester, and S. King. 2004. Articulatory
Manner 61.84 | 59.89* feature recognition using dynamic bayesian networks.
Place 60.77* | 51.94* In ICSLP.

Height 55.92* | 68.69 J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, and
Frontness 60.80* | 68.87 N. Dahlgren. 1993. DARPA TIMIT acoustic-phonetic
Roundness 62.25 | 69.13 continuous speech corpus. Technical Report NISTIR
Tenseness 60.15* | 68.76 4930, National Institute of Standards and Technology,

Gaithersburg, MD, February. Speech Data published
on CD-ROM: NIST Speech Disc 1-1.1, October 1990.

Table 4: Effect of removing each feature class OR  Gunawardana. M Mahajan, A. Acero, and J. Platt
recognition accuracy of vowels and consonants 2005. Hidden conditional random fields for phone
classification. Irinterspeech
thus greatly influences the vowel recognition statis-
Hasegawa-Johnson et al. 2005. Landmark-based

tic. Removing the Pla_lce detef:tors Ie_ads toa IQSS In.speech recognition: Report of the 2004 Johns Hopkins
vowel vs. consonant information. This results in an  symmer Workshop. IICASSP

increased number of consonant for vowel substitu-
tions (from 560 to 976), thus a decrease in vow

recognition accuracy.

Besides extending the findings in (Rajamanohat. Kirchhoff. 1999. Robust Speech Recognition Using
and Fosler-Lussier, 2005), this provides a cautionary A_rtlculatory Information Ph.D. thesis, University of
tale for incorporating redundant phonological fea- Bielefeld.
ture estimators into ASR: these systems need to BeLafferty, A. McCallum, and F. Pereira. 2001. Con-
able to handle correlated input, either by design (as ditional rangtlang fl'?|d31 PfObab'gSt'CPTOdelg_fOY SGf!g-
: - _menting and labeling sequence dataPtoceedings o
|n. a CRF)’ through fuI'I or sgml tied covarlar]ce Ma~ {he 18th International Conference on Machine Learn-
trices in HMMs, or by including the appropriate sta- ing.

tistical dependencies in DBNs.

* p<.05, different from no features removed

. Johnson. 2004. ICSI Quicknet software package.
http://www.icsi.berkeley.edu/Speech/qgn.html.

B. Launay, O. Siohan, A. C. Surendran, and C.-H. Lee.
6 Summary 2002. Towards knowledge based features for large vo-

o cabulary automatic speech recognition|GASSP
We have shown the effect of using joint model-

ing of phonetic feature information in Conjunction‘]' Li and C.-H. Lee. 2005. On designing and evaluating
; L . speech event detectors. Ihterspeech

with the use of CRFs as a discriminative classifier.

Phonetic posteriors, as joint models of phonologicaf. Livescu. 2005.Feature-Based Pronunciation Model-

features, provide superior phone recognition perfor- ing for Automatic Speech Recognitio®h.D. thesis,

mance over independently-trained phonological fea-

ture models. We also find that redundant features adeMorris and E. Fosler-Lussier. 2006. Combining pho-

often modeled well within the CRF framework. netic attributes using conditional random fieldsInn
terspeech
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K-Best Suffix Arrays
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of N characters. The program allocates the suffix
Abstract arraysuf and initializes it to a vector & ints (suf-
fixes) ranging from 0 tdN—-1. The suffix array is
Suppose we have a large dictionary of sorted by lexicographic order and returned.
strings. Each entry starts with a figure of
merit (popularity). We wish to find the int* make_standard_suf () {
best matches for a substrirgy,in a dicti- int N = strlen(corpus); . .
noary,dict. Thatis, gremdict|sort—n | int* suf = (int*)malloc(N * sizeof(int));
head *, but we would like to do this in et S Fnl
sublinear time. Example applications: (1) ?;?Jl;rgsslju’f.} + sizeof(int), lexcomp);
web queries with popularities, (2) prod- ’
ucts with prices and (3) ads with click int lexcomp(int* a, int* b)
through rates. This paper proposes a { return strcmp(corpus + *a, corpus + *b);}
novel index k-best suffix arrays, based on _ o _ o
ideas borrowed from suffix arrays and kd- This program is simple to describe (but inefficient
trees. A standard suffix array sorts the at least in theory) becausecmp can take Q)
suffixes by a single order (lexicographic) time in the worst case (where the corpus contains

whereas k-best suffix arrays are sorted by WO copies of an arbitrarily long string). See
two orders (lexicographic and popularity). http://cm.bell-labs.com/cm/cs/who/doug/ssoifoc

Lookup time is betweelog N andsqrt N. an implementation of the ®(log N) Manber and
Myers algorithm. However, in practice, when the
corpus is a dictionary of relatively short entries

1 Standard Suffix Arrays (such as web queries), the worst case is unlikely t

come up. In which case, the simphake_suf pro-

This paper will introducek-best suffix arrays, gram above is good enough, and maybe even better

which are similar to standard suffix arrays (Manbehan the Ol log N) solution.

and Myers, 1990), an index that makes it conven-

ient to compute the frequency and location of &1 Standard Suffix Array L ookup

substring,s, in a long sequenceprpus. A suffix

array, suf, is an array of alN suffixes, sorted al- T0 compute the frequency and locations of a sub-

phabetically. A suffix,suf[i], also known as a Strings, use a pair of binary searches to finahd

semi-infinite string, is a string that starts asjion |, the locations of the first and last suffix in thuf-

j in the corpus and continues to the end of the cdix array that start witts. Each suffix between

pus. In practical implementations, a suffix is-a 4andj point to a location of in the corpus. The

byte integerj. In this way, an int (constant spacefrequency is simplyp —i + 1.

denotes a long stringN(bytes). Here is some simple code. We show how to
The rnake_gandard_suf program below creates find the first suffix. The _Iast suffix is |eft asn

a standard suffix array. The program starts with €xercise. As above, we ignore the unlikely worst

corpus, a global variable containing a long string
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case (two copies of a long string). See references for (inti=0; i<N; i++) suf[i]=i;

mentioned above for worst case solutions. process(suf, suf+N, 0);
return suf;}

void standard_lookup(char* s, int* suf, int N){

int* i = find_first_suf(s, suf, N); vpid*prc_)geil@(int* start, (ijnt* end, /mt depth) {
:(nt* j= fiEd_IEst_sll(Jf(s, suf, N); ’ :?Eerqlil g igg :1§err;tu;n§tart) 2;
or (int* k=i; k<=j; k++) output(*k); B '
( : ) output(*k):} gsort(start, end-start, sizeof(int),
int* find_first_suf(char* s, int* suf, int N) { (depth & 1) ? popcomp : lexcomp);
int len = strlen(s); process(start, mid, depth+1);
intf high = suf + N process(mid+1, end, depth+1);}
W-h"e (S-Uf 2 h|gh) { int popcomp(int* a, int* b) {
int* mid = suf + (high-suf)/2; ' Popcomp b
int ¢ = strncmp(s, corpus + *mid, len); if (*a > *b) return 1; _
if (c == 0) high = mid+1; if ("a < *b) return —1;
else if (c < 0) high = mid; return 0;}
else suf = mid;}
for (; suf < high; suf++) ) :
if (strncmp(s, corpus + *suf, len) == 0) 21 K-Best Suffix Array Lookup

return suf;

return NULL?} 1/ not found To find the k-best matches for a particular sub-

string s, we do what we would normally do for

2 K-Best Suffix Arrays standard suffix arrays on lexicographic splits.
However, on popularity splits, we search the more

K-best suffix arrays are like standard suffix ag;ay Popular half first and then we search the less popu

except there are two orders instead of one. Iiradépr half, if necessary.

tion to lexicographic order, we assume a figure of An implementation okbest-lookup is given be-

merit, which we will refer to as popularity. Forlow. D denotes the depth of the search thus far.

example, the popularity of a string could be its fr Kbest-lookup is initially called withD of 0. Pro-

guency in a search |og The code below assunieese maintains a heap of the k-best matches found

that the corpus is a sequence of strings that contBys far. Done returns true if its argument is less

pre-sorted by popularity, and then the popularitiggopular than th&" best match found thus far.

have been stripped off. These assumptions make

it very easy to compare two strings by popularity. Void kbest_lookup(char* s, int* suf, int N, int D)Y{

All popcomp has to do is to compare the two posi- Nt mid = suf + N/2;

tions in the corpus. int len = strien(s);

Themake kbest_suf program below is similar to if (N==1 && strncmp(s, corpus+*suf, len)==0)

the make_standard_suf program above except we propose(*suf);

now sort by the two orders at alternating depths in  if (N <= 1) return;

the tree. First we sort Iexicographi_cally and then (D&1) { /I popularity split

we sort by popularity and so on, using a construc-  kpest_lookup(s, suf, mid-suf, D+1);

tion similar to KD-Trees (Bentley, 1975). The if (done(*mid)) return;

code below is simple to describe (though there are if (strncmp(s, corpus + *mid, len) == 0)

more efficient implementations that avoid unnec- propose(*mid);
essary gsorts). kbest_lookup(s, mid+1, (suf+N)-mid-1,
D+1)}
int* make _kbest_suf () { else { /' lexicographic split
int N = strlen(corpus): int ¢ = strncmp(s, corpus + *mid, len);
int* suf = (int*)malloc(N * sizeof(int)); int n = (suf+N)-mid-1;

if (c < 0) kbest_lookup(s, suf, mid-suf, D+1);
else if (¢ > 0) kbest_lookup(s, mid+1, n, D+1);

1 with a little extra book keeping, one can keeplsid on the else { kbest_lookup(s, suf, mid-suf, depth+1);
side that makes it possible to map back and feetivéen propose(*mid);
popularity rank and the actual popularity. Thiswgiout to be kbest_lookup(s, mid+1, n, D+1); }}}

useful for some applications.
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the matches are below 9 (not_). The next split is

2.2 A Short Example: To beor not to be on popularity. The matches above this split (1&6)

t%re as popular as the matches below this split (10)

It is often desirable to output matching records

C(rather than suffixes). Records are output in popu

larity order. The actual popularity can be output,
using the side table mentioned in footnote 1:

Suppose we were given the text, “to be or not
be.” We could then generate the following di
tionary with frequencies (popularities).

Popularity Word

2 to Popularity Record
2 be 5 o

1 or 1 or

1 not 1 not

The dictionary is sorted by popularity. We treap3  Timeand Space Complexity
the second column as &N¥13 byte corpus (with

underscores at record boundaries): to_be_or_not The space requirements are the same for both stan-
dard and k-best suffix arrays. Both indexes are

Standard _ K-Best _ permutations of the same suffixes.
suf corpus + suffi] | suf corpus + suf]i] The time requirements are quite different. Stan-
12 2 _be or_not_ dard suffix arrays were designed to find all
2 _be_or _not_ 3 be_or_not_ matches, not the k-best. Standard suffix arrags ca
8  not 4 e or not find all matches in @¢g N) tlme. Howeve(, if we
-~ - - = attempt to use standard suffix arrays to find the k
5 _or_not_ 5 _or_not_ best, something they were not designed to do, then
3 be_or _not_ 8 _not_ it could take a long time to sort through the worst
4 e or not_ 12 case (an embarrassment of riches with lots of
matches). When the query matches every string in
9 not 9 not e .
- - the dictionary, standard suffix arrays do not hedp
1 o_be_or_not_ 1 o_be_or_not_ find the best matches. K-best suffix arrays were
6 or_not_ 6 or_not_ designed to handle an embarrassment of riches,
10 ot_ 0 to_be_ or _not_ which is quite common, especially when the sub-
string s is short. Each popularity split cuts the
7 r_not 7 r_not . .
- - search space in half when there are lots of lexico-
11 t 10 ot graphic matches.
0 to_be_ or_not_ 11 t The best case for k-best suffix arrays is when the

popularity splits always work in our favor and we

The standard suffix array is th& dolumn of the never have to search the less popular half. The
table above. For illustrative convenience, we showorst case is when the popularity splits alwaysk fai
the corresponding strings in th& 2olumn. Note such as when the query strisg not in the corpus.
that the 2 column is sorted lexicographically. In this case, we must always check both the popu-

The k-best suffix array is thé°®olumn with the lar half and the unpopular half at each split, sinc
corresponding strings in thd"4olumn. The first the failure to find a lexicographic match in thesfi
split is a lexicographic split at 9 (“not_"). Omth tells us nothing about the existence of matches in
sides of that split we have a popularity split at &€ second.
(*_or_not_") and 7 (“r_not_"). (Recall that relativ  Asymptotically, k-best lookup takes between log
popularity depends on corpus position.) Followindy and sqrt N time. To see this complexity result,
there are 4 lexicographic splits, and so on. let P(N) be the work to process N items starting

If k-best lookup were given the query striagg~ With a popularity splits and let L(N) be the work t
“0,” then it would find 1 (o_be_or not ), 6process N items starting with a lexicographic
(or_not_) and 10 (ot_) as the best choices (in thaplits.
order). The first split is a lexicographic splill Thus,
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P(N) =aL(N/2) +C,; K-best suffix arrays have been used in auto-
L(N) =P(N/2) + C, complete applications (Church and Thiesson,
2005). The triangles with the fastest lookup times
demonstrate the effectiveness of the index for this
application. We started with the random sample
above, but replaced each quaryin the sample
with a substring of| (of random size).

wherea = 2-p, whenp is the probability that the
popular half contains sufficient matches: lies
between 1 (best case) and 2 (worst casg)and
C, are constants. Thus,

P(N) = a P(N/4) + C (@D) _
_ 4 Conclusion
whereC = C; + aC,. Using the master method

(Cormenet al, 2001),P(N) = O(og.N) in the best A new data structuréi-best suffix arrays, was pro-
case ¢=1). In the worst casen€2), P(N) = O(sgrt  posed. K-best suffix arrays are sorted by two or-
N). In general, fon > 1,P(N) = ON%2 %3, ders, lexicographic and popularity, which make it
In practical applications, we expect popularitxconvenient to find the most popular matches, espe-
splits to work more often than not, and thereforeially when there are lots of matches. In many ap-
we expect the typical case to be closer to the bgdications, such as the web, there are often

case than the worst case. embarrassments of riches (lots of matches).
o Lookup time varies fromog N to sort N, de-
3 Empirical Study pending on the effectiveness of the popularity

_ splits. In the best case (e.g., very short query
The plot below shows the k-best lookup time 8Strings that match nearly everything), the popular-

a function of square root of corpus size. We ®fy splits work nearly every time and we rarely

tracted sub-corpora from a 150 MB collection ofye g search the less popular side of a popylarit
8M queries, sorted by popularity, according to th@plit. In this case, the time is closelog N. On

logs from Microsoft www.live.com _AII experi-  iha other hand, in the worst case (e.g., query
ments were performgd on a Pentium 4, 3'ZG"&rings that match nothing), the popularity splits
dual processor machine with enough memory Qo er work, and we always have to search both
avoid paging. - sides of a popularity split. In this case, lookup
The line of diamonds shows the worst casga is sgrt N, In many cases, popularity splits

where we_the query string is not !n th_e index. &NOLy 61k more often than not, and therefore, perform-
that the diamonds fit the regression line quitelwel,, -a is closer tiog N thansqgrt N.

confirming the theory in the previous section: The

worst case lookup i®(sgrt N). References
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squares are well below the line, demonstrating that
these queries are considerably easier than thd wors
case.

20
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A main component of every statistical machine
Abstract translation system is the translation model. The
translation model assigns translation probabilities
We describe a new pruning approach to to phrasé pairs of source and target phrases ex-
remove phrase pairs from translation mod- tracted from a parallel bilingual text. These phkras
els of statistical machine translation sys- pairs are applied during the decoding process and
tems. The approach applies the original their target sides are combined to form the final
translation system to a large amount of text translation. A variety of algorithms to extract
and calculates usage statistics for the phrase pairs has been proposed. (e.g. Och and Ney,
phrase pairs. Using these statistics the rele- 2000 and Vogel, 2005).
vance of each phrase pair can be estimated. = Our proposed approach now tries to remove
The approach is tested against a strong phrase pairs, which have little influence on the fi
baseline based on previous work and shows nal translation performance, from a translation sys
significant improvements. tem (runing of the translation mod®l The goal
is to reduce the number of phrase pairs and in turn
_ the memory requirement of the whole translation
1 Introduction system, while not impacting the translation per-

A relativel device f lati formance too heavily.
relatively new device for translation systems are 4 approach does not depend on the actual al-

small portable devices like ceII_ phones, '.DDAS argorithm used to extract the phrase pairs and can be

handheld game consoles. The idea here is to havg ey to every imaginable method that assigns

lightweight and convenient translation device e'%robabilities to phrase pairs. We assume that the

for tourists that can be easily carried. Other iapp'phrase pairs were pre-extracted before decoding.

_cations include medical, relief, and military soena(in contrast to the proposed approaches to “online

103 , . phrase extraction” (Zhang and Vogel, 2005; Calli-
Preferably such a device will offer speech-toz . giirch et al., 2005)).

speech translation for both (or multiple) translati The task now is to remove enough pre-extracted

directions. These devices have been researched ﬂ?ase pairs in order to accommodate the possibly
are starting to become commercially available (e. trict memory limitations of a portable device

Isotani et al., 2003). The main challenges here gfgq restricting performance degradation as much
the severe restrictions regarding both memory a possible

computing power on such a small portable device. We will not specifically address the computing

11 Statistical Machine Transation power limitations of the portable devices in this
) paper.
Generally statistical machine translation systems

tl tperform ther translation ap- ,
have recently outperformed othe ansiatio aQ.A“phrase” here can also refer to a single word.

proaches so _'t seems natural to also apply themz'Qmall language models are also desirable andofh@aches
these scenarios. could be applied as well but this was not investigget.
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2 Previouswork and phrase extraction process. Especially the fol-
lowing two additional factors play a major role in

Previous work mainly introduced two natural ideaghe importance of a phrase pair.

to prune phrase pairs. Both are for example dj-

rectly available in the Pharaoh decoder (Koeh L
e can clearly say that a phrase pair with a very

2004). . :
common source phrase will be much more impor-

Probability threshold tant than a phrase pair where the source phrase oc-

A very simple way to prune phrase pairs from gurs only very rarely.

translation model is to use a probability threshol

and remove all pairs for which the translatio

probability is below the threshold. The reasonin

for this is that it is very unlikely that a trantta hypothesis. It is for example possible that it stp
with a very low probability will be chosen (over ¥ a longer phrase pair that gets a higher probabil

:gﬁitg)ar translation candidate with a higher prolﬁy so that the shorter phrase pair is not used.

Trandation variety threshold Generally there are a lot of different factors unfl
Another way to prune phrase pairs is to imposeencing the estimated importance of a phrase pair
limit on the number of translation candidates for and it seems hard to consider every influence sepa-
certain phrase. That means the pruned translaticately. Hence the proposed idea does not use a
model can only have equal or fewer possible transembination of features to estimate the phrase pair
lations for a given source phrase than the thresimportance. Instead the idea is to just apply the
old. This is accomplished by sorting the phrasganslation system to a large amount of text aed se
pairs for each source phrase according to thdiow often a phrase pair is actually used (i.euinfl
probability and eliminating low probability onesences the translation performance). If the traedlat

requency of the source phrase

ctual use of the phrase-pair
ut even phrase-pairs with very common source
hrases might not be used for the final translation

until the threshold is reached. text is large enough this will give a good statisti
_ ) o of the relevance of this respective phrase paiis Th
3 Pruningvia Usage Statistics leads to the following algorithm:

The approach presented here uses a different iddgorithm
inspired by theOptimal Brain Damage algorithm Translate a large amount of (in-domain) data with
for neural networks (Le Cun et al., 1990). the translation system (tuned on a development set)
The Optimal Brain Damage algorithm for neurafind collect the following two statistics for each
networks computes aaliency for each network Phrase pairin the translation model.
element. The saliency is the relevance for the per- c(phrase pa)r= Count how often a phrase pair
formance of the network. In each pruning step the was considered during decoding (i.e. was
element with the smallest saliency is removed, and added to the translation lattice)
the network is re-trained and all saliencies are re u(phrase pajr= Count how often a phrase pair
calculated etc. was used in the final translation (i.e. in the
We can analogously view each phrase pair in the chosen path through the lattice).
translation system as such a network element. Thée overall score for a phrase pair with simple
question is of course how to calculate the relegansmoothing (+1) is calculated as:
for the performance for each phrase pair.
A simple approximation was already done in thescor&(phrasepair) =
previous work using a probability or varietylI ; * ;
threshold. Here the relevance is estimated usiag t 09(C(phraseain) +1)] [u(phrasepalr) +1]
phrase pair probability or the phrase pair rank

relevance indicators. z\‘/?/e use the logarithm function to limit the influ-

But these are not the only factors that influence c® .Of thes value. Theu value is more important
this measures how often a phrase was actually

the final selection of a phrase pair and most . . : . .
these factors are not established during the trginiused in a translation hypothesis. This scoringfunc
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tion was empirically found after experimentingd.2 Resultsfor
with a variety of possible scoring terms. Pruning via Usage Statistics
The phrase pairs can then be sorted according to
this score and the tapphrase pairs can be selectedfor the proposed approach “Pruning via Usage

for a smaller phrase translation model. Statistics”, the translation system was applied to
_ the 162,318 lines of Japanese training data.
4 Dataand Experiments As explained in section 3 it was now counted for

each phrase pair how often it occurred in a transla
tion lattice and how often it was used for the ffina
translation. The phrase pairs were then sorted ac-
cording to their relevance estimation and therop

The translation system that was used for the eRhrase pairs were chosen for different values. of

eriments is a state-of-the-art statistical maching'® Pruned phrase table was then used to translate
Itoranslation system (Eck et al. 2006). The Systef.vﬁje IWSLT 2004 test set. Table 1 shows the results

uses a phrase extraction method described in VO§&mpar|ng the baseline scores with the results us-

2005) and a 6-aram lanauade model. ng the described pruning. Figure 1 illustrates the
( ) g guag scores. The plateaus in the baseline graph are due

4.1 Experimental Setup & Baseline

Trandation system

Training and testing data to the baseline definition as stated above.
The training data for all experiments consisted of
the BTEC corpus (Takezawa et al., 2002) with BLEU scores
162,318 lines of parallel Japanese-EninSh text. Al # of Phrase | Baseline Pruning Relative score
translations were done from Japanese to English| Pairs (n) improvement
The language model was trained on the English 100,000 - 04735 -
part of the training data. 200,000 0.3162 0.5008 58.38%
The test set from the evaluation campaign of 300,000 0.4235 0.5154 21.70%
IWSLT 2004 (Akiba et al., 2004) was used as test- 400,000 0.4743 0.5241 10.50%
ing data. This data consists of 500 lines of tearis 500,000 04743 05269 11.09%
data. 16 reference translations to English werel  gog 0o 0.4890 05359 9.59%
available. 800000 | 05194 | 05394 3.85%
Extracted phrases 1,000,000 0.5355 05442 1.62%
Phrase pairs for n-grams up to length 10 were ex-__ 1,500,000 0.5413 0.5523 2.03%
tracted (with low frequency thresholds for higher | 2,000,000 0.5630 0.5749 2.11%
n-grams). This gave 4,684,044 phrase pairs| 3,000,000 05778 0.5798 0.35%
(273,459 distinct source phrases). The baseling 4,000,000 0.5855 0.5865 0.17%
score using all phrase pairs was 59.11 (BLEU,| 4,684,044 0.5911 0.5911 0.00%
Papineni et al., 2002) with a 95% confidence intefraple 1: BLEU scores at different levels of pruning
val of [57.13, 61.09]. (Baseline: Best score with equal or less phrase
Baseline pruning pairs)

The approaches presented in previous work served

as a baseline. The probability threshold was testé@r more than 1 million phrase pairs the differ-
for 8 values (0 (no pruning), 0.0001, 0.0005, 0,00€NCes are not very pronounced. However the trans-
0.005, 0.01, 0.05, 0.1) while the variety thresholttion score for the proposed pruning algorithm is
tested for 14 values (1, 2, 3, 4, 5, 6, 8, 10,215, still not significantly lower than the 59.11 scat
50, 100, 200, 500 (no pruning in this case)) ahd & Mmillion phrase pairs while the baseline drops
combinations thereof. The final translation scoreslightly faster. For less than 1 million phraserpai
for different settings are very fluctuating. Fomth the differences become much more pronounced
reason we defined the baseline score for each pd4th relative improvements of up to 58% at
sible size as the best score that was reached wi®0,000 phrase pairs. It is interesting to note tha
equal or less phrase pairs than the given sizayin &he improved pruning removes infrequent source
of the tested combinations.
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phrases and to a lesser extent source vocabulary

even for larger numbers of phrase pairs. 7 References
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Abstract

We present an approach to using multiple
preprocessing schemes to improve statis-
tical word alignments. We show a relative
reduction of alignment error rate of about
38%.

1 Introduction

Word alignments over parallel corpora have be-
come an essential supporting technology to a va-
riety of natural language processing (NLP) appli-
cations most prominent among which is statisti-
cal machine translation (SMT).1 Although phrase-
based approaches to SMT tend to be robust to word-
alignment errors (Lopez and Resnik, 2006), improv-
ing word-alignment is still useful for other NLP re-
search that is more sensitive to alignment quality,
e.g., projection of information across parallel cor-
pora (Yarowsky et al., 2001).

In this paper, we present a novel approach to
using and combining multiple preprocessing (tok-
enization) schemes to improve word alignment. The
intuition here is similar to the combination of dif-
ferent preprocessing schemes for a morphologically
rich language as part of SMT (Sadat and Habash,
2006) except that the focus is on improving the
alignment quality. The language pair we work with
is Arabic-English.

In the following two sections, we present related
work and Arabic preprocessing schemes. Section 4
and 5 present our approach to alignment preprocess-
ing and combination, respectively. Results are pre-
sented in Section 6.

1The second author was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
HR0011-06-C-0023. Any opinions, findings and conclusions or
recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of DARPA. We
thank Necip Ayan, Mona Diab, Bonnie Dorr, Abe Ittycheriah,
Martin Jansche and Owen Rambow for helpful discussions.
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2 Redated Work

Recently, several successful attempts have been
made at using supervised machine learning for word
alignment (Liu et al., 2005; Taskar et al., 2005; Itty-
cheriah and Roukos, 2005; Fraser and Marcu, 2006).
In contrast to generative models, this framework is
easier to extend with new features. With the ex-
ception of Fraser and Marcu (2006), these previous
publications do not entirely discard the generative
models in that they integrate IBM model predictions
as features. We extend on this approach by includ-
ing alignment information based on multiple prepro-
cessing schemes in the alignment process.

In other related work, Tillmann et al. (1997) use
several preprocessing strategies on both source and
target language to make them more alike with re-
gards to sentence length and word order. Lee (2004)
only changes the word segmentation of the morpho-
logically complex language (Arabic) to induce mor-
phological and syntactic symmetry between the par-
allel sentences. We differ from these two in that we
do not decide on a certain scheme to make source
and target sentences more symmetrical. Instead, it
is left to the alignment algorithm to decide under
which circumstances alignment information based
on a specific scheme is more likely to be correct than
information based on other schemes.

3 Arabic Preprocessing Schemes

Arabic is a morphologically complex language
with a large set of morphological features. As
such, the set of possible preprocessing schemes
is rather large (Habash and Sadat, 2006). We
focus here on a subset of schemes pertaining to
Arabic attachable clitics.  There are three de-
grees of cliticization that apply to a word BASE:
([ CONJ+ [ PART+ [ Al + BASE +PRON]]]).

At the deepest level, the BASE can have a def-
inite article +)} (Al+ the)> or a member of the

2Arabic is transliterated in Buckwalter’s transliteration
scheme.
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Table 1: Arabic preprocessing scheme variants for
Lewg "and he will write it’

Preprocessing Scheme Example
AR |simple LniKws | WSYktbhA
D1 |split CONJ LKoo + 9| W syktbhA

D2 |split CONJ, PART
T B|Arabic Treebank
D3 |split all clitics

LG+ + 9| W s+ yktbhA
lat oK + | W sykth +hA
lat LS+ + 9| W S+ ykth +hA

class of pronominal clitics, +PRON, (e.g., la+
+hA her/it/its). Next comes the class of particles
(PART+), (e.9., +« s+ will [future]). Most shallow

is the class of conjunctions (CONJ+), (e.g., +5 W+
and). We use the following five schemes: AR,
D1, D2, D3 and T'B. Definitions and contrastive
examples of these schemes are presented in Ta-
ble 1. To create these schemes, we use MADA,
an off-the-shelf resource for Arabic morphological
disambiguation (Habash and Rambow, 2005), and
TOKAN, a general Arabic tokenizer (Habash and
Sadat, 2006).

4 Preprocessing Schemesfor Alignment

Using a preprocessing scheme for word alignment
breaks the process of applying Giza++ (Och and
Ney, 2003) on some parallel text into three steps:
preprocessing, alignment and remapping. In prepro-
cessing, the words are tokenized into smaller units.
Then, they are passed along to Giza++ for alignment
(default settings). Finally, the Giza++ alignments
are mapped back (remapped) to the original word
form which is AR tokens in this work. For instance,
take the first word in Table 1, wsyktbhA,; if the D3
preprocesssing scheme is applied to it before align-
ment, it is turned into four tokens (w+ s+ yktb +hA).
Giza++ will link these tokens to different words on
the English side. In the remapping step, the union
of these links is assigned to the original word wsyk-
tbhA. We refer to such alignments as remappings.

5 Alignment Combination

After creating the multiple remappings, we pass
them as features into an alignment combiner. The
combiner is also given a variety of additional fea-
tures, which we discuss later in this section. The
combiner is simply a binary classifier that deter-
mines for each source-target pair whether they are
linked or not. Given the large size of the data used,
we use a simplifying heuristic that allows us to mini-
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mize the number of source-target pairs used in train-
ing. Only links evidenced by at least one of the ini-
tial alignments and their immediate neighbors are in-
cluded. All other links are considered non-existent.
The combiner we use here is implemented using a
rule-based classifier, Ripper (Cohen, 1996). The
reasons we use Ripper as opposed other machine
learning approaches are: (a) Ripper produces human
readable rules that allow better understanding of the
kind of decisions being made; and (b) Ripper is rel-
atively fast compared to other machine learning ap-
proaches we examined given the very large nature of
the training data we use. The combiner is trained us-
ing supervised data (human annotated alignments),
which we discuss in Section 6.1.

In the rest of this section we describe the differ-
ent machine learning features given to the combiner.
We break the combination features in two types:
word/sentence level and remapping features.

Wor d/Sentence Features:

e Word Form: The source and target word forms.
e POS: The source and target part-of-speech tags.
e Location: The source and target relative sentence
position (the ratio of absolute position to sentence
length). We also use the difference between these
values for both source and target.

e Frequency: The source and target word frequency
computed as the number of occurrences of the word
form in training data. \We also use the ratio of source
to target frequency.

Similarity: This feature is motivated by the fact that
proper nouns in different languages often resemble
each other, .9. (> r\,\m ’SdAmM Hsyn’ and "sad-
dam hussein’. We use the equivalence classes pro-
posed by Freeman et al. (2006) to normalize Ara-
bic and English word forms. Then, we employ the
longest common substring as a similarity measure.

Remapping Features:

e Link: for each source-target link, we include (a) a
binary value indicating whether the link exists ac-
cording to each remapping; (b) a cumulative sum
of the different remappings supporting this link; and
(c) co-occurrence information for this link. This last
value is calculated for each source-target word pair
as a weighted average of the product of the rela-
tive frequency of co-occurrence in both directions
for each remapping. The weight assigned to each



remapping is computed empirically.®

e Neighbor: The same information as Link, but for
each of the immediate neighbors of the current link.
e Cross. These include (a) the number of source
words linked to the current target word, the same for
target to source, and the number of words linked to
either of the current words; and (b) the ratio of the
co-occurrence mass placed in this link to the total
mass assigned to the source word, the same for the
target word and the union of both.

6 Evaluation

6.1 Experimental Dataand Metrics

The gold standard alignments we use here are part of
the IBM Arabic-English aligned corpus (IBMAC)*
(Ittycheriah and Roukos, 2005). We only use 8.8K
sentences from IBMAC because the rest (smaller
portion) of the corpus uses different normalizations
for numerals that make the two sets incompatible.
We Dbreak this data into 6.6K sentences for training
and 2.2K sentences for development. As for test
data, we use the IBMAC’s test set: NIST MTEval
2003 (663 Arabic sentences each human aligned to
four English references).

To get initial Giza++ alignments, we use a larger
parallel corpus together with the annotated set. The
Arabic-English parallel corpus has about 5 million
words.®> The Arabic text in IBMAC is preprocessed
in the AR preprocessing scheme with some ad-
ditional character normalizations. We match the
preprocessing and normalizations on our additional
data to that of IBMAC’s Arabic and English prepro-
cessing (Ittycheriah and Roukos, 2005).

The standard evaluation metric within word align-
ment is the Alignment Error Rate (AER) (Och and
Ney, 2000), which requires gold alignments that are
marked as ’sure’ or ’probable’. Since the IBMAC
gold alignments we use are not marked as such,
AER reduces to 1 - F-score (Ittycheriah and Roukos,
2005):

_]ANS]| _ JANS] _ 1 _ 2PrRc
Pr = ] Re = ST AER =1 BroRe

where A links are proposed and S links are gold.

3We use the AER on the development data normalized so all
weights sum to one. See Section 6.2.

“We thank IBM for making their hand aligned data available
to the research community.

SAll of the training data we use is available from the Lin-
guistic Data Consortium (LDC). The parallel text includes Ara-
bic News, eTIRR, English translation of Arabic Treebank, and
Ummah.
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NULL links are not included in the evaluation
(Ayan, 2005; Ittycheriah and Roukos, 2005).

6.2 Results

We conducted three experiments on our develop-
ment data: (a) to assess the contribution of align-
ment remapping, (b) to assess the contribution of
combination features for a single alignment (i.e., in-
dependent of the combination task) and (c) to deter-
mine the best performing combination of alignment
remappings. Experiments (b) and (c) used only 2.2K
of the gold alignment training data to minimize com-
putation time. As for our test data experiment, we
use our best system with all of the available data. We
also present an error analysis of our best system. The
baseline we measure against in all of these exper-
iments is the state-of-the-art grow-diag-final (gdf)
alignment refinement heuristic commonly used in
phrase-based SMT (Koehn et al., 2003). This heuris-
tic adds links to the intersection of two asymmetrical
statistical alignments in an attempt to assign every
word a link. The AER of this baseline is 24.77%.

The Contribution of Alignment Remapping We
experimented with five alignment remappings in two
directions: dir (Ar-En) and inv (En-Ar). We also
constructed their corresponding gdf alignment. The
more verbose a preprocessing scheme, the lower the
AER for either direction and for gdf of the corre-
sponding remapping. The order of the schemes from
worst to best is AR, D1, D2, TB and D3. The
best result we obtained through remapping is that of
D344r which had a 20.45% AER (17.4% relative de-
crease from the baseline).

The Contribution of Combination Features For
each of the basic ten (non gdf) alignment remap-
pings, we trained a version of the combiner that uses
all the relevant features but has access to one align-
ment at a time. We saw a substantial improvement
for all alignment remappings averaging 29.9% rel-
ative decrease in AER against the basic remapped
version. The range of AER values is from 14.5%

Alignment Combination Experiments To deter-
mine the best subset of alignment remappings to
combine, we ordered the alignments given their
AER performance in the last experiment described
(using combination features). Starting with the best
performer (D34;,), we continued adding alignments
in the order of their performance so long the com-



Table 2: Combining the Alignment Remappings

| Alignment Remapping combination || AER |

D3 14.50
D3ir D2gir 14.12
D3dirD2dirD3im} 12.81
D34ir D24ir D3iny D1 gir 12.75
D34ir D24ir D3y D1 gir ARine 12.69

bination’s AER score is decreased. Our best com-
bination results are listed in Table 2. All additional
alignments not listed in this table caused an increase
in AER. The best alignment combination used align-
ments from four different schemes which confirms
our intuition that such combination is useful.

Test Set Evaluation We ran our best system
trained on all of the IBMAC data (training & devel-
opment), on all the unseen IBMAC test set. On this
data we achieve a substantial relative improvement
of 38.3% from an AER of 22.99 to 14.19.

Ittycheriah and Roukos (2005) used only the top
50 sentences in IBMAC test data. Our best AER re-
sult on their test set is 14.02% (baseline is 22.48%)
which is higher than their reported result (12.2%
with 20.5% baseline (unrefined GIZA++)). The two
results are not comparable because: (a) Ittycheriah
and Roukos (2005) used additional gold aligned data
that was not released and (b) they use an additional
500K sentences from the LDC UN corpus for Giza
training that was created by adapting to the source
side of the test set — the details of such adaptation
were not provided and thus it is not clear how to
replicate them to compare fairly. Clearly this ad-
ditional data is helpful since even their baseline is
higher than ours.®

Error Analysis We conducted error analysis on
50 sentences from our development set. The ma-
jority of the errors involved high frequency closed-
class words (54%) and complex phrases (non-
compositional or divergent translations) (23%).
Both kinds of errors could be partly addressed by
introducing phrasal constraints which are currently
lacking in our system. Orthogonally, about 18% of
all errors involved gold-standard inconsistencies and
errors. These gold errors are split equally between
closed-class and complex-phrase errors.

®Abraham lttycheriah, personal communication.
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7 Conclusion and Future Plans

We have presented an approach for using and com-
bining multiple alignments created using different
preprocessing schemes. We have shown a relative
reduction of AER of about 38% on a blind test set.
In the future, we plan to extend our system with ad-
ditional models at the phrase and multi-word levels
for both alignment and alignment combination im-
provement. We plan to use more sophisticated ma-
chine learning models such as support vector ma-
chines for combination and make use of more avail-
able parallel data. We also plan to evaluate the influ-
ence of our alignment improvement on MT quality.
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Abstract and Resnik, 2002), automatic construction of bilin-

gual dictionaries (McEwan et al., 2002), and induc-

We present a fast method to identify
homogeneous parallel documents. The
method is based on collecting counts of
identical low-frequency words between

ing statistical machine translation models (Koehn et
al., 2003). In addition to building parallel corpora,

one can envision other uses for parallel document
identification, such as cross-language information

possibly parallel documents. The candi-
date with the most shared low-frequency
words is selected as the parallel document.
The method achieved 99.96% accuracy
when tested on the EUROPARL corpus
of parliamentary proceedings, failing only
in anomalous cases of truncated or oth-
erwise distorted documents. While other
work has shown similar performance on
this type of dataset, our approach pre-
sented here is faster and does not require
training. Apart from proposing an effi-
cient method for parallel document iden-
tification in a restricted domain, this pa-
per furnishes evidence that parliamentary
proceedings may be inappropriate for test-
ing parallel document identification sys-
tems in general.

retrieval (Chen and Nie, 2000).

Much work on identifying pairs of parallel doc-
uments focuses on the use of external features of
the documents, rather than content. Chen and Nie
(2000) describe PTMiner, a cross-language informa-
tion retrieval system. They consider a number of
factors in determining if a pair of documents are par-
allel, including document size, date, URL, and lan-
guage flag. For example, if a document is available
in both French and English, it is common for the
French document’s URL to contaifir and the En-
glish to contain.en In addition to these measures,
they consider website structure.

McEwan et al. (2002) find parallel documents
which they then use to automatically build a bilin-
gual dictionary. In their system, they first gener-
ate a set of candidate pairs based on manual selec-
tion, or advanced search engine use. They then filter
the pairs to remove non-parallel pairs. First, they
confirm that one of each pair is in each of the de-

Parallel documents are documents that are mutudred languages using tuned lists of stop-words, then
translations. There are a number of reasons ofi@ey compare the documents based on length in to-
might want to either identify parallel documents, okens, and HTML markup. Resnik and Smith (2003)
confirm that a pair of documents are in fact para||e|l_.lse a similar idea of candidates and filters in their
Most prominently, one could use pairs of automatSTRAND system. STRAND filters the documents
ically detected parallel documents to build parallepased on aligning them by length in tokens and lo-
corpora. Parallel corpora have many uses in naturg@tion of HTML markup in the documents.

language processing, and their dearth has been idenApart form the work done on external metrics,
tified as a major bottleneck (Diab, 2004). They hav@atry and Langlais (2005) investigated a number of
been employed in word sense disambiguation (Diatontent-based metrics. They consider several docu-
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ment features, including the numbers, proper names Since identical words of frequency 1 are almost
and punctuation contained within, as well as docucertainly cognates, this method can be seen as an
ment length, and alignment scores between candixtremely conservative approach to cognate detec-
date pairs. The features are then used to train d@ion. In practice, most of unique identical words are
Ada-Boost classifier, which makes decisions basgaroper nouns.
on edit-distance and cosine scores. They experi-
mented with several combinations of features, on@ Experimental setup
of which achieved 100% correctness when tested on
487 out of 488 parallel documents that constitute th&/e performed experiments on two different par-
English-Spanish portion of the EUROPARL Corpus!iamentary corpora. The English-French Canadian
They conclude that a bag-of-words approach is infddansards from the 36th sitting of the Canadian
rior to one that considers feature order. Parliament (Germann, 2001) was selected as the
In this work, we demonstrate that a much simdevelopment dataset. In testing on the Canadian
pler approach can achieve equally good results. Offansards, English was used as the Language A, and
method does not depend on hand-coded linguistide€nch as the Language B. Our approach correctly
knowledge and requires no training data, which maiglentified all parallel documents.
be unavailable for some language pairs. In addition, In order to allow for a direct comparison with the
thanks to its simplicity, our method is very fast. ~ work of Patry and Langlais (2005), we adopted the
EUROPARL corpus of parliamentary proceedings
2 Parallel document identification (Koehn, 2002) as our test dataset. However, rather
One can consider the parallel document identificdn@n focusing on a single language pair, we per-
tion problem to be as follows: formed tests on all 110 language pairs involving the
following 11 languages: German, English, Greek,

Given one document in languageA, Finnish, Swedish, Dutch, French, Danish, Italian,
and a set of document3 in languageB, Spanish and Portuguese. Diacritics were stripped
identify exactly one documentz € Dp from the documents of all languages. Since Greek
that is the parallel, or translation, df. utilizes a different script from the rest of the docu-

We initially designed a cognate-based approach foents. we used a straightforward context-free map-
the pr0b|em, which emp|0yed a combination of orping to convert every Greek character to its nearest
thographic word similarity measures to identify cogfoman equivalent.
nates such as Frenclombresand Englismumbers ~ Some of the 488 documents available in EU-
between documents. In order to make the methddOPARL were missing in Finnish, Swedish, Greek
computationally feasible, potential cognates wergnd Danish. In particular, Greek had 392 docu-
filtered based on word order, location in the documents, Danish had 487 documents, and Swedish and
ment, frequency, and length. However, we foundFinnish had 433 each. In such cases, the parallels
that a faster and simpler procedure, which is desf those missing documents were excluded from the
scribed below, performed extremely well, eliminatdanguageA for that test.
ing the need for a more sophisticated approach. The EUROPARL documents range in size from

We propose to identify parallel documents byl14 tokens (13 lines) to 138,557 tokens (11,101
counting the number of unique words that appear ilines). The mean number of tokens is 59,387 (2,826
both documents. The documents are treated as bdiges). Each orientation of each language pair was
of words, that is, their word order is not consideredtested. For example, for the language pair English-
From each document, we extract a set of words th8tutch, tests were run twice - once with English as
are at least 4 characters long and have frequencylanguageA and Dutch as languag8, and once
Given a document in languagk we select the doc- the other way around. The results for a given lan-
ument in languagé that shares the largest numbeiguage pair are not necessarily symmetric. Hence-
of these words. An implementation based on hadierth when referring to a language pair, we list the
tables ensures speed. languageA as the first one.
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For each document and each language pair, an is- Discussion
dividual test was run. An individual test consisted
parallel in the languag® set. Since we did not take it shows a simple, fast, and effective method for
advantage of the pigeon-hole constraint, the individdentifying parallel documents. Second, it calls into
ual tests were independent from each other. guestion the usefulness of parliamentary proceed-
No changes were made to the approach once tel}gs for the evaluation of parallel document identifi-
ing on the EUROPARL corpus began, in order t&tion schemes.

avoid adapting it to work on any particular data set. 1he method described in this paper is sufficiently
simple as to be used as a baseline for comparison

4 Results with other methods. No information is shared be-
tween trials, no word similarity measures are used,
In total, only 20 of the 49872 tests did not pro-and word order is ignored. The method does not
duce the correct result (0.04% error rate). Thermcorporate any language-specific linguistic knowl-
was one incorrect selection in the English-Spaniskdge, and it has shown itself to be robust across lan-
language pair, one in the English-German pair, aguages without any alterations. The only constraint
well as in each of 18 language pairs involving Danis that the languages must share an alphabet, or can
ish or English as a Language A. All of the incorrectbe converted into a common alphabet. Furthermore,
results can be traced to mistranslation, or to misgt requires no training phase, which would likely
ing/truncated documents. In particular, one of théave to be repeated for every pair of languages.
documents is severely truncated in Danish and En- Our method achieves 99.9% accuracy on the
glish, one of the German documents missing a poEnglish-Spanish language pair, which roughly
tion of its text, and the Spanish version of one of thenatches the best result reported by Patry and
documents contains a number of phrases and sdrenglais (2005) (who apparently removed one doc-
tences of English, apparently belonging to the Enument pair from the collection). However, their
glish version of the text. method requires a training phase on aligned parallel
Effectively, when this method fails it is becausedocuments, making it time consuming and inconve-
the input does not match the problem definition. Renient to adapt their approach to a new language pair,
call that the problem was defined as selecting a doeven in cases where such document-aligned corpora
umentdp from a set of document®p in language are available. In addition, their top accuracy value
B that is the correct parallel td4, a document in corresponds to only one of several combination of
languageA. Failure cases occurred because therfeatures — the results with classifiers based on other
was no correct parallel to thé4 in Dg. In fact, combinations of features were lower.
each of the “incorrect” results is a manifestation of We implemented our method using hash tables,
an editorial error in the EUROPARL corpus. Onewhich store the words occurring in a document to-
could see this approach being used as an aid to idegether with their frequencies. This makes the entire
tifying fragmentary documents and mistranslationsearch for a parallel document roughly linear in the
in parallel corpora. total number of words in all the documents. Average
Encouraged by the excellent accuracy of outotal wall-clock time spent for one test with one lan-
method, we decided to try an even simpler approacguageA document and 488 languagedocuments
which is based on words of frequency 1 in the entirgvas 59.4 seconds. on a AMD Athlon(tm) 64 Proces-
set of documents in a given language, rather than sor 3500+. Profiling showed that on average 99.7%
a single document. For every document from a laref the wall-clock time was spent on 1/O operations,
guage A, we select as its parallel the document fromvith the remainder taken by hash table lookups and
language B that shares the most of those words witring equality checks. Clearly, little speed improve-
it. However, the results obtained with this methodnent is possible. In contrast to the speed of our
were clearly inferior, with the error rates rangingapproach, the approach used by Patry and Langlais
from 2.9% for Dutch to 27.3% for Finnish. (2005) requires not only the time to train a classifier,
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but also the time to compute edit distance betweeh Conclusion

mz;my (cjigpgment pa:gs il qf We have presented a viable, simple method for
nhad f|t|on to )Illlel dlng a S|mpde, ai_curgte and fasfyentiication of homogeneous parallel documents.
method for parallel document identification, OUr ;g athod uses less resources and time than other

su|t§ suggest that rela_tively ‘clean” collections of et haged methods, a valuable asset when many
parlamentary proceedings of the EUROPARL typ‘?anguages lack linguistic resources. In addition to

may be inappropriate for testing parallel documer’ghowing the effectiveness of our approach, the re-

identification schemes in general. If a very S|mpI%H|),[S of the experiments suggest that parliamentary

approa(?h can achieve near perfect accuracy in SUB ceedings may be inappropriate for parallel docu-
a domain, perhaps the task is too easy. Future ge ent identification scheme testing

eral parallel document identification systems shoul
be tested on more challenging datasets. Acknowledgments
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Abstract

We introduce a novel framework for the
expression, rapid-prototyping, and eval-
uation of statistical machine-translation
(MT) systems using graphical mod-
els. The framework extends dynamic
Bayesian networks with multiple con-
nected different-length streams, switching
variable existence and dependence mech-

the viability of our graphical model representation
and new software system.

There are several important advantages to a uni-
fied probabilistic framework for MT including(1)
the same codebase can be used for training and de-
coding without having to implement a separate de-
coder for each model2) new models can be pro-
totyped quickly;(3) combining models (such as in
a speech-MT system) is easier when they are en-
coded in the same framework4) sharing algo-

anisms, and constraint factors. We have
implemented a new general-purpose MT
training/decoding system in this frame-
work, and have tested this on a variety of
existing MT models (including the 4 IBM
models), and some novel ones as well,
all using Europarl as a test corpus. We
describe the semantics of our representa-
tion, and present preliminary evaluations,
showing that it is possible to prototype
novel MT ideas in a short amount of time.

rithms across different disciplines (e.g., the MT and
the constraint-satisfaction community) is facilitated.

2 Graphical Model Framework

A Graphical Model(GM) represents a factorization
of a family of joint probability distributions over a
set of random variables using a graph. The graph
specifies conditional independence relationships be-
tween the variables, and parameters of the model
are associated with each variable or group thereof.
There are many types of graphical models. For ex-
ample, Bayesian networks use an acyclic directed
graph and their parameters are conditional probabili-
ties of each variable given its parents. Various forms
We present a unified graphical model frameworlof GM and their conditional independence proper-
based on (Filali and Bilmes, 2006) for statistical maties are defined in (Lauritzen, 1996).

chine translation. Graphical models utilize graphical Our graphical representation, which we call
descriptions of probabilistic processes, and are capRtulti-dynamic Bayesian NetworkBIDBNs) (Filali

ble of quickly describing a wide variety of different and Bilmes, 2006), is a generalization of dynamic
sets of model assumptions. In our approach, eith@ayesian networks (DBNs) (Dean and Kanazawa,
phrases or words can be used as the unit of transla988). DBNs are an appropriate representation for
tion, but as a first step, we have only implementedequential (for example, temporal) stochastic pro-
word-based models since our main goal is to showesses, but can be very difficult to apply when de-

This material was supported by NSF under Grant No. issPendencies have ar_b|trary _tlme—s_pan and the exis-
0326276. tence of random variables is contingent on the val-
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ues of certain variables in the network. In (Filaliwhich indicates how many times is used by words
and Bilmes, 2006), we discuss inference and leariin the French string. Eaa}y, in turn grants existence
ing in MDBNs. Here we focus on representatiorto a set of RVs under it. Given the fertilities (the fig-
and the evaluation of our new implementation andre depicts the casg¢, = 3,¢2 = 1,¢3 = 0), for
framework. Below, we summarize key features uneach worce;, ¢; French word RVs are granted exis-
derlying our framework. In section 3, we explaintence and are denoted by ttablet 7,1, 752, . . ., Tig,
how these features apply to a specific MT model. of ¢;. The values ofr variables need to match the

e Multiple DBNs can be represented along withactual observed French sequerfee . ., f,,. Thisis
rules for how they are interconnected — the rule derepresented as a shared constraint between afl,the
scription lengths are fixed (they do not grow with ther, andr variables which have incoming edges into
length of the DBNS). the observed variable. v's conditional probability

¢ Switching dependencig&eiger and Hecker- table is such that it is one only when the associated
man, 1996): a variablé&X is a switching parentof constraint is satisfied. The variabtg, is a switch-

Y if X influences what type of dependenciéshas ing dependency parent with respect to the constraint
with respect to its other parents, e.g., alignment Vvariablev and determines whiclf; participates in
variable in IBM Models 1 and 2 is switching. an equality constraint with; .

e Switching existenceA variable X is “switch- In the null word sub-model, the constraint that
ing existence” with respect to variableif the value successive permutation variables be ordered is im-
of X determines whethér exists. An example is a plemented using the observed child of 7y; and
fertility variable in IBM Models 3 and above. To@i+1)- 1he probability ofw being unity is one only

e Constraints and aggregation: BN semantics caf{hen the constraint is satisfied and zero otherwise.
encode various types of constraints between groups The bottom variablen is a switching existence
of variables (Pearl, 1988). For example, in the conrode (observed to be 6 in the figure) with cor-
struct A — B < C where B is observed,B can responding French word sequence and alignment
constrainA andC' to be unequal. We extend thosevariables. The French sequence participates in the
semantics to support a more efficient evaluation of constraint described above, while the alignment
constraints under some variable order conditions. variablesa; € {1,...,¢},j € 1,...,m constrain

. the fertilities to take their unique allowable values
3 GM Representation of IBM MT Models (for the given alignment). Alignments also restrict
In this section we present a GM representation fothe domain of permutation variables, using the
IBM model 3 (Brown et al., 1993) in fig. 1. Model 3 constraint variabler. Finally, the domain size of
is intricate enough to showcase some of the featureicha; has to lie in the interval0, ¢] and that is en-
of our graphical representation but not as compleforced by the variable. The dashed edges connect-

as, and thus is easier to describe, than model 4. O the alignment: variables represent an extension
choice of representing IBM models is not becausg implement an M3/M-HMM hybrid-

we believe they are state of the art MT models—, .
although they are still widely used in producing4 Experiments

alignments and as features in log-linear models_Vé have developed (in C++) a new entirely self-

but because they provide a good initial testbed fdfontained general-purpose MT training/decoding
our architecture. system based on our framework, of which we pro-

The topmost random variable (RV, is a hid- vide a preliminary evaluation in this section. Al-

den switching existence variable corresponding t§10ugh the framework is perfectly capable of rep-
the length of the English string. The box abuttindesent'ng phrase-based models, we restrict ourselves

¢includes all the nodes whose existence depends §hWword-based models to show the viability of graph-
the value off. In the figure,¢ = 3, thus resulting ical models for MT and will consider different trans-

in three English words, ..., e3, connected using a lation units in future work. We perform MT ex-

second-order Markov_c_ha'n To each Engllsh WOrd  1\we refer to the HMM MT model in (Vogel et al., 1996) as
e; corresponds a conditionally dependent fertility ~ M-HMM to avoid any confusion.
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e use of a fixed lexical tabfelearned using an M-

L‘L‘) C : HMM model specified using our tool, and neither

3 1 g uses minimum error rate training. (3) uses Model

ol 4 parameters learned using GIZA++. This compari-

00 = & e son is informative because Rewrite is a special pur-

® © ©® ® © ® T pose model 4 decoder and we would expect it to

) X))y Xy perform at least as well as decoders not written for
- Q

a specific IBM model. Pharaoh is more general in
that it only requires, as input, a lexical table from
any given modef. Our MDBN system is not tai-
lored for the translation task. Pharaoh was able to
periments on a English-French subset of the Eyjecode the 2000 sentences of the test set in 5000s
roparl corpus used for the ACL 2005 SMT evalun 4 3.2GHz machine; Rewrite took 84000s, and we
ations (Koehn and Monz, 2005). We train an Engjjotted 400000s for our engine (200s per sentence).
glish language model on the whole training set Usye attribute the difference in speed and BLEU score
ing the SRILM toolkit (Stolcke, 2002) and train petween our system and Pharaoh to the fact Value
MT models mainly on a 10k sentence pair SUbg|imination searches in a depth-first fashion over
set of the ACL training set. We test on the 200Ge space ofpartial configurations of RVswhile
sentence tgst set used for the same evaluationsharaoh expandsartial translation hypotheseis a
For comparison, we use the MT training programpest-first search manner. Thus, Pharaoh can take ad-
GIZA++ (Och and Ney, 2003), the phrase-base d&zntage of knowledge about the MT problem’s hy-
coder, Pharaoh (Koehn et al., 2003), and the worgsothesis space while the GM is agnostic with respect
based decoder, Rewrite (Germann, 2003). to the structure of the problem—something that is
For inference we use a backtracking depth-firsjjesirable from our perspective since generality is
search inference method with memoization that 3 main concern of ours. Moreover, the MDBN'’s
tends Value Elimination (Bacchus et al., 2003). Th@eyristic and caching of previously explored sub-
same inference engine is used for both training angees have not yet proven able to defray the cost,
decoding. As an admissible heuristic for decodyssociated with depth-first search, of exploring sub-
ing, we compute, for each nodé with Conditional  trees that do not contain any “good” configurations.

Figure 1: Unrolled Model 3 graphical model with fertility
assignmento = 2,1 = 3,2 = 1,3 = 0.

Probability Tablec, the largest value of over all Table 2 shows BLEU scores of different MT mod-
possible configurations df" and its parents (Filali g|s trained using our system. We decode using
and Bilmes, 2006). Pharaoh because the above speed difference in its
favor allowed us to run more experiments and fo-
Decoder BLEU (%) cus on the training aspect of different modelg 1,
500 1000 1500 2000 M2, M-HMM, M3, and M4 are the standard IBM
Rewrite 253 223 217 2201 models. M2d and M-Hd are variants in which
Pharach 204 181 17.7 18.05 the distortion between the French and English po-
M-HMM 199 169 156 125 sitions is used instead of the absolute alignment po-

sition. M-Hdd is a second-ordeM-HMM model

Table 1:BLEU scores on first 500, 1000, 1500, andwith distortion). M3H (see fig 1) is a variant of

2000 sentences (ordered from shortest to longest) nfodel 3 that uses first-order dependencies between

the ACLO5 English-French 2000 sentence test set ualignment variablesM -Hr is another HMM model

ing a 700k sent train set. The last row is our MDBNhat uses the relative distortion between the current

system’s simulation of a M-HMM model. alignment and the previous one. This is similar
to the model implemented by GIZA except we did

Table 1 compares MT performance between (Ly————— .
Pharaoh (which uses beam search), (2) our system,zpharaOhs Phrases are single words only.

) it *It does, however, use simple hard-coded distortion and fer-
and (3) Rewrite (hill-climbing). (1) and (2) make tility models.
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BLEU(%) focused so far on word-based translation. In fu-
Giza train MDBN train ture work, we intend to implement phrase-based MT
10k 700k 10k 700k models. We also plan to design better approximate
M1 1567 18.04 1453 17.74 inference strategies for training highly connected
M2 15'84 18.52 15'74 ' graphs such as IBM models 3 and 4, and some novel
M2d NA N A 15 7'5 extensions. We are also working on new best-first
M-HMM NA  NA 15.87 search generalizations of our depth-first search in-
M-Hd NA  NA 15'99 18.05 ference to improve decoding time. As there has been
M-Hdd NA  NA 15'55 ' increased interest in end-to-end task such as speech
M-Hr 16.98 1957 1'6 04 translation, dialog systems, and multilingual search,
M3 16.78 19.38 15'32 a new challenge is how best to combine the complex
M3H NA NA 15 6'7 components of these systems into one framework.
M4 16.81 1951 1'5 00 We believe that, in addition to the finite-state trans-
M4H NA NA 15 2'0 ducer approach, a graphical model framework such

as ours would be well suited for this scientific and

Table 2: BLEU scores for various models trained€N9in€ering endeavor.
using GM and GIZA (when applicable). All modelsReferences
are decoded using Pharaoh.

F. Bacchus, S. Dalmao, and T. Pitassi. 2003. Value elimina-

; ; . tion: Bayesian inference via backtracking searchUsi-03,
not include the English word class dependency. Fi pages 2028, San Francisco, CA. Morgan Kaufmann.

na”y’ mOde_lM 4H _IS _a Slmpllfled model 4, in which P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.
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Abstract

Situated models of meaning ground words in the
non-linguistic context, or situation, to which they
refer. Applying such models to sports video re-
trieval requires learning appropriate representa-
tions for complex events. We propose a method
that uses data mining to discover temporal pat-
terns in video, and pair these patterns with associ-
ated closed captioning text. This paired corpus is
used to train a situated model of meaning that sig-
nificantly improves video retrieval performance.

1 Introduction

Recent advances in digital broadcasting and re-
cording allow fans access to an unprecedented
amount of sports video. The growing need to
manage and search large video collections presents
a challenge to traditional information retrieval (IR)
technologies. Such methods cannot be directly
applied to video data, even when closed caption
transcripts are available; for, unlike text docu-
ments, the occurrence of a query term in a video is
often not enough to assume the video’s relevance
to that query. For example, when searching
through video of baseball games, returning all clips
in which the phrase “home run” occurs, results
primarily in video of events where a home run
does not actually occur. This follows from the fact
that in sports, as in life, people often talk not about
what is currently happening, but rather, they talk
about what did, might, or will happen in the future.

Traditional IR techniques cannot address such
problems because they model the meaning of a
query term strictly by that term’s relationship to
other terms. To build systems that successfully
search video, IR techniques should be extended to
exploit not just linguistic information but also ele-
ments of the non-linguistic context, or situation,
that surrounds language use. This paper presents a
method for video event retrieval from broadcast
sports that achieves this by learning a situated
model of meaning from an unlabeled video corpus.
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The framework for the current model is derived
from previous work on computational models of
verb learning (Fleischman & Roy, 2005). In this
earlier work, meaning is defined by a probabilistic
mapping between words and representations of the
non-linguistic events to which those words refer.
In applying this framework to events in video, we
follow recent work on video surveillance in which
complex events are represented as temporal rela-
tions between lower level sub-events (Hongen et
al., 2004). While in the surveillance domain, hand
crafted event representations have been used suc-
cessfully, the greater variability of content in
broadcast sports demands an automatic method for
designing event representations.

The primary focus of this paper is to present a
method for mining such representations from large
video corpora, and to describe how these represen-
tations can be mapped to natural language. We
focus on a pilot dataset of broadcast baseball
games. Pilot video retrieval tests show that using a
situated model significantly improves perform-
ances over traditional language modeling methods.

2 Situated Models of Meaning

Building situated models of meaning operates in
three phases (see Figure 1): first, raw video data is
abstracted into multiple streams of discrete fea-
tures. Temporal data mining techniques are then
applied to these feature streams to discover hierar-
chical temporal patterns. These temporal patterns
form the event representations that are then
mapped to words from the closed caption stream.

2.1 Feature Extraction

The first step in representing events in video is to
abstract the very high dimensional raw video data
into more semantically meaningful streams of in-
formation. Ideally, these streams would corre-
spond to basic events that occur in sports video
(e.g., hitting, throwing, catching, kicking, etc.).
Due to the limitations of computer vision tech-
niques, extracting such ideal features is often in-
feasible. However, by exploiting the “language of
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Figure 1. Video processing pipeline for learning situated models of meaning.

film” that is used to produce sports video, informa-
tive features can be extracted that are also easy to
compute. Thus, although we cannot easily identify
a player hitting the ball, we can easily detect fea-
tures that correlate with hitting: e.g., when a scene
focusing on the pitching mound immediately
jumps to one zooming in on the field (Figure 1).
While such correlations are not perfect, pilot tests
show that baseball events can be classified using
such features (Fleischman et. al., in prep).

Importantly, this is the only phase of our frame-
work that is domain specific; i.e., it is the only as-
pect of the framework designed specifically for use
with baseball data. Although many feature types
can be extracted, we focus on only two feature
types: visual context, and camera motion.

Visual Context

Visual context features encode general properties
of the visual scene in a video segment. The first
step in extracting such features is to split the raw
video into “shots” based on changes in the visual
scene due to editing (e.g., jumping from a close up
of the pitcher to a wide angle of the field). Shot
detection is a well studied problem in multimedia
research; in this work, we use the method of
Tardini et al. (2005) because of its speed and
proven performance on sports video.

After a game is segmented into shots, each shot
is categorized into one of three categories: pitch-
ing-scene, field-scene, or other. Categorization is
based on image features (e.g., color histograms,
edge detection, motion analysis) extracted from an
individual key frame chosen from that shot. A de-
cision tree is trained (with bagging and boosting)
using the WEKA machine learning toolkit that
achieves over 97% accuracy on a held out dataset.
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Camera Motion

Whereas visual context features provide informa-
tion about the global situation that is being ob-
served, camera motion features afford more precise
information about the actions occurring in the
video. The intuition here is that the camera is a
stand in for a viewer’s focus of attention. As ac-
tion in the video takes place, the camera moves to
follow it, mirroring the action itself, and providing
an informative feature for event representation.
Detecting camera motion (i.e., pan/tilt/zoom) is a
well-studied problem in video analysis. We use
the system of (Bouthemy et al., 1999) which com-
putes the pan, tilt, and zoom motions using the pa-
rameters of a two-dimensional affine model fit to
every pair of sequential frames in a video segment.
The output of this system is then clustered into
characteristic camera motions (e.g. zooming in fast
while panning slightly left) using a 1* order Hid-
den Markov Model with 15 states, implemented
using the Graphical Modeling Toolkit (GMTK).

2.2 Temporal Pattern Mining

In this step, temporal patterns are mined from the
features abstracted from the raw video data. As
described above, ideal semantic features (such as
hitting and catching) cannot be extracted easily
from video. We hypothesize that finding temporal
patterns between scene and camera motion features
can produce representations that are highly corre-
lated with sports events. Importantly, such tempo-
ral patterns are not strictly sequential, but rather,
are composed of features that can occur in complex
and varied temporal relations to each other. For
example, Figure 1 shows the representation for a
fly ball event that is composed of: a camera pan-



ning up followed by a camera pan down, occurring
during a field scene, and before a pitching scene.

Following previous work in video content classi-
fication (Fleischman et al., 2006), we use tech-
niques from temporal data mining to discover
event patterns from feature streams. The algorithm
we use is fully unsupervised. It processes feature
streams by examining the relations that occur be-
tween individual features within a moving time
window. Following Allen (1984), any two features
that occur within this window must be in one of
seven temporal relations with each other (e.g. be-
fore, during, etc.). The algorithm keeps track of
how often each of these relations is observed, and
after the entire video corpus is analyzed, uses chi-
square analyses to determine which relations are
significant. The algorithm iterates through the
data, and relations between individual features that
are found significant in one iteration (e.g.
[BEFORE, camera panning up, camera panning
down)), are themselves treated as individual fea-
tures in the next. This allows the system to build
up higher-order nested relations in each iteration
(e.g. [DURING, [BEFORE, camera panning up,
camera panning downl, field scene]]). The tempo-
ral patterns found significant in this way are then
used as the event representations that are then
mapped to words.

2.3 Linguistic Mapping

The last step in building a situated model of mean-
ing is to map words onto the representations of
events mined from the raw video. We equate the
learning of this mapping to the problem of estimat-
ing the conditional probability distribution of a
word given a video event representation. Similar
to work in image retrieval (Barnard et al., 2003),
we cast the problem in terms of Machine Transla-
tion: given a paired corpus of words and a set of
video event representations to which they refer, we
make the IBM Model 1 assumption and use the
expectation-maximization method to estimate the

parameters (Brown et al., 1993):
¢ — ﬁp(wom’j | video, )
(I+1)" 54 ’
This paired corpus is created from a corpus of
raw video by first abstracting each video into the
feature streams described above. For every shot
classified as a pitching scene, a new instance is
created in the paired corpus corresponding to an
event that starts at the beginning of that shot and

1)

p(word | video) =
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ends exactly four shots after. This definition of an
event follows from the fact that most events in
baseball must start with a pitch and usually do not
last longer than four shots (Gong et al., 2004).

For each of these events in the paired corpus, a
representation of the video is generated by match-
ing all patterns (and the nested sub-patterns) found
from temporal mining to the feature streams of the
event. These video representations are then paired
with all the words from the closed captioning that
occur during that event (plus/minus 10 seconds).

3 Experiments

Work on video IR in the news domain often fo-
cuses on indexing video data using a set of image
classifiers that categorize shots into pre-determined
concepts (e.g. flag, outdoors, George Bush, etc.).
Text queries must then be translated (sometimes
manually) in terms of these concepts (Worring &
Snoek, 2006). Our work focuses on a more auto-
mated approach that is closer to traditional IR tech-
niques. Our framework extends the language
modeling approach of Ponte and Croft (1998) by
incorporating a situated model of meaning.

In Ponte and Croft (1998), documents relevant to
a query are ranked based on the probability that
each document generated each query term. We
follow this approach for video events, making the
assumption that the relevance of an event to a
query depends both on the words associated with
the event (i.e. what was said while the event oc-
curred), as well as the situational context modeled
by the video event representations:

p(query|event) = ﬁ‘p(word | caption)® * p(word | video)"™ (2)
word

The p(wordlcaption) is estimated using the lan-

guage modeling technique described in Ponte and

Croft (1998). The p(wordlvideo) is estimated as in

equation 1 above. a is used to weight the models.

Data

The system has been evaluated on a pilot set of 6
broadcast baseball games totaling about 15 hours
and 1200 distinct events. The data represents
video of 9 different teams, at 4 different stadiums,
broadcast on 4 different stations. Highlights (i.e.,
events which terminate with the player either out
or safe) were hand annotated, and categorized ac-
cording to the type of the event (e.g., strikeout vs.
homerun), the location of the event (e.g., right field
vs. infield), and the nature of the event (e.g., fly
ball vs. line drive). Each of these categories was



used to automatically select query terms to be used
in testing. Similar to Berger & Lafferty (1999), the
probability distribution of terms given a category is
estimated using a normalized log-likelihood ratio
(Moore, 2004), and query terms are sampled ran-
domly from this distribution. This gives us a set of
queries for each annotated category (e.g., strikeout:
“miss, chasing”; flyball: “fly, streak™). Although
much noisier than human produced queries, this
procedure generates a large amount of test queries
for which relevant results can easily be determined
(e.g., if a returned event for the query “fly, streak”
is of the flyball category, it is marked relevant).
Experiments are reported using 6-fold cross
validation during which five games are used to
train the situated model while the sixth is held out
for testing. Because data is sparse, the situation
model is trained only on the hand annotated high-
light events. However, retrieval is always tested
using both highlight and non-highlight events.

0.18
8 o.16 = L]
‘B o014 _ -
) - -
0.12 —-
0.1 e
0.08
= — - @
g o.08 *o— -
— avg. ling | 0.068
0.04
—@— linguistic only avg. non-ling 0.069
0.02 —® - non-linguistic only
- @® - combined avg. comb. 0.135
o T
1 2 3 4
# Terms in Query

Figure 2. Effect of situated model on video IR.

Results

Figure 2 shows results for 520 automatically gen-
erated queries of one to four words in length.
Mean average precision (MAP), a common metric
that combines elements of precision, recall, and
ranking, is used to measure the relevance of the top
five results returned for each query. We show re-
sults for the system using only linguistic informa-
tion (i.e. a=1), only non-linguistic information (i.e.
0=0), and both information together (i.e. a=0.5).
The poor performance of the system using only
non-linguistic information is expected given the
limited training data and the simple features used
to represent events. Interestingly, using only lin-
guistic information produces similarly poor per-
formance. This is a direct result of announcers’
tendency to discuss topics not currently occurring
in the video. By combining text and video analy-
ses, though, the system performs significantly bet-
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ter (p<0.01) by determining when the observed
language actually refers to the situation at hand.

4 Conclusion

We have presented a framework for video retrieval
that significantly out-performs traditional IR meth-
ods applied to closed caption text. Our new ap-
proach incorporates the visual content of baseball
video using automatically learned event represen-
tations to model the situated meaning of words.
Results indicate that integration of situational con-
text dramatically improves performance over tradi-
tional methods alone. In future work we will
examine the effects of applying situated models of
meaning to other tasks (e.g., machine translation).
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Abstract

We use 2 to investigate the context de-
pendency of student affect in our com-
puter tutoring dialogues, targeting uncer-
tainty in student answers in 3 automati-
cally monitorable contexts. Our results
show significant dependencies between
uncertain answers and specific contexts.
Identification and analysis of these depen-
dencies is our first step in developing an
adaptive version of our dialogue system.

1 Introduction

Detecting and adapting to user affect is being ex-
plored by many researchers to improve dialogue sys-
tem quality. Detection has received much atten-
tion (e.g., (Litman and Forbes-Riley, 2004; Lee and
Narayanan, 2005)), but less work has been done on
adaptation, due to the difficulty of developing re-
sponses and applying them at the right time. Most
work on adaptation takes a context-independent ap-
proach: use the same type of response after all in-
stances of an affective state. For example, Liu and
Picard (2005)’s health assessment system responds
with empathy to all instances of user stress.
Research suggests, however, that it may be more
effective to take a context-dependent approach: de-
velop multiple responses for each affective state,
whose use depends on the state’s context. E.g., in the
tutoring domain, Pon-Barry et al. (2006) show that
human tutors use multiple responses to uncertain
student answers, depending on the answer’s correct-
ness and prior context. In the information-seeking
domain, it is commonly believed that while an apol-
ogy is a good default response to user frustration (as
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in (Klein et al., 2002)), one context requires a differ-
ent response: after several frustrated user turns, the
call should be forwarded to a human operator.

A context-dependent approach to affect adapta-
tion must address 2 issues: in what contexts to adapt,
and what responses to use there. This paper ad-
dresses the first issue and targets student uncertainty
in our computer tutoring dialogues. Although our di-
alogues have a Question-Answer format, our system
contains 275 tutor questions. Treating each question
as a context is too labor-intensive for adaptation de-
velopment and creates a data sparsity issue. Instead
we treat automatically monitorable question proper-
ties as contexts. Here we examine 3 contexts: the di-
alogue act interpretation, and the discourse structure
depth and transition, of the prior tutor question. We
use x? to investigate the context dependency of un-
certain student answers (correct and incorrect). Our
results show that some contexts are significantly as-
sociated with uncertain answers. Our next step will
be to use these significant dependencies to develop
system responses to uncertain answers in these con-
texts. These responses will be based both on our
hypotheses about why uncertainty is associated with
these contexts, and on analyses of human tutor re-
sponses to uncertain answers in these contexts.

2 Student Uncertainty and Prior Context

ITSPOKE is a speech-enabled version of a text-
based tutoring system (VanLehn et al., 2002). The
student first types an essay answering one of 5 qual-
itative physics problems. ITSPOKE parses the es-
say, extracts dialogue topics concerning misconcep-
tions, then engages the student in dialogue. In this
study we used 2 ITSPOKE corpora containing 4590
student turns over 185 dialogues from 37 students.
Figure 1 shows an annotated dialogue excerpt.
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ITSPOKE,: Good. Does the packet have an acceleration? If yes please specify its direction. [ SAQ, Advance, D1]

STUDENT 4: horizontally forward yes [ non-uncertain, incorrect]

ITSPOKEs5: Well... To find the packet’s acceleration we will use Newton’s 2nd law. What is the definition of this law? [LAQ,

Push, D2]

STUDENT 5: an object in motion tends to stay in motion until it’s act by an outside force [uncertain, incorrect]

ITSPOKEs: Well... Newton’s 2nd law says that the net force acting on an object equals the mass times the acceleration of the
object. We can define Newton’s 2nd law as F=m*a. Hence what can we determine about the acceleration of the packet given
that we know the net force acting on it is not zero and points straight down? [ DAQ, Advance, D2]

STUDENT: I don’t know [uncertain, incorrect]

ITSPOKE~: Well... < further discussion of Newton’'s 2nd law...> So once again on the original question. Does the packet have an

acceleration? If yes please specify its direction.[ SAQ, PopUp, D1]

Figure 1: ITSPOKE Annotated Dialogue Excerpt

2.1 Uncertainty and Correctness Annotations

ITSPOKE, like most computer tutors, responds only
to student correctness. ITSPOKE labels each an-
swer as correct or incorrect!. If correct, ITSPOKE
moves on to the next question. If incorrect, then for
questions on simple topics, ITSPOKE gives the cor-
rect answer and moves on, while for questions on
complex topics (ITSPOKE,, Figure 1), ITSPOKE
initiates a sub-dialogue with remediation questions
(ITSPOKE;j; - ITSPOKEg), before moving on.

Recent computer tutoring research has shown in-
terest in responding to student affect’ over cor-
rectness. Uncertainty is of particular interest: re-
searchers hypothesize that uncertainty and incorrect-
ness each create an opportunity to learn (VanLehn
et al.,, 2003). They cannot be equated, however.
First, an uncertain answer may be correct or incor-
rect (Pon-Barry et al., 2006). Second, uncertainty in-
dicates that the student perceives a possible miscon-
ception in their knowledge. Thus, system responses
to uncertain answers can address both the correct-
ness and the perceived misconception.

In our ITSPOKE corpora, each student answer
has been manually annotated as uncertain or non-
uncertain’: uncertain is used to label answers ex-
pressing uncertainty or confusion about the material;
non-uncertain is used to label all other answers.

'We have also manually labeled correctness in our data;
agreement between ITSPOKE and human is 0.79 Kappa (90%).

“We use ‘affect’ to cover emotions and attitudes that affect
how students communicate. Although some argue ‘emotion’
and ‘attitude’ should be distinguished, some speech researchers
find the narrow sense of ‘emotion’ too restrictive because it ex-
cludes states where emotion is present but not full-blown, in-
cluding arousal and attitude (Cowie and Cornelius, 2003).

3A second annotator relabeled our dataset, yielding inter-
annotator agreement of 0.73 Kappa (92%).
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2.2 Context Annotations

Here we examine 3 automatically monitorable tutor
question properties as our contexts for uncertainty:
Tutor Question Acts. In prior work one annotator
labeled 4 Tutor Question Acts in one ITSPOKE cor-
pus (Litman and Forbes-Riley, 2006)*: Short (SAQ),
Long (LAQ), and Deep Answer Question (DAQ) dis-
tinguish the question in terms of content and the type
of answer it requires. Repeat (RPT) labels variants
of “Can you repeat that?” after rejections. From
these annotations we built a hash table associating
each ITSPOKE question with a Question Act label;
with this table we automatically labeled ITSPOKE
questions in our second ITSPOKE corpus.
Discourse Structure Depth/Transition: In prior
work we showed that the discourse structure Depth
and Transition for each ITSPOKE turn can be au-
tomatically annotated (Rotaru and Litman, 2006).
E.g., as shown in Figure 1, ITSPOKE, 7 have depth
1 and ITSPOKEj; g have depth 2. We combine lev-
els 3 and above (3+) due to data sparsity. 6 Transi-
tion labels represent the turn’s position relative to the
prior ITSPOKE turn: NewTopLevel labels the first
question after an essay. Advance labels questions at
the same depth as the prior question ITSPOKE,¢).
Push labels the first question in a sub-dialogue
(after an incorrect answer) (ITSPOKEs5). After a
sub-dialogue, ITSPOKE asks the original question
again, labeled PopUp (ITSPOKEv~), or moves on to
the next question, labeled PopUpAdv. SameGoal la-
bels both ITSPOKE RPTS (after rejections) and re-
peated questions after timeouts.

4Our Acts are based on related work (Graesser et al., 1995).
Two annotators labeled the Acts in 8 dialogues in a parallel hu-
man tutoring corpus, with agreement of 0.75 Kappa (90%).



3 Uncertainty Context Dependencies

We use the x? test to investigate the context depen-
dency of uncertain (unc) or non-uncertain (nonunc)
student answers that are correct (C) or incorrect (I).
First, we compute an overall 2 value between each
context variable and the student answer variable. For
example, the Question Act variable (QACT) has 4
values: SAQ, LAQ, DAQ, RPT. The answer vari-
able (SANSWER) also has 4 values: uncC, uncl,
nonuncC, nonuncl. Table 1 (last column) shows the
x? value between these variables is 203.38, which
greatly exceeds the critical value of 16.92 (p< 0.05,
df=9), indicating a highly significant dependency.
Significance increases as the x? value increases.

2

Dependency Obs.  Exp. X
QACT ~ SANSWER 203.38
LAQ ~ uncC + 72 22 133.98
LAQ ~ uncl + 43 27 11.17
LAQ ~ nonuncC - 96 151 50.13
LAQ ~ nonuncl = 48 60 3.10
DAQ ~ uncC = 22 22 0.01
DAQ ~ uncl + 37 27 4.57
DAQ ~ nonuncC = 135 149 3.53
DAQ ~ nonuncl = 63 59 0.35
SAQ ~ uncC - 285 328 41.95
SAQ ~ uncl - 377 408 17.10
SAQ ~ nonuncC + 2368 2271 66.77
SAQ ~ nonuncl - 875 898 5.31
RPT ~ uncC - 7 14 4.15
RPT ~ uncl = 22 18 1.25
RPT ~ nonuncC - 70 98 20.18
RPT ~ nonuncl + 70 39 33.59

Table 1: Tutor Question Act Dependencies (p<.05:
critical x2=16.92 (df=9); critical y%=3.84 (df=1))

However, this does not tell us which variable val-
ues are significantly dependent. To do this, we create
a binary variable from each value of the context and
answer variables. E.g., the binary variable for LAQ
has 2 values: “LAQ” and “Anything Else”, and the
binary variable for uncC has 2 values: “uncC” and
“Anything Else”. We then compute the x? value be-
tween the binary variables. Table 1 shows this value
is 133.98, which greatly exceeds the critical value of
3.84 (p< 0.05, df=1). The table also shows the ob-
served (72) and expected (22) counts. Comparison
determines the sign of the dependency: uncC occurs
significantly more than expected (+) after LAQ. The
“=" sign indicates a non-significant dependency.

Table 1 shows uncertain answers (UncC and uncl)
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occur significantly more than expected after LAQs.
In contrast, non-uncertain answers occur signifi-
cantly less (-), or aren’t significantly dependent (=).
Also, uncl occurs significantly more than expected
after DAQs. We hypothesize that LAQs and DAQs
are associated with more uncertainty because they
are harder questions requiring definitions or deep
reasoning. Not surprisingly, uncertain (and incor-
rect) answers occur significantly less than expected
after SAQs (easier fill-in-the-blank questions). Un-
certainty shows very weak dependencies on RPTs.
Table 2 shows that Depthl1 is associated with more
correctness and less uncertainty overall. Both types
of correct answer occur significantly more than ex-
pected, but this dependency is stronger for nonuncC.
Both incorrect answers occur significantly less than
expected, but this dependency is stronger for uncl.

2

Dependency Obs.  Exp. X

Depth# ~ SANSWER 53.85
Depthl ~ uncC + 250 228 5.46
Depthl ~ uncl - 230 283 27.55
Depthl ~ nonuncC + 1661 1579 24.73
Depthl ~ nonuncl - 575 625  12.66
Depth2 ~ uncC - 78 101 7.80
Depth2 ~ uncl + 156 125 11.26
Depth2 ~ nonuncC - 664 699 5.65
Depth2 ~ nonuncl + 304 277 4.80
Depth3+ ~ uncC = 58 57 0.05
Depth3+ ~ uncl + 93 70 9.76
Depth3+ ~ nonuncC - 344 391  15.66
Depth3+ ~ nonuncl + 177 155 4.94

Table 2: Depth Dependencies (p<.05:
x?=12.59 (df=6); critical y?=3.84 (df=1))

critical

At Depths 2 and 3+, correct answers occur sig-
nificantly less than expected or show no signifi-
cance. Incorrect answers occur significantly more
than expected, and the dependencies are stronger for
uncl. We hypothesize that deeper depths are asso-
ciated with increased uncertainty and incorrectness
because they correspond to deeper knowledge gaps;
uncertainty here may also relate to a perceived lack
of cohesion between sub-topic and larger solution.

Table 3 shows Pushes have the same dependen-
cies as deeper depths (increased uncertainty and in-
correctness); however, here the uncl dependency is
only slightly stronger than nonuncl, which suggests
that increased uncertainty at deeper depths is more
reliably associated with remediation questions after
the Push. Although uncertainty shows only weak



dependencies on PopUps, after PopUpAdvs the uncl
dependency is strong, with uncl occurring more than
expected. We hypothesize that this dependency re-
lates to students losing track of the original ques-
tion/larger topic. Uncertainty shows only weak de-
pendencies on Advances. After NewTopLevels, in-
correct answers occur less than expected, but the de-
pendency is stronger for nonuncl. After SameGoals,
incorrect answers occur more than expected, but the
dependency is stronger for nonuncl. Compared with
the RPT results, the SameGoal results suggest stu-
dents feel increased uncertainty after timeouts.

2

Dependency Obs.  Exp. X
TRANS ~ SANSWER 190.97
Push ~ uncC = 68 57 2.89
Push ~ uncl + 100 70 16.37
Push ~ nonuncC - 313 392 44.51
Push ~ nonuncl + 193 155 14.13
PopUp ~ uncC - 23 36 5.89
PopUp ~ uncl - 32 45 4.68
PopUp ~ nonuncC = 260 251 0.81
PopUp ~ nonuncl + 117 99 4.47
PopUpAdv ~ uncC = 8 13 2.50
PopUpAdv ~ uncl + 32 17 16.22
PopUpAdv ~ nonuncC - 76 93 7.72
PopUpAdv ~ nonuncl = 44 37 1.89
Advance ~ uncC = 217 205 1.70
Advance ~ uncl - 223 254 9.06
Advance ~ nonuncC + 1465 1416 8.66
Advance ~ nonuncl 530 560 4.51
NewTopLevel ~ uncC = 53 54 0.04
NewTopLevel ~ uncl - 49 67 6.47
NewTopLevel ~ nonuncC  + 463 375 57.33
NewTopLevel ~ nonuncl - 80 148 47.63
SameGoal ~ uncC = 17 21 0.70
SameGoal ~ uncl + 43 25 14.24
SameGoal ~ nonuncC - 92 152 44.25
SameGoal ~ nonuncl + 92 56 31.43

Table 3: Transition Dependencies (p<.05: critical
x?=25.00 (df=15); critical x2=3.84 (df=1))

4 Current Directions

We analyzed dependencies between uncertain stu-
dent answers and 3 automatically monitorable con-
texts. We plan to examine more contexts, such as
a Topic Repetition variable that tracks similar ques-
tions about a topic (e.g. gravity) across dialogues.
Our next step will be to use the significant de-
pendencies to develop system responses to uncer-
tain answers in these contexts. These responses will
be based both on our hypotheses about why uncer-
tainty is significantly associated with these contexts,
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as well as on analyses of human tutor responses
in these contexts, using our human tutoring corpus,
which was collected with our first ITSPOKE corpus
using the same experimental procedure.

We also plan to investigate context dependencies
for other affective states, such as student frustration.
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Abstract

We propose an efficient method to detect
end-of-utterances from prosodic information in
conversational speech. Our method is based
on the application of a large set of binary and
ramp filters to the energy and fundamental fre-
quency signals obtained from the speech sig-
nal. These filter responses, which can be com-
puted very efficiently, are used as input to a
learning algorithm that generates the final de-
tector. Preliminary experiments using data ob-
tained from conversations show that an accu-
rate classifier can be trained efficiently and that
good results can be obtained without requiring
a speech recognition system.

1 Introduction

While there have been improvements and a significant
number of methods introduced into the realm of dialog-
based systems, there are aspects of these methods which
can be further improved upon. One such aspect is end-
of-utterance (EOU) detection, which consists of automat-
ically determining when a user has finished his/her turn
and is waiting to receive an answer from the system. Cur-
rent dialog-based systems use a simple pause threshold,
which commonly results in either unnecessary long wait-
ing times or interruptions from the system when the user
makes a pause in the middle of an utterance. These prob-
lems can annoy and discourage users using even simple
dialog systems.

Most previous methods aimed at improving upon
pause thresholds for detecting end-of-utterances use
spectral energy measures (Hariharan et al., 2001; Jia and
Xu, 2002). Other methods use prosodic features with
(Ferrer et al., 2002) and without speech recognition sys-
tems (Ferrer et al., 2003) in conjunction with decision
trees to determine end-of-utterances as quickly as possi-
ble. For this and related problems, the choice of features
is critical. Most common is to use a fixed inventory of
features, chosen based on the linguistics literature and
past experience (Shriberg and Stolcke, 2004). Recently
we have experimented with alternative approaches, in-
cluding features hand-tailored to specific discrimination
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problems (Ward and Al Bayyari, 2006) and random ex-
ploration of the feature space (Solorio et al., 2006). In
this paper we explore yet another approach, using a large
battery of very simple and easy to evaluate features.

In this paper we present a method to improve the ac-
curacy that can be obtained in end-of-utterance detection
that uses prosodic information only, without a speech rec-
ognizer. We adapt and extend a filter-based approach
originally proposed in computer graphics (Crow, 1984)
and later exploited successfully in computer vision (Viola
and Jones, 2001) and music retrieval (Ke et al., 2005).

Our approach consists of applying simple filters, which
can be computed in constant time, in order to generate
attributes to be used by a learning algorithm. After the
attributes have been generated, we test different learning
algorithms to detect end-of-utterances. Our results show
that the features yield good results in combination with
several of the classifiers, with the best result being ob-
tained with bagging ensembles of decision trees.

2 Method

The first stage in our system is to extract prosodic infor-
mation from the raw audio signal. Using the audio anal-
ysis tool Didi, the log energy and fundamental frequency
signals are extracted from the source sound wave. After
computing log energy and pitch, we apply a large set of
filters in the time domain to the energy and pitch signals
in order to generate attributes suitable for classification.
We compute the filter responses for both signals at every
time step using three types of filters, each applied at many
different times scales.

The first filter type, shown in Figure 1a), is a two-step
binary filter, split approximately in half. The first half
of the filter consists of a sequence of 1’s. The second
half consists of -1’s. The second filter type is a three-step
binary filter (as shown in Figure 1b)), split in approximate
thirds alternating between 1 and -1. Finally, the third filter
is an upward slope ranging from -1 to 1.

Although simple, these filters, in particular when they
are applied at multiple scales, can characterize most of
the prosodic features that are known to be relevant in
identifying dialog phenomena including raises and falls
in pitch and pauses of different lengths.

The response of any of these filters over the signal at
any time is given by the dot product of the filter and signal
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a) Type I filter

b) Type II filter

c¢) Type I1I filter

Figure 1: The three types of filters, the first two being
binary only having values -1 or 1, and the last having an
upward slope from -1 to 1.

window of the same length. Computing this dot product
is slow, especially over larger time window sizes. This
cost is even greater when many filter responses are taken
over the course of the entire signal length.

Given the large number of filters and the size of a nor-
mal audio signal, the straightforward dot-product-based
computation of the filter responses is prohibitively expen-
sive. Fortunately, it is possible to device methods to com-
pute these responses efficiently, as explained in the next
subsection.

2.1 Efficient Filter Computation

This constant time computation of binary filters for two-
dimensional signals was first presented by Crow (Crow,
1984) in the field of computer graphics and later ap-
plied successfully in computer vision (Viola and Jones,
2001). Here we show how that can be adapted to one-
dimensional signals and extended to the case of non-
binary filters, such as ramps.

Let s be the signal corresponding to either the log en-
ergy or the fundamental frequency. Let f be a filter of
size n (in arbitrary time units) and let k be the time in-
stant for which we want to compute the filter response.
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Figure 2: Energy, with mean subtracted, and its corre-
sponding integral signal.

The filter response F' is given by

n—1
F(svfak)zzsk—‘rz*fz
i=0

The standard computation of F' takes O(n) operations;
however, for the special case of binary filters like the ones
shown in figures 1a) and 1b), we can compute this re-
sponse in constant time with some preprocessing as fol-
lows. Let I be the integral signal, where each element of

I is given by
J
Ij = Z S;

i=0
It can be seen that
k
Z S5 = [k — Ij—l
i=j

Thus this summation can be computed with two ac-
cesses to memory, after pre-computing and storing the
values of [ in an array. Figure 2 shows an example of a
signal (with its mean subtracted) and the corresponding
integral signal.

Consider a binary filter f such as the one shown in
la), f = {1”/27 —1”/2}, that is, f consists of n/2 ones
followed by n/2 negative ones. Then the filter response
of a signal can then be computed in constant time using
three references to the integral signal I:

F(s, f, k)= 2Ik+n/2—1 —Ip1 = Ipn1

Similarly, the response to a filter like the one shown in
Figure 1 b), given by f = {17/3, —1"/3,1"/3} can be
computed with four memory references.

F(s, f,k) = Inyn—1—2Dhq9n/3-1 + 2L4qny3-1 — Ip—1



The third filter is an upward ramp ranging from -1 to
1. Whereas the binary filters are simple to calculate us-
ing look-up values, and their application to 1-dimensional
signals is a simple adaptation to the 2-D algorithm, a
ramp is more difficult and requires separate preprocess-
ing for filters of different lengths. Regardless, it is still
possible to compute its response in constant time after
preprocessing.

We define a ramp filter of length n as f = {—1
1,4 1,1 — 2

2
' n—1

1}. The response to this filter is

'n—1 n—1’
n—1
F(Svf7k) = Zsk-‘ri*fi
i=0
21
-1 i
— )Sk+

n—1
=2
i=0
2 n— n—1

= n—1 E 1Sp4i — E Sk+i
=0 =0

n
1

2

n—1
= > iskri — (Ino1 — In—1)
n—1e

Let Z?:_ol i Sk be denoted by Any. Clearly, if Any
can be computed in constant time, then F'(s, f, k) can
also be computed in constant time. This can be done, with
a little preprocessing, as follows. Let Angy be computed
in the standard (O(n) time) way,

n—1

ATLOZ E isi
=0

Then to compute values of Any for k& > 0 we first
observe that

Ang = g1+ 28p10 + ...+ (0 — 1)Sgan—1
and
Angy1 = Skt + 28k43 + ...+ (n— 1)Skan
From this, we can see that
Angy1 = Ang — Sk41 — Sk42 — - - -

—Skgn—1+ (0 —1)Spin
k+n—1

= Any, — Z si+(n—1)sk4n
i=k+1

= Ang — (Igyn—1 — Ix) + (n — 1)Spqn

Thus after pre-computing vectors I and An, which
takes linear time in the size of the signal, we can compute
any filter response in constant time. However, while we
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can derive all binary-filter responses from vector I, com-
puting ramp-filter responses requires the pre-computation
of a separate An for every filter length n. Nevertheless,
this cost is small compared to the cost of computing a dot
product for every time instant in the input signal.

The integral signal representations are computed from
the two prosodic feature signals, and filter features are
calculated along the timeframe of the signal. Once the fil-
ter responses are obtained, they are used as attributes for
machine learning algorithms, which are used to generate
the final classifiers. The data is then used to train several
learning algorithms, as implemented in Weka (Witten and
Frank, 2005).

3 Experimental Results

Experiments were conducted to test the end-of-utterance
system on pre-recorded conversations, measuring preci-
sion and recall of positive classifications. The conver-
sations used contained speech by both male and female
users to compare the robustness among different vocal
range frequencies.

3.1 Data

The training set of data is derived from about 22 min-
utes of conversations, with the audio split such that each
speaker is on a separate voice channel (see (Hollingsed,
2006)). In 17-minutes worth of these, volunteers were
asked to list eight exits on the east side of El Paso on
Interstate 10. This provided a clear way to measure end-
of-utterances as if a system were prompting users for in-
put. This set of conversations contained a large number of
turn-switches, which also simulated voice-portal systems
well. For most of the time in this set, the same person
(a female) is conducting the quiz. However, the speakers
taking the quiz have distinctly different voices and are
mixed in gender.

Five minutes of the training set were taken from a
casual conversation also containing a male and female
speaker combination. The speakers in this conversa-
tion are different from the speakers in the other dataset.
Adding these data balances the training set, reducing the
probability of the system learning only the specific quiz
format used in much of the training data.

Didi was used to extract the prosodic features, and the
filter responses were computed for each of the three fil-
ter types, in sizes ranging from 200ms to 3 seconds in
increments of 50ms, totaling 342 features per time in-
stance. The class was set to O or 1, signaling non-end-
of-utterances and a confirmed end-of-utterances, respec-
tively. 992 instances were created for the experiments,
split equally in two between positive examples of end-of-
utterances, and randomly selected negative examples for
both channels in the source audio.



Table 1: Experimental results of using different classifiers and
averaging ten ten-fold-cross-validation evaluations with random
seeds per classifier.

Recall Precision F-Measure
Dec.Stump | 0.623 0.705 0.660
Dec.Table | 0.768 0.799 0.783
C4.5 0.792 0.800 0.796
Boost(DS) | 0.792 0.820 0.806
Bag(REP) | 0.850 0.833 0.841
Bag(C4.5) | 0.786 0.797 0.791

All instances used for training were randomly cho-
sen. The positive examples were chosen from human-
determined end-of-utterance intervals, which ranged
from the time instant a valid end-of-utterance was
recorded to a point either 1.5 seconds after that instant or
a start-of-utterance that occurred prior to that time. The
negative examples were randomly chosen such that no
time instance was chosen prior to the 3-second-mark of
the audio file used and none was within a marked end-of-
utterance interval.

3.2 Results

Six combinations of classifiers were generated using the
Weka data mining tool. Each of these classifier combina-
tions was tested using 10-fold cross-validation. The re-
sults reflect the average of ten such cross-validation runs,
each using a different random seed. The final classifier
combinations used are Weka’s implementations of deci-
sion stumps, decision tables, C4.5 (Quinlan, 1993) and
ensembles of decision stumps using boosting and C4.5
and reduced error pruning (REP) decision trees (Quinlan,
1987) using bagging.

The experiments performed yield interesting results.
Table 1 shows that, with the exception of decision
stumps, which are perhaps too simple for this task, all
classifiers performed well, which shows that our filters
produce suitable features for classification. The best re-
sults were obtained using bagging and REP trees, but re-
sults for other methods yield similar precision and recall.

It is almost certain that better results can be obtained
using these methods if bleeding across channels in the
audio streams was reduced. The FO features do a good job
of filtering out possible mistakes in the system due to the
way the frequencies are calculated. However, bleeding
can still mislead the classifiers into perceiving an end-of-
utterance from another speaker.

4 Conclusions and Future Work

We have shown a new filter-based method for detect-
ing end-of-utterances in conversation using only basic
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prosodic information. We adapted and extended previ-
ously described methods for fast computation of filter re-
sponses, which allows our system to be trained quickly
and easily permits real-time performance. Preliminary
experiments in the task of classifying windows in dialog
recordings as being end-of-utterances or not have yielded
very promising results using standard classification algo-
rithms, with an f-measure of 0.84.

Present and future work includes evaluating the
method as a component of a real-time dialog system,
where its usefulness at decreasing waiting time can be
tested. We are also working on methods for feature se-
lection and compression to obtain further speedup, and
finally we are experimenting with larger datasets.
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Abstract

The ability to distinguish statistically dif-
ferent populations of speakers or writers
can be an important asset in many NLP
applications. In this paper, we describe a
method of using document similarity
measures to describe differences in be-
havior between native and non-native
speakers of English in a writing task.'

1 Introduction

The ability to distinguish statistically different
populations of speakers or writers can be an impor-
tant asset in many NLP applications. In this paper,
we describe a method of using document similarity
measures to describe differences in behavior be-
tween native and non-native speakers of English in
a prompt response task.

We analyzed results from the new TOEFL inte-
grated writing task, described in the next section.
All task participants received the same set of
prompts and were asked to summarize them. The
resulting essays are all trying to express the same
“gist” content, so that any measurable differences
between them must be due to differences in indi-
vidual language ability and style. Thus the task is
uniquely suited to measuring differences in linguis-
tic behavior between populations.

Our measure of document similarity, described
in section 3, is a combination of word overlap and
syntactic similarity, also serving as a measure of
syntactic variability. The results demonstrate sig-
nificant differences between native and non-native

! This research was funded while the first author was a Re-
search Postdoctoral Fellow at ETS in Princeton, NJ.
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speakers that cannot be attributed to any demo-
graphic factor other than the language ability itself.

2 TOEFL Integrated Writing Task and
Scoring

The Test of English as a Foreign Language
(TOEFL) is administered to foreign students wish-
ing to enroll in US or Canadian universities. It
aims to measure the extent to which a student has
acquired English; thus native speakers should on
average perform better on the test regardless of
their analytical abilities. The TOEFL now includes
a writing component, and pilot studies were con-
ducted with native as well as non-native speakers.
One of the writing components is an Integrated
Writing Task. Students first read an expository
passage, which remains on the screen throughout
the task. Students then hear a segment of a lecture
concerning the same topic. However, the lecture
contradicts and complements the information con-
tained in the reading. The lecture is heard once;
students then summarize the lecture and the read-
ing and describe any contradictions between them.
The resulting essays are scored by human raters
on a scale of 0 to 5, with 5 being the best possible
score’. The highest-scoring essays express ideas
from both the lecture and the reading using correct
grammar; the lowest-scoring essays rely on only
one of the prompts for information and have
grammatical problems; and the scores in between
show a combination of both types of deficiencies.
The test prompt contained passages about the
advantages and disadvantages of working in
groups; the reading was 260 words long, the lec-
ture 326 words. 540 non-native speakers and 950

% Native speaker essays were initially scored with possible
half-grades such as 2.5. For purposes of comparison, these
were rounded down to the nearest integer.
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native speakers were tested by ETS in 2004. ETS
also collected essential demographic data such as
native language, educational level, etc., for each
student. For later validation, we excluded 1/3 of
each set, selected at random, thus involving 363
non-native speakers and 600 native speakers.

Percent score frequencies

35
30
25
20 O Non-native

15 @ Native
10

1 2 3 4 5

Score

Figure 1. Relative score distributions.

Among the non-native speakers, the most
common score was | (see Fig. 1 for a histogram).
By contrast, native speaker scores centered around
3 and showed a normal-type distribution. The dif-
ference in distributions confirms that the task is
effective at separating non-native speakers by skill
level, and is easier for native speakers. The poten-
tial sources of difficulty include comprehension of
the reading passage, listening ability and memory
for the lecture, and the analytical ability to find
commonalities and differences between the content
of the reading and the lecture.

3 Document Similarity Measure

Due to the design of the TOEFL task, the content
of the student essays is highly constrained. The
aim of the computational measures is to extract
grammatical and stylistic differences between dif-
ferent essays. We do this by comparing the essays
to the reading and lecture prompts. Our end goal is
to determine to what extent speakers diverge from
the prompts while retaining the content.

The prediction is that native speakers are much
more likely to paraphrase the prompts while keep-
ing the same gist, whereas non-native speakers are
likely to either repeat the prompts close to verba-
tim, or diverge from them in ways that do not pre-
serve the gist. This intuition conforms to previous
studies of native vs. non-native speakers’ text
summarization (cf. Campbell 1987), although we
are not aware of any related computational work.
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We begin by measuring lexico-grammatical
similarity between each essay and the two prompts.
An essay is represented as a set of features derived
from its lexico-grammatical content, as described
below. The resulting comparison measure goes
beyond simple word or n-gram overlap by provid-
ing a measure of structural similarity as well. In
essence, our method measures to what extent the
essay expresses the content of the prompt in the
same words, used in the same syntactic positions.

3.1 C-rater tuples

In order to get a measure of syntactic similarity, we
relied on C-rater (Leacock & Chodorow 2003), an
automatic scoring engine developed at ETS. C-
rater includes several basic NLP components, in-
cluding POS tagging, morphological processing,
anaphora resolution, and shallow parsing. The
parsing produces tuples for each clause, which de-
scribe each verb and its syntactic arguments (1).

(1) CLAUSE: the group spreads responsibil-
ity for a decision to all the members
TUPLE: :verb: spread :subj: the group :obj:
responsible :pp.for: for a decide :pp.to: to all
C-rater does not produce full-sentence trees or
prepositional phrase attachment. However, the
tuples are reasonably accurate on non-native input.

3.2 Lexical and Syntactic Features

C-rater produces tuples for each document, often
several per sentence. For the current experiment,
we used the main verb, its subject and object. We
then converted each tuple into a set of features,
which included the following:
* The verb, subject (pro)noun, and object
(pro)noun as individual words;
*  All of the words together as a single feature;
* The verb, subject, and object words with
their argument roles.
Each document can now be represented as a set
of tuple-derived features, or feature vectors.

3.3 Document Comparison

Two feature vectors derived from tuples can be
compared using a cosine measure (Salton 1989).
The closer to 1 the cosine, the more similar the two
feature sets. To compensate for different frequen-
cies of the features and for varying document
lengths, the feature vectors are weighted using
standard #f*idf techniques.



In order to estimate the similarity between two
documents, we use the following procedure. For
each tuple vector in Document A, we find the tuple
in Document B with the maximum cosine to the
tuple in Document A. The maximum cosine val-
ues for each tuple are then averaged, resulting in a
single scalar value for Document A. We call this
measure Average Maximum Cosine (AMC).

We calculated AMCs for each student response
versus the reading, the lecture, and the reading +
lecture combined. This procedure was performed
for both native and non-native essays. A detailed
examination of the resulting trends is in section 4.

3.4 Other Measures of Document Similarity

We also performed several measures of document
similarity that did not include syntactic features.

Content Vector Analysis

The student essays and the prompts were compared
using Content Vector Analysis (CVA), where each
document was represented as a vector consisting of
the words in it (Salton 1989). The t#f*idf-weighted
vectors were compared by a cosine measure.

For non-native speakers, there was a noticeable
trend. At higher score levels (where the score is
determined by a human rater), student essays
showed more similarity to both the reading and the
lecture prompts. Both the reading and lecture
similarity trends were significant (linear trend; F=
Mslinear trend/MSwithin—subjects:63 for the reading; F=71
for the lecture at 0.05 significance level’). Thus,
the rate of vocabulary retention from both prompts
increases with higher English-language skill level.

Native speakers showed a similar pattern of in-
creasing cosine similarity between the essay and
the reading (F=35 at 0.05 significance for the
trend), and the lecture (F=35 at the 0.05 level).

BLEU score

In order to measure the extent to which whole
chunks of text from the prompt are reproduced in
the student essays, we used the BLEU score,
known from studies of machine translation (Pap-
ineni et al. 2002). We used whole essays as sec-
tions of text rather than individual sentences.

For non-native speakers, the trend was similar
to that found with CVA: at higher score levels, the

3 All statistical calculations were performed as ANOV A-style
trend analyses using SPSS.
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overlap between the essays and both prompts in-
creased (F=52.4 at the 0.05 level for the reading;
F=53.6 for the lecture).

Native speakers again showed a similar pattern,
with a significant trend towards more similarity to
the reading (F=35.6) and the lecture (F=31.3).
These results were confirmed by a simple n-gram
overlap measure.

4 Results

4.1 Overall similarity to reading and lecture

The AMC similarity measure, which relies on syn-
tactic as well as lexical similarity, produced some-
what different results from simpler bag-of-word or
n-gram measures. In particular, there was a differ-
ence in behavior between native and non-native
speakers: non-native speakers showed increased
structural similarity to the lecture with increasing
scores, but native speakers did not.

For non-native speakers, the trend of increased
AMC between the essay and the lecture was sig-
nificant (F=10.9). On the other hand, there was no
significant increase in AMC between non-native
essays and the reading (F=3.4). Overall, for non-
native speakers the mean AMC was higher for the
reading than for the lecture (0.114 vs. 0.08).

Native speakers, by contrast, showed no sig-
nificant trends for either the reading or the lecture.
Overall, the average AMCs for the reading and the
lecture were comparable (0.08 vs. 0.075).

We know from results of CVA and BLEU
analyses that for both groups of speakers, higher-
scoring essays are more lexically similar to the
prompts. Thus, the lack of a trend for native
speakers must be due to lack of increase in struc-
tural similarity between higher-scoring essays and
the prompts. Since better essays are presumably
better at expressing the content of the prompts, we
can hypothesize that native speakers paraphrase the
content more than non-native speakers.

4.2 Difference between lecture and reading

The most informative measure of speaker behavior
was the difference between the Average Maximum
Cosine with the reading and the lecture, calculated
by subtracting the lecture AMC from the reading
AMC. Here, non-native speakers showed a sig-
nificant downward linear trend with increasing



score (F=6.5; partial eta-squared 0.08), whereas the
native speakers did not show any trend (F=1.5).
The AMC differences are plotted in Figure 3.

AMC difference between reading and
lecture
0.15
0.1
o Non-native
0.05
B Native
0+ :
0 1 2 3 5
-0.05
Score

Figure 2 - AMC difference between reading and
lecture

Non-native speakers with lower scores rely
mostly on the reading to produce their response,
whereas speakers with higher scores rely some-
what more on the lecture than on the reading. By
contrast, native speakers show no correlation be-
tween score and reading vs. lecture similarity.
Thus, there is a significant difference in the overall
distribution and behavior between native and non-
native speaker populations. This difference also
shows that human raters rely on information other
than simple verbatim similarity to the lecture in
assigning the overall scores.

4.3 Other parameters of variation

For non-native speakers, the best predictor of the
human-rated score is the difference in AMC be-
tween the reading and the lecture.

As demonstrated in the previous section, the
AMC difference does not predict the score for na-
tive speakers. We analyzed native speaker demo-
graphic data in order to find any other possible
predictors. The students’ overall listening score,
their status as monolingual vs. bilingual, their par-
ents’ educational levels all failed to predict the es-
say scores.

5 Discussion and Future Work

The Average Maximum Cosine measure as de-
scribed in this paper successfully characterizes the
behavior of native vs. non-native speaker popula-
tions on an integrated writing task. Less skillful
non-native speakers show a significant trend of
relying on the easier, more available prompt (the
reading) than on the harder prompt (the lecture),
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whereas more skillful readers view the lecture as
more relevant and rely on it more than on the read-
ing. This difference can be due to better listening
comprehension for the lecture and/or better mem-
ory. By contrast, native speakers rely on both the
reading and the lecture about the same, and show
no significant trend across skill levels. Native
speakers seem to deviate more from the structure
of the original prompts while keeping the same
content, signaling better paraphrasing skills.

While not a direct measure of gist similarity,
this technique represents a first step toward detect-
ing paraphrases in written text. In the immediate
future, we plan to extend the set of features to in-
clude non-verbatim similarity, such as synonyms
and words derived by LSA-type comparison (Lan-
dauer et al. 1998). In addition, the syntactic fea-
tures will be expanded to include frequent
grammatical alternations such as active / passive.

A rather simple measure such as AMC has al-
ready revealed differences in population distribu-
tions for native vs. non-native speakers.
Extensions of this method can potentially be used
to determine if a given essay was written by a na-
tive or a non-native speaker. For instance, a statis-
tical classifier can be trained to distinguish feature
sets characteristic for different populations. Such a
classifier can be useful in a number of NLP-related
fields, including information extraction, search,
and, of course, educational measurement.
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Abstract

We present a diacritization system for
written Arabic which is based on a lexical
resource. It combines a tagger and a lex-
eme language model. It improves on the
best results reported in the literature.

1 Introduction

Arabic is written without certain orthographic sym-
bols, called diacritics, which represent among other
things short vowels.! The restoration of diacritics
to written Arabic is an important processing step
for several natural language processing applications,
including training language models for automatic
speech recognition, text-to-speech generation, and
so on. For a discussion of the role of diacritiza-
tion, see (Maamouri et al., 2006). In this paper, we
present a new diacritization module that outperforms
the best previously published results, using a new
combination of techniques. A more detailed presen-
tation can be found in (Habash and Rambow 2007).

2 Diacritization in Arabic: Linguistic
Description

Arabic script consists of two classes of symbols:
letters and diacritics. Letters are always written
whereas diacritics are optional: written Arabic can
be fully diacritized, it can have some diacritics (to
disambiguate certain words), or it can be entirely
undiacritized. There are three types of diacritics:
vowel, nunation, and shadda. Vowel diacritics rep-
resent Arabic’s three short vowels and the absence
of any vowel. The following are the four vowel-
diacritics exemplified in conjunction with the letter
< b (we use Buckwalter transliteration): < ba, &

1This research was supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No. HR0011-
06-C-0023. Any opinions, findings and conclusions or recom-

mendations expressed in this paper are those of the authors and
do not necessarily reflect the views of DARPA.
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bu, < bi and & bo (no vowel). Nunation diacrit-
ics can only occur in word final positions in nomi-
nals (nouns, adjectives and adverbs). They represent
a short vowel followed by an n sound: \32 bF, &

bN and _ bK. Nunation is an indicator of nominal

indefiniteness. Shadda is a consonant doubling dia-
critic: & b~. The shadda can combine with vowel

or nunation diacritics: & b~u or & b~N. Addi-
tional diacritical marksin Arabic include the hamza,
which appears in conjunction with a small number

of letters (e.9., |, }, |, §, % ). Since most Arabic en-
codings do not consider the hamza a diacritic, but
rather a part of the letter (like the dot on the lower-
case Roman i or under the Arabic b: ), we do not
count it here as part of the diacritic set.
Functionally, diacritics can be split into two dif-
ferent kinds: lexemic diacritics and inflectional di-
acritics. Lexemic diacritics distinguish between two
lexemes.2 For example, the diacritization differ-

ence between the lexemes __41? KAtib "writer’ and

_.,:I'frkAtab ‘to correspond’ distinguish between the
meanings of the word rather than their inflections.
Thus, there are lexemes that look alike when undia-
critized but are spelled differently when diacritized.
Note that there are also distinct lexemes that are al-
ways spelled the same way, even when diacritized —
their difference is only a difference in word sense.
Inflectional diacritics distinguish different in-
flected forms of the same lexeme. For instance,
the final diacritics in (*Ji5" katabtu ‘I wrote’ and

wf katabta ‘you wrote’ distinguish the person of
the subject of the verb. We further distinguish be-

2Arabic orthography calls for adding a silent Alif (1) in con-
junction with Z in words ending with a consonant.

3A lexemeis an abstraction over inflected wordforms which
groups together all those wordforms that differ only in terms
of one of the morphological categories such as number, gender,
aspect, or voice. The lemma is the distinguished word form
which serves as citation form.

Proceedings of NAACL HLT 2007, Companion Volume, pages 53-56,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics



tween two types of inflectional diacritics: variant
inflectional diacritics and invariant inflectional dia-
critics. The distinction is made with respect to two
morphosyntactic features: nominal case and verbal
mood. The variant inflectional diacritics need not al-
ways appear at the end of the word. For instance, the
variant inflectional diacritics at the penultimate po-
sitions of the following two words distinguish their

case: iLV kAtibuhu ‘his writer [nominative]” and
i;j?kAti bahu ‘his writer [accusative]’.

3 TheMADA-D System

In a previous publication, we described the Mor-
phological Analysis and Disambiguation of Ara-
bic (MADA) system (Habash and Rambow, 2005).
The basic approach used in MADA is inspired by
the work of Haji¢ (2000) for tagging morphologi-
cally rich languages, which was extended to Ara-
bic independently by Haji¢ et al. (2005). In this
approach, a set of taggers are trained for individ-
ual linguistic features which are components of the
full morphological tag (such as core part-of-speech,
tense, number, and so on). In Arabic, we have ca.
2,000 to 20,000 morphological tags, depending on
how we count. The Buckwalter Arabic Morpholog-
ical Analyzer (BAMA) (Buckwalter, 2004) is con-
sulted to produce a list of possible analyses for a
word. BAMA returns, given an undiacritized in-
flected word form, all possible morphological anal-
yses, including full diacritization for each analy-
sis. The results of the individual taggers are used
to choose among these possible analyses. The algo-
rithm we proposed in (Habash and Rambow, 2005)
for choosing the best BAMA analysis simply counts
the number of predicted values for the set of linguis-
tic features in each candidate analysis. Hajic et al.
(2005), however, weigh the predicted values by their
probability or confidence measure. To our knowl-
edge, no results on diacritization have been previ-
ously reported using this particular approach to tag-
ging.*

In this paper, we extend our basic MADA sys-
tem in the following ways: First, we follow Hajic
et al. (2005) in including case, mood, and nunation

4Smith et al. (2005) also use the Buckwalter Analyzer in
their Arabic morphological tagger, but then use a rather differ-
ent approach to choosing among the possible analyses. They
represent the possible analyses in a lattice, and a noisy channel
model to choose among them. We leave to future work how the
issue of diacritization can be integrated with their model.
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as features, because of its importance to diacritiza-
tion. Second, we replace the YAMCHA (Kudo and
Matsumoto, 2003) implementation of Support Vec-
tor Machines (SVMs) with SVMTool (Giménez and
Marquez, 2004) as our machine learning tool, for
reasons of speed, at the cost of a slight decrease in
accuracy. Like HajiC et al. (2005), we do not use
Viterbi decoding. Finally, we introduce a specialized
module for resolving residual ambiguity after the ba-
sic tagging is done. We explain this module in detail
next. We train our classifiers on the exact training set
defined by Zitouni et al. (2006), a subpart of the third
segment of the Penn Arabic Treebank (Maamouri et
al., 2004) (“ATB3-Train”, 288,000 words). We also
(reluctantly) follow them in having a single set for
development and testing (“ATB3-Devtest”, 52,000
words), rather than separate development and test
sets (as is common), in order to be able to compare
our results to theirs.

Up until this point, MADA-D has narrowed the
list of possible analyses of a word (supplied by
BAMA\) down to a small number. This number can
sometimes be greater than one for two reasons: first,
the way in which we use the output of the taggers
to choose among the analyses may yield a tie among
several analyses; second, there may be lexeme-based
diacritic ambiguity, and the morphological taggers
cannot disambiguate lexemic diacritization. To ad-
dress the residual ambiguity, we implemented a sec-
ond component. Ideally, this would be (or include) a
full word sense disambiguation (WSD) system, but
WSD is a hard problem. Instead, we approximate
WSD using standard n-gram language models. We
use two types of data for training: fully diacritized
word forms, and data in which we have replaced the
inflected word by the diacritized citation form of the
lexeme. Note that this procedure conflates lexemes
that differ only in meaning, not in diacritization, as
we are not actually interested in WSD for its own
sake in this paper. The training corpus is the same
corpus we use for the classifiers, ATB3-Train. This
means that the diacritization and the choice of lex-
eme are done by hand, but it also means that the
training set is quite small by the standards of lan-
guage models. We build an open-vocabulary lan-
guage model with Kneser-Ney smoothing using the
SRILM toolkit (Stolcke, 2002). We will call the re-
sulting language models X LM-n, where X is “D”
for the fully diacritized word forms, or “L” for the
lexeme citation forms, and n is the order of the n-



grams (n = 1,2,3). When all candidate tokens (di-
acritized word or lexeme citation form) are unknown
(out-of-vocabulary), the language model does not
actually make a choice among them. We then use a
diacritization unigram model, and then finally ran-
dom choice. In the case of a preceding DLM-n
model, this simply amounts to random choice, but
in the case of a preceding LLM-n model, the dia-
critization model may actually make a non-random
choice.

4 Reélated Work

We review three approaches that are directly rele-
vant to us; we refer to the excellent literature review
in (Zitouni et al., 2006) for a general review. \ergyri
and Kirchhoff (2004) follow an approach similar to
ours in that they choose from the diacritizations pro-
posed by BAMA. However, they train a single tag-
ger using unannotated data and EM, which necessar-
ily leads to a lower performance. The most salient
difference, however, is that they are motivated by the
goal of improving automatic speech recognition, and
have an acoustic signal parallel to the undiacritized
text. All their experiments use acoustic models.
They show that WER for diacritization decreases by
nearly 50% (from 50%) when BAMA is added to the
acoustic information, but the tagger does not help. It
would be interesting to investigate ways of incorpo-
rating acoustic model information in our approach.
Ananthakrishnan et al. (2005) also work on dia-
critization with the goal of improving ASR. They
use a word-based language model (using both di-
acritized and undiacritized words in the context)
but back off to a character-based model for unseen
words. They consult BAMA to narrow possible di-
acritizations for unseen words, but BAMA does not
provide much improvement used in this manner.
Zitouni et al. (2006) use a maximum entropy clas-
sifier to assign a set of diacritics to the letters of
each word. They use the output of a tokenizer (seg-
menter) and a part-of-speech tagger (which presum-
ably tags the output of the tokenizer). They then use
segment n-grams, segment position of the character
being diacritized, the POS of the current segment,
along with lexical features, including letter and word
n-grams. Thus, while many of the same elements
are used in their and our work (word n-grams, fea-
tures related to morphological analysis), the basic
approach is quite different: while we have one pro-
cedure that chooses a correct analysis (including to-
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All Diacritics | Ignore Last
Model WER | DER | WER | DER
Only-DLM-1 394 | 145 | 138 6.6
Tagger-DLM-1 | 15.9 5.3 6.2 2.5
Tagger-DLM-2 | 15.2 51 5.8 2.4
Tagger-DLM-3 | 15.1 5.0 5.7 2.4
Tagger-LLM-1 | 16.0 5.3 6.3 2.6
Tagger-LLM-2 | 15.0 4.9 5.6 2.2
Tagger-LLM-3 | 14.9 4.8 55 2.2
Only-LLM-3 355 | 108 8.8 3.6
Tagger-noLM 16.0 5.3 6.3 2.6
[ Zitouni [ 180 | 55 | 7.9 | 25 |

Figure 1. Diacritization Results (all followed by
single-choice-diac model); our best results are
shown in boldface; Only-DLM-1 is the baseline;
“Zitouni” is (Zitouni et al., 2006)

kenization, morphological tag, and diacritization),
they have a pipeline of processors. Furthermore, Zi-
touni et al. (2006) do not use a morphological lexi-
con. To our knowledge, their system is the best per-
forming currently, and we have set up our experi-
ments to allow us to compare our results directly to
their results.

5 Reaults

There are several ways of defining metrics for dia-
critization. In order to assure maximal comparabil-
ity with the work of Zitouni et al. (2006), we adopt
their metric.> We count all words, including num-
bers and punctuation. Each letter (or digit) in a word
is a potential host for a set of diacritics; we count
all diacritics on a single letter as a single binary
choice. So, for example, if we correctly predict a
shadda but get the vowel wrong, it counts as a wrong
choice. We approximate non-variant diacritization
by removing all diacritics from the final letter (Ig-
nore Last), while counting that letter in the evalua-
tion. We give diacritic error rate (DER) which tells
us for how many letters we incorrectly restored all
diacritics, and word error rate (WER), which tells
us how many words had at least one DER.

The results are shown in Figure 1. Going top
to bottom, we first see the baseline, Only-DLM-1,
which is simply a diacritization unigram model with

SWe thank Imed Zitouni (personal communication) for de-
tails on their evaluation.



random choice for unseen words. We then show the
results using the morphological tagger along with a
language model. We first show results for the dia-
critization model, with 1-, 2-, and 3-grams. As we
can see, the bigram language model helps slightly.
The next three lines are the three lexeme n-gram
models. Here we see that the unigram model per-
forms worse than the unigram diacritization model,
while the bigram and trigram models perform better
(the trigram lexeme model is our best result). We
interpret this as meaning that the lexeme model is
useful only when context is taken into account, be-
cause it is actually performing a rudimentary form of
WSD. We tease apart the contribution of the tagger
and of the language model with two further experi-
ments, in the next two lines:; using just the lexeme
language model (trigrams), and running just the tag-
ger, followed by random choice. We can see that
the tagger alone does as well as the tagger with the
unigram lexeme model, while the lexeme model on
its own does much worse. However, as expected, the
lexeme model on its own for the Ignore Last measure
is much closer to the performance of the tagger on
its own. We conclude from this that the quite simple
lexeme model is in fact contributing to the correct
choice of the lexemic diacritics. Finally, we give the
results of Zitouni et al. (2006) on the last line, which
we understand to be the best published results cur-
rently. We see that we improve on their results in all
categories. We can see the effect of our different ap-
proaches to diacritization in the numbers: while for
WER we reduce the Zitouni et al error by 17.2%, the
DER error reduction is only 10.9%. This is because
we are choosing among complete diacritization op-
tions for white space-tokenized words, while Zitouni
et al. (2006) make choices for each diacritic. This
means that when we make a mistake, it may well
affect several diacritics at once, so that the diacritic
errors are concentrated in fewer words. This effect
is even stronger when we disregard the final letter
(30.4% reduction in WER versus 12.0% reduction
in DER), suggesting that singleton errors in words
tend to be in the final position (case, mood), as it is
often hard for the tagger to determine these features.

6 Conclusion

We have shown that a diacritizer that uses a lexical
resource can outperform a highly optimized ad-hoc
diacritization system that draws on a large number
of features. We speculate that further work on WSD
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could further improve our results. We also note the
issue of unknown words, which will affect our sys-
tem much more than that of (Zitouni et al., 2006).
It is possible to construct a combined system which
uses a lexicon, but backs off to a Zitouni-style sys-
tem for unknown words. However, a large portion
of the unknown words are in fact foreign words and
names, and it is not clear whether the models learned
handle such words well.
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Abstract complex reranking technigues, based e.g. on syntac-
tic analyses of the candidates or using huge addi-
tional language models, since the whole sentence is
already generated. During the generation process,
these models would either need hard-to-implement
algorithms or large memory requirements.

This paper describes an efficient method
to extract largen-best lists from a word
graph produced by a statistical machine
translation system. The extraction is based
on thek shortest paths algorithm which
is efficient even for very largé. We 1.1 Related work
show that, although we can generate large
amounts of distinct translation hypothe-
ses, these numerous candidates are not
able to significantly improve overall sys-
tem performance. We conclude that large
n-best lists would benefit from better dis-
criminating models.

The idea ofn-best list extraction from a word graph
for SMT was presented in (Ueffing et al., 2002). In
(Zens and Ney, 2005), an improved method is re-
ported that overcomes some shortcomings, such as
duplicate removal by determinization of the word
graph (represented as a weighted finite state automa-
ton) and efficient rest-cost estimation with linear
time complexity.

There are several research groups that use a two-
This paper investigates the properties of large pass approach in their MT systems. First, they gen-
best lists in the context of statistical machine transeraten-best translation hypotheses with the decoder.
lation (SMT). We present a method that allows foiSecond, they apply additional models to the out-
fast extraction of very largei-best lists based on put and rerank the candidates (see e.g. (Chen et al.,
the k shortest paths algorithm by (Eppstein, 1998)2006)).

We will argue that, despite being able to generate a Syntactic features were investigated in (Och et al.,
much larger amount of hypotheses than previousl®004) with moderate success. Although complex
reported in the literature, there is no significant gaimodels, such as features based on shallow parsing or
of such a method in terms of translation quality.  treebank-based syntactic analyses, were applied to

In recent years, phrase-based approaches evolvbe n-best candidates, the “simpler” ones were more
as the dominating method for feasible machin@romising (e.g. IBM model 1 on sentence-level).
translation systems. Many research groups use a dedn the following section 2, we describe our SMT
coder based on a log-linear approach incorporatingystem and explain how an improveebest extrac-
phrases as main paradigm (Koehn et al., 2003). Astion method is capable of generating a very large
by-product of the decoding process, one can extrantimber of distinct candidates from the word graph.
n-best translations from a word graph and use thede section 3, we show our experiments related to
fully generated hypotheses for additional rerankingu-best list reranking with various sizes and the cor-

In the past, several groups report on usinngest responding performance in terms of MT evaluation
lists with n ranging from 1000 to 10 000. The ad-measures. Finally, we discuss the results in section 4
vantage ofn-best reranking is clear: we can applyand give some conclusive remarks.

1 Introduction
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2 Generating N-best lists then filter the output via a prefix tree (also called

trie) until we getn distinct translations.
We use a phrase-based SMT system (Mauser et a[ ) getn

2006) and enhance the-best list extraction with With this method, it is feasible to generate

- : ) 100 000-best lists without much hassle. In gen-
Eppstein Sk. shortest path algorithm which aIIovys eral, the file input/output operations are more time-

rEzonsuming than the actual-best list extraction.
The average generation time afbest candidates
2.1 Baseline SMT system for each of the sentences of the development list
is approximately 30 seconds on a 2.2GHz Opteron
$achine, whereas 7.4 million hypotheses are com-
uted per sentence on average. The overall extrac-

candidates in an efficient way.

The baseline system uses phrases automatically
tracted from a word-aligned corpus (trained wit

GIZA++) and generates the best translations using,, time including filtering and writing to hard-disk

weighted |og-linear model cqmbination with SEVeTAiakes around 100 seconds per sentence. Note that
fea:jtulres, such as dwlord Ire]_xmc(I)_n, phrase trinslat'o(ﬂis value could be optimized drastically if checking
and language models. This direct approach is CUfs, o many duplicates are generated on average

the simplex method.

2.2 N-best list extraction 2.3 Rescoring models

We incorporated an efficient extraction of best
translations using the: shortest path algorithm
(Eppstein, 1998) into a state-of-the-art SMT syste
The implementation is partly based on code that
publicly available®

Starting point for the extraction is a word grap
generated separately by the decoder for each s
tence. Since these word graphs are directed a o .
acyclic, it is possible to construct a shortest path tre up to 2.5 billion running words,_a sentenc_e_-_level
spanning from the sentence begin node to the erk I\él mOdgclj.l. scolrem-gram Iposte;1n0r %rolbabllltles
node. The efficiency of finding thie shortest paths and an additional sentence length model.
in this tree lies in the book-keeping of edges througg
a binary heap that allows for an implicit representa*

tion of paths. The overall performance of the algoThe experiments in this section are carried outen
rithm is efficient even for largé. Thus, it is feasi- pest lists withn, going up to 100 000. We will show
ble to use in situations where we want to generatetgat, although we are capable of generating this large
large number of paths, i.e. translation hypotheses gmount of hypotheses, the overall perform