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Preface from the General Chair

This year the annual conference organized by the North American chapter of the Association for
Computational Linguistics (NAACL) has undergone a name change to NAACL HLT. This change
reflects the integral part that all of Human Language Technology plays in the NAACL. It is symbolic
of the focus of the conference, which is represented by the collection of submitted and accepted
papers. They span our community’s emphasis on speech processing, information retrieval and language
processing techniques and applications.

The yearly NAACL conference is always the result of the volunteer contributions of a great many people
from the NAACL community who put in many hours to make the conference possible. Most of the sub-
committees of the organizing committee include researchers from the areas of language processing,
speech processing and information retrieval, again reflecting the diversity of expertise and interests in
the NAACL world.

Each year the general chair calls on a new group of members to serve as the organizing committee. They
learn, from scratch, with advice from the previous organizing committee, the tasks needed to make the
conference happen. I want to thank each of them for their hard work and good-natured spirit through
this process. I thank the program chairs, Tanja Schultz, Matthew Stone, and ChengXiang Zhai; the local
arrangement chairs, James Allen, Dan Gildea, and Lenhart Schubert; the tutorial and workshop chairs,
James Allan, Marti Hearst, and Gina Levow; the publications chairs, Yang Liu, Ronnie Smith, and Ellen
Voorhees; the sponsorship chair David Day, and exhibits chair, Tim Paek; the publicity chairs, Dilek
Hakkani-Tür, Miles Osbourne, and Tomek Strzalkowski; the demos chairs, Bob Carpenter, Amanda
Stent, and Jason Williams; and the doctoral consortium chairs, Jackson Liscombe, Phil Michalak, and
the consortium faculty advisor, Julia Hirschberg.

In additional to the organizing committee, thanks are due to the senior program committee, all the
paper reviewers, and the students who volunteered during the conference. A special thank you to our
conference sponsors, whose contributions made this conference possible: the Eastman Kodak company,
Microsoft Research, Powerset, Thomson, the Association For Machine Translation in the Americas,
IBM, and Language Weaver.

Finally, I would also like to thank the NAACL executive committee and the Advisory Board for their
advice in preparation for the conference. I especially want to thank Priscilla Rasmussen, who served as
Treasurer for this year’s meeting, as well as in her normal role as Business Manager for the ACL office.
Her knowledge, willingness to make all the ahead-details for the conference go smoothly, and her skills
as NAACL corporate memory were invaluable to this conference and its organizers.

Candace L. Sidner
BAE Systems AIT
General Chair, NAACL HLT 2007
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Preface from the Program Co-Chairs

We welcome you to NAACL HLT 2007, Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for Computational Linguistics. NAACL HLT
2007 continues to attract high quality submissions across three broad topic areas – natural language
processing, information retrieval, and speech recognition. This year, 298 full papers were submitted and
72 accepted (24% acceptance rate); 150 late-breaking (short) papers were submitted and 55 accepted
(37% acceptance rate). The numbers of submissions for both full and short papers continue to grow
compared to those of last year.

Reviewing of the submissions was double blind and was handled using a two tiered reviewing system.
The PC Chairs selected 30 internationally recognized experts as senior program committee (SPC)
members. Each SPC member then selected a group of experts in specific areas to review both the
full and short submitted papers. The complete PC numbered around 340. Three (or two in the case of
short papers) reviewers and one SPC member were assigned per paper. The SPC oversaw the reviewing
process, helped resolve any disputes, and at the end produced, for each paper, an overview of the
reviewers’ comments along with a preliminary acceptance decision. The final decisions were made by
the program chairs based on online discussions among the SPC members.

Three award papers were chosen by the program chairs based on reviews, recommendations, the papers
themselves, and our sense that the research efforts epitomize the interactions and opportunities across
HLT that the conference aims to foster. The award for the best paper goes to: “Combining Outputs
from Multiple Machine Translation Systems” by Antti-Veikko Rosti, Bing Xiang, Spyros Matsoukas,
Richard Schwartz, Necip Fazil Ayan and Bonnie Dorr. The award for the best student paper goes to:
“Global, Joint Determination of Anaphoricity and Coreference Resolution using Integer Programming”,
by Pascal Denis and Jason Baldridge. The award for the best late-breaking news paper goes to
“Exploring Affect-Context Dependencies for Adaptive System Development” by Kate Forbes-Riley,
Mihai Rotaru, Diane Litman and Joel Tetreault. Congratulations to all the authors!

Reflecting its multi-disciplinary nature, the NAACL HLT 2007 Program consists of oral/poster
presentations of full and short papers and software demonstrations that cover a broad spectrum of topics
in natural language processing, information retrieval, and speech recognition. We are honored to have
two prominent keynote speakers, Franz Josef Och (Google Inc.) and Luis von Ahn (Carnegie Mellon
University) for what will undoubtedly be thought-provoking and enjoyable keynote talks. In addition,
the program also features a special panel on high impact future research directions for HLT (thanks to
Donna Harman).

We are indebted to all the authors who submitted papers to the conference and all those who helped us
put together the conference program, especially all the reviewers and SPC members who volunteered
their time and worked many long hours reviewing and, later, discussing the submissions. We are also
grateful to our General Conference Chair Candy Sidner and Chair of the NAACL Board Owen Rambow
for their advice and support, and to Rich Gerber for his help with using the START reviewing system.
The NAACL HLT conference has a PC chair for each of its three disciplines. Although work tasks were
shared between the three chairs equally, as natural language processing received by far the greatest
number of submissions, Matthew Stone ended up having to oversee many more papers and recruit
many more SPC members than the other two chairs. He has also taken the primary responsibility of
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managing the review process and coordinating our effort. Therefore, the two other chairs of NAACL
HLT 2007 (Tanja Schultz & ChengXiang Zhai), wish to thank Matthew for all of his additional work in
pulling this conference together.

Once again, we welcome you to NAACL HLT 2007 and hope that you enjoy the conference!

Tanja Schultz, Carnegie Mellon University
Matthew Stone, Rutgers University
ChengXiang Zhai, University of Illinois at Urbana-Champaign
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Abstract

In this paper we describe an automatic
prosody labeling framework that exploits
both language and speech information.
We model the syntactic-prosodic informa-
tion with a maximum entropy model that
achieves an accuracy of 85.2% and 91.5%
for pitch accent and boundary tone la-
beling on the Boston University Radio
News corpus. We model the acoustic-
prosodic stream with two different mod-
els, one a maximum entropy model and
the other a traditional HMM. We finally
couple the syntactic-prosodic and acoustic-
prosodic components to achieve signifi-
cantly improved pitch accent and bound-
ary tone classification accuracies of 86.0%
and 93.1% respectively. Similar experimen-
tal results are also reported on Boston Di-
rections corpus.

1 Introduction

Prosody refers to intonation, rhythm and lexical
stress patterns of spoken language that convey lin-
guistic and paralinguistic information such as em-
phasis, intent, attitude and emotion of a speaker.
Prosodic information associated with a unit of
speech, say, syllable, word, phrase or clause, influ-
ence all the segments of the unit in an utterance. In
this sense they are also referred to as suprasegmen-
tals (Lehiste, 1970). Prosody in general is highly
dependent on individual speaker style, gender, di-
alect and other phonological factors. The difficulty in
reliably characterizing suprasegmental information
present in speech has resulted in symbolic and para-
meteric prosody labeling standards like ToBI (Tones
and Break Indices) (Silverman et al., 1992) and Tilt
model (Taylor, 1998) respectively.

Prosody in spoken language can be characterized
through acoustic features or lexical features or both.
Acoustic correlates of duration, intensity and pitch,
like syllable nuclei duration, short time energy and

fundamental frequency (f0) are some acoustic fea-
tures that are perceived to confer prosodic promi-
nence or stress in English. Lexical features like parts-
of-speech, syllable nuclei identity, syllable stress of
neighboring words have also demonstrated high de-
gree of discriminatory evidence in prosody detection
tasks.

The interplay between acoustic and lexical fea-
tures in characterizing prosodic events has been suc-
cessfully exploited in text-to-speech synthesis (Bu-
lyko and Ostendorf, 2001; Ma et al., 2003), speech
recognition (Hasegawa-Johnson et al., 2005) and
speech understanding (Wightman and Ostendorf,
1994). Text-to-speech synthesis relies on lexical fea-
tures derived predominantly from the input text to
synthesize natural sounding speech with appropri-
ate prosody. In contrast, output of a typical auto-
matic speech recognition (ASR) system is noisy and
hence, the acoustic features are more useful in pre-
dicting prosody than the hypothesized lexical tran-
script which may be erroneous. Speech understand-
ing systems model both the lexical and acoustic fea-
tures at the output of an ASR to improve natural
language understanding. Another source of renewed
interest has come from spoken language translation
(Nöth et al., 2000; Agüero et al., 2006). A pre-
requisite for all these applications is accurate prosody
detection, the topic of the present work.

In this paper, we describe our framework for build-
ing an automatic prosody labeler for English. We
report results on the Boston University (BU) Ra-
dio Speech Corpus (Ostendorf et al., 1995) and
Boston Directions Corpus (BDC) (Hirschberg and
Nakatani, 1996), two publicly available speech cor-
pora with manual ToBI annotations intended for ex-
periments in automatic prosody labeling. We con-
dition prosody not only on word strings and their
parts-of-speech but also on richer syntactic informa-
tion encapsulated in the form of Supertags (Banga-
lore and Joshi, 1999). We propose a maximum en-
tropy modeling framework for the syntactic features.
We model the acoustic-prosodic stream with two dif-
ferent models, a maximum entropy model and a more
traditional hidden markov model (HMM). In an au-
tomatic prosody labeling task, one is essentially try-
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ing to predict the correct prosody label sequence for
a given utterance and a maximum entropy model of-
fers an elegant solution to this learning problem. The
framework is also robust in the selection of discrim-
inative features for the classification problem. So,
given a word sequence W = {w1, · · · , wn} and a set
of acoustic-prosodic features A = {o1, · · · , oT }, the
best prosodic label sequence L∗ = {l1, l2, · · · , ln} is
obtained as follows,

L∗ = arg max
L

P (L|A,W ) (1)

= arg max
L

P (L|W ).P (A|L,W ) (2)

≈ arg max
L

P (L|Φ(W )).P (A|L,W ) (3)

where Φ(W ) is the syntactic feature encoding of the
word sequence W . The first term in Equation (3)
corresponds to the probability obtained through our
maximum entropy syntactic model. The second term
in Equation (3), computed by an HMM corresponds
to the probability of the acoustic data stream which
is assumed to be dependent only on the prosodic la-
bel sequence.

The paper is organized as follows. In section 2
we describe related work in automatic prosody la-
beling followed by a description of the data used in
our experiments in section 3. We present prosody
prediction results from off-the-shelf synthesizers in
section 4. Section 5 details our proposed maximum
entropy syntactic-prosodic model for prosody label-
ing. In section 6, we describe our acoustic-prosodic
model and discuss our results in section 7. We finally
conclude in section 8 with directions for future work.

2 Related work

Automatic prosody labeling has been an active re-
search topic for over a decade. Wightman and Os-
tendorf (Wightman and Ostendorf, 1994) developed
a decision-tree algorithm for labeling prosodic pat-
terns. The algorithm detected phrasal prominence
and boundary tones at the syllable level. Bulyko
and Ostendorf (Bulyko and Ostendorf, 2001) used
a prosody prediction module to synthesize natural
speech with appropriate prosody. Verbmobil (Nöth
et al., 2000) incorporated prosodic labeling into a
translation framework for improved linguistic analy-
sis and speech understanding.

Prosody has typically been represented either sym-
bolically, e.g., ToBI (Silverman et al., 1992) or
parametrically, e.g., Tilt Intonation Model (Tay-
lor, 1998). Parametric approaches either restrict
the variants of prosody by definition or automati-
cally learn prosodic patterns from data (Agüero et
al., 2006). The BU corpus is a widely used cor-
pus with symbolic representation of prosody. The
hand-labeled ToBI annotations make this an attrac-
tive corpus to perform prosody labeling experiments.

The main drawback of this corpus is that it com-
prises only read speech. Prosody labeling on sponta-
neous speech corpora like Boston Directions corpus
(BDC), Switchboard (SWBD) has garnered atten-
tion in (Hirschberg and Nakatani, 1996; Gregory and
Altun, 2004).

Automatic prosody labeling has been achieved
through various machine learning techniques, such
as decision trees (Hirschberg, 1993; Wightman and
Ostendorf, 1994; Ma et al., 2003), rule-based sys-
tems (Shimei and McKeown, 1999), bagging and
boosting on CART (Sun, 2002), hidden markov
models (Conkie et al., 1999), neural networks
(Hasegawa-Johnson et al., 2005),maximum-entropy
models (Brenier et al., 2005) and conditional ran-
dom fields (Gregory and Altun, 2004).

Prosody labeling of the BU corpus has been re-
ported in many studies (Hirschberg, 1993; Hasegawa-
Johnson et al., 2005; Ananthakrishnan and
Narayanan, 2005). Hirschberg (Hirschberg, 1993)
used a decision-tree based system that achieved
82.4% speaker dependent accent labeling accuracy
at the word level on the BU corpus using lexical fea-
tures. (Ross and Ostendorf, 1996) also used an ap-
proach similar to (Wightman and Ostendorf, 1994)
to predict prosody for a TTS system from lexical fea-
tures. Pitch accent accuracy at the word-level was
reported to be 82.5% and syllable-level accent accu-
racy was 80.2%. (Hasegawa-Johnson et al., 2005)
proposed a neural network based syntactic-prosodic
model and a gaussian mixture model based acoustic-
prosodic model to predict accent and boundary tones
on the BU corpus that achieved 84.2% accuracy in
accent prediction and 93.0% accuracy in intonational
boundary prediction. With syntactic information
alone they achieved 82.7% and 90.1% for accent and
boundary prediction, respectively. (Ananthakrish-
nan and Narayanan, 2005) modeled the acoustic-
prosodic information using a coupled hidden markov
model that modeled the asynchrony between the
acoustic streams. The pitch accent and boundary
tone detection accuracy at the syllable level were
75% and 88% respectively. Our proposed maximum
entropy syntactic model outperforms previous work.
On the BU corpus, with syntactic information alone
we achieve pitch accent and boundary tone accuracy
of 85.2% and 91.5% on the same training and test
sets used in (Chen et al., 2004; Hasegawa-Johnson
et al., 2005). Further, the coupled model with both
acoustic and syntactic information results in accura-
cies of 86.0% and 93.1% respectively. On the BDC
corpus, we achieve pitch accent and boundary tone
accuracies of 79.8% and 90.3%.

3 Data

The BU corpus consists of broadcast news stories in-
cluding original radio broadcasts and laboratory sim-
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BU BDC

Corpus statistics f2b f1a m1b m2b h1 h2 h3 h4

# Utterances 165 69 72 51 10 9 9 9

# words (w/o punc) 12608 3681 5058 3608 2234 4127 1456 3008

# pitch accents 6874 2099 2706 2016 1006 1573 678 1333

# boundary tones (w IP) 3916 1059 1282 1023 498 727 361 333

# boundary tones (w/o IP) 2793 684 771 652 308 428 245 216

Table 1: BU and BDC dataset used in experiments

ulations recorded from seven FM radio announcers.
The corpus is annotated with orthographic transcrip-
tion, automatically generated and hand-corrected
part-of-speech tags and automatic phone alignments.
A subset of the corpus is also hand annotated with
ToBI labels. In particular, the experiments in this
paper are carried out on 4 speakers similar to (Chen
et al., 2004), 2 male and 2 female referred to here-
after as m1b, m2b, f1a and f2b. The BDC corpus is
made up of elicited monologues produced by subjects
who were instructed to perform a series of direction-
giving tasks. Both spontaneous and read versions of
the speech are available for four speakers h1, h2, h3
and h4 with hand-annotated ToBI labels and auto-
matic phone alignments, similar to the BU corpus.
Table 1 shows some of the statistics of the speakers
in the BU and BDC corpora.

In Table 1, the pitch accent and boundary tone
statistics are obtained by decomposing the ToBI la-
bels into binary classes using the mapping shown in
Table 2.

BU Labels Intermediate Mapping Coarse Mapping

H*,!H*

L* Single Accent

*,*?,X*? accent

H+!H*,L+H*,L+!H* Bitonal Accent

L*+!H,L*+H

L-L%,!H-L%,H-L%

H-H% Final Boundary tone

L-H%

%?,X%?,%H btone

L-,H-,!H- Intermediate Phrase (IP) boundary

-X?,-?

<,>,no label none none

Table 2: ToBI label mapping used in experiments

In all our prosody labeling experiments we adopt
a leave-one-out speaker validation similar to the
method in (Hasegawa-Johnson et al., 2005) for the
four speakers with data from one speaker for testing
and from the other three for training. For the BU
corpus, f2b speaker was always used in the training
set since it contains the most data. In addition to
performing experiments on all the utterances in BU
corpus, we also perform identical experiments on the
train and test sets reported in (Chen et al., 2004)

which is referred to as Hasegawa-Johnson et al. set.

4 Baseline Experiments

We present three baseline experiments. One is sim-
ply based on chance where the majority class label is
predicted. The second is a baseline only for pitch ac-
cents derived from the lexical stress obtained through
look-up from a pronunciation lexicon labeled with
stress. Finally, the third and more concrete base-
line is obtained through prosody detection in current
speech synthesis systems.

4.1 Prosody labels derived from lexical
stress

Pitch accents are usually carried by the stressed syl-
lable in a particular word. Lexicons with phonetic
transcription and lexical stress are available in many
languages. Hence, one can use these lexical stress
markers within the syllables and evaluate the corre-
lation with pitch accents. Eventhough the lexicon
has a closed vocabulary, letter-to-sound rules can be
derived from it for unseen words. For each word car-
rying a pitch accent, we find the particular syllable
where the pitch accent occurs from the manual anno-
tation. For the same syllable, we predict pitch accent
based on the presence or absence of a lexical stress
marker in the phonetic transcription. The results are
presented in Table 3.

4.2 Prosody labeling with Festival and
AT&T Natural Voices R© Speech
Synthesizer

Festival (Black et al., 1998) and AT&T Natural
Voices R© (NV) speech synthesizer (att, ) are two
publicly available speech synthesizers that have a
prosody prediction module available. We performed
automatic prosody labeling using the two synthesiz-
ers to get a baseline.

4.2.1 AT&T Natural Voices R© Speech
Synthesizer

The AT&T NV R© speech synthesizer is a half
phone speech synthesizer. The toolkit accepts
an input text utterance and predicts appropriate
ToBI pitch accent and boundary tones for each of

3



Pitch accent Boundary tone
Corpus Speaker Set Prediction Module Chance Accuracy Chance Accuracy

Lexical stress 54.33 72.64 - -
Entire Set AT&T Natural Voices 54.33 81.51 81.14 89.10

Festival 54.33 69.55 81.14 89.54
Lexical stress 56.53 74.10 - -

BU Hasegawa-Johnson et al. set AT&T Natural Voices 56.53 81.73 82.88 89.67
Festival 56.53 68.65 82.88 90.21

Lexical stress 57.60 67.42 - -
BDC Entire Set AT&T Natural Voices 57.60 68.49 88.90 84.90

Festival 57.60 64.94 88.90 85.17

Table 3: Classification results of pitch accents and boundary tones (in %) using Festival and AT&T NV R© synthesizer

the selected units (in this case, a pair of phones)
from the database. We reverse mapped the se-
lected half phone units to words, thus obtaining
the ToBI labels for each word in the input utter-
ance. The toolkit uses a rule-based procedure to
predict the ToBI labels from lexical information.
The pitch accent labels predicted by the toolkit are
Laccent ε {H∗,L∗,none} and the boundary tones
are Lbtone ε {L-L%,H-H%,L-H%,none}.

4.2.2 Festival Speech Synthesizer
Festival (Black et al., 1998) is an open-source unit

selection speech synthesizer. The toolkit includes
a CART-based prediction system that can predict
ToBI pitch accents and boundary tones for the input
text utterance. The pitch accent labels predicted by
the toolkit are Laccent ε {H∗,L + H∗, !H∗,none}
and the boundary tones are
Lbtone ε {L-L%,H-H%,L-H%,none}. The
prosody labeling results obtained through both the
speech synthesis engines are presented in Table
3. The chance column in Table 3 is obtained by
predicting the most frequent label in the data set.

In the next sections, we describe our proposed
maximum entropy based syntactic model and HMM
based acoustic-prosodic model for automatic prosody
labeling.

5 Syntactic-prosodic Model

We propose a maximum entropy approach to model
the words, syntactic information and the prosodic
labels as a sequence. We model the prediction prob-
lem as a classification task as follows: given a se-
quence of words wi in a sentence W = {w1, · · · , wn}
and a prosodic label vocabulary (li ε L), we need
to predict the best prosodic label sequence L∗ =
{l1, l2, · · · , ln}. We approximate the conditional
probability to be within a bounded n-gram context.
Thus,

L∗ = arg max
L

P (L|W,T, S) (4)

≈ arg max
L

n∏
i

p(li|wi+k
i−k, ti+k

i−k, si+k
i−k) (5)

where W = {w1, · · · , wn} is the word sequence and
T = {t1, · · · , tn}, S = {s1, · · · , sn} are the corre-
sponding part-of-speech and additional syntactic in-
formation sequences. The variable k controls the
context.

The BU corpus is automatically labeled (and
hand-corrected) with part-of-speech (POS) tags.
The POS inventory is the same as the Penn treebank
which includes 47 POS tags: 22 open class categories,
14 closed class categories and 11 punctuation labels.
We also automatically tagged the utterances using
the AT&T POS tagger. The POS tags were mapped
to function and content word categories 1 which was
added as a discrete feature. In addition to the POS
tags, we also annotate the utterance with Supertags
(Bangalore and Joshi, 1999). Supertags encapsulate
predicate-argument information in a local structure.
They are composed with each other using substi-
tution and adjunction operations of Tree-Adjoining
Grammars (TAGs) to derive a dependency analysis
of an utterance and its predicate-argument structure.
Even though there is a potential to exploit the de-
pendency structure between supertags and prosody
labels as demonstrated in (Hirschberg and Rambow,
2001), for this paper we use only the supertag labels.

Finally, we generate one feature vector (Φ) for
each word in the data set (with local contextual fea-
tures). The best prosodic label sequence is then,

L∗ = arg max
L

n∏
i

P (li|Φ) (6)

To estimate the conditional distribution P (li|Φ) we
use the general technique of choosing the maximum
entropy (maxent) distribution that estimates the av-
erage of each feature over the training data (Berger
et al., 1996). This can be written in terms of Gibbs
distribution parameterized with weights λ, where V
is the size of the prosodic label set. Hence,

P (li|Φ) =
eλli

.Φ∑V
l=1 eλli

.Φ
(7)

1function and content word features were obtained
through a look-up table based on POS
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k=3
Corpus Speaker Set Syntactic features accent btone

correct POS tags 84.75 91.39
Entire Set AT&T POS + supertags 84.59 91.34

BU Joint Model (w AT&T POS + supertags) 84.60 91.36
correct POS tags 85.22 91.33

Hasegawa-Johnson et al. set AT&T POS + supertags 84.95 91.21
Joint Model (w AT&T POS + supertags) 84.78 91.54

BDC Entire Set AT&T POS + supertags 79.81 90.28
Joint Model (w AT&T POS + supertags) 79.57 89.76

Table 4: Classification results (%) of pitch accents and boundary tones for different syntactic representation (k = 3)

We use the machine learning toolkit LLAMA
(Haffner, 2006) to estimate the conditional distribu-
tion using maxent. LLAMA encodes multiclass max-
ent as binary maxent to increase the training speed
and to scale the method to large data sets. Each of
the V classes in the label set L is encoded as a bit
vector such that, in the vector for class i, the ith bit
is one and all other bits are zero. Finally, V one-
versus-other binary classifiers are used as follows.

P (y|Φ) = 1− P (ȳ|Φ) =
eλy.Φ

eλy.Φ + eλȳ.Φ
(8)

where λȳ is the parameter vector for the anti-label ȳ.
To compute P (li|Φ), we use the class independence
assumption and require that yi = 1 and for all j 6=
i, yj = 0.

P (li|Φ) = P (yi|Φ)
V∏

j 6=i

P (yj |Φ) (9)

5.1 Joint Modeling of Accents and
Boundary Tones

Prosodic prominence and phrasing can also be
viewed as joint events occurring simultaneously. Pre-
vious work by (Wightman and Ostendorf, 1994) sug-
gests that a joint labeling approach may be more
beneficial in prosody labeling. In this scenario,
we treat each word to have one of the four labels
li ε L = {accent-btone, accent-none, none-
btone, none-none}. We trained the classifier on
the joint labels and then computed the error rates for
individual classes. The results of prosody prediction
using the set of syntactic-prosodic features for k = 3
is shown in Table 4. The joint modeling approach
provides a marginal improvement in the boundary
tone prediction but is slightly worse for pitch accent
prediction.

5.2 Supertagger performance on
Intermediate Phrase boundaries

Perceptual experiments have indicated that inter-
annotator agreement for ToBI intermediate phrase
boundaries is very low compared to full-intonational

boundaries (Syrdal and McGory, 2000). Interme-
diate phrasing is important in TTS applications to
synthesize appropriate short pauses to make the ut-
terance sound natural. The significance of syntactic
features in the boundary tone prediction prompted
us to examine the effect of predicting intermediate
phrase boundaries in isolation. It is intuitive to ex-
pect supertags to perform well in this task as they
essentially form a local dependency analysis on an
utterance and provide an encoding of the syntactic
phrasal information. We performed this task as a
three way classification where li ε L = {btone, ip,
none}. The results of the classifier on IPs is shown
in Table 5.

Model Syntactic features IP accuracy
correct POS tags 83.25

k=2 (bigram context) AT&T POS tags 83.32
supertags 83.37

correct POS tags 83.30
k=3 (trigram context) AT&T POS tags 83.46

supertags 83.74

Table 5: Accuracy (in %) obtained by leave-one out
speaker validation using IPs as a separate class on
entire speaker set

6 Acoustic-prosodic model

We propose two approaches to modeling the
acoustic-prosodic features for prosody prediction.
First, we propose a maximum entropy framework
similar to the syntactic model where we quantize
the acoustic features and model them as discrete
sequences. Second, we use a more traditional ap-
proach where we train continuous observation den-
sity HMMs to represent pitch accents and bound-
ary tones. We first describe the features used in the
acoustic modeling followed by a more detailed de-
scription of the acoustic-prosodic model.

6.1 Acoustic-prosodic features

The BU corpus contains the corresponding acoustic-
prosodic feature file for each utterance. The f0, RMS
energy (e) of the utterance along with features for
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Pitch accent Boundary tone

Corpus Speaker Set Model Acoustics Acoustics+syntax Acoustics Acoustics+syntax

Entire Set Maxent acoustic model 80.09 84.53 84.10 91.56

HMM acoustic model 70.58 85.13 71.28 92.91

BU Hasegawa-Johnson et al. set Maxent acoustic model 80.12 84.84 82.70 91.76

HMM acoustic model 71.42 86.01 73.43 93.09

BDC Entire Set Maxent acoustic model 74.51 78.64 83.53 90.49

Table 6: Classification results of pitch accents and boundary tones (in %) with acoustics only and acoustics+syntax
using both our models

distinction between voiced/unvoiced segment, cross-
correlation values at estimated f0 value and ratio of
first two cross correlation values are computed over
10 msec frame intervals. In our experiments, we use
these values rather than computing them explicitly
which is straightforward with most audio toolkits.
Both the energy and the f0 levels were normalized
with speaker specific means and variances. Delta
and acceleration coefficients were also computed for
each frame. The final feature vector is 6-dimensional
comprising of f0, ∆f0, ∆2f0, e, ∆e, ∆2e per frame.

6.2 Maximum Entropy acoustic-prosodic
model

We propose a maximum entropy modeling frame-
work to model the continuous acoustic-prosodic ob-
servation sequence as a discrete sequence through
the means of quantization. The quantized acoustic
stream is then used as a feature vector and the condi-
tional probabilities are approximated by an n-gram
model. This is equivalent to reducing the vocabu-
lary of the acoustic-prosodic features and hence of-
fers better estimates of the conditional probabilities.
Such an n-gram model of quantized continuous fea-
tures is similar to representing the set of features
with a linear fit as done in the tilt intonational model
(Taylor, 1998).

The quantized acoustic-prosodic feature stream is
modeled with a maxent acoustic-prosodic model sim-
ilar to the one described in section 5. Finally, we ap-
pend the syntactic and acoustic features to model the
combined stream with the maxent acoustic-syntactic
model, where the objective criterion for maximiza-
tion is Equation (1). The pitch accent and bound-
ary tone prediction accuracies for quantization per-
formed by considering only the first decimal place
is reported in Table 6. As expected, we found the
classification accuracy to drop with increasing num-
ber of bins used in the quantization due to the small
amount of training data.

6.3 HMM acoustic-prosodic model

We also investigated the traditional HMM approach
to model the high variability exhibited by the
acoustic-prosodic features. First, we trained sepa-

rate context independent single state Gaussian mix-
ture density HMMs for pitch accents and boundary
tones in a generative framework. The label sequence
was decoded using the viterbi algorithm. Next, we
trained HMMs with 3 state left-to-right topology
with uniform segmentation. The segmentations need
to be uniform due to lack of an acoustic-prosodic
model trained on the features pertinent to our task
to obtain forced segmentation.

The final label sequence using the maximum en-
tropy syntactic-prosodic model and the HMM based
acoustic-prosodic model was obtained by combin-
ing the syntactic and acoustic probabilities shown in
Equation (3). The syntactic-prosodic maxent model
outputs a posterior probability for each class per
word. We formed a lattice out of this structure and
composed it with the lattice generated by the HMM
acoustic-prosodic model. The best path was chosen
from the composed lattice through a Viterbi search.
The acoustic-prosodic probability P (A|L,W ) was
raised by a power of γ to adjust the weighting be-
tween the acoustic and syntactic model. The value of
γ was chosen as 0.008 and 0.015 for pitch accent and
boundary tone respectively, by tuning on the train-
ing set. The results of the acoustic-prosodic model
and the coupled model are shown in Table 6.

7 Discussion

The baseline experiment with lexical stress obtained
from a pronunciation lexicon for prediction of pitch
accent yields substantially higher accuracy than
chance. This could be particularly useful in resource-
limited languages where prosody labels are usually
not available but one has access to a reasonable lex-
icon with lexical stress markers. Off-the-shelf speech
synthesizers like Festival and AT&T speech synthe-
sizer perform reasonably well in pitch accent and
boundary tone prediction. AT&T speech synthesizer
performs better than Festival in pitch accent predic-
tion and the latter performs better in boundary tone
prediction. This can be attributed to better rules
in the AT&T synthesizer for pitch accent prediction.
Boundary tones are usually highly correlated with
punctuation and Festival seems to capture this well.
However, both these synthesizers generate a high de-
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gree of false alarms.
Our syntactic-prosodic maximum entropy model

proposed in section 5 outperforms previously re-
ported results on pitch accent and boundary tone
classification. Much of the gain comes from the ro-
bustness of the maximum entropy modeling in cap-
turing the uncertainty in the classification task. Con-
sidering the inter-annotator agreement for ToBI la-
bels is only about 81% for pitch accents and 93% for
boundary tones, the maximum entropy framework is
able to capture the uncertainty present in manual an-
notation. The supertag feature offers additional dis-
criminative information over the part-of-speech tags
(also as shown by (Hirschberg and Rambow, 2001).

The maximum entropy acoustic-prosodic model
discussed in section 6.2 performs reasonably well in
isolation. This is a simple method and the quantiza-
tion resolution can be adjusted based on the amount
of data available for training. However, the model
does not perform as well when combined with the
syntactic features. We conjecture that the gener-
alization provided by the acoustic HMM model is
complementary to that provided by the maximum
entropy model, resulting in better accuracy when
combined together as compared to that of a maxent-
based acoustic and syntactic model.

The weighted maximum entropy syntactic-
prosodic model and HMM acoustic-prosodic model
performs the best in pitch accent and boundary tone
classification. The classification accuracies are as
good as the inter-annotator agreement for the ToBI
labels. Our HMM acoustic-prosodic model is a gen-
erative model and does not assume the knowledge
of word boundaries in predicting the prosodic labels
as in most approaches (Hirschberg, 1993; Wightman
and Ostendorf, 1994; Hasegawa-Johnson et al.,
2005). This makes it possible to have true parallel
prosody prediction during speech recognition. The
weighted approach also offers flexibility in prosody
labeling for either speech synthesis or speech recog-
nition. While the syntactic-prosodic model would
be more discriminative for speech synthesis, the
acoustic-prosodic model is more appropriate for
speech recognition.

8 Conclusions and Future Work

In this paper, we described a maximum entropy
modeling framework for automatic prosody label-
ing. We presented two schemes for prosody label-
ing that utilize the acoustic and syntactic informa-
tion from the input utterance, a maximum entropy
model that models the acoustic-syntactic informa-
tion as a sequence and the other that combines the
maximum entropy syntactic-prosodic model and a
HMM based acoustic-prosodic model. We also used
enriched syntactic information in the form of su-
pertags in addition to POS tags. The supertags

provide an improvement in both the pitch accent
and boundary tone classification. Especially, in the
case where the input utterance is automatically POS
tagged (and not hand-corrected), supertags provide
a marginal but definite improvement in prosody la-
beling. The maximum entropy syntactic-prosodic
model alone resulted in pitch accent and bound-
ary tone accuracies of 85.2% and 91.5% on training
and test sets identical to (Chen et al., 2004). As
far as we know, these are the best results on the
BU corpus using syntactic information alone and a
train-test split that does not contain the same speak-
ers. The acoustic-syntactic maximum entropy model
performs better than its syntactic-prosodic counter-
part for the boundary tone case but is slightly worse
for pitch accent scenario partly due to the approx-
imation involved in quantization. But these results
are still better than the baseline results from out-
of-the-box speech synthesizers. Finally, our com-
bined maximum entropy syntactic-prosodic model
and HMM acoustic-prosodic model performs the best
with pitch accent and boundary tone labeling accu-
racies of 86.0% and 93.1% respectively.

As a continuation of our work, we are incorpo-
rating our automatic prosody labeler in a speech-
to-speech translation framework. Typically, state-
of-the-art speech translation systems have a source
language recognizer followed by a machine transla-
tion system. The translated text is then synthesized
in the target language with prosody predicted from
text. In this process, some of the critical prosodic
information present in the source data is lost during
translation. With reliable prosody labeling in the
source language, one can transfer the prosody to the
target language (this is feasible for languages with
phrase level correspondence). The prosody labels by
themselves may or may not improve the translation
accuracy but they provide a framework where one
can obtain prosody labels in the target language from
the speech signal rather than depending on a lexical
prosody prediction module in the target language.

Acknowledgements

We would like to thank Vincent Goffin, Stephan
Kanthak, Patrick Haffner, Enrico Bocchieri for their
support with acoustic modeling tools. We are also
thankful to Alistair Conkie, Yeon-Jun Kim, Ann
Syrdal and Julia Hirschberg for their help and guid-
ance with the synthesis components and ToBI label-
ing standard.

References
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E. Nöth, A. Batliner, A. Kießling, R. Kompe, and
H. Niemann. 2000. VERBMOBIL: The use of
prosody in the linguistic components of a speech
understanding system. IEEE Transactions on
Speech and Audio processing, 8(5):519–532.

M. Ostendorf, P. J. Price, and S. Shattuck-Hufnagel.
1995. The Boston University Radio News Corpus.
Technical Report ECS-95-001, Boston University,
March.

K. Ross and M. Ostendorf. 1996. Prediction of ab-
stract prosodic labels for speech synthesis. Com-
puter Speech and Language, 10:155–185, Oct.

P. Shimei and K. McKeown. 1999. Word infor-
mativeness and automatic pitch accent modeling.
In In Proceedings of EMNLP/VLC, College Park,
Maryland.

K. Silverman, M. Beckman, J. Pitrelli, M. Osten-
dorf, C. Wightman, P. Price, J. Pierrehumbert,
and J. Hirschberg. 1992. ToBI: A standard for la-
beling English prosody. In Proceedings of ICSLP,
pages 867–870.

X. Sun. 2002. Pitch accent prediction using ensem-
ble machine learning. In Proc. of ICSLP.

A. K. Syrdal and J. McGory. 2000. Inter-transcriber
reliability of tobi prosodic labeling. In Proc. IC-
SLP, pages 235–238, Beijing, China.

P. Taylor. 1998. The tilt intonation model. In Proc.
ICSLP, volume 4, pages 1383–1386.

C. W. Wightman and M. Ostendorf. 1994. Auto-
matic labeling of prosodic patterns. IEEE Trans-
actions on Speech and Audio Processing, 2(3):469–
481.

8



Proceedings of NAACL HLT 2007, pages 9–16,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

To Memorize or to Predict: Prominence Labeling in Conversational Speech

A. Nenkova, J. Brenier, A. Kothari, S. Calhoun†, L. Whitton, D. Beaver, D. Jurafsky
Stanford University

{anenkova,jbrenier,anubha,lwhitton,dib,jurafsky}@stanford.edu
†University of Edinburgh

Sasha.Calhoun@ed.ac.uk

Abstract

The immense prosodic variation of natural con-

versational speech makes it challenging to pre-

dict which words are prosodically prominent in

this genre. In this paper, we examine a new fea-

ture, accent ratio, which captures how likely it is

that a word will be realized as prominent or not.

We compare this feature with traditional accent-

prediction features (based on part of speech and

N -grams) as well as with several linguistically mo-

tivated and manually labeled information structure

features, such as whether a word is given, new, or

contrastive. Our results show that the linguistic fea-

tures do not lead to significant improvements, while

accent ratio alone can yield prediction performance

almost as good as the combination of any other sub-

set of features. Moreover, this feature is useful even

across genres; an accent-ratio classifier trained only

on conversational speech predicts prominence with

high accuracy in broadcast news. Our results sug-

gest that carefully chosen lexicalized features can

outperform less fine-grained features.

1 Introduction

Being able to predict the prominence or pitch accent
status of a word in conversational speech is impor-
tant for implementing text-to-speech in dialog sys-
tems, as well as in detection of prosody in conversa-
tional speech recognition.

Previous investigations of prominence prediction
from text have primarily relied on robust surface fea-
tures with some deeper information structure fea-
tures. Surface features like a word’s part-of-speech
(POS) (Hirschberg, 1993) and its unigram and bi-
gram probability (Pan and McKeown, 1999; Pan and

0Thanks to the Edinburgh-Stanford Link and ONR (MURI
award N000140510388) for generous support.

Hirschberg, 2000) are quite useful; content words
are much more likely to be accented than function
words, and words with higher probability are less
likely to be prominent. More sophisticated linguis-
tic features have also been used, generally based on
information-structural notions of contrast, focus, or
given-new. (Hirschberg, 1993).

For example, in the Switchboard utterance be-
low, there is an intrinsic contrast between the words
“women” and “men”, making both terms more
salient (words in all capital letters represent promi-
nent tokens):

you SEE WOMENc GOING off to WARS as WELL as

MENc.

Similarly the givenness of a word may help deter-
mine its prominence. The speaker needs to focus the
hearer’s attention on new entities in the discourse, so
these are likely to be realized as prominent. Old en-
tities, on the other had, need not be prominent; these
tendencies can be seen in the following example.

theyold have all the WATERnew theyold WANT. theyold

can ACTUALLY PUMP waterold.

While previous models have attempted to cap-
ture global properties of words (via POS or unigram
probability), they have not in general used word
identity as a predictive feature, assuming either that
current supervised training sets would be too small
or that word identity would not be robust across gen-
res (Pan et al., 2002). In this paper, we show a way
to capture word identity in a feature, accent ratio,
that works well with current small supervised train-
ing sets, and is robust to genre differences.

We also use a corpus which has been hand-
labeled for information structure features (including
given/new and contrast information) to investigate
the relative usefulness of both linguistic and shallow
features, as well as how well different features com-
bine with each other.

9



2 Data and features

For our experiments we use 12 Switchboard (God-
frey et al., 1992) conversations, 14,555 tokens in to-
tal. Each word was manually labeled for presence
or absence of pitch accent1 , as well as additional
features including information status (or givenness),
contrast and animacy distinctions, (Nissim et al.,
2004; Calhoun et al., 2005; Zaenen et al., 2004), fea-
tures that linguistic literature suggests are predictive
of prominence (Bolinger, 1961; Chafe, 1976).

All of the features described in detail below have
been shown to have statistically significant correla-
tion with prominence (Brenier et al., 2006).

Information status The information status (IS),
or givenness, of discourse entities is important for
choosing appropriate reference form (Prince, 1992;
Gundel et al., 1993) and possibly plays a role in
prominence decisions as well (Brown, 1983). No
previous studies have examined the usefulness of
information status in naturally occurring conversa-
tional speech. The annotation in our corpus is based
on the givenness hierarchy of Prince: first mentions
of entities were marked as new and subsequent men-
tions as old. Entities that are not previously men-
tioned, but that are generally known or semantically
related to other entities in the preceding context are
marked as mediated. Obviously, the givenness an-
notation applies only to referring expressions, i.e.
noun phrases the semantic interpretation of which is
a discourse entity. This restriction inherently limits
the power of the feature for prominence prediction,
which has to be performed for all classes of words.
Complete details of the IS annotation can be found
in (Nissim et al., 2004).
Kontrast One reason speakers make entities in
an utterance prominence is because of information
structure considerations (Rooth, 1992; Vallduvı́ and
Vilkuna, 1998). That is, parts of an utterance which
distinguish the information the speaker actually says
from the information they could have said, are made
salient, e.g. because that information answers a
question, or contrasts with a similar entity in the
context. Several possible triggers of this sort of
salience were marked in the corpus, with words that
were not kontrastive (in this sense) being marked as
background:

1Of all tokens, 8,429 (or 58%) were not accented.

• contrastive if the word is directly differentiated
from a previous topical or semantically-related
word;

• subset if it refers to a member of a more general
set mentioned in the surrounding context;

• adverbial if a focus-sensitive adverb such as
“only” or “even” is associated with the word
being annotated;

• correction if the speaker intended to correct or
clarify a previous word or phrase;

• answer if the word completes a question by the
other speaker;

• nonapplic for filler phrases such as “in fact”, “I
mean”, etc.

Note that only content words in full sentences
were marked for kontrast, and filler phrases such
as “in fact” and “I mean” were excluded. A com-
plete description of the annotation guidelines can be
found in (Calhoun et al., 2005).
Animacy Each noun and pronoun is labeled for the
animacy of its referent (Zaenen et al., 2004). The
categories include concrete, non-concrete, human,
organizations, place, and time.
Dialog act Specifies the function of the utterance
such as statement, opinion, agree, reject, abandon;
or type of question (yes/no, who, rhetoric)

In addition to the above theoretically motivated
features, we used several automatically derivable
word measures.
Part-of-speech Two such features were used, the
full Penn Treebank tagset (called POS) , and a col-
lapsed tagset (called BroadPOS) with six broad cat-
egories (nouns, verbs, function words, pronouns, ad-
jectives and adverbs).
Unigram and bigram probability These features
are defined as log(pw) and log(pwi

|pwi−1
) respec-

tively and their values were calculated from the
Fisher corpus (Cieri et al., 2004). High probability
words are less likely to be prominent.
TF.IDF This measure captures how central a word is
for a particular conversation. It is a function of the
frequency of occurrence of the word in the conver-
sation (nw), the number of conversations that con-
tain the word in a background corpus (k) and the
number of all conversations in the background cor-
pus (N ). Formally, TF.IDF1 = nw × log(N

k
). We
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also used a variant, TF.IDF2, computed by normal-
izing TF.IDF1 by the number of occurrences of the
most frequent word in the conversation. TF.IDF2 =
TF.IDF1/max(nw∈conv). Words with high TF.IDF
values are important in the conversation and are
more likely to be prominent.
Stopword This is a binary feature indicating if the
word appears in a high-frequency stopword list from
the Bow toolkit (McCallum, 1996). The list spans
both function and content word classes, though nu-
merals and some nouns and verbs were removed.
Utterance length The number of words.
Length The number of characters in the words. This
feature is correlated with phonetic features that have
been shown to be useful for the task, such as the
number of vowels or phones in the word.
Position from end/beginning The position of the
word in the utterance divided by the number of
words that precede the current word.
Accent ratio This final (new) feature takes the
“memorization” of previous productions of a given
word to the extreme, measuring how likely it is that
a word belongs to a prominence class or not. Our
feature extends an earlier feature proposed by (Yuan
et al., 2005), which was a direct estimate of how
likely it is for the word to be accented as observed
in some corpus. (Yuan et al., 2005) showed that the
original accent ratio feature was not included in the
best set of features for accent prediction. We believe
the reason for this is the fact that the original ac-
cent ratio feature was computed for all words, even
words in which the value was indistinguishable from
chance (.50). Our new feature incorporates the sig-
nificance of the prominence probability, assuming a
default value of 0.5 for those words for which there
is insufficient evidence in the training data. More
specifically,

AccentRatio(w) =

{

k

n
if B(k, n, 0.5) ≤ 0.05

0.5 otherwise

where k is the number of times word w appeared
accented in the corpus, n is the total number of
times the word w appeared, and B(k, n, 0.5) is
the probability (under a binomial distribution) that
there are k successes in n trials if the probabil-
ity of success and failure is equal. Simply put,
the accent ratio of a word is equal to the esti-
mated probability of the word being accented if this

probability is significantly different from 0.5, and
equal to 0.5 otherwise. For example, AccentRa-
tio(you)=0.3407, AccentRatio(education)=0.8666,
and AccentRatio(probably)=0.5.

Many of our features for accent prediction are
based only on the 12 training conversations. Other
features, such as the unigram, bigram, and TF*IDF
features, are computed from larger data sources. Ac-
cent ratio is also computed over a larger corpus,
since the binomial test requires a minimum of six
occurrences of a word in the corpus in order to get
significance and assign an accent ratio value differ-
ent from 0.5. We thus used 60 Switchboard conver-
sations (Ostendorf et al., 2001), annotated for pitch
accent, to compute k and n for each word.

3 Results

For our experiments we used the J48 decision trees
in WEKA (Witten and Frank, 2005). All the results
that we report are from 10-fold cross-validation on
the 12 Switchboard conversations.

Some previous studies have reported results on
prominence prediction in conversational speech with
the Switchboard corpus. Unfortunately these studies
used different parts of the corpus or different label-
ings (Gregory and Altun, 2004; Yuan et al., 2005),
so our results are not directly comparable. Bear-
ing this difference in mind, the best reported results
to our knowledge are those in (Gregory and Altun,
2004), where conditional random fields were used
with both textual, acoustic, and oracle boundary fea-
tures to yield 76.36% accuracy.

Table 1 shows the performance of decision tree
classifiers using a single feature. The majority class
baseline (not accented) has accuracy of 58%. Accent
ratio is the most predictive feature: the accent ratio
classifier has accuracy of 75.59%, which is two per-
cent net improvement above the previously known
best feature (unigram). The accent ratio classifier
assigns a “no accent” class to all words with accent
ratio lower than 0.38 and “accent” to all other words.
In Section 4 we discuss in detail the accent ratio dic-
tionary, but it is worth noting that it does correctly
classify even some high-frequency function words
like “she”, “he”, “do” or “up” as accented.
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3.1 Combining features

We would expect that a combination of features
would lead to better prediction when compared to
a classifier based on a single feature. Several past
studies have examined classes of features. In order
to quantify the utility of different specific features,
we ran exhaustive experiments producing classifiers
with all possible combinations of two, three, four
and five features.

As we can see from figure 1 and table 2, the clas-
sifiers using accent ratio as a feature perform best,
for all sizes of feature sets. Moreover, the increase
of performance compared to a single-feature classi-
fier is very slight when accent ratio is used as fea-
ture. Kontrast seems to combine well with accent
ratio and all of the best classifiers with more than
one feature use kontrast in addition to accent ratio.
This indicates that automatic detection of kontrast
can potentially help in prominence prediction. But
the gains are small, the best classifiers without kon-
trast but still including accent ratio perform within
0.2 percent of the classifiers that use both.

On the other hand, classifiers that do not use ac-
cent ratio perform poorly compared to those that do,
and even a classifier using five features (unigram,
broad POS, token length, position from beginning
and bigram) performs about as well as a classifier
using solely accent ratio as a feature. Also, when
accent ratio is not used, the overall improvement of
the classifier grows faster with the addition of new
features. This suggest that accent ratio provides rich
information about words beyond that of POS class
and general informativeness.2

Table 2 gives the specific features in (n + 1)-
feature classifiers that lead to better results than the
best n-classifier. The figures are for the classifiers
performing best overall. Interestingly, none of these
best classifiers for all feature set sizes uses POS or
unigram as a feature. We assume that accent ratio
captures all the relevant information that is present
in the unigram and POS features. The best classifier
with five features uses, in addition to accent ratio,
kontrast, tf.idf, information status and distance from
the beginning of the utterance. All of these features
convey somewhat orthogonal information: seman-

2To verify this we will examine the accent ratio dictionary
in closer detail in the next section.

Accent Ratio (AR) 75.59%
AR + Kontrast 76.15%
AR + END/BEG 75.91%
AR + tf.idf2 75.82%
AR + Info Status 75.82%
AR + Length 75.77%
AR + tf.idf1 75.74%
AR + unigram 75.71%
AR + stopword 75.70%
AR + kontrast + length 76.45%
AR + kontrast + BEG 76.24%
AR + kontrast + unigram 76.24%
AR + kontrast + tf.idf1 76.24%
AR + kontrast + length + tfidf1 76.56%
AR + kontrast + length + stopword 76.54%
AR + kontrast + length +tf.idf2 76.52%
AR + kontrast + Status + BEG 76.47%
AR + kontrast + tf.idf1 + Status + BEG 76.65%
AR + kontrast + tf.idf2 + Status + BEG 76.58%

Table 2: Performance increase augmenting the ac-
cent ratio classifier.

tic, topicality, discourse and phrasing information
respectively. Still, all of them in combination im-
prove the performance over accent ratio as a single
feature only by one percent.

Figure 1 shows the overall improvement of clas-
sifiers with the addition of new features in three sce-
narios: overall best, best when kontrast is not used
as a feature and best with neither kontrast nor ac-
cent ratio. The best classifier with five features that
do not include kontrast has accent ratio, broad POS,
word length, stopword and bigram as features and
has accuracy of 76.28%, or just 0.27% worse than
the overall best classifier that uses kontrast and in-
formation status. This indicates that while there is
some benefit to using the two features, they do not
lead to any substantial boost in performance. Strik-
ingly, the best classifier that uses neither accent ra-
tio nor kontrast performs very similarly to a classi-
fier using accent ratio as the only feature: 75.82%
for the classifier using unigram, POS, tf.idf1, word
length and position from end of the utterance.

3.2 The power of linguistic features

One of the objectives of our study was to assess how
useful gold-standard annotations for complex lin-
guistic features are for the task of prominence pre-
diction. The results in this section indicate that an-
imacy distinctions (concrete/non-concrete, person,
time, etc) and dialog act did not have much power
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AccentRatio unigram stopword POS tf.idf2 tf.idf1 BroadPos Length Kontrast bigram Info Stat
75.59 73.77 70.77 70.28 70.14 69.50 68.64 67.64 67.57 65.87 64.13

Table 1: Single feature classifier performance. Features not in the table (position from end, animacy, utter-
ance length and dialog act) all achieve lower accuracy of around 60%
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Figure 1: Performance increase with the addition of
new features.

as individual features (table 1) and were never in-
cluded in a model that was best for a given feature
set size (table 2).

Information status is somewhat useful and ap-
pears in the overall best classifier with five features
(table 2). But when compared with other classifiers
with the same number of features, the benefits from
adding information status to the model are small.
For example, the accent ratio + information status
classifier performs 0.23% better than accent ratio
alone, but so does the classifier using accent ratio
and tf.idf. There are two reasons that can explain
why the givenness of the referent is not as helpful
as we might have hoped. First of all, the informa-
tion status distinction applies only to referring ex-
pressions and has undefined values for words such
as verbs, adjectives or function words. Second, in-
formation status of an entity influences the form of
referring expression that is used, with old items be-

ing more likely to be pronominalized. In the numer-
ous cases where pronominalization of old informa-
tion does occur, features such as POS, unigram or
accent ratio will be sensitive to the change of infor-
mation status simply based on the lexical item.

Kontrast is by far the most useful linguistic fea-
ture. It is used in all of the best classifiers for any
feature set size (table 2). It applies to more words
than givenness does, since salience distinctions can
be made for any part-of-speech class. Still, not all
words were annotated for kontrast either, and more-
over kontrast only captures one kind of semantic
salience. This is particularly true of discourse mark-
ers like “especially” or “definitely”: these would ei-
ther be in sentence fragments that weren’t marked
for kontrast, or would probably be marked as ’back-
ground’ since they are not salience triggers in a se-
mantic sense. As we can see from figure 1, clas-
sifiers that use kontrast perform only slightly better
than others that use only “cheaper” features.

4 The accent ratio dictionary

Contrary to our initial expectations, both classes in
the accent ratio dictionary (for both low and high
probability of being prominent) cover the full set of
possible POS categories. Tables 3 and 4 list words in
both classes (with words sorted by increasing accent
ratio in each column). The “no accent” class is dom-
inated by function words, but also includes nouns
and verbs. One of the drawbacks of POS as a fea-
ture for prominence prediction is that normally aux-
iliary verbs will be tagged as “VB”, the same class
as other more contentful verbs. The informativeness
(unigram probability) of a word would distinguish
between these types of verbs, but so does the accent
ratio measure as well.

Furthermore, some relatively frequent words such
as “too”, “now”, “both”, “no”, “yes”, “else”, “wow”
have high accent ratio, that is, a high probability for
accenting. Such distinctions within the class of func-
tion words would not be possible on the basis of in-
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.00–.08 .09–.16 .17–.24 .25–.32 .33–.42
a could you’d being me

uh in because take i’ve
um minutes oh said we’re

uh-huh and since wanna went
the by says been over
an who us those you
of grew where into thing
to cause they’ve little what

were gonna am until some
as about sort they’re out

than their you’re I had
with but didn’t that make

at on her don’t way
for be going this did

from through i’ll should anything
or which will type i’m

you’ve are our we kind
was we’ll just so go

would during though have stuff
it huh like got then

when is your new she
them bit needs mean he
it’s there’s my much do
if any many i’d up

can has they know
him stayed get doesn’t

these supposed there even

Table 3: Accent ratio entries with low prominence
probability.

formativeness, POS, or even information structure
features. Another class like that is words like “yes”,
“okay”, “sure” that are mostly accented by virtue of
being the only word in the phrase.

Some rather common words, “not” for example,
are not included in the accent ratio dictionary be-
cause they do not exhibit a statistically strong pref-
erence for a prominence class. The accent ratio clas-
sifier would thus assign class “accented” to the word
“not”, which is indeed the class this word occurs in
more often.

Another fact that becomes apparent with the in-
spection of the accent ratio dictionary is that while
certain words have a statistically significant prefer-
ence for deaccenting, there is also a lot of variation
in their observed realization. For example, personal
pronouns such as “I” and “you” have accent ratios
near 0.33. This means that every third such pronoun
was actually realized as prominent by the speaker.
In a conversational setting there is an implicit con-
trast between the two speakers, which could partly
explain the phenomenon, but the situations which
prompt the speaker to realize the distinction in their

.58–.74 .75–.79 .80–.86 .87–1.0
lot both sometimes half

time no change topic
now seems child else
kids life young obviously
old tell Texas themselves
too ready town wow

really easy room gosh
three heard pay anyway
work isn’t interesting Dallas
nice again true outside
yeah first mother mostly
two right problems yes

person children agree great
day married war exactly

working may needed especially
job happen told definitely

talking business finally lately
usually still neat thirty
rather daughter sure higher
places gone house forty

government guess okay hey
ten news seven Iowa

parents major best poor
paper fact also glad

actually five older basic

Table 4: Accent ratio values for words with high
probability for being accented.

speech will be the focus of a future linguistic inves-
tigation.

Kontrast is helpful in predicting “accented” class
for some generally low ratio words. However, even
with its help, production variation in the conversa-
tions cannot be fully explained. The following ex-
amples from our corpus show low accent ratio words
(that, did, and, have, had) that were produced as
prominent.

so i did THAT. and then i, you know, i DID that for SIX
years. AND then i stayed HOME with my SON.

i HAVE NOT, to be honest, HAD much EXPERIENCE
with CHILDREN in that SITUATION.

they’re going to HAVE to WORK it OUT to WORKING

part TIME.

The examples attest to the presence of variation
in production: in the first utterance, for example, we
see the words “did”, “and” and “that” produced both
as prominent and not prominent. Intonational phras-
ing most probably accounts for some of this varia-
tion since it is likely that even words that are typ-
ically not prominent will be accented if they occur
just before or after a longer pause. We come back to
this point in the closing section.
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5 Robustness of accent ratio

While accent ratio works well for our data (Table
2), a feature based so strongly on memorizing the
status of each word in the training data might lead
to problems. One potential problem, suggested by
Pan et al. (2002) for lexicalized features in general,
is whether a lexical feature like accent ratio might
be less robust across genres. Another question is
whether our definition of accent ratio is better than
one that does not use the binomial test: we need to
investigate whether these statistical tests indeed im-
prove performance. We focus on these two issues in
the next two subsections.

Binomial test cut-off

As discussed above, the original accent ratio feature
(Yuan et al., 2005) was based directly on the frac-
tion of accented occurrences in the training set. We
might expect such a use of raw frequencies to be
problematic. Given what we know about word dis-
tributions in text (Baayen, 2001), we would expect
about half of the words in a big corpus to appear only
once. In an accent ratio dictionary without binomial
test cut-off, all such words will have accent ratio of
either exactly 1 or 0, but one or even few occurrences
of a word would not be enough to determine statis-
tical significance. By contrast, our modified accent
ratio feature uses binomial test cut-off to make the
accent ratio more robust to small training sets.

To test if the binomial test cut-off really improved
the accent ratio feature, we compared the perfor-
mance on Switchboard of classifiers using accent
ratio with and without cut-off. The binominal test
improved the performance of the accent ratio fea-
ture from 73.49% (Yuan et al. original version) to
75.59% (our version).

Moreover, Yuan et al. report that their version of
the feature did not combine well with other features,
while in our experiments best performance was al-
ways achieved by the classifiers that made use of the
accent ratio feature in addition to others.

A cross-genre experiment: broadcast news

In a systematic analysis of the usefulness of differ-
ent informativeness, syntactic and semantic features
for prominence prediction, Pan et al. (2002) showed
that word identity is a powerful feature. But they hy-

pothesized that this would not be a useful feature in
a domain independent pitch accent prediction task.
Their hypothesis that word identity cannot be a ro-
bust across genres would obviously carry over to ac-
cent ratio. In order to test the hypothesis, we used
the accent ratio dictionary derived from the Switch-
board corpus to predict prominence in the Boston
University Radio corpus of broadcast news. Using
an accent ratio dictionary from Switchboard and as-
signing class “not accented” to words with accent ra-
tio less than 0.38 and “accented” otherwise leads to
82% accuracy of prediction for this broadcast news
corpus. If the accent ratio dictionary is built from
the BU corpus itself, the performance is 83.67%.3

These results indicate that accent ratio is a robust
enough feature and is applicable across genres.

6 Conclusions and future work

In this paper we introduced a new feature for promi-
nence prediction, accent ratio. The accent ratio of
a word is the (maximum likelihood estimate) prob-
ability that a word is accented if there is a signifi-
cant preference for a class, and 0.5 otherwise. Our
experiments demonstrate that the feature is power-
ful both by itself and in combination with other fea-
tures. Moreover, the feature is robust to genre, and
accent ratio dictionaries can be used for prediction
of prominence in read news with very good results.

Of the linguistic features we examined, kontrast
is the only one that is helpful beyond what can be
gained using shallow features such as n-gram prob-
ability, POS or tf.idf. While the improvements from
kontrast are relatively small, the consistency of these
small improvements suggest that developing auto-
matic methods for approximating the gold-standard
annotation we used here, similar to what has been
done for information status in (Nissim, 2006), may
be worthwhile. An automatic predictor for kontrast
may also be helpful in other applications such as
question answering or textual entailment.

All of the features in our study were text-based.
There is a wide variety of research investigating
phonological or acoustic features as well. For exam-
ple Gregory and Altun (2004) used acoustic features

3This result is comparable with the result of (Yuan et al.,
2005) who in their experiment with the same corpus report the
best result as 83.9% using three features: unigram, bigram and
backwards bigram probability.
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such as duration and energy, and phonological fea-
tures such as oracle (hand-labeled) intonation phrase
boundaries, and the number of phones and sylla-
bles in a word. Although acoustic features are not
available in a text-to-speech scenario, we hypothe-
size that in a task where such features are available
(such as in speech recognition applications), acous-
tic or phonological features could improve the per-
formance of our text-only features. To test this hy-
pothesis, we augmented our best 5-feature classifier
which did not include kontrast with hand-labeled in-
tonation phrase boundary information. The resulting
classifier reached an accuracy of 77.45%, more than
one percent net improvement over 76.28% accuracy
of the model based solely on text features and not in-
cluding kontrast. Thus in future work we plan to in-
corporate more acoustic and phonological features.

Finally, prominence prediction classifiers need to
be incorporated in a speech synthesis system and
their performance should be gauged via listening
experiments that test whether the incorporation of
prominence leads to improvement in synthesis.
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Abstract

In this paper, we report on an empirical study
on initiative conflicts in human-human conver-
sation. We examined these conflicts in two
corpora of task-oriented dialogues. The re-
sults show that conversants try to avoid initia-
tive conflicts, but when these conflicts occur,
they are efficiently resolved by linguistic de-
vices, such as volume.

1 Introduction

Current computer dialogue systems tend to be system-
initiative. Although there are some mixed-initiative sys-
tems that allow the user to make a request or state a goal,
such systems are limited in how they follow natural ini-
tiative behavior. An example is where the system always
releases the turn whenever the user barges in. However,
in a complex domain where the computer system and hu-
man user are collaborating on a task, the computer sys-
tem might need to interrupt the human user, or might
even need to fight with the human user over the turn.
Thus the next generation of computer dialogue systems
need a better model of initiative (Horvitz, 1999). In what
situations can the system try to take initiative from the
user? What devices can the system use to fight for ini-
tiative? We propose examining human-human conversa-
tion to answer these questions. Once we understand the
conventions people adopt in negotiating initiative, we can
implement them in a computer dialogue system to create
natural interactivity.

In this research work, we examined two corpora of
human-human conversation: the Trains corpus (Heeman
and Allen, 1995) and the MTD corpus (Heeman et al.,
2005). The research purpose is to understand conver-
sants’ behavior with initiative conflicts, which we define
a situation where both conversants try to direct the con-
versation at the same time, but one of them fails. We

∗This work was funded by the National Science Foundation
under IIS-0326496.

found that (1) conversants try to avoid initiative con-
flicts; and (2) initiative conflicts, when they occur, are
efficiently resolved by linguistic devices, such as volume.

In Section 2, we review related research work on mod-
eling initiative and turn-taking. Dialogue initiative and
turn-taking are two intertwined research topics. When
conversants fight to show initiative, they are also fighting
for the turn to speak. In Section 3, we describe the two
corpora and their annotations. In Section 4, we define
initiative conflict and give an example. In Section 5, we
present the evidence that conversants try to avoid initia-
tive conflicts. In Section 6, we present evidence that ini-
tiative conflicts are efficiently resolved by linguistic de-
vices. We discuss our findings in Section 7 and future
work in Section 8.

2 Related Research

2.1 Initiative Models

Researchers have been investigating how people man-
age dialogue initiative in their conversation. Whittaker
and Stenton (1988) proposed rules for tracking initiative
based on utterance types; for example, statements, pro-
posals, and questions show initiative, while answers and
acknowledgements do not. Smith (1993) proposed four
different initiative strategies with differing amounts of
control by the system. Chu-Carrol and Brown (1998)
distinguished dialogue initiative from task initiative, and
proposed an evidential model of tracking both of them.
Cohen et al. (1998) proposed presenting initiative in dif-
ferent strengths. Some researchers related initiative to
discourse structure. Walker and Whittaker (1990) found
a correlation between initiative switches and discourse
segments. Strayer et al. (2003) proposed the restricted
initiative model in which the initiator of a discourse seg-
ment, who introduces the discourse segment purpose, is
in control of the segment and shows most of the initia-
tive. These models allowed the possibility that multiple
conversants will want to show initiative at the same time;
however, none of them addressed initiative conflicts.

Guinn (1998) studied another type of initiative, task
initiative, which is about directing the problem-solving
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of a domain goal. Guinn proposed that the person who
is more capable of coordinating the current goal is the
person who should be leading the dialogue. Initiative
switches between conversants as goals get pushed and
popped from the problem-solving stack. However, be-
cause conversants only have incomplete information, ini-
tiative conflicts might occur when conversants overesti-
mate their own capability or underestimate the other’s.
Guinn proposed a negotiation model to resolve these con-
flicts of task initiative. Conversants negotiate by inform-
ing each other of positive and negative information of
their plans to achieve the goal. By comparing each other’s
plan, the conversant whose plan has the higher probabil-
ity of success takes initiative. Guinn’s research on con-
flicts of task initiative, however, has little bearing on con-
flicts of dialogue initiative. For dialogue initiative, very
often, one of the conversants just gives up the attempt
very quickly, without giving a justification. As stated by
Haller and Fossum (1999):“... conflicts are often simple
clashes that result from both participants trying to take
the initiative at the same time. Such conflicts do not nec-
essarily require complex negotiation to resolve. Often,
unwritten rules based on factors like social roles, personal
assertiveness, and the current locus of control play a part
in determining who will give away.” However, Haller and
Fossum did not further investigate how conversants effi-
ciently resolve conflicts of dialogue initiative.

2.2 Turn-Taking and Initiative

Turn-taking in conversation is highly related to initiative.
Conversants have to possess the turn in order to show ini-
tiative. When conversants are fighting for initiative, they
are also fighting for the turn to speak. Thus the mech-
anisms of turn-taking might share some similarity with
initiative. On the other hand, turn-taking is different from
initiative; for example, an answer takes a turn, but an-
swering does not show initiative.

Turn-taking in conversation has been discussed in lin-
guistics literature. Duncan (1974) examined cues (ges-
ture, acoustic, and linguistic) that conversants use to sig-
nal turn-taking or turn-releasing. A model based on these
signals was created to account for conversants’ turn-
taking behavior. In this model, miscues are the cause of
overlapping speech: for example, the hearer misrecog-
nizes the speaker’s cue to keep the turn, or the speaker
fails to properly signal.

Sacks et al. (1974) proposed a set of rules for turn-
taking: the current speaker can select somebody else to
speak; otherwise, hearers can self-select to speak; oth-
erwise, the speaker can self-select to speak. This model
suggested that overlapping speech results from either the
hearer waiting too long to speak, or the speaker not wait-
ing long enough.

Schegloff (2000) examined overlapping speech in de-
tail in human conversation. He concluded that (1) fights
for turn are often accompanied with sudden acoustic al-
teration, such as louder volume, higher pitch, and faster
or slower speaking rate; (2) the vast majority of fights for
turn are resolved very quickly; (3) fights for turn are re-
solved through an interactive procedure, e.g. syllable by
syllable negotiation, using devices such as volume, pitch,
and speaking rate. However, his analysis only consisted
of a few examples; no statistical evidence was given. It
is thus unclear whether his conclusions represent human
conventions of initiative conflict, or are occasional behav-
ior that would only occur under special circumstances.

3 Corpora and Annotations
To understand human behavior in initiative conflicts, we
examined two corpora, the Trains corpus and the MTD
corpus. These two corpora have very different domain se-
tups. The distinct behavior seen in each corpus will help
inform us how domain settings affect initiative, while the
common behavior will help inform us the cross-domain
human conventions.

3.1 The Trains Corpus
The Trains corpus is a collection of human-human task-
oriented dialogues, in which two participants work to-
gether to formulate a plan involving the manufacture and
transportation of goods. One participant, the user, has a
goal to solve; and the other participant, the system, knows
the detailed domain information including how long it
takes to ship and manufacture goods.

We annotated eight Trains dialogues totaling about
45 minutes using the tool DialogueView (Yang et al.,
2007). We tagged each utterance with a simplified
DAMSL scheme (Core and Allen, 1997). Utterances
were tagged as forward or backward functions, stalls, or
non-contributions. Forward functions include statements,
questions, checks and suggestions. Backward functions
include agreements, answers, acknowledgments, repeti-
tions and completions. Examples of stalls are “um” and
“let’s see”, used by a conversant to signal uncertainty of
what to say next or how to say it. Non-contributions in-
clude abandoned and ignored utterances. The flow of
the dialog would not change if non-contributions were
removed.

Hierarchical discourse structure was annotated follow-
ing Strayer et al. (2003). To determine whether a group
of utterances form a discourse segment, we took into ac-
count whether there exists a shared goal introduced by
one of the conversants (cf. Grosz and Sidner, 1986).

3.2 The MTD Corpus
The MTD corpus contains dialogues in which a pair of
participants play two games via conversation: an ongoing
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game that takes a relatively long time to finish and an
interruption game that can be done in a couple turns but
has a time constraint. Both games are done on computers.
Players are separated so that they cannot see each other.

In the ongoing game, the two players work together to
assemble a poker hand of a full house, flush, straight, or
four of a kind. Each player has three cards in hand, which
the other cannot see. Players take turns drawing an extra
card and then discarding one until they find a poker hand,
for which they earn 50 points. To discourage players from
simply rifling through the cards to look for a specific card
without talking, one point is deducted for each picked-up
card, and ten points for a missed or incorrect poker hand.
To complete this game, players converse to share card
information, and explore and establish strategies based
on the combined cards in their hands.

From time to time, the computer generates a prompt
for one player to start an interruption game to find out
whether the other player has a certain picture on the
screen. The interruption game has a time constraint of
10, 25, or 40 seconds, which is (pseudo) randomly deter-
mined. Players get five points for the interruption game
if the correct answer is given in time. Players are told to
earn as many points as possible.

We annotated six MTD dialogues totaling about 90
minutes. Utterances were segmented based on player’s
intention so that each utterance has only one dialogue
act that is to share information, explore strategies, sug-
gest strategies, or maintain an established strategy (Toh
et al., 2006). We applied the same simplified DAMSL
scheme on utterance tag annotations. Figure 1 shows an
annotated excerpt of an MTD dialogue. We grouped ut-
terances into blocks. Block b21 is a game block in which
conversants completed a poker hand. Blocks b22 and b23
are two card blocks in which conversants picked up a
new card, discussed what they had in hand, and chose
a card to discard. Block b24 is an interruption segment
in which conversants switched their conversation to the
interruption game. No claim is made that the game and
card blocks are discourse segments according to Grosz
and Sidner’s definition (1986).

4 Defining Initiative Conflicts
An initiative conflict occurs when a conversant’s attempt
to show initiative fails because someone else is show-
ing initiative at the same time. Following Whittaker
and Stenton (1988), we use utterance tags to determine
whether an utterance shows initiative: forward functions
show initiative while others do not. Non-contributions
are viewed as failed attempt to show initiative. Thus we
identify initiative conflicts as overlapping utterances that
involve either a forward function and a non-contribution
or two non-contributions.

Figure 2 gives an example of an initiative conflict from

Figure 1: An excerpt of an MTD dialogue

the MTD corpus. The top conversant says “that’s pair of
threes and pair of fours”, which ends at time point A. Af-
ter a short pause, at time B, the bottom conversant asks
“how many threes do you have”, which is overlapped by
the top conversant’s second utterance “I’ll drop” at time
C. The top conversant then abandons the attempt of show-
ing initiative at time D. Hence the bottom speaker is the
winner of this initiative conflict.

We use the term preceding-pause to refer to the time
interval between the end of the previous utterance and
the first utterance that is involved in the overlap (from A
to B in Figure 2). Offset refers to the interval between
the start times of the two overlapped utterances (from B
to C). Duration refers to the time interval from the begin-
ning of overlap till the end of overlap (from C to D).

In the Trains corpus, there are 142 cases of overlap-
ping speech, 28 of which are initiative conflicts. Of the
remaining, 96 cases involve a backward function (e.g. an
acknowledgment overlapping the end of an inform), and
10 cases involve a stall. The remaining 8 cases are other
types of overlap, such as a collaborative completion, or
conversants talking about the same thing: for example,
one saying “we are a bit early” and the other saying “we
are a little better”.

In the MTD corpus, there are 383 cases of overlapping
speech, 103 of which are initiative conflicts. Of the re-
maining, 182 cases involve a backward function, 21 cases
involve a stall, and 77 cases are others. Initiative conflicts
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Figure 2: An illustration of an initiative conflict

are more frequent in the MTD corpus (103 cases in 90
min) than in the Trains corpus (28 cases in 45 min).

There are three cases in the Trains and thirteen cases in
the MTD corpus where the preceding-pause is negative,
i.e. the first overlapped utterance is started before the
other conversant finishes the previous utterance. Some-
times the hearer starts a little bit early to take the turn. If
the original speaker does not intend to release the turn,
a conflict arises. Because these cases involve three ut-
terances, we exclude them from our current analysis and
save them for future research.1 This leaves 25 cases in
the Trains corpus and 90 cases in the MTD corpus for
analyzing initiative conflicts.

5 Avoiding Initiative Conflicts
In this section, we show that conversants try to avoid ini-
tiative conflicts by examining both the offset of initiative
conflicts and the urgency levels.

5.1 Offset of Initiative Conflicts
The offset of an initiative conflict indicates where the
conflict happens. A short offset indicates that the conflict
happens at the beginning of an utterance, while a long
offset indicates an interruption in the middle.

Figure 3 shows the cumulative distribution function
(CDF) for offsets for both corpora individually. The mean
offset is 138ms for the Trains corpus, and 236ms for
the MTD corpus. In comparison to the average length
of forward utterances (2596ms in the Trains corpus and
1614ms in the MTD corpus), the offset is short. More-
over, in the Trains corpus, 88% of offsets are less than
300ms (and 80% less than 200ms); in the MTD corpus,
75% of offsets are less than 300ms. Thus most initiative
conflicts happen at the beginning of utterances.

1These cases of negative value preceding-pause are in fact
very interesting. They seem to contradict with Sacks et
al. (1974)’s model that the hearer has priority to self select to
speak. If Sacks et al. is correct, the speaker should wait a cer-
tain amount of time in order not to overlap with the hearer, but
in these cases we see that the speaker self-selects to speak with-
out taking into account whether the hearer self-selects to speak
or not.
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Figure 3: CDF plot for offsets of initiative conflicts

Few initiative conflicts have offsets longer than 500ms.
There is one instance in the Trains corpus and eleven in
the MTD corpus. Four cases are because the second con-
versant has something urgent to say. For example, when
an interruption game is timing out, conversants would in-
terrupt, sometimes in the middle of an utterance, which
results in a long offset. Another six cases are due to mis-
cues. Figure 4 shows an example. Conversant B said “I
have two aces” with end-of-utterance intonation, paused
for about half a second, and then added “and a seven”.
The ending intonation and the pause probably misled
conversant A to believe that B had finished, and thus A
started a new forward utterance, which overlapped with
B’s extension. A’s utterance was then quickly abandoned.
In these cases, it is ambiguous whether B’s utterance “I
have two aces ... and a seven” should be further chopped
into two utterances. The final two cases are intrusions,
with an example shown in Figure 5. Conversant A cut in
probably because he was confident with his decision and
wanted to move on to the next card. In such cases, the
intruder might be perceived as being rude.
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B: I have two aces and a seven
A: I have .

Figure 4: Long offset: miscue

B: well let’s just
A: it’s no help I think it goes away

Figure 5: Long offset: intrusion

The preponderance of short offsets provides evidence
that conversants try to avoid initiative conflicts. When A
detects that B is talking, A should not attempt to show
initiative until the end of B’s utterance in order to avoid
conflicts, unless there is an urgent reason. If conversants
did not take into account whether someone else is speak-
ing before attempting initiative, we would see a lot of in-
trusions in the middle of utterances, which in fact rarely
happen in the two corpora. As we have shown, initiative
conflicts tend to happen at the beginning of utterances.
Thus initiative conflicts occur mainly due to unintentional
collision, i.e. both conversants happen to start speaking
almost at the same time. The fact that the offset of most
initiative conflicts is within 300ms confirms this.2

5.2 Urgency Level and Initiative Conflicts
To further support the hypothesis that conversants avoid
initiative conflicts except for urgent reasons, we exam-
ined the MTD corpus for the correlation between the ur-
gency levels of the interruption game and initiative con-
flicts. For the urgency level of 10 seconds, conversants
started 33 interruption games, 8 of which were intro-
duced via initiative conflicts. For 25 seconds, conversants
started 36 interruption games, 5 introduced via initiative
conflicts. For 40 seconds, conversants started 33 interrup-
tion games, 3 introduced via initiative conflicts. Thus the
percentages of initiative conflicts for the three urgency
levels are 24% for 10 seconds, 14% for 25 seconds, and
9% for 40 seconds. The urgency level of 10 seconds
requires conversants to start the interruption game very
quickly in order to complete it in time. On the other hand,
the urgency level of 40 seconds allows conversants ample
time to wait for the best time to start the game (Heeman
et al., 2005). Thus we see the percentage of initiative
conflicts decreases as it becomes less urgent to the inter-
ruption game. These results suggest that conversants try
to avoid initiative conflicts if they can, unless there is an
urgent reason.

6 Resolving Initiative Conflicts
In this section, we present evidence that initiative con-
flicts, if they occur, are resolved very quickly using sim-
ple devices.

2This 300ms might be related to human reaction time.
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Figure 6: CDF plot for durations of initiative conflicts
together with lengths of forward utterances

6.1 Duration of Initiative Conflicts

The duration of an initiative conflict, as defined in Sec-
tion 4, indicates how quickly the conflict is resolved. Fig-
ure 6 shows the cumulative distribution function of dura-
tions of initiative conflicts and the lengths of forward ut-
terances in the two corpora. The mean duration is 328ms
in the Trains corpus and 427ms in the MTD corpus. From
Figure 6 we see that the duration is much shorter than the
length of forward utterances, which have the mean length
of 2596ms in the Trains corpus and 1614ms in the MTD
corpus. The difference between duration of initiative con-
flicts and length of forward utterances is statistically sig-
nificant (p < 10−5, ttest). On average, the duration of
initiative conflicts is about 1/8 the length of forward ut-
terances in the Trains corpus and about 1/4 in the MTD
corpus. The short durations suggest that initiative con-
flicts are resolved very quickly.

According to Crystal and House (1990), the average
length of CVC syllable is about 250ms. Thus on aver-
age, the length of initiative conflicts is about one to two
syllables.3 In fact, 96% of conflicts in the Trains corpus
and 73% in the MTD corpus are resolved within 500ms.
These observations are consistent with one of Schelogff’s
(2000) claims about turn-taking conflicts, that they usu-
ally last less than two syllables to resolve.

6.2 Resolution of Initiative Conflicts

From our definition of initiative conflict, at least one of
the speakers has to back off. For expository ease, we re-

3It would be interesting to examine the length of initiative
conflicts based on syllable. However currently we do not have
syllable-level alignment for the two corpora. We leave this for
future research.
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fer to the person who gets the turn to contribute as the
winner, and the other who fails as the yielder. There are
two cases in the Trains corpus and three cases in the MTD
corpus in which both speakers abandoned their incom-
plete utterances, paused for a while, and then one of them
resumed talking. These five cases are treated as ties: no
winners or yielders, and are excluded from our analysis
here.

Given how quickly initiative conflicts are resolved, we
examined whether the resolution process might be depen-
dent on factors presented before the conflict even begins,
namely who was speaker in the previous utterance, and
who was interrupted. If we predict that the conversant
who spoke prior to the conflict (speaker of u262 in Fig-
ure 2) loses, we get 55% accuracy in the Trains corpus
and 61% accuracy in the MTD corpus. If we predict
the conversant who spoke first in the overlap (speaker of
u263 in Figure 2) wins, we get 60% accuracy in the Trains
corpus and 53% accuracy in the MTD corpus. These low
percentages suggest that they are not robust predictors.

We next examined how conversants resolve the con-
flicts using devices such as volume, pitch, and others.

6.2.1 Volume
For a stretch of speech, volume is calculated as the mean
energy of the spoken words. For each initiative conflict,
we calculated each conversant’s volume during the over-
lap, and then normalized it with respect to the conver-
sant’s volume throughout the whole conversation.4 We
refer to this as relative volume. In the Trains corpus, the
average relative volume of the winner is 1.06; the average
relative volume of the yielder is 0.93. The difference is
statistically significant (P < 0.01, anova). In the MTD
corpus, the average relative volume of the winner is 1.12;
the average relative volume of the yielder is 0.98. The dif-
ference is also statistically significant (p < 10−6, anova).
These results show that the winner is the one speaking at
a higher relative volume.

To strengthen our argument, we also calculated volume
ratio as the relative volume of the winner divided by the
yielder. The average volume ratio in the Trains corpus is
1.16 and in the MTD corpus is 1.18. If a classifier always
chooses the speaker with higher relative volume to be the
winner, we achieve about 79% accuracy in both corpora,
which is a 29% absolute improvement over random pre-
diction. These results further confirm that the conversant
who speaks at a higher relative volume wins the initiative
conflicts.

Given the importance of volume in the resolution pro-
cess, we examined whether it has an impact on the du-
ration of initiative conflicts. Figure 7 plots the relation

4Normalization is necessary particularly as conversants
heard each other via headsets, and the microphones were not
calibrated to have exactly the same gains.
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Figure 7: Volume ratio and duration of conflicts

between volume ratio and duration of conflicts for all
the cases in the two corpora. For reference, the dot-
ted line divides the data points into two groups: under
the line are what volume ratio fails to predict the win-
ner, and above the line are success. If we look at the
points where volume ratio succeeds, we see that when
duration of initiative conflicts is long, volume ratio tends
to be small: in fact, the average volume ratio for initiative
conflicts shorter than 600ms is 1.27; for long than 600ms
is 1.13; and the difference is statistically significant (ttest,
p < 0.01).

To further understand how volume is used in the reso-
lution procedure, we examined how volume changes dur-
ing the overlap. For initiative conflicts whose duration is
longer than 600ms, we cut the overlapped speech evenly
in half, and calculated the relative volume for each half
individually. For the first half, the average relative vol-
ume of the winner is 1.03, and the yielder is 1.02. The
difference is not statistically significant (p = 0.93, paired
ttest). For the second half, the average relative volume of
the winner is 1.20, and the yielder is 1.02. The difference
is statistically significant (p < 0.001, paired ttest). The
fact that these long initiative conflicts are not resolved in
the first half is probably partially due to the close relative
volume.

We then calculated volume increment as subtracting the
relative volume of the first half from the second half. The
average volume increment of the winner is 0.17; the aver-
age volume increment of the yielder is 0. The difference
is statistically significant (p < 0.001, paired ttest). These
results show that the range of volume increment during
the overlap by the winner is larger than the yielder. The
behavior of increasing volume during overlap to win the
fight suggests that conversants use volume as a device to
resolve initiative conflicts.
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6.2.2 Pitch
We used the tool WaveSurfer (Sjölander and Beskow,
2000) to extract the f0 from the audio files. We calcu-
lated relative pitch similarly as we did for volume.

In the Trains corpus, the average relative pitch of the
winner is 1.02; the average relative pitch of the yielder
is 0.96. The difference is not statistically significant
(P = 0.54, anova). In the MTD corpus, the average
relative pitch of the winner is 1.09; the average relative
pitch of the yielder is 0.98. The difference is statistically
significant (p < 0.001, anova). If we choose the speaker
with higher pitch to be the winner, we achieve about 65%
accuracy in the Trains corpus and 62% in the MTD cor-
pus. These results suggest that pitch alone is not robust
for predicting the winner of initiative conflicts, at least
not as predictive as volume, although we do see the ten-
dency of higher pitch by the winner.

We also examined pitch range in the window of 100ms
and 300ms respectively. We calculated the pitch range
of the overlapping speech and then normalized it with
respect to the conversant’s pitch range throughout the
whole conversation. We did not see a significant corre-
lation between pitch range and the winner of initiative
conflicts. Thus pitch does not seem to be a device for
resolving initiative conflicts.

6.2.3 Role of Conversants
Human-computer dialogues often have a user interact-

ing with a system, in which the two have very different
roles. Hence, we investigated whether the conversant’s
role has an effect in how initiative conflicts are resolved.
We focused on the Trains corpus due to both its rich dis-
course structure and the difference in the roles that the
system and the use have.

In the Trains corpus, if we predict that the initiator of
a discourse segment wins the conflicts, we get 65% ac-
curacy. In system-initiated segments, the system wins all
eight conflicts; however, in user-initiated segments, the
user only wins seven and system wins eight. The user
does not have an advantage during initiative conflicts in
its segments. Moreover, if the initiator had an advantage,
we would expect the system to have fought more strongly
in the user-initiated segments in order to win. However,
we do not see that the relative volume of the system win-
ning in user-initiated segments is statistically higher than
in system-initiated segments in this small sample size
(p = 0.9, ttest). The initiator does not seem to have a
privileged role in the resolution process.

From the above analysis, we see that the system wins
the conflicts 16 out of 23 times. Thus if we predict that
the system always wins the conflicts, we achieve 70%
accuracy. This is not surprising because the system has
all the domain information, and is more experienced in
solving goals. If the system and user want to speak at

the same time, both would know that the system proba-
bly has a more significant contribution. That the system
wins most of the initiative conflicts agrees with Guinn
(1998) that capability plays an important role in deter-
mining who to show initiative next.

7 Discussion

In this paper, we present our empirical study of human
behavior in initiative conflicts. Our first finding is that
conversants try to avoid initiative conflicts. The conse-
quence of initiative conflicts is that at least one of the
conversants would have to back off, which makes their
effort of contributing in vain. Moreover, the effort of
resolving initiative conflicts is overhead to the dialogue.
According to the theory of least collaborative effort by
Clark and Wilkes-Gibbs (1986), it only makes sense for
conversants to interrupt when the loss of not interrupting
is higher than the cost of an initiative conflict. Thus the
theory of least collaborative effort is consistent with our
conclusion that most initiative conflicts are unintentional
collisions, except where conversants interrupt in the mid-
dle of an utterance for urgency reasons.

The second finding of our research is that initiative
conflicts, when they occur, are efficiently resolved. We
found that volume plays an important role: the louder
speaker wins. We also show how conversants change
their volume to resolve initiative conflicts. Conversants
probably identify their eagerness of speaking, confidence
in what they want to say, and capability of achieving the
current goal by means of volume, which resolves the ini-
tiative conflicts very quickly.

Domain settings obviously have an impact on conver-
sants’ initiative behavior. There are more frequent initia-
tive conflicts in the MTD corpus than in the Trains cor-
pus. Moreover, the roles of the conversants also affect
their initiative behavior as we found that the system wins
more initiative conflicts in the Trains corpus. In a teacher-
student conversation, one would expect to see that the
teacher interrupts the student more often than vice versa,
but also that the teacher wins more initiative conflicts.
Capability, culture, and social relationship probably are
some underlying elements that influence when and under
what conditions conversants would seek initiative, while
volume is a device for resolving initiative conflicts.

8 Future Work

In this paper we focused on initiative conflicts in dialogue
where two conversants cannot see each other. In face-to-
face conversation, there might be other cues, such as eye-
contact, head-nodding, and hand gesture, that conversants
use in initiative conflicts. Moreover, in a multi-party con-
versation, a conversant might talk to different people on
different topics, and get interrupted from time to time,

23



which leads to an initiative conflict involving multiple
speakers. In our future work, we plan to examine ini-
tiative conflicts in face-to-face multi-party conversation,
such as the ICSI corpus (Shriberg et al., 2004).

Inspired by the findings on human behavior of initia-
tive conflicts, we speculate that conversants might also
have a mechanism to even minimize unintentional ini-
tiative conflicts, which probably includes devices such
as volume, pause, and other prosodic features. The
speaker uses these devices, as opposed to explicitly in-
forming each other of their knowledge to evaluate capa-
bility (Guinn, 1998), to implicitly signal his or her ea-
gerness, confidence and capability. The hearer then com-
pares his or her own eagerness with the speaker’s, and
decides whether to just make an acknowledgement (al-
lowing the speaker to continue the lead) or to take over
the initiative when taking the turn to speak. In our future
work, we plan to build an initiative model to capture this
negotiation process.
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Abstract

This study addresses the problem of au-
tomatically detecting decisions in conver-
sational speech. We formulate the prob-
lem as classifying decision-making units
at two levels of granularity: dialogue acts
and topic segments. We conduct an em-
pirical analysis to determine the charac-
teristic features of decision-making dia-
logue acts, and train MaxEnt models using
these features for the classification tasks.
We find that models that combine lexi-
cal, prosodic, contextual and topical fea-
tures yield the best results on both tasks,
achieving 72% and 86% precision, respec-
tively. The study also provides a quantita-
tive analysis of the relative importance of
the feature types.

1 Introduction

Making decisions is an important aspect of conver-
sations in collaborative work. In the context of meet-
ings, the proposed argumentative models, e.g., in
Pallotta et al. (2005) and Rienks et al. (2005), have
specified decisions as an essential outcome of meet-
ings. Whittaker et al. (2005) have also described
how reviewing decisions is critical to the re-use of
meeting recordings. For example, a new engineer
who just get assigned to a project will need to know
what major decisions have been made in previous
meetings. Unless all decisions are recorded in meet-
ing minutes or annotated in the speech recordings, it

is difficult to locate the decision points by the brows-
ing and playback utilities alone.

Banerjee and Rudnicky (2005) have shown that
it is easier for users to retrieve the information
they seek if the meeting record includes information
about topic segmentation, speaker role, and meet-
ing state (e.g., discussion, presentation, briefing). To
assist users in identifying or revisiting decisions in
meeting archives, our goal is to automatically iden-
tify the dialogue acts and segments where decisions
are made. Because reviewing decisions is indis-
pensable in collaborative work, automatic decision
detection is expected to lend support to computer-
assisted meeting tracking and understanding (e.g.,
assisting in the fulfilment of the decisions made in
the meetings) and the development of group infor-
mation management applications (e.g., constructing
group memory).

2 Related Work

Spontaneous face-to-face dialogues in meetings vi-
olate many assumptions made by techniques pre-
viously developed for broadcast news (e.g., TDT
and TRECVID), telephone conversations (e.g.,
Switchboard), and human-computer dialogues (e.g.,
DARPA Communicator). In order to develop
techniques for understanding multiparty dialogues,
smart meeting rooms have been built at several insti-
tutes to record large corpora of meetings in natural
contexts, including CMU (Waibel et al., 2001), LDC
(Cieri et al., 2002), NIST (Garofolo et al., 2004),
ICSI (Janin et al., 2003), and in the context of the
IM2/M4 project (Marchand-Mailet, 2003). More
recently, scenario-based meetings, in which partic-
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ipants are assigned to different roles and given spe-
cific tasks, have been recorded in the context of
the CALO project (the Y2 Scenario Data) (CALO,
2003) and the AMI project (Carletta et al., 2005).

The availability of meeting corpora has enabled
researchers to begin to develop descriptive models
of meeting discussions. Some researchers are mod-
elling the dynamics of the meeting, exploiting dia-
logue models previously proposed for dialogue man-
agement. For example, Niekrasz et al. (2005) use
the Issue-Based Information System (IBIS) model
(Kunz and Ritte, 1970) to incorporate the history
of dialogue moves into the Multi-Modal Discourse
(MMD) ontology. Other researchers are modelling
the content of the meeting using the type of struc-
tures proposed in work on argumentation. For ex-
ample, Rienks et al. (2005) have developed an ar-
gument diagramming scheme to visualize the rela-
tions (e.g., positive, negative, uncertain) between ut-
terances (e.g., statement, open issue), and Marchand
et al. (2003) propose a schema to model different ar-
gumentation acts (e.g., accept, request, reject) and
their organization and synchronization. Decisions
are often seen as a by-product of these models.

Automatically extracting these argument mod-
els is a challenging task. However, researchers
have begun to make progress towards this goal.
For example, Gatica et al. (2005) and Wrede and
Shriberg (2003) automatically identify the level of
emotion in meeting spurts (e.g., group level of in-
terest, hot spots). Other researchers have developed
models for detecting agreement and disagreement
in meetings, using models that combine lexical fea-
tures with prosodic features (e.g., pause, duration,
F0, speech rate) (Hillard et al., 2003) and struc-
tural information (e.g., the previous and following
speaker) (Galley et al., 2004). More recently, Purver
et al. (2006) have tackled the problem of detecting
one type of decision, namely action items, which
embody the transfer of group responsibility. How-
ever, no prior work has addressed the problem of au-
tomatically identifying decision-making units more
generally in multiparty meetings. Moreover, no pre-
vious research has provided a quantitative account
of the effects of different feature types on the task of
automatic decision detection.

3 Research Goal

Our aim is to develop models for automatically de-
tecting segments of conversation that contain deci-
sions directly from the audio recordings and tran-
scripts of the meetings, and to identify the feature
combinations that are most effective for this task.

Meetings can be viewed at different levels of
granularity. In this study, we first consider how to
detect the dialogue acts that contain decision-related
information (DM DAs). Since it is often difficult
to interpret a decision without knowing the current
topic of discussion, we are also interested in detect-
ing decision-making segments at a coarser level of
granularity: topic segments. The task of automatic
decision detection can therefore be divided into two
subtasks: detecting DM DAs and detecting decision-
making topic segments (DM Segments).

In this study we propose to first empirically
identify the features that are most characteristic of
decision-making dialogue acts and then computa-
tionally integrate the characteristic features to locate
the DM DAs in meeting archives. For the latter task,
previous research on automatic meeting understand-
ing and tracking has commonly utilized a classifica-
tion framework, in which variants of generative and
conditional models are computed directly from data.
In this study, we use a Maximum Entropy (MaxEnt)
classifier to combine the decision characteristic fea-
tures to predict DM DAs and DM Segments.

4 Data

4.1 Decision Annotation

In this study, we use a set of 50 scenario-driven
meetings (approximately 37,400 dialogue acts) that
have been segmented into dialogue acts and anno-
tated with decision information in the AMI meet-
ing corpus. These meetings are driven by a sce-
nario, wherein four participants play the role of
Project Manager, Marketing Expert, Industrial De-
signer, and User Interface Designer in a design team
in a series of four meetings. Each series of meet-
ing recordings uses four distinctive speakers differ-
ent from other series. The corpus includes manual
transcripts for all meetings. It also comes with in-
dividual sound files recorded by close-talking head-
mounted microphones and cross-talking sound files
recorded by desktop microphones.
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4.1.1 Decision-Making Dialogue Acts

In fact, it is difficult to determine whether a di-
alogue act contains information relevant to any de-
cision point without knowing what decisions have
been made in the meeting. Therefore, in this study
DM DAs are annotated in a two-phase process:
First, annotators are asked to browse through the
meeting record and write an abstractive summary
directed to the project manager about the decisions
that have been made in the meeting. Next, another
group of three annotators are asked to produce ex-
tractive summaries by selecting a subset (around
10%) of dialogue acts which form a summary of this
meeting for the absent manager to understand what
has transpired in the meeting.

Finally, this group of annotators are asked to go
through the extractive dialogue acts one by one and
judge whether they support any of the sentences in
the decision section of the abstractive summary; if a
dialogue act is related to any sentence in the decision
section, a “decision link” from the dialogue act to
the decision sentence is added. For those extracted
dialogue acts that do not have any closely related
sentence, the annotators are not obligated to specify
a link. We then label the dialogue acts that have one
or more decision links as DM DAs.

In the 50 meetings we used for the experiments,
the annotators have on average found four decisions
per meeting and specified around two decision links
to each sentence in the decision summary section.
Overall, 554 out of 37,400 dialogue acts have been
annotated as DM DAs, accounting for 1.4% of all di-
alogue acts in the data set and 12.7% of the orginal
extractive summary (which is consisted of the ex-
tracted dialogue acts). An earlier analysis has es-
tablished the intercoder reliability of the two-phase
process at the level of kappa ranging from 0.5 to
0.8. In this round of experiment, for each meeting
in the 50-meeting dataset we randomly choose the
DM DA annotation of one annotator as the sourec of
its ground truth data.

4.1.2 Decision-Making Topic Segments

Topic segmentation has also been annotated for
the AMI meeting corpus. Annotators had the free-
dom to mark a topic as subordinated (down to two
levels) wherever appropriate. As the AMI meetings
are scenario-driven, annotators are expected to find

that most topics recur. Therefore, they are given a
standard set of topic descriptions that can be used
as labels for each identified topic segment. Annota-
tors will only add a new label if they cannot find a
match in the standard set. The AMI scenario meet-
ings contain around 14 topic segments per meeting.
Each segment lasts on average 44 dialogue acts long
and contains two DM DAs.

DM Segments are operationalized as topic seg-
ments that contain one or more DM DAs. Over-
all, 198 out of 623 (31.78%) topic segments in the
50-meeting dataset are DM Segments. As the meet-
ings we use are driven by a predetermined agenda,
we expect to find that interlocutors are more likely
to reach decisions when certain topics are brought
up. Analysis shows that some topics are indeed more
likely to contain decisions than others. For example,
80% of the segments labelled as Costing and 58%
of those labelled Budget are DM Segments, whereas
only 7% of the Existing Product segments and none
of the Trend-Watching segments are DM Segments.
Functional segments, such as Chitchat, Opening and
Closing, almost never include decisions.

4.2 Features Used

To provide a qualitative account of the effect of dif-
ferent feature types on the task of automatic decision
detection, we have conducted empirical analysis on
four major types of features: lexical, prosodic, con-
textual and topical features.

4.2.1 Lexical Features

Previous research has studied lexical differences
(i.e., occurrence counts of N-grams) between var-
ious aspects of speech, such as topics (Hsueh and
Moore, 2006), speaker gender (Boulis and Osten-
dorf, 2005), and story-telling conversation (Gordon
and Ganesan, 2005). As we expect that lexical dif-
ferences also exist in DM conversations, we gener-
ated language models from the DM Dialogue Acts in
the corpus. The comparison of the language models
generated from the DM dialogue Acts and the rest of
the conversations shows that some differences exist
between the two models: (1) decision making con-
versations are more likely to containwe than I and
You; (2) in decision-making conversations there are
more explicit mentions of topical words, such asad-
vanced chipsandfunctional design; (3) in decision-
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Type Feature

Duration Number of words spoken in current, previous and next subdialogue

Duration (in seconds) of current, previous and next subdialogue

Pause Amount of silence (in seconds) preceding a subdialogue

Amount of silence (in seconds) following a subdialogue

Speech rate Number of words spoken per second in current, previous and next subdialogue

Number of syllables per second in current, previous and nextsubdialogue

Energy Overall energy level

Average energy level in the first, second, third, and fourth quarter of a subdialogue

Pitch Maximum and minimum F0, overall slope and variance

Slope and variance at the first 100 and 200 ms and last 100 and 200 ms,

at the first and second half, and at each quarter of the subdialogue

Table 1:Prosodic features used in this study.

making conversations, there are fewer negative ex-
pressions, such asI don’t think and I don’t know.
In an exploratory study using unigrams, as well as
bigrams and trigrams, we found that using bigrams
and trigrams does not improve the accuracy of clas-
sifying DM DAs, and therefore we include only uni-
grams in the set of lexical features in the experiments
reported in Section 6.

4.2.2 Prosodic Features

Functionally, prosodic features, i.e., energy, and
fundamental frequency (F0), are indicative of seg-
mentation and saliency. In this study, we follow
Shriberg and Stolcke’s (2001) direct modelling ap-
proach to manifest prosodic features as duration,
pause, speech rate, pitch contour, and energy level.
We utilize the individual sound files provided in the
AMI corpus. To extract prosodic features from the
sound files, we use the Snack Sound Toolkit to com-
pute a list of pitch and energy values delimited by
frames of 10 ms, using the normalized cross correla-
tion function. Then we apply a piecewise linearisa-
tion procedure to remove the outliers and average the
linearised values of the units within the time frame
of a word. Pitch contour of a dialogue act is ap-
proximated by measuring the pitch slope at multi-
ple points within the dialogue act, e.g., the first and
last 100 and 200 ms. The rate of speech is calcu-
lated as both the number of words spoken per sec-
ond and the number of syllables per second. We
use Festival’s speech synthesis front-end to return
phonemes and syllabification information. An ex-
ploratory study has shown the benefits of including

immediate prosodic contexts, and thus we also in-
clude prosodic features of the immediately preced-
ing and following dialogue acts. Table 1 contains
a list of automatically generated prosodic features
used in this study.

4.2.3 Contextual Features

From our qualitative analysis, we expect that con-
textual features specific to the AMI corpus, such as
the speaker role (i.e., PM, ME, ID, UID) and meet-
ing type (i.e., kick-off, conceptual design, functional
design, detailed design) to be characteristic of the
DM DAs. Analysis shows that (1) participants as-
signed to the role of PM produce 42.5% of the DM
DAs, and (2) participants make relatively fewer de-
cisions in the kick-off meetings. Analysis has also
demonstrated a difference in the type, the reflexiv-
ity1 and the number of addressees, between the DM
DAs and the non-DM DAs. For example, dialogue
acts of typeinform, suggest, elicit assessment and
elicit inform are more likely to be DM DAs.

We have also found that immediately preceding
and following dialogue acts are important for iden-
tifying DM DAs. For example,stalls and frag-
ments preceding andfragments following a DM
DA are more likely than for non-DM DAs.2 In

1According to the annotation guideline, the reflexivity re-
flects on how the group is carrying on the task. In this case, the
interlocutors pause to evaluate the group performance lessoften
when it comes to decision making.

2STALL is where people start talking before they are ready,
or keep speaking when they haven’t figured out what to say;
FRAGMENT is the segment which is not really speech or is
unclear enough to be transcribed, or where the speaker did not
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contrast, there is a lower chance of seeingsug-
gest and elicit-type DAs (i.e.,elicit-inform, elicit-
suggestion, elicit-assessment) in the preceding and
following DM DAs.

4.2.4 Topical Features

As reported in Section 4.1.2, we find that inter-
locutors are more likely to reach decisions when cer-
tain topics are brought up. Also, we expect decision-
making conversations to take place towards the end
of a topic segment. Therefore, in this study we in-
clude the following features: the label of the current
topic segment, the position of the DA in a topic seg-
ment (measured in words, in seconds, and in %), the
distance to the previous topic shift (both at the top-
level and sub-topic level)(measured in seconds), the
duration of the current topic segment (both at the
top-level and sub-topic level)(measured in seconds).

5 Experiment

5.1 Classifying DM DAs

Detecting DM DAs is the first step of automatic de-
cision detection. For this purpose, we trained Max-
Ent models to classify each unseen sample as ei-
ther DM DA (POS) or non-DM DA (NEG). We per-
formed a 5-fold cross validation on the set of 50
meetings. In each fold, we trained MaxEnt mod-
els from the feature combinations in the training
set, wherein each of the extracted dialogue acts has
been labelled as either POS or NEG. Then, the
models were used to classify unseen instances in
the test set as either POS or NEG. In Section 4.2,
we described the four major types of features used
in this study: unigrams (LX1), prosodic (PROS),
contextual (CONT), and topical (TOPIC) features.
For comparison, we report the naive baseline ob-
tained by training the models on the prosodic fea-
tures alone, since the prosodic features can be gen-
erated fully automatically. The different combina-
tions of features we used for training models can
be divided into the following four groups: (A) us-
ing prosodic features alone (BASELINE), (B) us-
ing lexical, contextual and topical features alone
(LX1, CONT, TOPIC); (C) using all available fea-
tures except one of the four types of features (ALL-
LX1, ALL-PROS, ALL-CONT, ALL-TOPIC); and

get far enough to express the intention.

(D) using all available features (ALL).

6 Results

6.1 Classifying DM Segments

Detecting DM segments is necessary for interpret-
ing decisions, as it provides information about the
current topic of discussion. Here we combine the
predictions of the DM DAs to classify each unseen
topic segment in the test set as either DM Segment
(POS) or non-DM Segment (NEG). Recall that we
defined a DM Segment as a segment that contains
one or more hypothesized DM DAs. The task of de-
tecting DM Segments can thus be viewed as that of
detecting DM Dialogue Acts in a wider window.

6.2 EXP1: Classifying DM DAs

Table 2 reports the performance on the test set. The
results show that models trained with all features
(ALL), including lexical, prosodic, contextual and
topical features, yield substantially better perfor-
mance than the baseline on the task of detecting DM
DAs. We carried out a one-way ANOVA to exam-
ine the effect of different feature combinations on
overall accuracy (F1). The ANOVA suggests a reli-
able effect of feature type(F (9, 286) = 3.44; p <

0.001). Rows 2-4 in Table 2 report the performance
of models in Group B that are trained with a sin-
gle type of feature. Lexical features are the most
predictive features when used alone. We performed
sign tests to determine whether there are statistical
differences among these models and the baseline.
We find that when used alone, only lexical features
(LX1) can train a better model than the baseline
(p < 0.001). However, none of these models yields
a comparable performance to the ALL model.

To study the relative effect of the different fea-
ture types, Rows 5-8 in the table report the perfor-
mance of models in Group C, which are trained with
all available features except LX1, PROS, CONT and
TOPIC features respectively. The amount of degra-
dation in the overall accuracy (F1) of each of the
models in relation to that of the ALL model indi-
cates the contribution of the feature type that has
been left out of the model. We performed sign tests
to examine the differences among these models and
the ALL model. We find that the ALL model out-
performs all of these models(p < 0.001) except

29



Exact Match Lenient Match
Accuracy Precision Recall F1 Precision Recall F1

BASELINE(PROS) 0.32 0.06 0.1 0.32 0.1 0.15

LX1 0.53 0.3 0.38 0.6 0.43 0.5

CONT 0 0 0 0 0 0

TOPIC 0.49 0.11 0.17 0.57 0.11 0.17

ALL-PROS 0.63 0.47 0.54 0.71 0.57 0.63

ALL-LX1 0.61 0.34 0.44 0.65 0.43 0.52

ALL-CONT 0.66 0.62 0.64 0.69 0.68 0.69

ALL-TOPIC 0.72 0.54 0.62 0.7 0.52 0.59

ALL 0.72 0.54 0.62 0.76 0.64 0.7

Table 2:Effects of different combinations of features on detectingDM DAs.

the model trained by leaving out contextual features
(ALL-CONT). A closer investigation of the preci-
sion and recall of the ALL-CONT model shows that
the contextual features are detrimental to recall but
beneficial for precision. The mixed result is due to
the fact that models trained with contextual features
are tailored to recognize particular types of DM di-
alogue acts. Therefore, using these contextual fea-
tures improves the precision for these types of DM
DAs but reduces the overall recognition accuracy.

The last three columns of Table 2 are the results
obtained using a lenient match measure, allowing a
window of 10 seconds preceding and following a hy-
pothesized DM DA for recognition. The better re-
sults show that there is room for ambiguity in the
assessment of the exact timing of DM DAs.

6.3 EXP2: Classifying DM Segments

As expected, the results in Table 3 are better than
those reported in Table 2, achieving at best 83%
overall accuracy.The model that combines all fea-
tures (ALL) yields significantly better results than
the baseline. The ANOVA shows a reliable effect of
different feature types on the task of detecting DM
Segments(F (11, 284) = 2.33; p <= 0.01). Rows
2-4 suggest that lexical features are the most pre-
dictive in terms of overall accuracy. Sign tests con-
firm the advantage of using lexical features (LX1)
over the baseline (PROS)(p < 0.05). Interest-
ingly, the model that is trained with topical features
alone (TOPIC) yields substantially better precision
(p < 0.001). The increase from 49% precision for
the task of detecting DM DAs (in Table 2) to 91%

for that of detecting DM Segments stems from the
fact that decisions are more likely to occur in certain
types of topic segments. In turn, training models
with topical features helps eliminate incorrect pre-
dictions of DM DAs in these types of topic seg-
ments. However, the accuracy gain of the TOPIC
model on detecting certain types of DM Segments
does not extend to all types of DM Segments. This is
shown by the significantly lower recall of the TOPIC
model over the baseline(p < 0.001).

Finally, Rows 5-8 report the performance of the
models in Group (C) on the task of detecting DM
Segments. Sign tests again show that the model that
is trained with all available features (ALL) outper-
forms the models that leave out lexical, prosodic,
or topical features(p < 0.05). However, the ALL
model does not outperform the model that leaves out
contextual features. In addition, the contextual fea-
tures degrade the recall but improve the precision
on the task of detecting DM Segments. Calculat-
ing how much the overall accuracy of the models in
Group C degrades from the ALL model shows that
the most predictive features are the lexical features,
followed by the topical and prosodic features.

7 Discussion

As suggested by the mixed results obtained by the
model that is trained without the contextual features,
the two-phase decision annotation procedure (as de-
scribed in Section 4.1) may have caused annota-
tors to select dialogue acts that serve different func-
tional roles in a decision-making process in the set
of DM DAs. For example, in the dialogue shown
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Exact Match
Accuracy Precision Recall F1

BASELINE(PROS) 0.67 0.39 0.49

LX1 0.69 0.69 0.69

CONT 0 0 0

TOPIC 0.91 0.17 0.29

ALL-PROS 0.82 0.76 0.79

ALL-LX1 0.79 0.64 0.7

ALL-CONT 0.79 0.86 0.83

ALL-TOPIC 0.75 0.73 0.74

ALL 0.86 0.8 0.82

Table 3:Effects of different combinations of features
on detecting DM Segments.

in Figure 1, the annotators have marked dialogue
act (1), (5), (8), and (11) as the DM DAs related
to this decision:“There will be no feature to help
find the remote when it is misplaced”. Among the
four DM DAs, (1) describes the topic of what this
decision is about; (5) and (8) describe the arguments
that support the decision-making process; (11) in-
dicates the level of agreement or disagreement for
this decision. Yet these DM DAs which play dif-
ferent functional roles in the DM process may each
have their own characteristic features. Training one
model to recognize DM DAs of all functional roles
may have degraded the performance on the classifi-
cation tasks. Developing models for detecting DM
DAs that play different functional roles requires a
larger scale study to discover the anatomy of gen-
eral decision-making discussions.

8 Conclusions and Future Work

This is the first study that aimed to detect segments
of the conversation that contain decisions. We have
(1) empirically analyzed the characteristic features
of DM dialogue acts, and (2) computational devel-
oped models to detect DM dialogue acts and DM
topic segments, given the set of characteristic fea-
tures. Empirical analysis has provided a qualitative
account of the DM-characteristic features, whereas
training the computational models on different fea-
ture combinations has provided a quantitative ac-
count of the effect of different feature types on
the task of automatic decision detection. Empiri-
cal analysis has exhibited demonstrable differences

(1) A: but um the feature that we considered for it
not getting lost.
(2) B: Right. Well
(3) B: were talking about that a little bit
(4) B: when we got that email
(5) B: and we think that each of these are so
distinctive, that it it’s not just like another piece of
technology around your house.
(6) B: It’s gonna be somewhere that it can be seen.
(7) A: Mm-hmm.
(8) B: So we’re we’re not thinking that it’s gonna
be as critical to have the loss
(9) D: But if it’s like under covers or like in a couch
you still can’t see it.
. . .
(10) A: Okay , that’s a fair evaluation.
(11) A: Um we so we do we’ve decided not to
worry about that for now.

Figure 1: Example decision-making discussion

in the words (e.g.,we), the contextual features (e.g.,
meeting type, speaker role, dialogue act type), and
the topical features. The experimental results have
suggested that (1) the model combining all the avail-
able features performs substantially better, achiev-
ing 62% and 82% overall accuracy on the task of
detecting DM DAs and that of detecting DM Seg-
ments, respectively, (2) lexical features are the best
indicators for both the task of detecting DM DAs and
that of detecting DM Segments, and (3) combining
topical features is important for improving the pre-
cision for the task of detecting DM Segments.

Many of the features used in this study require hu-
man intervention, such as manual transcriptions, an-
notated dialogue act segmentations and labels, anno-
tated topic segmentations and labels, and other types
of meeting-specific features. Our ultimate goal is to
identify decisions using automatically induced fea-
tures. Therefore, studying the performance degra-
dation when using the automatically generated ver-
sions of these features (e.g., ASR words) is essen-
tial for developing a fully automated component on
detecting decisions immediately after a meeting or
even for when a meeting is still in progress. An-
other problem that has been pointed out in Section 6
and in Section 7 is the different functional roles of
DM dialogue acts in current annotations. Purver et
al. (2006) have suggested a hierarchical annotation
scheme to accommodate the different aspects of ac-
tion items. The same technique may be applicable
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in a more general decision detection task.
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Abstract

The quality of a sentence translated by a
machine translation (MT) system is dif-
ficult to evaluate. We propose a method
for automatically evaluating the quality
of each translation. In general, when
translating a given sentence, one or more
conditions should be satisfied to maintain
a high translation quality. In English-
Japanese translation, for example, prepo-
sitions and infinitives must be appropri-
ately translated. We show several proce-
dures that enable evaluating the quality of
a translated sentence more appropriately
than using conventional methods. The
first procedure is constructing a test set
where the conditions are assigned to each
test-set sentence in the form of yes/no
questions. The second procedure is devel-
oping a system that determines an answer
to each question. The third procedure is
combining a measure based on the ques-
tions and conventional measures. We also
present a method for automatically gener-
ating sub-goals in the form of yes/no ques-
tions and estimating the rate of accom-
plishment of the sub-goals. Promising re-
sults are shown.

1 Introduction

In machine translation (MT) research, appropriately
evaluating the quality of MT results is an important

issue. In recent years, many researchers have tried
to automatically evaluate the quality of MT and im-
prove the performance of automatic MT evaluations
(Niessen et al., 2000; Akiba et al., 2001; Papineni et
al., 2002; NIST, 2002; Leusch et al., 2003; Turian et
al., 2003; Babych and Hartley, 2004; Lin and Och,
2004; Banerjee and Lavie, 2005; Gimeńez et al.,
2005) because improving the performance of auto-
matic MT evaluation is expected to enable us to use
and improve MT systems efficiently. For example,
Och reported that the quality of MT results was im-
proved by using automatic MT evaluation measures
for the parameter tuning of an MT system (Och,
2003). This report shows that the quality of MT re-
sults improves as the performance of automatic MT
evaluation improves.

MT systems can be ranked if a set of MT re-
sults for each system and their reference translations
are given. Usually, about 300 or more sentences
are used to automatically rank MT systems (Koehn,
2004). However, the quality of a sentence translated
by an MT system is difficult to evaluate. For exam-
ple, the results of five MTs into Japanese of the sen-
tence “The percentage of stomach cancer among the
workers appears to be the highest for any asbestos
workers.” are shown in Table 1. A conventional au-
tomatic evaluation method ranks the fifth MT result
first although its human subjective evaluation is the
lowest. This is because conventional methods are
based on the similarity between a translated sentence
and its reference translation, and they give the trans-
lated sentence a high score when the two sentences
are globally similar to each other in terms of lexical
overlap. However, in the case of the above example,
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Table 1: Examples of conventional automatic evaluations.
Original sentence The percentage of stomach cancer among the workers appears to be the highest for any asbestos work-

ers.
Reference translation
(in Japanese)

roudousha no igan no wariai wa , asubesuto roudousha no tame ni saikou to naru youda .

System MT results BLEU NIST Fluency Adequacy

1 roudousha no aida no igan no paasenteeji wa , donoyouna ishiwata
roudousha no tame ni demo mottomo ookii youdearu .

0.2111 2.1328 2 3

2 roudousha no aida no igan no paasenteeji wa, arayuru asubesuto
roudousha no tame ni mottomo takai youni omowa re masu .

0.2572 2.1234 2 3

3 roudousha no aida no igan no paasenteeji wa donna asubesuto no tame
ni mo mottomo takai youni mie masu

0 1.8094 1 2

4 roudousha no aida no igan no paasenteeji wa nin’ino ishiwata ni wa
mottomo takaku mie masu .

0 1.5902 1 2

5 roudousha no naka no igan no wariai wa donna asubesuto ni mo mot-
tomo takai youni mieru .

0.2692 2.2640 1 2

the most important thing to maintain a high trans-
lation quality is to correctly translate “for” into the
target language, and it would be difficult to detect
the importance just by comparing an MT result and
its reference translations even if the number of ref-
erence translations is increased.

In general, when translating a given sentence, one
or more conditions should be satisfied to maintain a
high translation quality. In this paper, we show that
constructing a test set where the conditions that are
mainly established from a linguistic point of view
are assigned to each test-set sentence in the form
of yes/no questions, developing a system that de-
termines an answer to each question, and combin-
ing a measure based on the questions and conven-
tional measures enable the evaluation of the quality
of a translated sentence more appropriately than us-
ing conventional methods. We also present a method
for automatically generating sub-goals in the form of
yes/no questions and estimating the rate of accom-
plishment of the sub-goals.

2 Test Set for Evaluating Machine
Translation Quality

2.1 Test Set

Two main types of data are used for evaluating MT
quality. One type of data is constructed by arbi-
trarily collecting sentence pairs in the source- and
target-languages, and the other is constructed by in-
tensively collecting sentence pairs that include lin-
guistic phenomena that are difficult to automatically
translate. Recently, MT evaluation campaigns such

as the International Workshop on Spoken Language
Translation 1, NIST Machine Translation Evaluation
2, and HTRDP Evaluation 3 were organized to sup-
port the improvement of MT techniques. The data
used in the evaluation campaigns were arbitrarily
collected from newspaper articles or travel conver-
sation data for fair evaluation. They are classified
as the former type of data mentioned above. On the
other hand, the data provided by NTT (Ikehara et al.,
1994) and that constructed by JEIDA (Isahara, 1995)
are classified as the latter type. Almost all the data
mentioned above consist of only parallel translations
in two languages. Data with information for evaluat-
ing MT results, such as JEIDA’s are rarely found. In
this paper, we call data that consist of parallel trans-
lations collected for MT evaluation and that the in-
formation for MT evaluation is assigned to, a test
set.

The most characteristic information assigned to
the JEIDA test set is the yes/no question for assess-
ing the translation results. For example, a yes/no
question such as “Is ‘for’ translated into an expres-
sion representing a cause/reason such as ‘de’?” (in
Japanese) is assigned to a test-set sentence. We can
evaluate MT results objectively by answering the
question. An example of a test-set sample consist-
ing of an ID, a source-language sample sentence, its
reference translation, and a question is as follows.

1http://www.slt.atr.jp/IWSLT2006/
2http://www.nist.gov/speech/tests/mt/index.htm
3http://www.863data.org.cn/
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ID 1.1.7.1.3-1
Sample sen-
tence

The percentage of stomach can-
cer among the workers appears
to be the highest for any asbestos
workers.

Reference
translation
(in Japanese)

roudousha no igan no wariai wa
, asubesuto roudousha no tame
ni saikou to naru youda .

Question Is “appear to” translated into an
auxiliary verb such as “youda”?

The questions are classified mainly in terms of
grammar, and the numbers to the left of the hyphen-
ation of each ID such as 1.1.7.1.3 represent the cat-
egories of the questions. For example, the above
question is related to catenative verbs.

The JEIDA test set consists of two parts, one for
the evaluation of English-Japanese MT and the other
for that of Japanese-English MT. We focused on the
part for English-Japanese MT. This part consists of
769 sample sentences, each of which has a yes/no
question.

The 769 sentences were translated by using five
commercial MT systems to investigate the relation-
ship between subjective evaluation based on yes/no
questions and conventional subjective evaluation
based on fluency and adequacy. The instruction for
the subjective evaluation based on fluency and ad-
equacy followed that given in the TIDES specifi-
cation (TIDES, 2002). The subjective evaluation
based on yes/no questions was done by manually
answering each question for each translation. The
subjective evaluation based on the yes/no questions
was stable; namely, it was almost independent of
the human subjects in our preliminary investigation.
There were only two questions for which the an-
swers generated inconsistency in the subjective eval-
uation when 1,500 question-answer pairs were ran-
domly sampled and evaluated by two human sub-
jects.

Then, we investigated the correlation between the
two types of subjective evaluation. The correlation
coefficients mentioned in this paper are statistically
significant at the 1% or less significance level. The
Spearman rank-order correlation coefficient is used
in this paper. In the subjective evaluation based on
yes/no questions, yes and no were numerically trans-
formed into 1 and −1. For 3,845 translations ob-

tained by using five MT systems, the correlation co-
efficients between the subjective evaluations based
on yes/no questions and based on fluency and ade-
quacy were 0.48 for fluency and 0.63 for adequacy.
These results indicate that the two subjective evalu-
ations have relatively strong correlations. The cor-
relation is especially strong between the subjective
evaluation based on yes/no questions and adequacy.

2.2 Expansion of JEIDA Test Set

Each sample sentence in the JEIDA test set has only
one question. Therefore, in the subjective evalua-
tion using the JEIDA test set, translation errors that
do not involve the pre-assigned question are ignored
even if they are serious. Therefore, translations that
have serious errors that are not related to the ques-
tion tend to be evaluated as being of high quality.
To solve this problem, we expanded the test set by
adding new questions about translations with the se-
rious errors.

Sentences whose average grades were three or
less for fluency and adequacy for the translation re-
sults of the five MT systems were selected for the
expansion. Besides them, sentences whose average
grades were more than three for fluency and ade-
quacy for the translation results of the five MT sys-
tems were selected when a majority of evaluation
results based on yes/no questions about the transla-
tions of the five MT systems were no. The number
of selected sentences was 150. The expansion was
manually performed using the following steps.

1. Serious translation errors are extracted from the
MT results.

2. For each extracted error, questions strongly re-
lated to the error are searched for in the test set.
If related questions are found, the same types
of questions are generated for the selected sen-
tence, and the same ID as that of the related
question is assigned to each generated question.
Otherwise, questions are newly generated, and
a new ID is assigned to each generated ques-
tion.

3. Each MT result is evaluated according to each
added question.

Eventually, one or more questions were assigned to
each selected sentence in the test set. Among the 150
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Table 2: Expanded test-set samples.
ID 1.1.7.1.3-1

Original Sample sentence The percentage of stomach cancer among the workers appears to be the highest for any
asbestos workers.

Reference translation
(in Japanese)

roudousha no igan no wariai wa , asubesuto roudousha no tame ni saikou to naru youda
.

Question (Q-0) Is “appear to” translated into an auxiliary verb such as “youda”?
ID 1.1.6.1.3-5

Expanded Translation error “For” is not translated appropriately.
Question-1 (Q-1) Is “for” translated into an expression representing a cause/reason such as “. . .de”?
ID Additional-1

Expanded Translation error Some expressions are not translated.
Question-2 (Q-2) Are all English words translated into Japanese?

Table 3: Examples of subjective evaluations based on yes/no questions.
Answer

System MT results Q-0 Q-1 Q-2 Fluency Adequacy

1 roudousha no aida no igan no paasenteeji wa , donoyouna ishiwata
roudousha no tame ni demo mottomo ookii youdearu .

Yes No Yes 2 3

2 roudousha no aida no igan no paasenteeji wa, arayuru asubesuto
roudousha no tame ni mottomo takai youni omowa re masu .

Yes Yes Yes 2 3

3 roudousha no aida no igan no paasenteeji wa donna asubesuto no
tame ni mo mottomo takai youni mie masu

Yes No No 1 2

4 roudousha no aida no igan no paasenteeji wa nin’ino ishiwata ni
wa mottomo takaku mie masu .

Yes No No 1 2

5 roudousha no naka no igan no wariai wa donna asubesuto ni mo
mottomo takai youni mieru .

Yes No No 1 2

selected sentences, questions were newly assigned
to 103 sentences. The number of added questions
was 148. The maximum number of questions added
to a sentence was five. After expanding the test set,
the correlation coefficients between the subjective
evaluations based on yes/no questions and based on
fluency and adequacy increased from 0.48 to 0.51
for fluency and from 0.63 to 0.66 for adequacy. The
differences between the correlation coefficients ob-
tained before and after the expansion are statistically
significant at the 5% or less significance level for
adequacy. These results indicate that the expansion
of the test set significantly improves the correlation
between the subjective evaluations based on yes/no
questions and based on adequacy. When two or
more questions were assigned to a test-set sentence,
the subjective evaluation based on the questions was
decided by the majority answer. The majority an-
swers, yes and no, were numerically transformed
into 1 and −1. Ties between yes and no were trans-
formed into 0. Examples of added questions and
the subjective evaluations based on the questions are
shown in Tables 2 and 3.

3 Automatic Evaluation of Machine
Translation Based on Rate of
Accomplishment of Sub-goals

3.1 A New Measure for Evaluating Machine
Translation Quality

The JEIDA test set was not designed for auto-
matic evaluation but for human subjective evalua-
tion. However, a measure for automatic MT evalu-
ation that strongly correlates fluency and adequacy
is likely to be established because the subjective
evaluation based on yes/no questions has a rela-
tively strong correlation with the subjective evalua-
tion based on fluency and adequacy, as mentioned in
Section 2. In this section, we describe a method for
automatically evaluating MT quality by predicting
an answer to each yes/no question and using those
answers.

Hereafter, we assume that each yes/no question is
defined as a sub-goal that a given translation should
satisfy and that the sub-goal is accomplished if the
answer to the corresponding yes/no question to the
sub-goal is yes. We also assume that the sub-goal
is unaccomplished if the answer is no. A new eval-
uation score, A, is defined based on a multiple lin-
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Table 4: Examples of Patterns.
Sample sentence She lived there by herself.
Question Is “by herself” translated as “hitori de”?
Pattern The answer is yes if the pattern [hitori dake de|hitori kiri de |tandoku de|tanshin de] is included in a

translation. Otherwise, the answer is no.
Sample sentence They speak English in New Zealand.
Question The personal pronoun “they” is omitted in a translation like “nyuujiilando de wa eigo wo hanasu”?
Pattern The answer is yes if the pattern [karera wa|sore ra wa] is not included in a translation. Otherwise, the

answer is no.

ear regression model as follows using the rate of ac-
complishment of the sub-goals and the similarities
between a given translation and its reference trans-
lation. The best-fitted line for the observed data is
calculated by the method of least-squares (Draper
and Smith, 1981).

A =
m∑

i=1

λSi × Si (1)

+
n∑

j=1

(λQj × Qj + λQ
′
j
× Q

′
j) + λε

Qj =

{
1 : if subgoal is accomplished
0 : otherwise

(2)

Q
′
j =

{
1 : if subgoal is unaccomplished
0 : otherwise

(3)

Here, the term Qj corresponds to the rate of accom-
plishment of the sub-goal having the i-th ID, and
λQj is a weight for the rate of accomplishment. The

term Q
′
j corresponds to the rate of unaccomplish-

ment of the sub-goal having the i-th ID, and λQ
′
j

is a

weight for the rate of unaccomplishment. The value
n indicates the number of types of sub-goals. The
term λε is constant.

The term Si indicates a similarity between a trans-
lated sentence and its reference translation, and λSi

is a weight for the similarity. Many methods for cal-
culating the similarity have been proposed (Niessen
et al., 2000; Akiba et al., 2001; Papineni et al., 2002;
NIST, 2002; Leusch et al., 2003; Turian et al., 2003;
Babych and Hartley, 2004; Lin and Och, 2004;
Banerjee and Lavie, 2005; Gimeńez et al., 2005).
In our research, 23 scores, namely BLEU (Papineni
et al., 2002) with maximum n-gram lengths of 1, 2,
3, and 4, NIST (NIST, 2002) with maximum n-gram
lengths of 1, 2, 3, 4, and 5, GTM (Turian et al., 2003)
with exponents of 1.0, 2.0, and 3.0, METEOR (ex-
act) (Banerjee and Lavie, 2005), WER (Niessen et

al., 2000), PER (Leusch et al., 2003), and ROUGE
(Lin, 2004) with n-gram lengths of 1, 2, 3, and 4 and
4 variants (LCS, S∗, SU∗, W-1.2), were used to cal-
culate each similarity Si. Therefore, the value of m
in Eq. (1) was 23. Japanese word segmentation was
performed by using JUMAN 4 in our experiments.

As you can see, the definition of our new measure
is based on a combination of an evaluation measure
focusing on local information and that focusing on
global information.

3.2 Automatic Estimation of Rate of
Accomplishment of Sub-goals

The rate of accomplishment of sub-goals is esti-
mated by determining the answer to each question
as yes or no. This section describes a method based
on simple patterns for determining the answers.

An answer to each question is automatically de-
termined by checking whether patterns are included
in a translation or not. The patterns are constructed
for each question. All of the patterns are expressed
in hiragana characters. Before applying the pat-
terns to a given translation, the translation is trans-
formed into hiragana characters, and all punctuation
is eliminated. The transformation to hiragana char-
acters was performed by using JUMAN in our ex-
periments.

Test-set sentences, the questions assigned to
them, and the patterns constructed for the questions
are shown in Table 4. In the patterns, the symbol “|”
represents “OR”.

3.3 Automatic Sub-goal Generation and
Automatic Estimation of Rate of
Accomplishment of Sub-goals

We found that expressions important for maintain-
ing a high translation quality were often commonly

4http://www.kc.t.u-tokyo.ac.jp/nl-resource/juman.html
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included in the reference translations for each test-
set sentence. We also found that the expression was
also related to the yes/no question assigned to the
test-set sentence. Therefore, we automatically gen-
erate yes/no questions in the following steps.

1. For each test-set sentence, a set of words com-
monly appearing in the reference translations
are extracted.

2. For each combination of n words in the set
of words extracted in the first step, skip word
n-grams commonly appearing in the reference
translations in the same word order are selected
as a set of common skip word n-grams.

3. For each test-set sentence, the sub-goal is de-
fined as the yes/no question “Are all of the com-
mon skip word n-grams included in the transla-
tion?”

If no common skip word n-grams are found, the
yes/no question is not generated. The answer to the
yes/no question is determined to be yes if all of the
common skip word n-grams are included in a trans-
lation. Otherwise, the answer is determined to be
no.

This scheme assigns greater weight to important
phrases that should be included in the translation to
maintain a high translation quality. Our observation
is that those important phrases are often common
between human translations. A similar scheme was
proposed by Babych and Hartley (Babych and Hart-
ley, 2004) for BLEU. In their scheme, greater weight
is assigned to components that are salient through-
out the document. Therefore, their scheme focuses
on global context while our scheme focuses on local
context. We believe that the two schemes are com-
plementary to each other.

4 Experiments and Discussion

In our experiments, the translation results of three
MT systems and their subjective evaluation results
were used as a development set for constructing the
patterns described in Section 3.2 and for tuning the
parameters λSi , λQj , λ

Q
′
j
, and λε in Eq. (1). The

translations and evaluation results of the remaining
two MT systems were used as an evaluation set for
testing.

In the development set, each test-set sentence has
at least one question, at least one reference transla-
tion, three MT results, and subjective evaluation re-
sults of the three MT results. The patterns for deter-
mining yes/no answers were manually constructed
for the questions assigned to the 769 test-set sen-
tences. There were 917 questions assigned to them.
Among them, the patterns could be constructed for
898 questions assigned to 767 test-set sentences.
The remaining 19 questions were skipped because
making simple patterns as described in Section 3.2
was difficult; for example, one of the questions
was “Is the whole sentence translated into one sen-
tence?”. The yes/no answer determination accura-
cies obtained by using the patterns are shown in Ta-
ble 5.

Table 5: Results of yes/no answer determination.
Test set Accuracy
Development 97.6% (2,629/2,694)
Evaluation 82.8% (1,487/1,796)

We investigated the correlation between the eval-
uation score, A in Eq. (1) and the subjective eval-
uations, fluency and adequacy, for the 769 test-set
sentences. First, to maximize the correlation coeffi-
cients between the evaluation score, A, and the hu-
man subjective evaluations, fluency and adequacy,
the optimal values of λSi , λQj , λQ

′
j
, and λε in

Eq. (1) were investigated using the development
set within a framework of multiple linear regression
modeling (Draper and Smith, 1981). Then, the cor-
relation coefficients were investigated by using the
optimal value set. The results are shown in Table 6,
7, and 8. In these tables, “Conventional method” in-
dicates the correlation coefficients obtained when A
was calculated by using only similarities Si. “Con-
ventional method (combination)” is a combination
of existing automatic evaluation methods from the
literature. “Our method (automatic)” indicates the
correlation coefficients obtained when the results of
the automatic determination of yes/no answers were
used to calculate Qj and Q

′
j in Eq. (1). For the 19

questions for which the patterns could not be con-
structed, Qj was set at 0. “Our method (full au-
tomatic)” indicates the correlation coefficients ob-
tained when the results of the automatic sub-goal
generation and determination of rate of accomplish-
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Table 6: Coefficients of correlation between evaluation score A and fluency/adequacy. (A reference transla-
tion is used to calculate Si.)

Method fluency adequacy
Development set Evaluation set Development set Evaluation set

Conventional method (WER) 0.43 0.48 0.42 0.48
Conventional method (combination) 0.52 0.51 0.49 0.47
Our method (automatic) 0.90∗ 0.59∗ 0.89∗ 0.62∗
Our method (upper bound) 0.90∗ 0.62∗ 0.90∗ 0.68∗

Table 7: Coefficients of correlation between evaluation score A and fluency/adequacy. (Three reference
translations are used to calculate Si.)

Method fluency adequacy
Development set Evaluation set Development set Evaluation set

Conventional method (WER) 0.47 0.51 0.45 0.51
Conventional method (combination) 0.54 0.54 0.51 0.52
Our method (automatic) 0.90∗ 0.60∗ 0.90∗ 0.64∗
Our method (full automatic) 0.85∗ 0.58 0.84∗ 0.60∗
Our method (upper bound) 0.90∗ 0.62∗ 0.90∗ 0.69∗

Table 8: Coefficients of correlation between evaluation score A and fluency/adequacy. (Five reference
translations are used to calculate Si.)

Method fluency adequacy
Development set Evaluation set Development set Evaluation set

Conventional method (WER) 0.49 0.53 0.46 0.53
Conventional method (combination) 0.56 0.56 0.52 0.54
Our method (automatic) 0.90∗ 0.60 0.90∗ 0.63∗
Our method (full automatic) 0.86∗ 0.59 0.85∗ 0.60∗
Our method (upper bound) 0.91∗ 0.63∗ 0.90∗ 0.69∗

In these tables, ∗ indicates significance at the 5% or less significance level.

ment of sub-goals were used to calculate Qj and Q
′
j

in Eq. (1). Skip word trigrams, skip word bigrams,
and skip word unigrams were used for generating
the sub-goals according to our preliminary experi-
ments. “Our method (upper bound)” indicates the
correlation coefficients obtained when human judg-
ments on the questions were used to calculate Qj

and Q
′
j .

As shown in Table 6, 7, and 8, our methods signif-
icantly outperform the conventional methods from
literature. Note that WER outperformed other indi-
vidual measures like BLEU and NIST in our exper-
iments, and the combination of existing automatic
evaluation methods from the literature outperformed
individual lexical similarity measures by themselves
in almost all cases. The differences between the
correlation coefficients obtained using our method
and the conventional methods are statistically sig-
nificant at the 5% or less significance level for flu-
ency and adequacy, even if the number of reference
translations increases, except in three cases shown
in Table 7 and 8. This indicates that considering
the rate of accomplishment of sub-goals to automat-

ically evaluate the quality of each translation is use-
ful, especially when the number of reference trans-
lations is small.

The differences between the correlation coeffi-
cients obtained using two automatic methods are not
significant. These results indicate that we can reduce
the development cost for constructing sub-goals.
However, there are still significant gaps between the
correlation coefficients obtained using a fully auto-
matic method and upper bounds. These gaps indi-
cate that we need further improvement in automatic
sub-goal generation and automatic estimation of rate
of accomplishment of sub-goals, which is our future
work.

Human judgments of adequacy and fluency are
known to be noisy, with varying levels of intercoder
agreement. Recent work has tended to apply cross-
judge normalization to address this issue (Blatz et
al., 2003). We would like to evaluate against the
normalized data in the future.
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5 Conclusion and Future Work

We demonstrated that the quality of a translated sen-
tence can be evaluated more appropriately than by
using conventional methods. That was demonstrated
by constructing a test set where the conditions that
should be satisfied to maintain a high translation
quality are assigned to each test-set sentence in the
form of a question, by developing a system that de-
termines an answer to each question, and by com-
bining a measure based on the questions and con-
ventional measures. We also presented a method for
automatically generating sub-goals in the form of
yes/no questions and estimating the rate of accom-
plishment of the sub-goals. Promising results were
obtained.

In the near future, we would like to expand the
test set to improve the upper bound obtained by
our method. We are also planning to expand the
method and improve the accuracy of the automatic
sub-goal generation and determination of the rate of
accomplishment of sub-goals. The sub-goals of a
given sentence should be generated by considering
the complexity of the sentence and the alignment in-
formation between the original source-language sen-
tence and its translation. Further advanced genera-
tion and estimation would give us information about
the erroneous parts of MT results and their quality.
We believe that future research would allow us to
develop high-quality MT systems by tuning the sys-
tem parameters based on the automatic MT evalua-
tion measures.
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Abstract

We propose three new features for MT
evaluation: source-sentence constrained
n-gram precision, source-sentence re-
ordering metrics, and discriminative un-
igram precision, as well as a method of
learning linear feature weights to directly
maximize correlation with human judg-
ments. By aligning both the hypothe-
sis and the reference with the source-
language sentence, we achieve better cor-
relation with human judgments than pre-
viously proposed metrics. We further
improve performance by combining indi-
vidual evaluation metrics using maximum
correlation training, which is shown to be
better than the classification-based frame-
work.

1 Introduction

Evaluation has long been a stumbling block in the
development of machine translation systems, due to
the simple fact that there are many correct trans-
lations for a given sentence. The most commonly
used metric, BLEU, correlates well over large test
sets with human judgments (Papineni et al., 2002),
but does not perform as well on sentence-level eval-
uation (Blatz et al., 2003). Later approaches to im-
prove sentence-level evaluation performance can be
summarized as falling into four types:

• Metrics based on common loose sequences of
MT outputs and references (Lin and Och, 2004;
Liu and Gildea, 2006). Such metrics were

shown to have better fluency evaluation per-
formance than metrics based on n-grams such
BLEU and NIST (Doddington, 2002).

• Metrics based on syntactic similarities such as
the head-word chain metric (HWCM) (Liu and
Gildea, 2005). Such metrics try to improve flu-
ency evaluation performance for MT, but they
heavily depend on automatic parsers, which are
designed for well-formed sentences and cannot
generate robust parse trees for MT outputs.

• Metrics based on word alignment between MT
outputs and the references (Banerjee and Lavie,
2005). Such metrics do well in adequacy evalu-
ation, but are not as good in fluency evaluation,
because of their unigram basis (Liu and Gildea,
2006).

• Combination of metrics based on machine
learning. Kulesza and Shieber (2004) used
SVMs to combine several metrics. Their
method is based on the assumption that
higher classification accuracy in discriminat-
ing human- from machine-generated transla-
tions will yield closer correlation with human
judgment. This assumption may not always
hold, particularly when classification is diffi-
cult. Lita et al. (2005) proposed a log-linear
model to combine features, but they only did
preliminary experiments based on 2 features.

Following the track of previous work, to improve
evaluation performance, one could either propose
new metrics, or find more effective ways to combine
the metrics. We explore both approaches. Much
work has been done on computing MT scores based
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on the pair of MT output/reference, and we aim to
investigate whether some other information could
be used in the MT evaluation, such as source sen-
tences. We propose two types of source-sentence
related features as well as a feature based on part of
speech. The three new types of feature can be sum-
marized as follows:

• Source-sentence constrained n-gram precision.
Overlapping n-grams between an MT hypothe-
sis and its references do not necessarily indicate
correct translation segments, since they could
correspond to different parts of the source sen-
tence. Thus our constrained n-gram precision
counts only overlapping n-grams in MT hy-
pothesis and reference which are aligned to the
same words in the source sentences.

• Source-sentence reordering agreement. With
the alignment information, we can compare the
reorderings of the source sentence in the MT
hypothesis and in its references. Such compar-
ison only considers the aligned positions of the
source words in MT hypothesis and references,
and thus is oriented towards evaluating the sen-
tence structure.

• Discriminative unigram precision. We divide
the normal n-gram precision into many sub-
precisions according to their part of speech
(POS). The division gives us flexibility to train
the weights of each sub-precision in frame-
works such as SVM and Maximum Correla-
tion Training, which will be introduced later.
The motivation behind such differentiation is
that different sub-precisions should have dif-
ferent importance in MT evaluation, e.g., sub-
precision of nouns, verbs, and adjectives should
be important for evaluating adequacy, and
sub-precision in determiners and conjunctions
should mean more in evaluating fluency.

Along the direction of feature combination, since
indirect weight training using SVMs, based on re-
ducing classification error, cannot always yield good
performance, we train the weights by directly opti-
mizing the evaluation performance, i.e., maximizing
the correlation with the human judgment. This type
of direct optimization is known as Minimum Error

Rate Training (Och, 2003) in the MT community,
and is an essential component in building the state-
of-art MT systems. It would seem logical to apply
similar methods to MT evaluation. What is more,
Maximum Correlation Training (MCT) enables us
to train the weights based on human fluency judg-
ments and adequacy judgments respectively, and
thus makes it possible to make a fluency-oriented or
adequacy-oriented metric. It surpasses previous MT
metrics’ approach, where a a single metric evaluates
both fluency and adequacy. The rest of the paper is
organized as follows: Section 2 gives a brief recap of
n-gram precision-based metrics and introduces our
three extensions to them; Section 3 introduces MCT
for MT evaluation; Section 4 describes the experi-
mental results, and Section 5 gives our conclusion.

2 Three New Features for MT Evaluation

Since our source-sentence constrained n-gram preci-
sion and discriminative unigram precision are both
derived from the normal n-gram precision, it is
worth describing the original n-gram precision met-
ric, BLEU (Papineni et al., 2002). For every MT
hypothesis, BLEU computes the fraction of n-grams
which also appear in the reference sentences, as well
as a brevity penalty. The formula for computing
BLEU is shown below:

BLEU =
BP

N

N
X

n=1

P

C

P

ngram∈C
Countclip(ngram)

P

C

P

ngram′∈C
Count(ngram′)

where C denotes the set of MT hypotheses.
Countclip(ngram) denotes the clipped number of
n-grams in the candidates which also appear in the
references.BP in the above formula denotes the
brevity penalty, which is set to 1 if the accumulated
length of the MT outputs is longer than the arith-
metic mean of the accumulated length of the refer-
ences, and otherwise is set to the ratio of the two.
For sentence-level evaluation with BLEU, we com-
pute the score based on each pair of MT hypothe-
sis/reference. Later approaches, as described in Sec-
tion 1, use different ways to manipulate the morpho-
logical similarity between the MT hypothesis and its
references. Most of them, except NIST, consider the
words in MT hypothesis as the same, i.e., as long as
the words in MT hypothesis appear in the references,
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they make no difference to the metrics.1 NIST com-
putes the n-grams weights as the logarithm of the ra-
tio of the n-gram frequency and its one word lower
n-gram frequency. From our experiments, NIST is
not generally better than BLEU, and the reason, we
conjecture, is that it differentiates the n-grams too
much and the frequency estimated upon the evalua-
tion corpus is not always reliable. In this section we
will describe two other strategies for differentiating
the n-grams, one of which uses the alignments with
the source sentence as a further constraint, while the
other differentiates the n-gram precisions according
to POS.

2.1 Source-sentence Constrained N-gram
Precision

The quality of an MT sentence should be indepen-
dent of the source sentence given the reference trans-
lation, but considering that current metrics are all
based on shallow morphological similarity of the
MT outputs and the reference, without really under-
standing the meaning in both sides, the source sen-
tences could have some useful information in dif-
ferentiating the MT outputs. Consider the Chinese-
English translation example below:

Source: wo bu neng zhe me zuo
Hypothesis: I must hardly not do this
Reference: I must not do this

It is clear that the wordnot in the MT output can-
not co-exist with the wordhardly while maintain-
ing the meaning of the source sentence. None of
the metrics mentioned above can preventnot from
being counted in the evaluation, due to the simple
reason that they only compute shallow morphologi-
cal similarity. Then how could the source sentence
help in the example? If we reveal the alignment
of the source sentence with both the reference and
the MT output, the Chinese wordbu neng would
be aligned tomust not in the reference andmust
hardly in the MT output respectively, leaving the
wordnot in the MT output not aligned to any word in
the source sentence. Therefore, if we can somehow
find the alignments between the source sentence and
the reference/MT output, we could be smarter in se-
lecting the overlapping words to be counted in the

1In metrics such as METEOR, ROUGE, SIA (Liu and
Gildea, 2006), the positions of words do make difference, but
it has nothing to do with the word itself.

for all n-gramswi, ..., wi+n−1 in MT hypothesis
do

max val = 0;
for all reference sentencesdo

for all n-gramsrj , ..., rj+n−1 in current ref-
erence sentencedo

val=0;
for k=0; k≤ n-1; k ++do

if wi+k equalsrj+k AND MTaligni

equalsREFalignj then
val += 1

n
;

if val ≥ max val then
max val = val;

hit count += max val;
return hit count

MThypothesislength
× length penalty;

Figure 1: Algorithm for Computing Source-
sentence Constrained n-gram Precision

metric: only select the words which are aligned to
the same source words. Now the question comes
to how to find the alignment of source sentence and
MT hypothesis/references, since the evaluation data
set usually does not contain alignment information.
Our approach uses GIZA++2 to construct the many-
to-one alignments between source sentences and the
MT hypothesis/references respectively.3 GIZA++
could generate many-to-one alignments either from
source sentence to the MT hypothesis, in which case
every word in MT hypothesis is aligned to a set
of (or none) words in the source sentence, or from
the reverse direction, in which case every word in
MT hypothesis is aligned to exactly one word (or
none) word in the source sentence. In either case,
usingMTaligni andREFaligni to denote the po-
sitions of the words in the source sentences which
are aligned to a word in the MT hypothesis and a
word in the reference respectively, the algorithm for
computing source-sentence constrained n-gram pre-
cision of lengthn is described in Figure 1.

Since source-sentence constrained n-gram preci-
sion (SSCN) is a precision-based metric, the vari-

2GIZA++ is available at
http://www.fjoch.com/GIZA++.html

3More refined alignments could be got for source-hypothesis
from the MT system, and for source-references by using manual
proof-reading after the automatic alignment. Doing so, how-
ever, requires the MT system’s cooperation and some costly hu-
man labor.
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able length penalty is used to avoid assigning a
short MT hypothesis a high score, and is computed
in the same way as BLEU. Note that in the algo-
rithm for computing the precision of n-grams longer
than one word, not all words in the n-grams should
satisfy the source-sentence constraint. The reason is
that the high order n-grams are already very sparse
in the sentence-level evaluation. To differentiate the
SSCNs based on the source-to-MT/Ref (many-to-
one) alignments and the MT/Ref-to-source (many-
to-one) alignments, we use SSCN1 and SSCN2 to
denote them respectively. Naturally, we could com-
bine the constraint in SSCN1 and SSCN2 by either
taking their union (the combined constrained is sat-
isfied if either one is satisfied) or intersecting them
(the combined constrained is satisfied if both con-
straints are satisfied). We use SSCNu and SSCNi
to denote the SSCN based on unioned constraints
and intersected constraints respectively. We could
also apply the stochastic word mapping proposed in
SIA (Liu and Gildea, 2006) to replace the hard word
matching in Figure 1, and the corresponding met-
rics are denoted as pSSCN1, pSSCN2, pSSCNu,
pSSCNi, with the suffixed number denoting differ-
ent constraints.

2.2 Metrics Based on Source Word Reordering

Most previous MT metrics concentrate on the co-
occurrence of the MT hypothesis words in the ref-
erences. Our metrics based on source sentence re-
orderings, on the contrary, do not take words identi-
ties into account, but rather compute how similarly
the source words are reordered in the MT output and
the references. For simplicity, we only consider the
pairwise reordering similarity. That is, for the source
word pairwi andwj , if their aligned positions in the
MT hypothesis and a reference are in the same order,
we call it a consistent word pair. Our pairwise re-
ordering similarity (PRS) metric computes the frac-
tion of the consistent word pairs in the source sen-
tence. Figure 2 gives the formal description of PRS.
SrcMTi andSrcRefk,i denote the aligned position
of source wordwi in the MT hypothesis and thekth
reference respectively, andN denotes the length of
the source sentence.

Another criterion for evaluating the reordering of
the source sentence in the MT hypothesis is how
well it maintains the original word order in the

for all word pair wi, wj in the source sentence
such thati < j do

for all reference sentencesrk do
if (SrcMTi == SrcMTj AND
SrcRefk,i == SrcRefk,j) OR
((SrcMTi − SrcMTj) × (SrcRefk,i −

SrcRefk,j) > 0) then
count + +; break;

return 2×count
N×(N−1) ;

Figure 2: Compute Pairwise Reordering Similarity

for all word pair wi, wj in the source sentence,
such thati < j do

if SrcMTi − SrcMTj < 0 then
count + +;

return 2×count
N×(N−1) ;

Figure 3: Compute Source Sentence Monotonic Re-
ordering Ratio

source sentence. We know that most of the time,
the alignment of the source sentence and the MT hy-
pothesis is monotonic. This idea leads to the metric
of monotonic pairwise ratio (MPR), which computes
the fraction of the source word pairs whose aligned
positions in the MT hypothesis are of the same order.
It is described in Figure 3.

2.3 Discriminative Unigram Precision Based
on POS

The Discriminative Unigram Precision Based on
POS (DUPP) decomposes the normal unigram pre-
cision into many sub-precisions according to their
POS. The algorithm is described in Figure 4.

These sub-precisions by themselves carry the
same information as standard unigram precision, but
they provide us the opportunity to make a better
combined metric than the normal unigram precision
with MCT, which will be introduced in next section.

for all unigrams in the MT hypothesisdo
if s is found in any of the referencesthen

countPOS(s) += 1
precisionx = countx

mt hypothesis length

∀x ∈ POS

Figure 4: Compute DUPP for N-gram with length n
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Such division could in theory be generalized to work
with higher order n-grams, but doing so would make
the n-grams in each POS set much more sparse. The
preprocessing step for the metric is tagging both
the MT hypothesis and the references with POS. It
might elicit some worries about the robustness of the
POS tagger on the noise-containing MT hypothesis.
This should not be a problem for two reasons. First,
compared with other preprocessing steps like pars-
ing, POS tagging is easier and has higher accuracy.
Second, because the counts for each POS are accu-
mulated, the correctness of a single word’s POS will
not affect the result very much.

3 Maximum Correlation Training for
Machine Translation Evaluation

Maximum Correlation Training (MCT) is an in-
stance of the general approach of directly optimiz-
ing the objective function by which a model will
ultimately be evaluated. In our case, the model is
the linear combination of the component metrics, the
parameters are the weights for each component met-
ric, and the objective function is the Pearson’s corre-
lation of the combined metric and the human judg-
ments. The reason to use the linear combination of
the metrics is that the component metrics are usu-
ally of the same or similar order of magnitude, and it
makes the optimization problem easy to solve. Us-
ing w to denote the weights, andm to denote the
component metrics, the combined metricx is com-
puted as:

x(w) =
∑

j

wjmj (1)

Using hi andx(w)i denote the human judgment
and combined metric for a sentence respectively, and
N denote the number of sentences in the evaluation
set, the objective function is then computed as:

Pearson(X(w), H) =
PN

i=1 x(w)ihi −

P

N

i=1
x(w)i

P

N

i=1
hi

N
q
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(
P

N
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x(w)i)2

N
)(

PN

i=1 h2
i −

(
P

N

i=1
hi)2

N
)

Now our task is to find the weights for each compo-
nent metric so that the correlation of the combined
metric with the human judgment is maximized. It

can be formulated as:

w = argmax
w

Pearson(X(w), H) (2)

The functionPearson(X(w), H) is differentiable
with respect to the vectorw, and we compute this
derivative analytically and perform gradient ascent.
Our objective function not always convex (one can
easily create a non-convex function by setting the
human judgments and individual metrics to some
particular value). Thus there is no guarantee that,
starting from a randomw, we will get the glob-
ally optimal w using optimization techniques such
as gradient ascent. The easiest way to avoid ending
up with a bad local optimum to run gradient ascent
by starting from different random points. In our ex-
periments, the difference in each run is very small,
i.e., by starting from different random initial values
of w, we end up with, not the same, but very similar
values for Pearson’s correlation.

4 Experiments

Experiments were conducted to evaluate the perfor-
mance of the new metrics proposed in this paper,
as well as the MCT combination framework. The
data for the experiments are from the MT evalua-
tion workshop at ACL05. There are seven sets of
MT outputs (E09 E11 E12 E14 E15 E17 E22), each
of which contains 919 English sentences translated
from the same set of Chinese sentences. There are
four references (E01, E02, E03, E04) and two sets
of human scores for each MT hypothesis. Each hu-
man score set contains a fluency and an adequacy
score, both of which range from 1 to 5. We create a
set of overall human scores by averaging the human
fluency and adequacy scores. For evaluating the au-
tomatic metrics, we compute the Pearson’s correla-
tion of the automatic scores and the averaged human
scores (over the two sets of available human scores),
for overall score, fluency, and adequacy. The align-
ment between the source sentences and the MT hy-
pothesis/references is computed by GIZA++, which
is trained on the combined corpus of the evalua-
tion data and a parallel corpus of Chinese-English
newswire text. The parallel newswire corpus con-
tains around 75,000 sentence pairs, 2,600,000 En-
glish words and 2,200,000 Chinese words. The
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stochastic word mapping is trained on a French-
English parallel corpus containing 700,000 sentence
pairs, and, following Liu and Gildea (2005), we only
keep the top 100 most similar words for each En-
glish word.

4.1 Performance of the Individual Metrics

To evaluate our source-sentence based metrics, they
are used to evaluate the 7 MT outputs, with the 4 sets
of human references. The sentence-level Pearson’s
correlation with human judgment is computed for
each MT output, and the averaged results are shown
in Table 1. As a comparison, we also show the re-
sults of BLEU, NIST, METEOR, ROUGE, WER,
and HWCM. For METEOR and ROUGE, WORD-
NET and PORTER-STEMMER are enabled, and for
SIA, the decay factor is set to 0.6. The number
in brackets, for BLEU, shows the n-gram length it
counts up to, and for SSCN, shows the length of the
n-gram it uses. In the table, the top 3 results in each
column are marked bold and the best result is also
underlined. The results show that the SSCN2 met-
rics are better than the SSCN1 metrics in adequacy
and overall score. This is understandable since what
SSCN metrics need is which words in the source
sentence are aligned to an n-gram in the MT hy-
pothesis/references. This is directly modeled in the
alignment used in SSCN2. Though we could also
get such information from the reverse alignment, as
in SSCN1, it is rather an indirect way and could con-
tain more noise. It is interesting that SSCN1 gets
better fluency evaluation results than SSCN2. The
SSCN metrics with the unioned constraint, SSCNu,
by combining the strength of SSCN1 and SSCN2,
get even better results in all three aspects. We can
see that SSCN metrics, even without stochastic word
mapping, get significantly better results than their
relatives, BLEU, which indicates the source sen-
tence constraints do make a difference. SSCN2 and
SSCNu are also competitive to the state-of-art MT
metrics such as METEOR and SIA. The best SSCN
metric, pSSCNu(2), achieves the best performance
among all the testing metrics in overall and ade-
quacy, and the second best performance in fluency,
which is just a little bit worse than the best fluency
metric SIA.

The two reordering based metrics, PRS and MPR,
are not as good as the other testing metrics, in terms

Fluency Adequacy Overall
ROUGEW 24.8 27.8 29.0
ROUGES 19.7 30.9 28.5
METEOR 24.4 34.8 33.1

SIA 26.8 32.1 32.6
NIST 1 09.6 22.6 18.5

WER 22.5 27.5 27.7
PRS 14.2 19.4 18.7

MPR 11.0 18.2 16.5
BLEU(1) 18.4 29.6 27.0
BLEU(2) 20.4 31.1 28.9
BLEU(3) 20.7 30.4 28.6

HWCM(2) 22.1 30.3 29.2
SSCN1(1) 24.2 29.6 29.8
SSCN2(1) 22.9 33.0 31.3

SSCNu(1) 23.8 34.2 32.5
SSCNi(1) 23.4 28.0 28.5

pSSCN1(1) 24.9 30.2 30.6
pSSCN2(1) 23.8 34.0 32.4

pSSCNu(1) 24.5 34.6 33.1
pSSCNi(1) 24.1 28.8 29.3

SSCN1(2) 24.0 29.6 29.7
SSCN2(2) 23.3 31.5 31.8

SSCNu(2) 24.1 34.5 32.8
SSCNi(2) 23.1 27.8 28.2

pSSCN1(2) 24.9 30.2 30.6
pSSCN2(2) 24.3 34.4 32.8

pSSCNu(2) 25.2 35.4 33.9
pSSCNi(2) 23.9 28.7 29.1

Table 1: Performance of Component Metrics

of the individual performance. It should not be sur-
prising since they are totally different kind of met-
rics, which do not count the overlapping n-grams,
but the consistent/monotonic word pair reorderings.
As long as they capture some property of the MT
hypothesis, they might be able to boost the per-
formance of the combined metric under the MCT
framework.

4.2 Performance of the Combined Metrics

To test how well MCT works, the following scheme
is used: each set of MT outputs is evaluated by MCT,
which is trained on the other 6 sets of MT outputs
and their corresponding human judgment; the aver-
aged correlation of the 7 sets of MT outputs with the
human judgment is taken as the final result.

4.2.1 Discriminative Unigram Precision based
on POS

We first use MCT to combine the discriminative
unigram precisions. To reduce the sparseness of the
unigrams of each POS, we do not use the original
POS set, but use a generalized one by combining
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all POS tags with the same first letter (e.g., the dif-
ferent verb forms such asVBN, VBD, andVBZ are
transformed toV). The unified POS set contains 23
POS tags. To give a fair comparison of DUPP with
BLEU, the length penalty is also added into it as a
component. Results are shown in Table 2. DUPPf,
DUPPa and DUPPo denote DUPP trained on hu-
man fluency, adequacy and overall judgment respec-
tively. This shows that DUPP achieves obvious im-
provement over BLEU, with only the unigrams and
length penalty, and DUPPf/ a/ o gets the best re-
sult in fluency/adequacy/overall evaluation, showing
that MCT is able to make a fluency- or adequacy-
oriented metric.

4.2.2 Putting It All Together

The most interesting question in this paper is, with
all these metrics, how well we can do in the MT
evaluation. To answer the question, we put all the
metrics described into the MCT framework and use
the combined metric to evaluate the 7 MT outputs.
Note that to speed up the training process, we do
not directly use 24 DUPP components, instead, we
use the 3 combined DUPP metrics. With the met-
rics shown in Table 1, we then have in total 31 met-
rics. Table 2 shows the results of the final combined
metric. We can see that MCT trained on fluency,
adequacy and overall human judgment get the best
results among all the testing metrics in fluency, ade-
quacy and overall evaluation respectively. We did a
t-test with Fisher’s z transform for the combined re-
sults and the individual results to see how significant
the difference is. The combined results in adequacy
and overall are significantly better at 99.5% confi-
dence than the best results of the individual metrics
(pSSCNu(2)), and the combined result in fluency
is significantly better at 96.9% confidence than the
best individual metric (SIA). We also give the upper
bound for each evaluation aspect by training MCT
on the testing MT outputs, e.g., we train MCT on
E09 and then use it to evaluate E09. The upper-
bound is the best we can do with the MCT based
on linear combination. Another linear framework,
Classification SVM (CSVM),4 is also used to com-
bine the testing metrics except DUPP. Since DUPP
is based on MCT, to make a neat comparison, we
rule out DUPP in the experiments with CSVM. The

4http://svmlight.joachims.org/

Fluency Adequacy Overall
DUPPf 23.6 30.1 30.1
DUPPa 22.1 32.9 30.9
DUPPo 23.2 32.8 31.3

MCT f(4) 30.3 36.7 37.2
MCT a(4) 28.0 38.9 37.4
MCT o(4) 29.4 38.8 38.0

Upper bound 35.3 43.4 42.2
MCT f(3) 29.2 34.7 35.3
MCT a(3) 27.4 38.4 36.8
MCT o(3) 28.8 38.0 37.2
CSVM(3) 27.3 36.9 35.5

Table 2: Combination of the Testing Metrics

testing scheme is the same as MCT, except that we
only use 3 references for each MT hypothesis, and
the positive samples for training CSVM are com-
puted as the scores of one of the 4 references based
on the other 3 references. The slack parameter of
CSVM is chosen so as to maximize the classifica-
tion accuracy of a heldout set of 800 negative and
800 positive samples, which are randomly selected
from the training set. The results are shown in Ta-
ble 2. We can see that MCT, with the same number
of reference sentences, is better than CSVM. Note
that the resources required by MCT and CSVM are
different. MCT uses human judgments to adjust the
weights, while CSVM needs extra human references
to produce positive training samples.

To have a rough idea of how the component met-
rics contribute to the final performance of MCT, we
incrementally add metrics into the MCT in descend-
ing order of their overall evaluation performance,
with the results shown in Figure 5. We can see that
the performance improves as the number of metrics
increases, in a rough sense. The major improvement
happens in the 3rd, 4th, 9th, 14th, and 30th metrics,
which are METEOR, SIA, DUPPa, pSSCN1(1),
and PRS. It is interesting to note that these are not
the metrics with the highest individual performance.
Another interesting observation is that there are no
two metrics belonging to the same series in the most
beneficial metrics, indicating that to get better com-
bined metrics, individual metrics showing different
sentence properties are preferred.

5 Conclusion

This paper first describes two types of new ap-
proaches to MT evaluation, which includes making
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Figure 5: Performance as a Function of the Number
of Interpolated Metrics

use of source sentences, and discriminating unigram
precisions based on POS. Among all the testing met-
rics including BLEU, NIST, METEOR, ROUGE,
and SIA, our new metric, pSSCNu(2), based on
source-sentence constrained bigrams, achieves the
best adequacy and overall evaluation results, and the
second best result in fluency evaluation. We fur-
ther improve the performance by combining the in-
dividual metrics under the MCT framework, which
is shown to be better than a classification based
framework such as SVM. By examining the contri-
bution of each component metric, we find that met-
rics showing different properties of a sentence are
more likely to make a good combined metric.
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Abstract 

We study the use of rich syntax-based 
statistical models for generating gram-
matical case for the purpose of machine 
translation from a language which does 
not indicate case explicitly (English) to a 
language with a rich system of surface 
case markers (Japanese). We propose an 
extension of n-best re-ranking as a 
method of integrating such models into a 
statistical MT system and show that this 
method substantially outperforms stan-
dard n-best re-ranking. Our best perform-
ing model achieves a statistically signifi-
cant improvement over the baseline MT 
system according to the BLEU metric. 
Human evaluation also confirms the re-
sults. 

1 Introduction 

Generation of grammatical elements such as in-
flectional endings and case markers is an impor-
tant component technology for machine transla-
tion (MT). Statistical machine translation (SMT) 
systems, however, have not yet successfully in-
corporated components that generate grammati-
cal elements in the target language. Most state-
of-the-art SMT systems treat grammatical ele-
ments in exactly the same way as content words, 
and rely on general-purpose phrasal translations 
and target language models to generate these ele-
ments (e.g., Och and Ney, 2002; Koehn et al., 
2003; Quirk et al., 2005; Chiang, 2005; Galley et 
al., 2006). However, since these grammatical 
elements in the target language often correspond 
to long-range dependencies and/or do not have 
any words corresponding in the source, they may 
be difficult to model, and the output of an SMT 
system is often ungrammatical.  
 For example, Figure 1 shows an output from 
our baseline English-to-Japanese SMT system on 
a sentence from a computer domain. The SMT 
system, trained on this domain, produces a natu-
ral lexical translation for the English word patch 
as correction program, and translates replace 

into passive voice, which is more appropriate in 
Japanese.1 However, there is a problem in the 
case marker assignment: the accusative marker 
wo, which was output by the SMT system, is 
completely inappropriate when the main verb is 
passive. This type of mistake in case marker as-
signment is by no means isolated in our SMT 
system: a manual analysis showed that 16 out of 
100 translations had mistakes solely in the as-
signment of case markers. A better model of case 
assignment could therefore improve the quality 
of an SMT system significantly.  

S: The patch replaces the .dll file.  

O: 修正プログラムを.dllファイルが置き換えられます。 
    shuusei puroguramu-wo    .dll fairu-ga   okikae-raremasu 
    correction program-ACC dll file-NOM replace-PASS 

C: 修正プログラムで.dllファイルが置き換えられます。 
    shuusei puroguramu-de    .dll fairu-ga   okikae-raremasu 
    correction program-with dll file-NOM replace-PASS  

Figure 1: Example of SMT (S: source; O: output of 
MT; C: correct translation) 

 In this paper, we explore the use of a statisti-
cal model for case marker generation in  English-
to-Japanese SMT. Though we focus on the gen-
eration of case markers in this paper, there are 
many other surface grammatical phenomena that 
can be modeled in a similar way, so any SMT 
system dealing with morpho-syntactically diver-
gent language pairs may benefit from a similar 
approach to modeling grammatical elements. Our 
model uses a rich set of syntactic features of both 
the source (English) and the target (Japanese) 
sentences, using context which is broader than 
that utilized by existing SMT systems. We show 
that the use of such features results in very high 
case assignment quality and also leads to a nota-
ble improvement in MT quality.  

Previous work has discussed the building of 
special-purpose classifiers which generate gram-
matical elements such as prepositions (Hajič et al. 
2002), determiners (Knight and Chander, 1994) 
and case markers (Suzuki and Toutanova, 2006) 
with an eye toward improving MT output. How-

                                                
1 There is a strong tendency to avoid transitive sentences 
with an inanimate subject in Japanese.  
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ever, these components have not actually been 
integrated in an MT system. To our knowledge, 
this is the first work to integrate a grammatical 
element production model in an SMT system and 
to evaluate its impact in the context of end-to-
end MT.  
 A common approach of integrating new mod-
els with a statistical MT system is to add them as 
new feature functions which are used in decod-
ing or in models which re-rank n-best lists from 
the MT system (Och et al., 2004). In this paper 
we propose an extension of the n-best re-ranking 
approach, where we expand n-best candidate lists 
with multiple case assignment variations, and 
define new feature functions on this expanded 
candidate set. We show that expanding the n-best 
lists significantly outperforms standard n-best re-
ranking. We also show that integrating our case 
prediction model improves the quality of transla-
tion according to BLEU (Papineni et al., 2002) 
and human evaluation. 

2 Background 

In this section, we provide necessary background 
of the current work. 

2.1 Task of case marker prediction 

Our definition of the case marker prediction task 
follows Suzuki and Toutanova (2006). That is, 
we assume that we are given a source English 
sentence, and its translation in Japanese which 
does not include case markers. Our task is to pre-
dict all case markers in the Japanese sentence.   

We determine the location of case marker in-
sertion using the notion of bunsetsu. A bunsetsu 
consists of one content (head) word followed by 
any number of function words. We can therefore 
segment any sentence into a sequence of bun-
setsu by using a part-of-speech (POS) tagger. 

Once a sentence is segmented into bunsetsu, it 
is trivial to determine the location of case mark-
ers in a sentence: each bunsetsu can have at most 
one case marker, and the position of the case 
maker within a phrase is predictable, i.e., the 
rightmost position before any punctuation marks. 
The sentence in Figure 1 thus has the following 
bunsetsu analysis (denoted by square brackets), 
with the locations of potential case marker inser-
tion indicated by □:  

[修正'correction'□][プログラム'program'□][.dll□][ファイル'file'□][置き換えられます'replace-PASS'□。] 
For each of these positions, our task is to predict 
the case marker or to predict NONE, which means 
that the phrase does not have a case marker. 

The case markers we used for the prediction 
task are the same as those defined in Suzuki and 
Toutatnova (2006), and are summarized in Table 
1: in addition to the case markers in a strict sense, 
the topic marker wa is also included as well as 
the combination of a case marker plus the topic 
marker for the case markers with the column 
+wa checked in the table. In total, there are 18 
case markers to predict: ten simple case markers, 
the topic marker wa, and seven case+wa combi-
nations. The case prediction task is therefore a 
19-fold classification task: for each phrase, we 
assign one of the 18 case markers or NONE. 

2.2 Treelet translation system 

We constructed and evaluated our case predic-
tion model in the context of a treelet-based trans-
lation system, described in Quirk et al. (2005).2 
In this approach, translation is guided by treelet 
translation pairs, where a treelet is a connected 
subgraph of a dependency tree.  

A sentence is translated in the treelet system 
as follows. The input sentence is first parsed into 
a dependency structure, which is then partitioned 
into treelets, assuming a uniform probability dis-
tribution over all partitions. Each source treelet is 
then matched to a treelet translation pair, the col-
lection of which will form the target translation. 
The target language treelets are then joined to 
form a single tree, and the ordering of all the 
nodes is determined, using the method described 
in Quirk et al. (2005).  

Translations are scored according to a linear 
combination of feature functions:  

( ) ( )j j
j

score t f tλ= ∑  (1) 

                                                
2 Though this paper reports results in the context of a treelet 
system, the model is also applicable to other syntax-based 
or phrase-based SMT systems.  

case markers grammatical functions +wa が ga subject; object  を wo object; path  の no genitive; subject  に ni dative object, location ✓ から kara source ✓ と to quotative, reciprocal, as ✓ で de location,instrument, cause ✓ へ e goal, direction ✓ まで made goal (up to, until) ✓ より yori source, comparison target ✓ は wa Topic  

Table 1. Case markers to be predicted 

50



where 
�

j are the model parameters and fj(t) is the 
value of the feature function j on the candidate t. 
There are ten feature functions in the treelet sys-
tem, including log-probabilities according to in-
verted and direct channel models estimated by 
relative frequency, lexical weighting channel 
models following Vogel et al. (2003), a trigram 
target language model, an order model, word 
count, phrase count, average phrase size func-
tions, and whole-sentence IBM Model 1 log-
probabilities in both directions (Och et al. 2004). 
The weights of these models are determined us-
ing the max-BLEU method described in Och 
(2003). As we describe in Section 4, the case 
prediction model is integrated into the system as 
an additional feature function.  

The treelet translation model is estimated us-
ing a parallel corpus. First, the corpus is word-
aligned using GIZA++ (Och and Ney, 2000); 
then the source sentences are parsed into a de-
pendency structure, and the dependency is pro-
jected onto the target side following the heuris-
tics described in Quirk et al. (2005). Figure 2 
shows an example of an aligned sentence pair: on 
the source (English) side, POS tags and word 
dependency structure are assigned (solid arcs); 
the word alignments between English and Japa-
nese words are indicated by the dotted lines. On 
the target (Japanese) side, projected word de-
pendencies (solid arcs) are available. Additional 
annotations in Figure 2, namely the POS tags and 
the bunsetsu dependency structure (bold arcs) on 
the target side, are derived from the treelet sys-
tem to be used for building a case prediction 
model, which we describe in Section 3.  

2.3 Data 

All experiments reported in this paper are run 
using parallel data from a technical (computer) 
domain. We used two main data sets: train-500K, 
consisting of 500K sentence pairs which we used 
for training the baseline treelet system as well as 

the case prediction model, and a disjoint set of 
three data sets, lambda-1K, dev-1K and test-2K, 
which are used to integrate and evaluate the case 
prediction model in an end-to-end MT scenario. 
Some characteristics of these data sets are given 
in Table 2. We will refer to this table as we de-
scribe our experiments in later sections.  

# sent 
pairs 

# of words  
(average sent length in words) 

data set 

 English Japanese 
train-500K 500K 7,909,198 

(15.81) 
9,379,240 
(18.75) 

lambda-1K 1,000 15,219(15.2) 20,660 (20.7) 
dev-1K 1,000 15,397(15.4) 21,280 (21.3) 
test-2K 2,000 30,198(15.1) 41,269 (20.6) 

Table 2: Data set characteristics 

3 Statistical Models for Case Prediction 
in MT 

3.1 Case prediction model  

Our model of case marker prediction closely fol-
lows our previous work of case prediction in a 
non-MT context (Suzuki and Toutanova, 2006). 
The model is a multi-class log-linear (maximum 
entropy) classifier using 19 classes (18 case 
markers and NONE). It assigns a probability dis-
tribution over case marker assignments given a 
source English sentence, all non-case marker 
words of a candidate Japanese translation, and 
additional annotation information. Let t denote a 
Japanese translation, s a corresponding source 
sentence, and A additional annotation informa-
tion such as alignment, dependency structure, 
and POS tags (such as shown in Figure 2). Let 
rest(t) denote the sequence of words in t exclud-
ing all case markers, and case(t) a case marking 
assignment for all phrases in t. Our case marking 
model estimates the probability of a case as-
signment given all other information:  

),),(|)(( AstresttcasePcase
 

The probability of a complete case assignment is 
a product over all phrases of the probability of 
the case marker of the phrase given all context 
features used by the model. Our model assumes 
that the case markers in a sentence are independ-
ent of each other given the input features. This 
independence assumption may seem strong, but 
the results presented in our previous work (Su-
zuki and Toutanova, 2006) showed that a joint 
model did not result in large improvements over 
a local one in predicting case markers in a non-
MT context. 

 
Figure 2. Aligned English-Japanese sentence pair 
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3.2 Model features and feature selection  

The features of our model are similar to the ones 
described in Suzuki and Toutanova (2006). The 
main difference is that in the current model we 
applied a feature selection and induction algo-
rithm to determine the most useful features and 
feature combinations. This is important for un-
derstanding what sources of information are im-
portant for predicting grammatical elements, but 
are currently absent from SMT systems. We 
used 490K sentence pairs for training the case 
prediction model, which is a subset of the train-
500K set of Table 2. We divided the remaining 
10K sentences for feature selection (5K-feat) and 
for evaluating the case prediction models on ref-
erence translations (5K-test, discussed in Section 
3.3). The paired data is annotated using the 
treelet translation system: as shown in Figure 2, 
we have source and target word dependency 
structure, source language POS and word align-
ment directly from the aligned treelet structure. 
Additionally, we used a POS tagger of Japanese 
to assign POS to the target sentence as well as to 
parse the sentence into bunsetsu (indicated by 
brackets in Figure 2), using the method described 
in Section 2.1. We then compute bunsetsu de-
pendency structure on the target side (indicated 
by bold arcs in Figure 2) based on the word de-
pendency structure projected from English. We 
apply this procedure to annotate a paired corpus 
(in which case the Japanese sentence is a refer-
ence translation) as well as translations generated 
by the SMT system (which may potentially be 
ill-formed).  

We derived a large set of possible features 
from these annotations. The features are repre-
sented as feature templates, such as "Headword 
POS=X", which generate a set of binary features 
corresponding to different instantiations of the 
template, such as "Headword POS=NOUN". We 
applied an automatic feature selection and induc-
tion algorithm to the base set of templates. 

The feature selection algorithm considers the 
original templates as well as arbitrary (bigram 
and trigram) conjunctions of these templates. 
The algorithm performs forward stepwise feature 
selection, choosing templates which result in the 
highest increase in model accuracy on the 5K-
feat set mentioned above. The algorithm is simi-
lar to the one described in McCallum (2003).  

The application of this feature selection pro-
cedure gave us 17 templates, some of which are 
shown in Table 3, along with example instantia-
tions for the phrase headed by saabisu ‘service’ 

from Figure 2. Conjunctions are indicated by &. 
Note that many features that refer to POS and 
syntactic (parent) information are selected, on 
both the target and source sides. We also note 
that the context required by these features is 
more extensive than what is usually available 
during decoding in an SMT system due to a limit 
imposed on the treelet or phrase size. For exam-
ple, our model uses word lemma and POS tags of 
up to six words (previous word, next word, word 
in position +2, head word, previous head word 
and parent word), which covers more context 
than the treelet system we used (the system im-
poses the treelet size limit of four words). This 
means that the case model can make use of much 
richer information from both the source and tar-
get than the baseline MT system. Furthermore, 
our model makes better use of the context by 
combining the contributions of multiple sources 
of knowledge using a maximum entropy model, 
rather than using the relative frequency estimates 
with a very limited amount of smoothing, which 
are used by most state-of-the art SMT systems. 

3.3 Performance on reference translations 

Before discussing the integration of the case pre-
diction model with the MT system, we present an 
evaluation of the model on the task of predicting 
the case assignment of reference translations. 
This performance constitutes an upper bound on 
the model’s performance in MT, because in ref-
erence translations, the word choice and the word 
order are perfect. 
 Table 4 summarizes the results of the refer-
ence experiments on the 5K-test set using two 
metrics: accuracy, which denotes the percentage 
of phrases for which the respective model 
guessed the case marker correctly, and BLEU 
score against the reference translation. For com-

Features Example 
Words in position  –1 and +2 kono,moodo 

Headword & previous headword saabisu&kono 
Parent word kaishi 
Aligned word  service 
Parent of word aligned to headword started 
Next word POS NOUN 
Next word & next word POS seefu&NN 
Headword POS NOUN 
Parent headword POS VN 
Aligned to parent word POS & next word 
POS & prev word POS 

VERB&NN&an
d 

Parent POS of word aligned to headword VERB 
Aligned word POS & headword POS & 
prev word POS 

NN&NN&ADN 

POS of word aligned to headword NOUN 

Table 3: Features for the case prediction model 
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parison, we also include results from two base-
lines: a frequency-based baseline, which always 
assigns the most likely class (NONE), and a lan-
guage model (LM) baseline, which is one of the 
standard methods of generating grammatical 
elements in MT. We trained a word-trigram LM 
using the CMU toolkit (Clarkson and Rosenfeld, 
1997) on the same 490K sentences which we 
used for training the case prediction model. 

Table 4 shows that our model performs sub-
stantially better than both baselines: the accuracy 
of the frequency-based baseline is 59%, and an 
LM-based model improves it to 87.2%. In con-
trast, our model achieves an accuracy of 95%, 
which is a 60% error reduction over the LM 
baseline. It is also interesting to note that as the 
accuracy goes up, so does the BLEU score.   
 These results show that our best model can 
very effectively predict case markers when the 
input to the model is clean, i.e., when the input 
has correct words in correct order. Next, we see 
the impact of applying this model to improve MT 
output.  

4 Integrating Case Prediction Models in 
MT 

In the end-to-end MT scenario, we integrate our 
case assignment model with the SMT system and 
evaluate its contribution to the final MT output.  
 As a method of integration with the MT sys-
tem, we chose an n-best re-ranking approach, 
where the baseline MT system is left unchanged 
and additional models are integrated in the form 
of feature functions via re-ranking of n-best lists 
from the system. Such an approach has been 
taken by Och et al. (2004) for integrating sophis-
ticated syntax-informed models in a phrase-
based SMT system. We also chose this approach 
for ease of implementation: as discussed in Sec-
tion 3.2, the features we use in our case model 
extend over long distance, and are not readily 
available during decoding. Though a tighter inte-
gration with the decoding process is certainly 
worth exploring in the future, we have taken an 
approach here that allows fast experimentation.  
 Within the space of n-best re-ranking, we 
have considered two variations: the standard n-

best re-ranking method, and our significantly 
better performing extension. These are now dis-
cussed in turn.  

4.1 Method 1: Standard n-best re-ranking 

This method is a straightforward application of 
the n-best re-ranking approach described in Och 
et al. (2004). As described in Section 2.2, our 
baseline SMT system is a linear model which 
weighs the values of ten feature functions. To 
integrate a case prediction model, we simply add 
it to the linear model as an 11th feature function, 
whose value is the log-probability of the case 
assignment of the candidate hypothesis t accord-
ing to our model. The weights of all feature func-
tions are then re-estimated using max-BLEU 
training on the n-best list of the lambda-1K set in 
Table 2. As we show in Section 5, this re-ranking 
method did not result in good performance.  

4.2 Method 2: Re-ranking of expanded 
candidate lists 

A drawback of the previous method is that in an 
n-best list, there may not be sufficiently many 
case assignment variations of existing hypothe-
ses. If this is the case, the model cannot be effec-
tive in choosing a hypothesis with a good case 
assignment. We performed a simple experiment 
to test this. We took the first (best) hypothesis t 
from the MT system and generated the top 40 
case variations t’  of t, according to the case as-
signment model. These variations differ from t 
only in their case markers. We wanted to see 
what fraction of these new hypotheses t’  oc-
curred in a 1000-best list of the MT system. In 
the dev-1K set of Table 2, the fraction of new 
case variations of the first hypothesis occurring 
in the 1000-best list of hypotheses was 0.023. 
This means that only less than one (2.3% of 40 = 
0.92) case variant of the first hypothesis is ex-
pected to be found in the 1000-best list, indicat-
ing that even an n-best list for a reasonably large 
n (such as 1000) does not contain enough candi-
dates varying in case marker assignment. 
 In order to allow more case marking candi-
dates to be considered, we propose the following 
method to expand the candidate translation list: 
for each translation t in the n-best list of the base-
line SMT system, we also consider case assign-
ment variations of t. For simplicity, we chose to 
consider the top k case assignment variations of 
each hypothesis according to our case model,3 
for 1 ≤ k ≤ 40.4  

                                                
3 From a computational standpoint, it is non-trivial to con-

Model ACC BLEU 
Baseline (frequency) 58.9 40.0 
Baseline (490K LM) 87.2 83.6 
Log-linear model 94.9 93.0 

Table 4: Accuracy (%) and BLEU score for case 
prediction when given correct context (reference 

translations) on the 5K-test set 
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  After we expand the translation candidate set, 
we compute feature functions for all candidates 
and train a linear model which chooses from this 
larger set. While some features (e.g., word count 
feature) are easy to recompute for a new candi-
date, other features (e.g., treelet phrase transla-
tion probability) are difficult to recompute. We 
have chosen to recompute only four features of 
the baseline model:  the language model feature, 
the word count feature, and the direct and reverse 
whole-sentence IBM Model 1 features,  assum-
ing that the values of the other baseline model 
features for a casing variation t’  of t are the same 
as their values for t. In addition, we added the 
following four feature functions, specifically 
meant to capture the extent to which the newly 
generated case marking variations differ from the 
original baseline system hypotheses they are de-
rived from: 

� Generated: a binary feature with a value of 0 
for original baseline system candidates, and a 
value of 1 for newly generated candidates. 

� Number NONE→non-NONE: the count of case 
markers changed from NONE to non-NONE 
with respect to an original translation candi-
date. 

� Number non-NONE→NONE: the count of case 
markers changed from non-NONE to NONE. 

� Number non-NONE→non-NONE: the count of 
case markers changed from non-NONE to an-
other non-NONE case marker. 

Note that these newly defined features all have a 
value of 0 for original baseline system candidates 
(i.e., when k=0) and therefore would have no 
effect in Method 1. Therefore, the only differ-
ence between our two methods of integration is 
the presence or absence of case-expanded candi-
date translations. 

5 Experiments and Results  

5.1 Data and settings 

For our end-to-end MT experiments, we used 
three datasets in Table 2 that are disjoint from 
the train-500K data set. They consist of source 
English sentences and their top 1000 candidate 
translations produced by the baseline SMT sys-
                                                                       
sider all possible case assignment variations of a hypothesis: 
even though the case assignment score for a sentence is 
locally decomposable, there are still global dependencies in 
the linear model from Equation (1) due to the reverse 
whole-sentence IBM model 1 score used as a feature func-
tion.  
4 Our results indicate that additional case variations would 
not be helpful. 

tem. These datasets are the lambda-1K set for 
training the weights � of the linear model from 
Equation (1), the dev-1K set for model selection, 
and the test-2K set for final testing including 
human evaluation. 

5.2 Results  

The results for the end-to-end experiments on the 
dev-1K set are summarized in Table 5. The table 
is divided into four sections. The first section 
(row) shows the BLEU score of the baseline 
SMT system, which is equivalent to the 1-best 
re-ranking scenario with no case expansion. The 
BLEU score for the baseline was 37.99. In the 
table, we also show the oracle BLEU scores for 
each model, which are computed by greedily se-
lecting the translation in the candidate list with 
the highest BLEU score.5 

The second section of Table 5 corresponds to 
the results obtained by Method 1, i.e., the stan-
dard n-best re-ranking, for n = 20, 100, and 1000. 
Even though the oracle scores improve as n is 
increased, the actual performance improves only 
slightly. These results show that the strategy of 
only including the new information as features in 
a standard n-best re-ranking scenario does not 
lead to an improvement over the baseline. 
 In contrast, Method 2 obtains notable im-
provements over the baseline. Recall that we ex-
pand the n-best SMT candidates with their k-best 
case marking variations in this method, and re-

                                                
5 A modified version of BLEU was used to compute sen-
tence-level BLEU in order to select the best hypothesis per 
sentence. The table shows corpus-level BLEU on the result-
ing set of translations. 

Models #MT 
hypothe

ses 

#case  
expan-
sions 

BLEU Oracle 
BLEU 

Baseline 1 0 37.99 37.99 
 20 0 37.83 41.79 
Method 1 100 0 38.02 42.79 
 1000 0 38.08 43.14 
 1 1 38.18 38.75 
Method 2 1 10 38.42 40.51 
 1 20 38.54 41.15 
 1 40 38.41 41.74 
 20 10 38.91 45.32 
 20 20 38.72 45.94 
Method 2 20 40 38.78 46.56 
 100 10 38.73 46.87 
 100 20 38.64 47.47 
 100 40 38.74 47.96 

Table 5. Results of end-to-end experiments on the 
dev-1K set 
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train the model parameters on the resulting can-
didate lists. For the values n=1 and k=1 (which 
we refer to as 1best-1case), we observe a small 
BLEU gain of .19 over the baseline. Even though 
this is not a big improvement, it is still better 
than the improvement of standard n-best re-
ranking with a 1000-best list. By considering 
more case marker variations (k = 10, 20 and 40), 
we are able to gain about a half BLEU point over 
the baseline. The fact that using more case varia-
tions performs better than using only the best 
case assignment candidate proposed by the case 
model suggests that the proposed approach, 
which integrates the case prediction model as a 
feature function and retrains the weights of the 
linear model, works better than using the case 
prediction model as a post-processor of the MT 
output.  

The last section of the table explores combi-
nations of the values for n and k. Considering 20 
best SMT candidates and their top 10 case varia-
tions gave the highest BLEU score on the dev-
1K set of 38.91, which is an 0.92 BLEU points 
improvement over the baseline. Considering 
more case variations (20 or 40), and more SMT 
candidates (100) resulted in a similar but slightly 
lower performance in BLEU. This is presumably 
because the case model does affect the choice of 
content words as well, but this influence is lim-
ited and can be best captured when using a small 
number (n=20) of baseline system candidates.  

Based on these results on the dev-1K set, we 
chose the best model (i.e., 20-best-10case) and 
evaluated it on the test-2K set against the base-
line. Using the pair-wise statistical test design 
described in Collins et al. (2005), the BLEU im-
provement (35.53 vs. 36.29) was statistically 
significant (p < .01) according to the Wilcoxon 
signed-rank test. 

5.3 Human evaluation 

These results demonstrate that the proposed 
model is effective at improving the translation 
quality according to the BLEU score. In this sec-
tion, we report the results of human evaluation to 
ensure that the improvements in BLEU lead to 
better translations according to human evaluators. 
 We performed human evaluation on the 
20best-10case (n=20, k=10) and 1best-40case 
(n=1, k=40) models against the baseline using 
our final test set, the test-2K data. The perform-
ance in BLEU of these models on the full test-2K 
data was 35.53 for the baseline, 36.09 for the 
1best-40case model, and 36.29 for the 20best-
10case model, respectively. 

In our human evaluation, two annotators were 
asked to evaluate a random set of 100 sentences 
for which the models being compared produced 
different translations. The judges were asked to 
compare two translations, the baseline output 
from the original SMT system and the output 
chosen by the system augmented with the case 
marker generation component. Each judge was 
asked to run two separate evaluations along dif-
ferent evaluation criteria. In the evaluation of 
fluency, the judges were asked to decide which 
translation is more readable/grammatical, ignor-
ing the reference translation. In the evaluation of 
adequacy, they were asked to judge which trans-
lation more correctly reflects the meaning of the 
reference translation. In either setting, they were 
not given the source sentence.  
 Table 6 summarizes the results of the evalua-
tion of the 20best-10case model. The table shows 
the results along two evaluation criteria sepa-
rately, fluency on the left and adequacy on the 
right. The evaluation results of Annotator #1 are 
shown in the columns, while those of Annotator 
#2 are in the rows. Each grid in the table shows 
the number of sentences the annotators classified 
as the proposed system output better (S), the 
baseline system better (B) or the translations are 
of equal quality (E). Along the diagonal (in bold-
face) are the judgments that were agreed on by 
the two annotators: both annotators judged the 
output of the proposed system to be more fluent 
in 27 translations, less fluent in 9 translations; 
they judged that our system output was more 
adequate in 17 translations and less adequate in 9 
translations. Our system output was thus judged 
better under both criteria, though according to a 
sign test, the improvement is statistically signifi-
cant (p < .01) in fluency, but not in adequacy.  

One of the reasons for this inconclusive result 
is that human evaluation may be very difficult 
and can be unreliable when evaluating very dif-
ferent translation candidates, which happens of-
ten when comparing the results of models that 
consider n-best candidates where n>1, as is the 
case with the 20best-10case model. In Table 6, 

Fluency Adequacy 
Annotator #1 Annotator #1 

 

S B E S B E 
S 27 1 8 17 0 9 
B 1 9 16 0 9 12 

Anno- 
tator 
#2 E 7 4 27 9 8 36 

Table 6. Results of human evaluation comparing 
20best-10case vs. baseline. S: proposed system is bet-

ter; B: baseline is better; E: of equal quality  
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we can see that the raw agreement rate between 
the two annotators (i.e., number of agreed judg-
ments over all judgments) is only 63% (27+9+27 
/100) in fluency and 62% (17+9+36/100) in ade-
quacy. We therefore performed an additional 
human evaluation where translations being com-
pared differ only in case markers: the baseline vs. 
the 1best-40case model output. The results are 
shown in Table 7.  

This evaluation has a higher rate of agreement, 
74% for fluency and 71% for adequacy, indicat-
ing that comparing two translations that differ 
only minimally (i.e., in case markers) is more 
reliable. The improvements achieved by our 
model are statistically significant in both fluency 
and adequacy according to a sign test; in particu-
lar, it is remarkable that on 42 sentences, the 
judges agreed that our system was better in flu-
ency, and there were no sentences on which the 
judges agreed that our system caused degradation. 
This means that the proposed system, when 
choosing among candidates differing only in case 
markers, can improve the quality of MT output 
in an extremely precise manner, i.e. making im-
provements without causing degradations. 

6 Conclusion 

We have described a method of using a case 
marker generation model to improve the quality 
of English-to-Japanese MT output. We have 
shown that the use of such a model contributes to 
improving MT output, both in BLEU and human 
evaluation. We have also proposed an extension 
of n-best re-ranking which significantly outper-
formed standard n-best re-ranking. This method 
should be generally applicable to integrating 
models which target specific phenomena in 
translation, and for which an extremely large n-
best list would be needed to cover enough vari-
ants of the phenomena in question. 

Our model improves the quality of generated 
case markers in an extremely precise manner. 
We believe this result is significant, as there are 
many phenomena in the target language of MT 
that may be improved by using special-purpose 
models, including the generation of articles, aux-

iliaries, inflection and agreement. We plan to 
extend and generalize the current approach to 
cover these phenomena in morphologically com-
plex languages in general in the future. 
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Fluency Adequacy 
Annotator #1 Annotator #1 

 

S B E S B E 
S 42 0 9 30 1 9 
B 1 0 7 0 9 7 

Anno- 
tator 
#2 E 7 2 32 9 3 32 

Table 7. Results of human evaluation comparing 
1best-40case vs. baseline  
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Abstract

This paper presents a maximum entropy ma-
chine translation system using a minimal set
of translation blocks (phrase-pairs). While
recent phrase-based statistical machine trans-
lation (SMT) systems achieve significant im-
provement over the original source-channel sta-
tistical translation models, they 1) use a large
inventory of blocks which have significant over-
lap and 2) limit the use of training to just a
few parameters (on the order of ten). In con-
trast, we show that our proposed minimalist
system (DTM2) achieves equal or better per-
formance by 1) recasting the translation prob-
lem in the traditional statistical modeling ap-
proach using blocks with no overlap and 2) re-
lying on training most system parameters (on
the order of millions or larger). The new model
is a direct translation model (DTM) formu-
lation which allows easy integration of addi-
tional/alternative views of both source and tar-
get sentences such as segmentation for a source
language such as Arabic, part-of-speech of both
source and target, etc. We show improvements
over a state-of-the-art phrase-based decoder in
Arabic-English translation.

1 Introduction

Statistical machine translation takes a source se-
quence, S = [s1 s2 . . . sK ], and generates a target
sequence, T

∗ = [t1 t2 . . . tL], by finding the most
likely translation given by:

T
∗ = argmax

T

p(T |S).

1.1 Block selection

Recent statistical machine translation (SMT) al-
gorithms generate such a translation by incorpo-
rating an inventory of bilingual phrases (Och and
Ney, 2000). A m-n phrase-pair, or block, is a se-
quence of m source words paired with a sequence
of n target words. The inventory of blocks in cur-
rent systems is highly redundant. We illustrate the
redundancy using the example in Table 1 which

lljnp

Almrkzyp

llHzb

Al$ywEy

AlSyny

the
Politburo
of
the
Central
Committee
of
the
Chinese
Communist
Party

Almktb

AlsyAsy

Figure 1: Example of Arabic snipet and alignment
to its English translation.

shows a set of phrases that cover the two-word
Arabic fragment “lljnp Almrkzyp” whose align-
ment and translation is shown in Figure 1. One
notices the significant overlap between the vari-
ous blocks including the fact the output target se-
quence “of the central committee” can be pro-
duced in at least two different ways: 1) as 2-4 block
“lljnp Almrkzyp | of the central committee” cov-
ering the two Arabic words, or 2) by using the 1-
3 block “Almrkzyp | of the central” followed by
covering the first Arabic word with the 1-1 block
“lljnp | committee”. In addition, if one adds one
more word to the Arabic fragment in the third posi-
tion such as the block “AlSyny | chinese” the over-
lap increases significantly and more alternate possi-
bilities are available to produce an output such as
the “of the central chinese committee.”

In this work, we propose to only use 1-n blocks and
avoid completely the redundancy obtained by the use
of m-n blocks for m > 1 in current phrase-based sys-
tems. We discuss later how by defining appropriate
features in the translation model, we capture the im-
portant dependencies required for producing n-long
fragments for an m-word input sequence including
the reordering required to produce more fluent out-
put. So in Table 1 only the blocks corresponding to
a single Arabic word are in the block inventory. To
differentiate this work from previous approaches in

57



lljnp Almrkzyp

committee central

of the commission the central

commission of the central

of the committee of central

the committee and the central

of the commission on and central

the commission , central

committee of ’s central

. . . . . .

of the central committee(11)

of the central committee of (11)

the central committee of (8)

central committee(7)

committee central (2)

central committee , (2)

. . .

Table 1: Example Arabic-English blocks showing
possible 1-n and 2-n blocks ranked by frequency.
Block count is given in () for 2-n blocks.

direct modeling for machine translation, we call our
current approach DTM2 (Direct Translation Model
2).

1.2 Statistical modeling for translation

Earlier work in statistical machine translation
(Brown et al., 1993) is based on the “noisy-channel”
formulation where

T
∗ = arg max

T

p(T |S) = argmax
T

p(T )p(S|T ) (1)

where the target language model p(T ) is further de-
composed as

p(T ) ∝
∏

i

p(ti|ti−1, . . . , ti−k+1)

where k is the order of the language model and the
translation model p(S|T ) has been modeled by a
sequence of five models with increasing complexity
(Brown et al., 1993). The parameters of each of the
two components are estimated using Maximum Like-
lihood Estimation (MLE). The LM is estimated by
counting n-grams and using smoothing techniques.
The translation model is estimated via the EM algo-
rithm or approximations that are bootstrapped from
the previous model in the sequence as introduced in
(Brown et al., 1993). As is well known, improved
results are achieved by modifying the Bayes factor-
ization in Equation 1 above by weighing each distri-
bution differently as in:

p(T |S) ∝ pα(T )p1−α(S|T ) (2)

This is the simplest MaxEnt1 model that uses two
feature functions. The parameter α is tuned on a
development set (usually to improve an error met-
ric instead of MLE). This model is a special case
of the Direct Translation Model proposed in (Pap-
ineni et al., 1997; Papineni et al., 1998) for language
understanding; (Foster, 2000) demostrated perplex-
ity reductions by using direct models; and (Och and
Ney, 2002) employed it very successfully for language
translation by using about ten feature functions:

p(T |S) =
1

Z
exp

∑

i

λiφi(S, T )

Many of the feature functions used for translation are
MLE models (or smoothed variants). For example,
if one uses φ1 = log(p(T )) and φ2 = log(p(S|T )) we
get the model described in Equation 2. Most phrase-
based systems, including the baseline decoder used
in this work use feature functions:

• a target word n-gram model (e.g., n = 5),

• a target part-of-speech n-gram model (n ≥ 5),

• various translation models such as a block in-
ventory with the following three varieties: 1) the
unigram block count, 2) a model 1 score p(si|ti)
on the phrase-pair, and 3)a model 1 score for
the other direction p(ti|si),

• a target word count penalty feature |T |,

• a phrase count feature,

• a distortion model (Al-Onaizan and Papineni,
2006).

The weight vector λ is estimated by tuning on a
rather small (as compared to the training set used to
define the feature functions) development set using
the BLEU metric (or other translation error met-
rics). Unlike MaxEnt training, the method (Och,
2003) used for estimating the weight vector for BLEU
maximization are not computationally scalable for a
large number of feature functions.

2 Related Work

Most recent state-of-the-art machine translation de-
coders have the following aspects that we improve
upon in this work: 1) block style, and 2) model pa-
rameterization and parameter estimation. We dis-
cuss each item next.

1The subfields of log-linear models, exponential fam-
ily, and MaxEnt describe the equivalent techniques from
different perspectives.
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2.1 Block style

In order to extract phrases from alignments available
in one or both directions, most SMT approaches use
a heuristic such as union, intersection, inverse pro-

jection constraint, etc. As discussed earlier, these
approaches result in a large overlap between the ex-
tracted blocks (longer blocks overlap with all the
shorter subcomponents blocks). Also, slightly re-
stating the advantages of phrase-pairs identified in
(Quirk and Menezes, 2006), these blocks are effec-
tive at capturing context including the encoding of
non-compositional phrase pairs, and capturing local
reordering, but they lack variables (e.g. embedding
between ne . . . pas in French), have sparsity prob-
lems, and lack a strategy for global reordering. More
recently, (Chiang, 2005) extended phrase-pairs (or
blocks) to hierarchical phrase-pairs where a grammar
with a single non-terminal allows the embedding of
phrases-pairs, to allow for arbitrary embedding and
capture global reordering though this approach still
has the high overlap problem. However, in (Quirk
and Menezes, 2006), the authors investigate mini-
mum translation units (MTU) which is a refinement
over a similar approach by (Banchs et al., 2005)
to eliminate the overlap issue. The MTU approach
picks all the minimal blocks subject to the condition
that no word alignment link crosses distinct blocks.
They do not have the notion of a block with a vari-
able (a special case of the hierarchical phrase-pairs)
that we employ in this work. They also have a weak-
ness in the parameter estimation method; they rely
on an n-gram language model on blocks which inher-
ently requires a large bilingual training data set.

2.2 Estimating Model Parameters

Most recent SMT systems use blocks (i.e. phrase-
pairs) with a few real valued “informative” features
which can be viewed as an indicator of how proba-
ble the current translation is. As discussed in Sec-
tion 1.2, these features are typically MLE models
(e.g. block translation, Model 1, language model,
etc.) whose scores are log-linearly combined using
a weight vector, λf where f is a particular feature.
The λf are trained using a held-out corpus using
maximum BLEU training (Och, 2003). This method
is only practical for a small number of features; typ-
ically, the number of features is on the order of 10 to
20.

Recently, there have been several discriminative
approaches at training large parameter sets includ-
ing (Tillmann and Zhang, 2006) and (Liang et al.,
2006). In (Tillmann and Zhang, 2006) the model
is optimized to produce a block orientation and the
target sentence is used only for computing a sentence
level BLEU. (Liang et al., 2006) demonstrates a dis-

criminatively trained system for machine translation
that has the following characteristics: 1) requires a
varying update strategy (local vs. bold) depending
on whether the reference sentence is “reachable” or
not, 2) uses sentence level BLEU as a criterion for se-
lecting which output to update towards, and 3) only
trains on limited length (5-15 words) sentences.

So both methods fundamentally rely on a prior
decoder to produce an “N-best” list that is used to
find a target (using max BLEU) for the training al-
gorithm. The methods to produce an “N-best” list
tend to be not very effective since most alternative
translations are minor differences from the highest
scoring translation and do not typically include the
reference translation (particularly when the system
makes a large error).

In this paper, the algorithm trains on all sentences
in the test-specific corpus and crucially, the algo-
rithm directly uses the target translation to update
the model parameters. This latter point is a critical
difference that contrasts to the major weakness of the
work of (Liang et al., 2006) which uses a top-N list of
translations to select the maximum BLEU sentence
as a target for training (so called local update).

3 A Categorization of Block Styles

In (Brown et al., 1993), multi-word “cepts” (which
are realized in our block concept) are discussed and
the authors state that when a target sequence is
sufficiently different from a word by word transla-
tion, only then should the target sequence should
be promoted to a cept. This is in direct opposition
to phrase-based decoders which utilize all possible
phrase-pairs and limit the number of phrases only
due to practical considerations. Following the per-
spective of (Brown et al., 1993), a minimal set of
phrase blocks with lengths (m, n) where either m or
n must be greater than zero results in the following
types of blocks:

1. n = 0, source word producing nothing in the
target language (deletion block),

2. m = 0, spontaneous target word (insertion
block),

3. m = 1 and n ≥ 1, a source word producing n

target words including the possibility of a vari-
able (denoted by X) which is to be filled with
other blocks from the sentence (the latter case
called a discontiguous block)

4. m ≥ 1 and n = 1, a sequence of source words
producing a single target words including the
possibility of a variable on the source side (as in
the French ne...pas translating into not, called
multi-word singletons) in the source sequence
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5. m > 1 and n > 1, a non-compositional phrase
translation

In this paper, we restrict the blocks to Types 1 and 3.
From the example in Figure 1, the following blocks
are extracted:

• lljnp ⇒ of the X Committee

• Almrkzyp ⇒ Central

• llHzb ⇒ of the X Party

• Al$ywEy ⇒ Communist

• AlSyny ⇒ Chinese.

These blocks can now be considered more “general”
and can be used to generate more phrases compared
to the blocks shown in Table 1. These blocks when
utilized independently of the remainder of the model
perform very poorly as all the advantages of blocks
are absent. These advantages are obtained using the
features to be described below. Also, we store with a
block additional information such as: (a) alignment
information, and (b) source and target analysis. The
target analysis includes part of speech and for each
target string a list of part of speech sequences are
stored along with their corpus frequencies.

The first alignment shown in Figure 1 is an exam-
ple of a Type 5 non-compositional block; although
this is not currently addressed by the decoder, we
plan to handle such blocks in the future.

4 Algorithm

A classification problem can be considered as a map-
ping from a set of histories, S, into a set of futures,
T . Traditional classification problems deal with a
small finite set of futures usually no more than a few
thousands of classes.

Machine translation can be cast into the same
framework with a much larger future space. In con-
trast to the current global models, we decompose the
process into a sequence of steps. The process begins
at the left edge of a sentence and for practical rea-
sons considers a window of source words that could
be translated. The first action is to jump a distance,
j to a source position and to produce a target string,
t corresponding to the source word at that position.
The process then marks the source position as hav-
ing been visited and iterates till all source words have
been visited. The only wrinkle in this relatively sim-
ple process is the presence of a variable in the tar-
get sequence. In the case of a variable, the source
position is marked as having been partially visited.
When a partially visited source position is visited
again, the target string to the right of the variable is

output and the process is iterated. The distortion or
jump from the previously translated source word, j

in training can vary widely due to automatic sentence
alignment that is used to create the parallel corpus.
To limit the sparseness created by these longer jumps
we cap the jump to a window of source words (-5 to 5
words) around the last translated source word; jumps
outside the window are treated as being to the edge
of the window.

We combine the above translation model with a
n-gram language model as in

p(T, j|S) =
∏

i

p(ti, j|si)

≈
∏

i

λLMp(ti|ti−1, . . . , ti−n)+

λTMp(ti, j|si)

This mixing allows the use of language model built
from a very large monolingual corpus to be used with
a translation model which is built from a smaller
parallel corpus. In the rest of this paper, we are
concerned only with the translation model.

The minimum requirements for the algorithm are
(a) parallel corpus of source and target languages
and (b) word-alignments. While one can use the
EM algorithm to train this hidden alignment model
(the jump step), we use Viterbi training, i.e. we use
the most likely alignment between target and source
words in the training corpus to estimate this model.
We assume that each sentence pair in the training
corpus is word-aligned (e.g. using a MaxEnt aligner
(Ittycheriah and Roukos, 2005) or an HMM aligner
(Ge, 2004)). The algorithm performs the following
steps in order to train the maximum entropy model:
(a) block extraction, (b) feature extraction, and (c)
parameter estimation. Each of the first two steps
requires a pass over the training data and param-
eter estimation requires typically 5-10 passes over
the data. (Della Pietra et al., 1995) documents the
Improved Iterative Scaling (IIS) algorithm for train-
ing maximum entropy models. When the system is
restricted to 1-N type blocks, the future space in-
cludes all the source word positions that are within
the skip window and all their corresponding blocks.
The training algorithm at the parameter estimation
step can be concisely stated as:

1. For each sentence pair in the parallel corpus,
walk the alignment in source word order.

2. At each source word, the alignment identifies the
“true” block.

3. Form a window of source words and allow all
blocks at source words to generate at this gen-
eration point.
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4. Apply the features relevant to each block and
compute the probability of each block.

5. Form the MaxEnt polynomials(Della Pietra et
al., 1995) and solve to find the update for each
feature.

We will next discuss the prior distribution used in
the maximum entropy model, the block extraction
method and the feature generation method and dis-
cuss differences with a standard phrase based de-
coder.

4.1 Prior Distribution

Maximum entropy models are of the form,

p(t, j|s) =
p0(t, j|s)

Z
exp

∑

i

λiφi(t, j, s)

where p0 is a prior distribution, Z is a normalizing
term, and φi(t, j, s) are the features of the model.
The prior distribution can contain any information
we know about our future and in this work we utilize
the normalized phrase count as our prior. Strictly,
the prior has to be uniform on the set of futures to
be a “maximum” entropy algorithm and choices of
other priors result in minimum divergence models.
We refer to both as a maximum entropy models.

The practical benefit of using normalized phrase
count as the prior distribution is for rare transla-
tions of a common source words. Such a translation
block may not have a feature due to restrictions in
the number of features in the model. Utilizing the
normalized phrase count prior, the model is still able
to penalize such translations. In the best case, a fea-
ture is present in the model and the model has the
freedom to either boost the translation probability
or to further reduce the prior.

4.2 Block Extraction

Similar to phrase decoders, a single pass is made
through the parallel corpus and for each source word,
the target sequence derived from the alignments
is extracted. The ‘Inverse Projection Constraint’,
which requires that the target sequence be aligned
only to the source word or phrase in question, is then
checked to ensure that the phrase pair is consistent.
A slight relaxation is made to the traditional target
sequence in that variables are allowed if the length of
their span is 3 words or less. The length restriction is
imposed to reduce the effect of alignment errors. An
example of blocks extracted for the romanized ara-
bic words ‘lljnp’ and ‘Almrkzyp’ are shown Figure 2,
where on the left side are shown the unsegmented
Arabic words, the segmented Arabic stream and the
corresponding Arabic part-of-speech. On the right,

the target sequences are shown with the most fre-
quently occuring part-of-speech and the corpus count
of this block.

The extracted blocks are pruned in order to min-
imize alignment problems as well as optimize the
speed during decoding. Blocks are pruned if their
corpus count is a factor of 30 times smaller than the
most frequent target sequence for the same source
word. This results in about 1.6 million blocks from
an original size of 3.2 million blocks (note this is
much smaller than the 50 million blocks or so that
are derived in current phrase-based systems).

4.3 Features

The features investigated in this work are binary
questions about the lexical context both in the source
and target streams. These features can be classi-
fied into the following categories: (a) block internal
features, and (b) block context features. Features
can be designed that are specific to a block. Such
features are modeling the unigram phrase count of
the block, which is information already present in
the prior distribution as discussed above. Features
which are less specific are tied across many transla-
tions of the word. For example in Figure 2, the pri-
mary translation for ‘lljnp’ is ‘committee’ and occurs
920 times across all blocks extracted from the corpus;
the final block shown which is ‘of the X committee’
occurs only 37 times but employs a lexical feature
‘lljnp committee’ which fires 920 times.

4.3.1 Lexical Features

Lexical features are block internal features which
examine a source word, a target word and the jump
from the previously translated source word. As dis-
cussed above, these are shared across blocks.

4.3.2 Lexical Context Features

Context features encode the context surrounding
a block by examining the previous and next source
word and the previous two target words. Unlike a
traditional phrase pair, which encodes all the infor-
mation lexically, in this approach we define in Ta-
ble 2, individual feature types to examine a por-
tion of the context. One or more of these features
may apply in each instance where a block is relevant.
The previous source word is defined as the previously
translated source word, but the next source word is
always the next word in the source string. At train-
ing time, the previously translated source word is
found by finding the previous target word and utiliz-
ing the alignment to find the previous source word.
If the previous target word is unaligned, no context
feature is applied.

61



committee/NN (613)
of the commission/IN DT NN (169)
the committee/DT NN (136)
commission/NN (135)
of the committee/IN DT NN (134)
the commission/DT NN (106)
of the HOLE committee/IN DT -1 NN(37)

central/NNP (731)
the central/DT JJ (504)
of the central/IN DT NNP(64)
the cia/DT NNP (58)

Almrkzyp

Al# mrkzy +p

DET ADJ NSUFF_FEM_SG

lljnp

l# ljn +p

PREP NOUN NSUFF_FEM_SG

Figure 2: Extracted blocks for ‘lljnp’ and ‘Almrkzyp’.

Feature Name Feature variables
SRC LEFT source left, source word,

target word
SRC RIGHT source right, source word,

target word
SRC TGT LEFT source left, target left,

source word, target word
SRC TGT LEFT 2 source left, target left,

target left 2, source word,
target word

Table 2: Context Feature Types

4.3.3 Arabic Segmentation Features

An Arabic segmenter produces morphemes; in
Arabic, prefixes and suffixes are used as prepositions,
pronouns, gender and case markers. This produces a
segmentation view of the arabic source words (Lee et
al., 2003). The features used in the model are formed
from the Cartesian product of all segmentation to-
kens with the English target sequence produced by
this source word or words. However, prefixes and
suffixes which are specific in translation are limited
to their English translations. For example the pre-
fix ‘Al#’ is only allowed to participate in a feature
with the English word ‘the’ and similarly ‘the’ is not
allowed to participate in a feature with the stem of
the Arabic word. These restrictions limit the num-
ber of features and also reduce the over fitting by the
model.

4.3.4 Part-of-speech Features

Part-of-speech taggers were run on each language:
the English part of speech tagger is a MaxEnt tag-
ger built on the WSJ corpus and on the WSJ test
set achieves an accuracy of 96.8%; the Arabic part
of speech tagger is a similar tagger built on the Ara-
bic tree bank and achieves an accuracy of 95.7% on
automatically segmented data. The part of speech
feature type examines the source and target as well
as the previous target and the corresponding previ-
ous source part of speech. A separate feature type
examines the part of speech of the next source word

when the target sequence has a variable.

4.3.5 Coverage Features

These features examine the coverage status of the
source word to the left and the source word to the
right. During training, the coverage is determined
by examining the alignments; the source word to the
left is uncovered if its target sequence is to the right
of the current target sequence. Since the model em-
ploys binary questions and predominantly the source
word to the left is already covered and the right
source word is uncovered, these features fire only if
the left is open or if the right is closed in order to
minimize the number of features in the model.

5 Translation Decoder

A beam search decoder similar to phrase-based sys-
tems (Tillmann and Ney, 2003) is used to translate
the Arabic sentence into English. These decoders
have two parameters that control their search strat-
egy: (a) the skip length (how many positions are al-
lowed to be untranslated) and (b) the window width,
which controls how many words are allowed to be
considered for translation. Since the majority of the
blocks employed in this work do not encode local re-
ordering explicitly, the current DTM2 decoder uses
a large skip (4 source words for Arabic) and tries
all possible reorderings. The primary difference be-
tween a DTM2 decoder and standard phrase based
decoders is that the maximum entropy model pro-
vides a cost estimate of producing this translation
using the features described in previous sections. An-
other difference is that the DTM2 decoder handles
blocks with variables. When such a block is pro-
posed, the initial target sequence is first output and
the source word position is marked as being partially
visited and an index into which segment was gener-
ated is kept for completing the visit at a later time.
Subsequent extensions of this path can either com-
plete this visit or visit other source words. On a
search path, we make a further assumption that only
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one source position can be in a partially visited state
at any point. This greatly reduces the search task
and suffices to handle the type of blocks encountered
in Arabic to English translation.

6 Experiments

The UN parallel corpus and the LDC news corpora
released as training data for the NIST MT06 eval-
uation are used for all evaluations presented in this
paper. A variety of test corpora are now available
and we use MT03 as development test data, and
test results are presented on MT05. Results obtained
on MT06 are from a blind evaluation. For Arabic-
English, the NIST MT06 training data contains 3.7M
sentence pairs from the UN from 1993-2002 and 100K
sentences pairs from news sources. This represents
the universe of training data, but for each test set
we sample this corpus to train efficiently while also
observing slight gains in performance. The training
universe is time sorted and the most recent corpora
are sampled first. Then for a given test set, we obtain
the first 20 instances of n-grams from the test that
occur in the training universe and the resulting sam-
pled sentences then form the training sample. The
contribution of the sampling technique is to produce
a smaller training corpus which reduces the compu-
tational load; however, the sampling of the universe
of sentences can be viewed as test set domain adapta-
tion which improves performance and is not strictly
done due to computational limitations2. The 5-gram
language model is trained from the English Gigaword
corpus and the English portion of the parallel corpus
used in the translation model training.

The baseline decoder is a phrase-based decoder
that employs n-m blocks and uses the same test set
specific training corpus described above.

6.1 Feature Type Experiments

There are 15 individual feature types utilized in the
system, but in order to be brief we present the re-
sults by feature groups (see Table 3): (a) lexical, (b)
lexical context, (c) segmentation, (d) part-of-speech,
and (e) coverage features. The results show im-
provements with the addition of each feature set, but
the part-of-speech features and coverage features are
not statistically significant improvements. The more
complex features based on Arabic segmentation and
English part-of-speech yield a small improvement of
0.5 BLEU points over the model with only lexical
context.

2Recent results indicate that test set adaptation by
test set sampling of the training corpus achieves a cased
Bleu of 53.26 on MT03 whereas a general system trained
on all data achieves only 51.02

Verb Placement 3
Missing Word 5
Extra Word 5
Word Choice 26
Word Order 3
Other error 1
Total 43

Table 4: Errors on last 25 sentences of MT-03.

7 Error Analysis and Discussion

We analyzed the errors in the last 25 sentences of the
MT-03 development data using the broad categories
shown in Table 4. These error types are not indepen-
dent of each other; indeed, incorrect verb placement
is just a special case of the word order error type
but for this error analysis for each error we take the
first category available in this list. Word choice er-
rors can be a result of (a) rare words with few, or
incorrect, or no translation blocks (4 times) or (b)
model weakness3 (22 times). In order to address the
model weakness type of errors, we plan on investigat-
ing feature selection using a language model prior.
As an example, consider an arabic word which pro-
duces both ‘the’ (due to alignment errors) and ‘the
conduct’. An n-gram LM has very low cost for the
word ‘the’ but a rather high cost for content words
such as ‘conduct’. Incorporating the LM model as a
prior should help the maximum entropy model focus
its weighting on the content word to overcome the
prior information.

8 Conclusion and Future Work

We have presented a complete direct translation
model with training of millions of parameters based
on a set of minimalist blocks and demonstrated the
ability to retain good performance relative to phrase
based decoders. Tied features minimize the num-
ber of parameters and help avoid the sparsity prob-
lems associated with phrase based decoders. Uti-
lizing language analysis of both the source and tar-
get languages adds 0.8 BLEU points on MT-03, and
0.4 BLEU points on MT-05. The DTM2 decoder
achieved a 1.7 BLEU point improvement over the
phrase based decoder on MT-06. In this work, we
have restricted the block types to only single source
word blocks. Many city names and dates in Ara-
bic can not be handled by such blocks and in future
work we intend to investigate the utilization of more
complex blocks as necessary. Also, the DTM2 de-
coder utilized the LM component independently of

3The word occurred with the correct translation in
the phrase library with a count more than 10 and yet the
system used an incorrect translation.
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Feature Types # of feats MT-03 MT-05 MT-06
(MT03)

Training Size
Num. of Sentences 197K 267K 279K
Phrase-based Decoder 51.20 49.06 36.92
DTM2 Decoder
Lex Feats a 439,582 49.70 48.37
+Lex Context b 2,455,394 50.45 49.61
+Seg Feats c 2,563,338 50.97 49.96
+POS Feats d 2,608,352 51.27 49.93
+Cov Feats e 2,783,813 51.19 50.00 38.61

Table 3: Bleu scores on MT03-MT06.

the translation model; however, in future work we
intend to investigate feature selection using the lan-
guage model as a prior which should result in much
smaller systems.
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Abstract

Conditional Random Fields (CRFs) have shown
great success for problems involving structured out-
put variables. However, for many real-world NLP
applications, exact maximum-likelihood training is
intractable because computing the global normal-
ization factor even approximately can be extremely
hard. In addition, optimizing likelihood often does
not correlate with maximizing task-specific evalu-
ation measures. In this paper, we present a novel
training procedure, structured local training, that
maximizes likelihood while exploiting the benefits
of global inference during training: hidden vari-
ables are used to capture interactions between lo-
cal inference and global inference. Furthermore,
we introduce biased potential functions that empir-
ically drive CRFs towards performance improve-
ments w.r.t. the preferred evaluation measure for
the learning task. We report promising experimen-
tal results on two coreference data sets using two
task-specific evaluation measures.

1 Introduction

Undirected graphical models such as Conditional
Random Fields (CRFs) (Lafferty et al., 2001) have
shown great success for problems involving struc-
tured output variables (e.g. Wellner et al. (2004),
Finkel et al. (2005)). For many real-world NLP ap-
plications, however, the required graph structure can
be very complex, and computing the global normal-
ization factor even approximately can be extremely
hard. Previous approaches for training CRFs have
either (1) opted for a training method that no longer
maximizes the likelihood, (e.g. McCallum and Well-
ner (2004), Roth and Yih (2005)) 1, or (2) opted for a

1Both McCallum and Wellner (2004) and Roth and Yih
(2005) used the voted perceptron algorithm (Collins, 2002) to
train intractable CRFs.

simplified graph structure to avoid intractable global
normalization (e.g. Roth and Yih (2005), Wellner et
al. (2004)).

Solutions of the first type replace the computation
of the global normalization factor

∑
y p(y|x) with

argmaxy p(y|x) during training, since finding an
argmax of a probability distribution is often an eas-
ier problem than finding the entire probability distri-
bution. Training via the voted perceptron algorithm
(Collins, 2002) or using a max-margin criterion also
correspond to the first option (e.g. McCallum and
Wellner (2004), Finley and Joachims (2005)). But
without the global normalization, the maximum-
likelihood criterion motivated by the maximum en-
tropy principle (Berger et al., 1996) is no longer a
feasible option as an optimization criterion.

The second solution simplifies the graph struc-
ture for training, and applies complex global infer-
ence only for testing. In spite of the discrepancy
between the training model and the testing model,
it has been empirically shown that (1) performing
global inference only during testing can improve
performance (e.g. Finkel et al. (2005), Roth and Yih
(2005)), and (2) full-blown global training can of-
ten perform worse due to insufficient training data
(e.g. Punyakanok et al. (2005)). Importantly, how-
ever, attempts to reduce the discrepancy between the
training and test models — by judiciously adding the
effect of global inference to the training — have pro-
duced substantial performance improvements over
locally trained models (e.g. Cohen and Carvalho
(2005), Sutton and McCallum (2005a)).

In this paper, we present structured local training,
a novel training procedure for maximum-likelihood
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training of undirected graphical models, such as
CRFs. The procedure maximizes likelihood while
exploiting the benefits of global inference during
training by capturing the interactions between local
inference and global inference via hidden variables.

Furthermore, we introduce biased potential func-
tions that redefine the likelihood for CRFs so that
the performance of CRFs trained under the max-
imum likelihood criterion correlates better empiri-
cally with the preferred evaluation measures such as
F-score and MUC-score.

We focus on the problem of coreference resolu-
tion; however, our approaches are general and can
be extended to other NLP applications with struc-
tured output. Our approaches also extend to non-
conditional graphical models such as Markov Ran-
dom Fields. In experiments on two coreference data
sets, structured local training reduces the error rate
significantly (3.5%) for one coreference data set and
minimally (≤ 1%) for the other. Experiments using
biased potential functions increase recall uniformly
and significantly for both data sets and both task-
specific evaluation measures. Results for the com-
bination of the two techniques are promising, but
mixed: pairwise F1 increases by 0.8-5.5% for both
data sets; MUC F1 increases by 3.5% for one data
set, but slightly hurts performance for the second
data set.

In §2, we describe structured local training, and
follow with experimental results in §3. In §4, we
describe biased potential functions and follow with
experimental results in §5. We discuss related work
in §6.

2 Structured Local Training

2.1 Definitions

For clarity, we define the following terms that we
will use throughout the paper.

• local inference: 2 Inference factored into smaller
independent pieces, without considering the
structure of the output space.

• global inference: Inference applied on the entire
set of output variables, considering the structure
of the output space.

2In this paper, inference refers to the operation of finding the
argmax in particular.

• local training: Training that does not invoke
global inference at each iteration.

• global training: Training that does invoke global
inference at each iteration.

2.2 A Motivating Example for Coreference
Resolution

In this section, we present an example of the coref-
erence resolution problem to motivate our approach.
It has been shown that global inference-based train-
ing for coreference resolution outperforms training
with local inference only (e.g. Finley and Joachims
(2005), McCallum and Wellner (2004)). In particu-
lar, the output of coreference resolution must obey
equivalence relations, and exploiting such structural
constraints on the output space during training can
improve performance. Consider the coreference res-
olution task for the following text.

It was after the passage of this act, that Mary(1)’s attitude
towards Elizabeth(1) became overtly hostile. The deliber-
ations surrounding the act seem to have revived all Mary’s
memories of the humiliations she had suffered at the
hands of Anne Boleyn. At the same time, Elizabeth(2)’s
continuing prevarications over religion confirmed that she
was indeed her mother’s daughter.

In the above text, the “she” in the last sen-
tence is coreferent with both mentions of
“Elizabeth”. However, when we consider
“she” and “Elizabeth(1)” in isolation from the
remaining coreference chain, it can be difficult for
a machine learning method to determine whether
the pair is coreferent or not. Indeed, such a
pair may not look very different from the pair
“she” and “Mary(1)” in terms of feature vectors.
It is much easier, however, to determine that
“she” and “Elizabeth(2)” are coreferent, or that
“Elizabeth(1)” and “Elizabeth(2)” are coreferent.
Only by taking the transitive closure of these pair-
wise coreference relations does it become clear that
“she” and “Elizabeth(1)” are coreferent. In other
words, global training might handle potentially
confusing coreference cases better because it allows
parameter learning (for each pairwise coreference
decision) to be informed by global inference.

We argue that, with appropriate modification to
the learning instances, local training is adequate for
the coreference resolution task. Specifically, we pro-
pose that confusing pairs in the training data — such
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as “she” and “Elizabeth(1)” — be learned as not-
coreferent, so long as the global inference step can
fix this error by exploiting the structure of the out-
put space, i.e. by exploiting the equivalence rela-
tions. This is the key idea of structured local train-
ing, which we elaborate formally in the following
section.

2.3 A Hidden-Variable Model

In this section, we present a general description of
structured local training. Let y be a vector of out-
put variables for structured output, and let x be a
vector of input variables. In order to capture the in-
teractions between global inference and local infer-
ence, we introduce hidden variables h, |h| = |y|,
so that the global inference for p(y, h|x) can be fac-
tored into two components using the product rule, as
follows:

p(y, h|x) = p(y|h, x) p(h|x)
= p(y|h) p(h|x)

The second component p(h|x) on the right hand side
corresponds to the local model, for which the infer-
ence factorizes into smaller independent pieces, e.g.
argmaxhp(h|x) = {argmaxhi

φ(hi, x)}. And the
first component p(y|h, x) on the right hand side cor-
responds to the global model, whose inference may
not factorize nicely. Further, we assume that y is in-
dependent of x given h, so that p(y|h, x) = p(y|h).
That is to say, h captures sufficient information from
x, so that given h, global inference of y only de-
pends on h. The quantity of p(y|x) then is given by
marginalizing out h as follows:

p(y|x) =
∑
h

p(y, h|x)

Intuitively, the hidden variables h represent the lo-
cal decisions that can lead to a good y after global
inference is applied. In the case of coreference reso-
lution, one natural factorization would be that global
inference is a clustering algorithm, and local infer-
ence is a classification decision on each pair of noun
phrases (or mentions).3 In this paper, we assume

3Formally, we define each yi ∈ y to be the coreference de-
cision for the ith pair of mentions, and xi ∈ x be the input
regarding the ith pair of mentions. Then hi corresponds to the
local coreference decision that can lead to a good coreference
decision yi after the clustering algorithm has been applied.

that we only parameterize the local model p(h|x),
although it would be possible to extend the parame-
terization to the global model as well, depending on
the particular application under consideration. The
similarity between a pair of mentions is parameter-
ized via log-linear models. However, once we have
the similarity scores extracted via local inference,
the clustering algorithm does not require further pa-
rameterization.

For training, we apply the standard Expectation-
Maximization (EM) algorithm (Dempster et al.,
1977) as follows:

• E Step: Compute a distribution

P̃ (t) = P (h|y, x, θ(t−1))

• M Step: Set θ(t) to θ that maximizes

E
P̃ (t) [logP (y,h|x, θ)]

By repeatedly applying the above two steps for
t = 1, 2, ..., the value of θ converges to the local
maxima of the conditional log likelihood L(θ) =
logP (y|x, θ).
2.4 Application to Coreference Resolution

For yi ∈ y (and hi ∈ h) in the coreference resolution
task, yi = 1 (and hi = 1) corresponds to ith pair of
mentions being coreferent, and yi = 0 (and hi = 0)
corresponds to ith pair being not coreferent.

[Local Model P (h|x)] For the local model, we de-
fine cliques as individual nodes,4 and parameterize
each clique potential as

φ(hi, x) = φ(hi, xi) = exp
∑
k

λkfk(hi, xi)

Let Φ(h|x) ≡ ∏
i φ(hi, xi). Then,

P (h|x) =
Φ(h, x)∑
h Φ(h, x)

Notice that in this model, finding argmaxhP (h|x)
corresponds to simply finding argmaxhi

φ(hi, xi) in-
dependently for each hi ∈ h.

4Each node in the graphical representation of CRFs corre-
sponds to the coreferent decision for each pair of mentions. This
corresponds to the “Model 3” of McCallum and Wellner (2004).
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ALGORITHM-1

INPUT: x, true labeling y∗, current local model P (h|x)
GOAL: Find the highest confidence labeling y′

such that y∗ = single-link-clustering(y′)

h∗ ← argmaxhP (h|x)
h′ ← single-link-clustering(h∗)
construct a graph G = (V,E), where

E = {h′
i : h′

i ∈ h′ s.t. y∗i = 1}
V = {v : v is a NP referred by a h′i ∈ E}
with edge cost costh′

i
= φ(h′

i, xi) if h′
i �= y∗i

with edge cost costh′
i

= 0 if h′
i = y∗i

find a minimum spanning tree(or forest) M of G
for each h′i ∈ h′

if h′
i = y∗i
y′i ← h∗

i

else if h′
i ∈M

y′i ← 1
else

y′i ← 0
end for
return y′

Figure 1: Algorithm to find the highest confidence labeling y′

that can be clustered to the true labeling y∗

[Global Model P (y|h)] For the global model, we
assume a deterministic clustering algorithm is given.
In particular, we focus on single-link clustering, as it
has been shown to be effective for coreference reso-
lution (e.g. Ng and Cardie (2002)). With single-link
clustering, P (y|h) = 1 if h can be clustered to y,
and P (y|h) = 0 if h cannot be clustered to y.5

[Computation of the E-step] The E-step requires
computation of the distribution of P (h|y, x, θ(t−1)),
which we will simply denote as P (h|y, x), since all
our distributions are implicitly conditioned on the
model parameters θ.

P (h|y, x) =
P (h, y|x)
P (y|x)

∝ P (y|h) P (h|x)

Notice that when computing P (h|y, x), the denomi-
nator P (y|x) stays as a constant for different values
of h. The E-step requires enumeration of all possible
values of h, but it is intractable with our formulation,
because inference for the global model P (y|h) does
not factor out nicely. Therefore, we must resort to an

5Single-link clustering simply takes the transitive closure,
and does not consider the distance metric. In a pilot study, we
also tried a variant of a stochastic clustering algorithm that takes
into account the distance metric (set as the probabilities from
the local model) for the global model, but the performance was
worse.

ALGORITHM-2

INPUT: x, true labeling y∗, current local model P (h|x)
GOAL: Find a high confidence labeling y′ that is

close to the true labeling y∗

h∗ ← argmaxhP (h|x)
h′ ← single-link-clustering(h∗)
for each h′i ∈ h′

if h′
i = y∗i
y′i ← h∗

ielse
y′i ← y∗iend for

return y′

Figure 2: Algorithm to find a high confidence labeling y′ that

is close to the true labeling y∗

approximation method. Neal and Hinton (1998) an-
alyze and motivate various approximate EM training
methods. One popular choice in practice is called
“Viterbi training”, a variant of the EM algorithm,
which has been shown effective in many NLP ap-
plications. Viterbi training approximates the distri-
bution by assigning all probability mass to a single
best assignment. The algorithm for this is shown in
Figure 1.

We propose another approximation option for the
E-step that is given by Figure 2. Intuitively, when
the current local model misses positive coreference
decisions, the first algorithm constructs a y′ that is
closest to h′ for single-link clustering to recover the
true labeling y∗, while the second algorithm con-
structs a y′ that is closer to y∗ by preserving all of
the missing positive coreference decisions. 6

[Computation of M-step] Because P (y|h) is not
parameterized, finding argmaxθ P (y,h|x) reduces
to finding argmaxθ P (h|x), which is standard CRF
training. In order to speed up the training, we start
convex optimization for CRFs using the parame-
ter values θ(t−1) from the previous M-step. For
the very first iteration of EM, we start by setting
P (y∗|x) = 1 for E-step, so that the first M-step will
finds argmaxθ P (y∗|x).

6In a pilot study, we found that ALGORITHM-2 per-
forms slightly better than ALGORITHM-1. We also tried two
other approximation options, but none performed as well as
ALGORITHM-2. One of them removes the confusing sub-
instances and has the effect of setting a uniform distribution on
those sub-instances. The other computes the actual distribution
on a subset of sub-instances. For brevity, we only present ex-
perimental results using ALGORITHM-2 in this paper.
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[Inference on the test data] It is intractable to
marginalize out h from P (y,h|x). Therefore, sim-
ilar to the Viterbi-training in the E-step, we approx-
imate the distribution of h by argmaxhP (h|X).

3 Experiments–I

Data set: We evaluate our approach with two
coreference data sets: MUC6 (MUC-6, 1995) and
MPQA7(Wiebe et al., 2005). For the MUC6 data set,
we extract noun phrases (mentions) automatically,
but for MPQA, we assume mentions for corefer-
ence resolution are given as in Stoyanov and Cardie
(2006). For MUC6, we use the standard training/test
data split. For MPQA, we use 150 documents for
training, and 50 documents for testing.

Configuration: We follow Ng and Cardie (2002)
for feature vector construction for each pair of men-
tions,8 and Finley and Joachims (2005) for con-
structing a training/testing instance for each docu-
ment: a training/testing instance consists of all pairs
of mentions in a document. Then, a single pair of
mentions is a sub-instance. We use the Mallet9 im-
plementation of CRFs, and set a Gaussian prior of
1.0 for all experiments. At each M-step, we train
CRFs starting from the parameters from the previous
M-step. We train CRFs up to 200 iterations, but be-
cause we start training CRFs from the previous pa-
rameters, the convergence from the second M-step
becomes much faster. We apply up to 5 EM itera-
tions, and choose best performing θ(t), 2 ≤ t ≤ 5
based on the performance on the training data.10

Hypothesis: For the baseline (BASE) we employ
the locally trained model for pairwise decisions
without global inference. Clustering is applied only
at test time, in order to make the assignment on the
output variables coherent. We hypothesize that for
the baseline, maximizing the likelihood for training
will correlate more with the pairwise accuracy of the

7Available at http://nrrc.mitre.org/NRRC/publications.htm.
8In particular, our feature set corresponds to “All Features”

in Ng and Cardie (2002), and we discretized numeric values.
9Available at http://mallet.cs.umass.edu.

10Selecting θ(t) on a separate tuning data would be better, but
the data for MUC6 in particular is very limited. Notice that we
don’t pick θ1 when reporting the performance of SLT, because
it is identical to the baseline.

MUC6
after clustering before clustering

e % R % P % F % e % R % P % F %
BASE 1.50 59.2 56.2 57.7 1.18 38.0 85.6 52.6
SLT 1.28 49.8 67.3 57.2 1.35 26.4 84.3 40.2

MPQA
after clustering before clustering

e % R % P % F % e % R % P % F %
BASE 9.83 75.8 57.0 65.1 7.05 52.1 83.4 64.1
SLT 6.39 62.1 80.6 70.2 7.39 43.7 90.1 58.9

Table 1: Performance of Structured Local Training: SLT re-

duces error rate (e %) after applying single-link clustering.

incoherent decisions before clustering than the pair-
wise accuracy of the coherent decisions after cluster-
ing. We also hypothesize that by performing struc-
tured local training (SLT), maximizing the likeli-
hood will correlate more with the pairwise accuracy
after clustering.

Results: Experimental results are shown in Ta-
ble 1. We report error rate (error rate = 100 −
accuracy) on the pairwise decisions (e %), and F1-
score (F %) on the coreferent pairs.11 For compar-
ison, we show numbers from both after and before
single-link clustering is applied. As hypothesized,
the error rate of BASE increases after clustering,
while the error rate of SLT decreases after cluster-
ing. Moreover, the error rate of SLT is considerably
lower than that of BASE after clustering. However,
the F1-score does not correlate with the error rate.
That is, a lower error rate does not always lead to a
higher F1-score, which motivates the Biased Poten-
tial Functions that we introduce in the next section.
Notice that when we compare the precision/recall
breakdown after clustering, SLT has higher precision
and lower recall than BASE.

4 Biased Potential Functions

We introduce biased potential functions for train-
ing CRFs to empirically favor preferred evaluation
measures for the learning task, such as F-score and
MUC-score that have been considered hard for tradi-

11Error rate and F1-score on the coreferent pairs are not ideal
measures for the quality of clustering, however, we show them
here in order to contrast the effect of SLT. We present MUC-
scores for the same experimental settings in Table 3.
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tional likelihood-based methods to optimize for. In-
tuitively, biased potential functions emphasize those
sub-components of an instance that can be of greater
importance than the rest of an instance.

4.1 Definitions

The conditional probability of P (y|x)12 for CRFs is
given by (Lafferty et al., 2001)

P (y|x) =
∏

i φ(Ci, x)∑
y

∏
i φ(Ci, x)

where φ(Ci, x) is a potential function defined over
each clique Ci. Potential functions are typically pa-
rameterized in an exponential form as follows.

φ(Ci, x) = exp
∑
k

λkfk(Ci, x)

where λk are the parameters and fk(·) are fea-
ture indicator functions. Because the Hammersley-
Clifford theorem (1971) for undirected graphical
models holds for any non-negative potential func-
tions, we propose alternative potential functions as
follows.

ψ(Ci, x) =

{
βφ(Ci, x) if µ(Ci, x) = true
φ(Ci, x) otherwise

where β is a non-negative bias factor, and µ(Ci, x)
is a predicate (or an indicator function) to check cer-
tain properties on (Ci, x).13 Examples of possible
µ(·) would be whether the true assignment for Ci

in the training data contains certain class values, or
whether the current observation indexed by Ci has
particular characteristics. More specific details will
be given in §4.2.

Training and testing with biased potential func-
tions is mostly identical to the traditional log-linear
formulations by φ(·) as defined above, except for
small and straightforward modifications to the com-
putation of the likelihood and the derivative of the
likelihood.

12For the local model described in Section 2, y should be
replaced with h. We use y in this section however, as it is a
more conventional notation in general.

13In our problem formulation, cliques are individual nodes,
and potential functions are defined over the observations in-
dexed by the current i only: i.e. φ(Ci, x) = φ(yi, xi),
µ(Ci, x) = µ(yi, xi) and ψ(Ci, x) = ψ(yi, xi).

The key idea for biased potential functions is
nothing new, as it is conceptually similar to in-
stance weighting for problems with non-structured
output (e.g. Aha and Goldstone (1992), Cardie et al.
(1997)). However, biased potential functions differ
technically in that they emphasize desired subcom-
ponents without altering the i.i.d. assumption, and
still weight each instance alike. Despite the con-
ceptual simplicity, we are not aware of any previ-
ous work that explored biased potential functions for
problems with structured output.

4.2 Applications to Coreference Resolution

[Bias on Coreferent Pairs] For coreference res-
olution, pairs that are coreferent are in a minority
class14, and biased potential functions can mitigate
this skewed data problem, by amplifying the clique
potentials that correspond to coreferent pairs. We
define µ(yi, xi) to be true if and only if the true as-
signment for yi in the training data is ’coreferent’.
Notice that µ(·) does not depend on what particu-
lar value yi might take, but only depends on the true
value of yi in the training data. For testing, µ(yi, xi)
will be always false.15

[Bias on Closer Coreferent Pairs] For corefer-
ence resolution, we hypothesize that coreferent pairs
for closer mentions have more significance, because
they tend to have clearer linguistic clues to deter-
mine coreference. We further hypothesize that by
emphasizing only close coreferent pairs, we can
have our model favor the MUC score. For this, we
define µ(yi, xi) to be true if and only if xi is for a
pair of mentions that are the closest coreferent pair.

5 Experiments–II

Data sets and configurations for experiments are
identical to those used in §3.

Hypothesis: We hypothesize that using biased po-
tential functions, maximizing the likelihood for
training can correlate better with F1-score or MUC-
score than the pairwise accuracy. In particular,

14Only 1.72% of the pairs are coreferent in the MUC6 data,
and about 12% are coreferent in the MPQA data.

15Notice that µ(yi, xi) changes the surface of the likelihood
for training, but does not affect the inference of finding the
argmax in our local model. That is, argmaxyi

φ(yi, xi) =

argmaxyi
ψ(yi, xi) (with yi replaced with hi).
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MUC6
pairwise MUC

e % R % P % F % R % P % F %
BASE 1.18 38.0 85.6 52.6 59.0 75.8 66.4

BASIC-P11.5 1.20 38.9 82.1 52.8 64.2 71.8 67.8
BASIC-P13.0 1.32 46.9 71.3 56.6 68.9 64.3 66.5
BASIC-Pa1.5 1.15 44.2 79.9 56.9 62.1 68.7 65.2
BASIC-Pa3.0 1.44 52.5 62.9 57.2 70.9 60.5 65.3

MPQA
pairwise MUC

e % R % P % F % R % P % F %
BASE 7.05 52.1 83.4 64.1 75.6 81.5 78.4

BASIC-P11.5 7.18 54.6 79.6 64.8 77.7 76.5 77.1
BASIC-P13.0 7.22 59.9 75.4 66.8 83.3 71.7 77.1
BASIC-Pa1.5 7.65 59.7 72.2 65.4 79.8 73.2 76.4
BASIC-Pa3.0 8.22 69.2 65.1 67.1 85.8 67.8 75.7

Table 2: Performance of Biased Potential Functions: pairwise

scores are taken before single-link-clustering is applied.

we hypothesize that biasing on every coreferent
pair will correlate more with F1-score, and bias-
ing on close coreferent pairs will correlate more
with MUC-score. In general, we expect that bias-
ing on coreferent pairs will boost recall, potentially
decreasing precision.

Results [BPF]: Experimental results for biased
potential functions, without structured local train-
ing, are shown in Table 2. BASIC-P1β denotes local
training with biased potential on the closest corefer-
ent pairs with bias factor β, and BASIC-Paβ denotes
local training with biased potential on the all coref-
erent pairs with bias factor β, where β = 1.5 or 3.0.
For brevity, we only show pairwise numbers before
applying single-link-clustering.16 As hypothesized,
biased potential functions in general boost recall at
the cost of precision. Also, for a fixed value of
β, BASIC-P1β gives better MUC-F1 than BASIC-
Paβ , and BASIC-Paβ gives better pairwise-F1 than
BASIC-P1β for both data sets.

Results [SLT+BPF]: Experimental results that
combine SLT and BPF are shown in Table 3. Sim-
ilarly as before, SLT-Pxβ denotes SLT with biased
potential scheme Px, with bias factor β. For brevity,

16This is because we showed in §3 that basic local training
does not correlate well with pairwise scores after clustering, and
in order to see the direct effect of biased potential functions, we
examine pairwise numbers before clustering.

MUC6
pairwise MUC

e % R % P % F % R % P % F %
BASE 1.50 59.2 56.2 57.7 59.0 75.8 66.4
SLT 1.28 49.8 67.3 57.2 56.3 77.8 65.3

SLT-P11.5 1.19 52.8 70.6 60.4 59.3 74.6 66.1
SLT-P13.0 1.42 63.5 57.9 60.6 67.5 70.7 69.1
SLT-Pa1.5 1.43 58.6 58.5 58.5* 64.0 73.6 68.5
SLT-Pa3.0 1.71 65.2 50.3 56.8 70.5 69.3 69.9*

MPQA
pairwise MUC

e % R % P % F % R % P % F %
BASE 9.83 75.8 57.0 65.1 75.6 81.5 78.4
SLT 6.39 62.1 80.6 70.2 69.1 88.2 77.5

SLT-P11.5 6.54 64.9 77.4 70.6* 72.2 84.5 77.9*
SLT-P13.0 9.09 77.2 59.6 67.3 78.4 79.5 78.9
SLT-Pa1.5 6.74 65.2 75.7 70.1 72.4 87.2 79.1
SLT-Pa3.0 14.71 78.2 43.9 56.2 80.5 73.8 77.0

Table 3: Performance of Biased Potential Functions with

Structured Local Training: All numbers are taken after single-

link clustering.

we only show numbers after applying single-link-
clustering. Unlike the results shown in Table 2,
for a fixed value of β, SLT-P1β correlates better
with pairwise-F1, and SLT-Paβ correlates better with
MUC-F1. This indicates that when biased poten-
tial functions are used in conjunction with SLT, the
effect of biased potential functions can be different
from the case without SLT. Comparing F1-scores in
Table 2 and Table 3, we see that the combination of
biased potential functions with SLT improves per-
formance in general. In particular, SLT-P13.0 and
SLT-Pa1.5 consistently improve performance over
BASE on both data sets, for both pairwise-F1 and
MUC-F1. We present performance scores for all
variations of configurations for reference, but we
also mark the particular configuration SLT-Pxβ (by
‘*’ on F1-scores) that is chosen when selecting the
configuration based on the performance on the train-
ing data for each performance measure. To con-
clude, structured local training with biased poten-
tial functions bring a substantial improvement for
MUC-F1 score, from 66.4% to 69.9% for MUC6
data set. For pairwise-F1, the performance increase
from 57.7% to 58.5% for MUC6, and from 65.1% to
70.6% for MPQA.17

17Performance on the MPQA data for MUC-F1 is slightly
decreased from 78.4% to 77.9%. Note the MUC scores for the
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6 Related Work

Structured local training is motivated by recent re-
search that has shown that reducing the discrep-
ancy between the training model and testing model
can improve the performance without incurring the
heavy computational overhead of full-blown global
inference-based training. 18 (e.g. Cohen and Car-
valho (2005), Sutton and McCallum (2005a), Sutton
and McCallum (2005b)). Our work differs in that
(1) we use hidden variables to capture the interac-
tions between local inference and global inference,
(2) we present an application to coreference resolu-
tion, while previous work has shown applications for
variants of sequence tagging. McCallum and Well-
ner (2004) showed a global training approach with
CRFs for coreference resolution, but they used the
voted perceptron algorithm for training, which no
longer maximizes the likelihood. In addition, they
assume that all and only those noun phrases involved
in coreference resolution are given.

The performance of our system on MUC6 data
set is comparable to previously reported systems.
Using the same feature set, Ng and Cardie (2002)
reports 64.5% of MUC-score, while our system
achieved 69.9%. Ng and Cardie (2002) reports
70.4% of MUC-score using hand-selected features.
With an additional feature selection or feature induc-
tion step, the performance of our system might fur-
ther improve. McCallum and Wellner (2004) reports
73.42% of MUC-score on MUC6 data set, but their
experiments assumed perfect identification of all and
only those noun phrases involved in a coreference
relation, thus substantially simplifying the task.

7 Conclusion

We present a novel training procedure, structured
local training, that maximizes likelihood while
exploiting the benefits of global inference during
training. This is achieved by incorporating hidden
variables to capture the interactions between local

MPQA baseline are already quite high to begin with.
18The computational cost for SLT in our experiments were

about twice of the cost for the local training of the baseline. This
is the case because M-step converges very fast from the second
EM iteration, by initializing CRFs using parameters from the
previous M-step. Biased potential functions hardly adds extra
computational cost. In practice, BPFs reduce training time sub-
stantially: we observed that the higher the bias is, the quicker
CRFs converge.

inference and global inference. In addition, we
introduce biased potential functions that allow
CRFs to empirically favor performance measures
such as F1-score or MUC-score. We focused on the
application of coreference resolution in this paper,
but the key ideas of our approaches can be extended
to other applications, and other machine learning
techniques motivated by Markov networks.
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Abstract

A twin-model is proposed for coreference res-
olution: a link component, modeling the coref-
erential relationship between an anaphor and
a candidate antecedent, and a creation com-
ponent modeling the possibility that a phrase
is not coreferential with any candidate an-
tecedent. The creation model depends on all
candidate antecedents and is often expensive
to compute; Therefore constraints are imposed
on feature forms so that features in the cre-
ation model can be efficiently computed from
feature values in the link model. The pro-
posed twin-model is tested on the data from
the 2005 Automatic Content Extraction (ACE)
task and the proposed model performs bet-
ter than a thresholding baseline without tuning
free parameter.

1 Introduction

Coreference resolution aims to find multiple mentions
of an entity (e.g., PERSON, ORGANIZATION) in a
document. In a typical machine learning-based coref-
erence resolution system (Soon et al., 2001; Ng and
Cardie, 2002b; Yang et al., 2003; Luo et al., 2004), a
statistical model is learned from training data and is
used to measure how likely an anaphor 1 is corefer-
ential to a candidate antecedent. A related, but often
overlooked, problem is that the anaphor may be non-
coreferential to any candidate, which arises from sce-
narios such as an identified anaphor is truly generic and

1In this paper, “anaphor” includes all kinds of phrases to
be resolved, which can be named, nominal or pronominal
phrases.

there does not exist an antecedent in the discourse con-
text, or an anaphor is the first mention (relative to pro-
cessing order) in a coreference chain.

In (Soon et al., 2001; Ng and Cardie, 2002b),
the problem is treated by thresholding the scores re-
turned by the coreference model. That is, if the max-
imum coreference score is below a threshold, then the
anaphor is deemed non-referential to any candidate an-
tecedent. The threshold approach does not model non-
coreferential events directly, and is by no means the op-
timal approach to the problem. It also introduces a free
parameter which has to be set by trial-and-error. As an
improvement, Ng and Cardie (2002a) and Ng (2004)
train a separate model to classify an anaphor as either
anaphoric or non-anaphoric. The output of this clas-
sifier can be used either as a pre-filter (Ng and Cardie,
2002a) so that non-anaphoric anaphors will not be pre-
cessed in the coreference system, or as a set of features
in the coreference model (Ng, 2004). By rejecting any
anaphor classified as non-anaphoric in coreference res-
olution, the filtering approach is meant to handle non-
anaphoric phrases (i.e., no antecedent exists in the dis-
course under consideration), not the first mention in a
coreference chain.

In this paper, coreference is viewed as a process of
sequential operations on anaphor mentions: an anaphor
can either be linked with its antecedent if the antecedent
is available or present. If the anaphor, on the other
hand, is discourse new (relative to the process order),
then a new entity is created. Corresponding to the two
types of operations, a twin-model is proposed to re-
solve coreferential relationships in a document. The
first component is a statistical model measuring how
likely an anaphor is coreferential to a candidate an-
tecedent; The second one explicitly models the non-
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coreferential events. Both models are trained automat-
ically and are used simultaneously in the coreference
system. The twin-model coreference system is tested
on the 2005 ACE (Automatic Content Extraction, see
(NIST, 2005)) data and the best performance under
both ACE-Value and entity F-measure can be obtained
without tuning a free parameter.

The rest of the paper is organized as follows. The
twin-model is presented in Section 2. A maximum-
entropy implementation and features are then presented
in Section 3. The experimental results on the 2005
ACE data is presented in Section 4. The proposed twin-
model is compared with related work in Section 5 be-
fore the paper is concluded.

2 Coreference Model

A phrasal reference to an entity is called a mention. A
set of mentions referring to the same physical object is
said to belong to the same entity. For example, in the
following sentence:

(I) John said Mary was his sister.

there are four mentions: John, Mary, his, and
sister. John and his belong to the same entity
since they refer to the same person; So do Mary and
sister. Furthermore, John and Mary are named
mentions, sister is a nominal mention and his is a
pronominal mention.

In our coreference system, mentions are processed
sequentially, though not necessarily in chronological
order. For a document with n mentions {mi : 1 ≤ i ≤
n}, at any time t(t > 1), mention m1 through mt−1

have been processed and each mention is placed in one
of Nt(Nt ≤ (t−1)) entities: Et = {ej : 1 ≤ j ≤ Nt}.
Index i in mi indicates the order in which it is pro-
cessed, not necessarily the order in which it appears in
a document. The basic step is to extend Et to Et+1

with mt.
Let us use the example in Figure 1 to illustrate how

this is done. Note that Figure 1 contains one possible
processing order for the four mentions in Example (I):
first name mentions are processed, followed by nom-
inal mentions, followed by pronominal mentions. At
time t = 1, there is no existing entity and the mention
m1=John is placed in an initial entity (entity is signi-
fied by a solid rectangle). At time t = 2, m2=Mary
is processed and a new entity containing Mary is cre-
ated. At time t = 3, the nominal mention m3=sister
is processed. At this point, the set of existing entities

E3 =
{

{John}, {Mary}
}

.

m3 is linked with the existing entity {Mary}. At the
last step t = 4, the pronominal mention his is linked
with the entity {John}.

The above example illustrates how a sequence of
coreference steps lead to a particular coreference result.
Conversely, if the processing order is known and fixed,
every possible coreference result can be decomposed
and mapped to a unique sequence of such coreference
steps. Therefore, if we can score the set of coreference
sequences, we can score the set of coreference results
as well.

In general, when determining if a mention mt is
coreferential with any entity in Et, there are two types
of actions: one is that mt is coreferential with one of
the entities; The other is that mt is not coreferential
with any. It is important to distinguish the two cases
for the following reason: if mt is coreferential with an
entity ej , in most cases it is sufficient to determine the
relationship by examining mt and ej , and their local
context; But if mt is not coreferential with any existing
entities, we need to consider mt with all members in
Et. This observation leads us to propose the following
twin-model for coreference resolution.

The first model, P (L|ej , mt), is conditioned on an
entity ej and the current mention mt and measure how
likely they are coreferential. L is a binary variable, tak-
ing value 1 or 0, which represents positive and nega-
tive coreferential relationship, respectively. The second
model, on the other hand, P (C|Et, mt), is conditioned
on the past entities Et and the current mention mt. The
random variable C is also binary: when C is 1, it means
that a new entity {mt} will be created. In other words,
the second model measures the probability that mt is
not coreferential to any existing entity. To avoid con-
fusion in the subsequent presentation, the first model
will be written as Pl(·|ej , mt) and called link model;
The second model is written as Pc(·|Et, mt) and called
creation model.

For the time being, let’s assume that we have the link
and creation model at our disposal, and we will show
how they can be used to score coreference decisions.

Given a set of existing entities Et = {ej}
Nt

1 , formed
by mentions {mi}

t−1
i=1, and the current mention mt,

there are Nt + 1 possible actions: we can either link
mt with an existing entity ej (j = 1, 2, · · · , Nt), or
create a new entity containing mt. The link action be-
tween ej and mt can be scored by Pl(1|ej , mt) while
the creation action can be measured by Pc(1|Et, mt).
Each possible coreference outcome consists of n such
actions {at : t = 1, 2, · · · , n}, each of which can be
scored by either the link model Pl(·|ej , mt) or the cre-
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John
John

Mary

John

Mary
sister

John
his

Mary
sister

John Mary sister his

t=1 t=2 t=3 t=4

E1={}

m3 m4m2m1

E3E2 E4

Figure 1: Coreference process for the four mentions in Example (I). Mentions in a document are processed se-
quentially: first name mentions, then nominal mentions, and then pronominal mentions. A dashed arrow signifies
that a new entity is created, while a solid arrow means that the current mention is linked with an existing entity.

ation model Pc(·|Et, mt). Denote the score for ac-
tion at by S(at|a

t−1
1 ), where dependency of at on

a1 through at−1 is emphasized. The coreference re-
sult corresponding to the action sequence is written as
En({ai}

n
i=1). When it is clear from context, we will

drop {ai}
n
i=1 and write En only.

With this notation, the score for a coreference out-
come En({ai}

n
i=1) is the product of individual scores

assigned to the corresponding action sequence {ai}
n
i=1,

and the best coreference result is the one with the high-
est score:

Ên = arg max
En

S(En)

= arg max
{at}n

1

n
∏

t=1

S(at|a
t−1
1 ). (1)

Given n mentions, the number of all possible
entity outcomes is the Bell Number (Bell, 1934):
B(n) = 1

e

∑∞
k=0

kn

k! . Exhaustive search is out of the
question. Thus, we organize hypotheses into a Bell
Tree (Luo et al., 2004) and use a beam search with the
following pruning strategy: first, a maximum beam size
(typically 20) S is set, and we keep only the top S hy-
potheses; Second, a relative threshold r (we use 10−5)
is set to prune any hypothesis whose score divided by
the maximum score falls below the threshold.

To give an concrete example, we use the example
in Figure 1 again. The first step at t = 1 creates a
new entity and is therefore scored by Pc(1|{},John);
the second step also creates an entity and is scored
by Pc(1|{John},Mary); the step t = 3, how-
ever, links sister with {Mary} and is scored by
Pl(1|{Mary},sister); Similarly, the last step is
scored by Pl(1|{John},his). The score for this
coreference outcome is the product of the four num-

bers:

S(
{

{John,his}, {Mary,sister}
}

)

=Pc(1|{},John)Pc(1|{John},Mary)·

Pl(1|{Mary},sister)·

Pl(1|{John},his). (2)

Other coreference results for these four mentions can
be scored similarly. For example, if his at the last
step is linked with {Mary,sister}, the score would
be:

S(
{

{John}, {Mary,sister,his}
}

)

=Pc(1|{},John)Pc(1|{John},Mary)·

Pl(1|{Mary},sister)·

Pl(1|{Mary,sister},his). (3)

At testing time, (2) and (3), among other possible out-
comes, will be searched and compared, and the one
with the highest score will be output as the coreference
result.

Examples in (2) and (3) indicate that the link model
Pl(·|ej , mt) and creation model Pc(·|Et, mt) form an
integrated coreference system and are applied simul-
taneously at testing time. As will be shown in the next
section, features in the creation model Pc(·|Et, mt) can
be computed from their counterpart in the link model
Pl(·|ej , mt) under some mild constraints. So the two
models’ training procedures are tightly coupled. This
is different from (Ng and Cardie, 2002a; Ng, 2004)
where their anaphoricty models are trained indepen-
dently of the coreference model, and it is either used
as a pre-filter, or its output is used as features in the
coreference model. The creation model Pc(·|Et, mt)
proposed here bears similarity to the starting model
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in (Luo et al., 2004). But there is a crucial differ-
ence: the starting model in (Luo et al., 2004) is an
ad-hoc use of the link scores and is not learned auto-
matically, while Pc(·|Et, mt) is fully trained. Training
Pc(·|Et, mt) is covered in the next section.

3 Implementation

3.1 Feature Structure

To implement the twin model, we adopt the log linear
or maximum entropy (MaxEnt) model (Berger et al.,
1996) for its flexibility of combining diverse sources of
information. The two models are of the form:

Pl(L|ej , mt) =
exp

(

∑

k λkgk(ej , mt, L)
)

Y (ej , mt)
(4)

Pc(C|Et, mt) =
exp

(

∑

i νihi(Et, mt, C)
)

Z(Et, mt)
, (5)

where L and C are binary variables indicating either
mt is coreferential with ej , or mt is used to create a
new entity. Y (ej , mt) and Z(ej , mt) are normalization
factors to ensure that Pl(·|ej , mt) and Pc(·|Et, mt) are
probabilities; λk and νi are the weights for feature
gk(ej , mt, L) and hi(Et, mt, C), respectively. Once
the set of features functions are selected, algorithm
such as improved iterative scaling (Berger et al., 1996)
or sequential conditional generalized iterative scal-
ing (Goodman, 2002) can be used to find the optimal
parameter values of {λk} and {νi}.

Computing features {gk(ej , mt, ·)} for the link
model Pl(L|ej , mt)

2 is relatively straightforward:
given an entity ej and the current mention mt, we
just need to characterize things such as lexical similar-
ity, syntactic relationship, and/or semantic compatibil-
ity of the two. It is, however, very challenging to com-
pute the features {hi(Et, mt, ·)} for the creation model
Pc(·|Et, mt) since its conditioning includes a set of en-
tities Et, whose size grows as more and more mentions
are processed. The problem exists because the decision
of creating a new entity with mt has to be made after
examining all preceding entities. There is no reason-
able modeling assumption one can make to drop some
entities in the conditioning.

To overcome the difficulty, we impose the follow-
ing constraints on the features of the link and creation

2The link model is actually implemented as:
Pl(L|ej , mt) ≈ maxm′∈ej

P̂l(L|ej , m
′, mt). Some

features are computed on a pair of mentions (m′, mt) while
some are computed at entity level. See (Luo and Zitouni,
2005) and (Daumé III and Marcu, 2005).

model:

gk(ej , mt, L) =g
(1)
k (ej , mt)g

(2)
k (L) (6)

hi(Et, mt, C) =h
(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

·

h
(2)
i (C), for some k. (7)

(6) states that a feature in the link model is separable
and can be written as a product of two functions: the
first one, g

(1)
k (·, ·), is a binary function depending on

the conditioning part only; the second one, g
(2)
k (·), is

an indicator function depending on the prediction part
L only. Like g

(2)
k (·), h

(2)
i (·) is also a binary indicator

function.
(7) implies that features in the creation model

are also separable; Moreover, the conditioning part
h

(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

, also a binary function,
only depends on the function values of the set of link
features {g(1)

k (e, mt) : e ∈ Et} (for some k). In other

words, once {g
(1)
k (e, mt) : e ∈ Et} and C are known,

we can compute hi(Et, mt, C) without actually com-
paring mt with any entity in Et. Using binary features
is a fairly mild constraint as non-binary features can be
replaced by a set of binary features through quantiza-
tion.

How fast h
(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

can be com-

puted depends on how h
(1)
i is defined. In most cases

– as will be shown in Section 3.2, it boils down test-
ing if any member in {g

(1)
k (e, mt) : e ∈ Et} is non-

zero; or counting how many non-zero members there
are in {g

(1)
k (e, mt) : e ∈ Et}. Both are simple op-

erations that can be carried out quickly. Thus, the as-
sumption (7) makes it possible to compute efficiently
hi(Et, mt, C).

3.2 Features in the Creation Model

We describe features used in our coreference system.
We will concentrate on features used in the creation
model since those in the link model can be found in
the literature (Soon et al., 2001; Ng and Cardie, 2002b;
Yang et al., 2003; Luo et al., 2004). In particular,
we show how features in the creation model can be
computed from a set of feature values from the link
model for a few example categories. Since g

(2)
k (·) and

h
(2)
i (·) are simple indicator functions, we will focus on

g
(1)
k (·, ·) and h

(1)
i (·).

3.2.1 Lexical Features

This set of features computes if two surface strings
(spellings of two mentions) match each other, and are
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applied to name and nominal mentions only. For the
link model, a lexical feature g

(1)
k (ej , mt) is 1 if ej con-

tains a mention matches mt, where a match can be ex-
act, partial, or one is an acronym of the other.

Since gk(ej , mt) is binary, one corresponding fea-
ture used in the creation model is the disjunction of the
values in the link model, or

h
(1)
i (Et, mt) = ∨e∈Et

{g
(1)
k (e, mt)}, (8)

where ∨ is a binary “or” operator. The intuition is that
if there is any mention in Et matching mt, then the
probability to create a new entity with mt should be
low; Conversely, if none of the mentions in Et matches
mt, then mt is likely to be the first mention of a new
entity.

Take t = 2 in Figure 1 as an example. There is
only one partially-established entity {John}, so E2 =
{John}, and m2 = Mary. The exact string match
feature g

(1)
em(·, ·) would be

g(1)
em({John},Mary) = 0,

and the corresponding string match feature in the cre-
ation model is

h(1)
em({John},Mary) = ∨e∈Et

{g(1)
em(e,Mary)}

= 0.

Disjunction is not the only operation we can use.
Another possibility is counting how many times mt

matches mentions in Et, so (8) becomes:

h
(1)
i (Et, mt) = Q

[

∑

e∈Et

{g
(1)
k (e, mt)}

]

, . (9)

where Q[·] quantizes raw counts into bins.

3.2.2 Attribute Features
In the link model, features in this category compare

the properties of the current mention mt with that of an
entity ej . Properties of a mention or an entity, when-
ever applicable, include gender, number, entity type,
reflexivity of pronouns etc. Similar to what done in
the lexical feature, we again synthesize a feature in the
creation model by taking the disjunction of the corre-
sponding set of feature values in the link model, or

h
(1)
i (Et, mt) = ∨e∈Et

{g
(1)
k (e, mt)},

where g
(1)
k (e, mt) takes value 1 if entity e and mention

mt share the same property; Otherwise its value is 0.
The intuition is that if there is an entity having the same

property as the current mention, then the probability for
the current mention to be linked with the entity should
be higher than otherwise; Conversely, if none of the en-
tities in Et shares a property with the current mention,
the probability for the current mention to create a new
entity ought to be higher.

Consider the gender attribute at t = 4 in Fig-
ure 1. Let g

(1)
gender(·, ·) be the gender feature in the

link model, assume that we know the gender of John,
Mary and his. Then g

(1)
gender({{John},his) is 1,

while g
(1)
gender({Mary, sister},his) is 0. There-

fore, the gender feature for the creation model would
be

h
(1)
gender(

{

{John},{Mary, sister}
}

, his)

=0 ∨ 1 = 1,

which means that there is at least one mention which
has the same the gender of the current mention mt.

3.2.3 Distance Feature

Distance feature needs special treatment: while it
makes sense to talk about the distance between a pair
of mentions, it is not immediately clear how to compute
the distance between a set of entities Et and a mention
mt. To this end, we compute the minimum distance be-
tween the entities and the current mention with respect
to a “fired” link feature, as follows.

For a particular feature g
(1)
k (·, ·) in the link model,

define the minimum distance to be

d̂(Et, mt; gk) = min{d(m, mt) : m ∈ Et,

and g
(1)
k (m, mt) = 1}, (10)

where d(m, mt) is the distance between mention mand
mt. The distance itself can be the number of tokens,
or the number of intervening mentions, or the number
of sentences. The minimum distance d̂(Et, mt; gk) is
quantized and represented as binary feature in the cre-
ation model. The idea here is to encode what is the
nearest place where a feature fires.

Again as an example, consider the gender attribute at
t = 4 in Figure 1. Assuming that d(m, mt) is the num-
ber of tokens. Since only John matches the gender of
his,

d̂(E4, m4; ggender) = 3.

The number is then quantized and used as a binary fea-
ture to encode the information that “there is a mention
whose gender matches the current mention within in a
token distance range including 3.”
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In general, binary features in the link model which
measure the similarity between an entity and a mention
can be turned into features in the creation model in the
same manner as described in Section 3.2.1 and 3.2.2.
For example, syntactic features (Ng and Cardie, 2002b;
Luo and Zitouni, 2005) can be computed this way and
are used in our system.

4 Experiments

4.1 Data and Evaluation Metric

We report the experimental results on ACE 2005
data (NIST, 2005). The dataset consists of 599 doc-
uments from a rich and diversified sources, which in-
clude newswire articles, web logs, and Usenet posts,
transcription of broadcast news, broadcast conversa-
tions and telephone conversations. We reserve the last
16% documents of each source as the test set and use
the rest of the documents as the training set. Statistics
such as the number of documents, words, mentions and
entities of this data split is tabulated in Table 1.

DataSet #Docs #Words #Mentions #Entities
Training 499 253771 46646 16102

Test 100 45659 8178 2709
Total 599 299430 54824 18811

Table 1: Statistics of ACE 2005 data: number of docu-
ments, words, mentions and entities in the training and
test set.

The link and creation model are trained at the same
time. Besides the basic feature categories described in
Section 3.2, we also compute composite features by
taking conjunctions of the basic features. Features are
selected by their counts with a threshold of 8.

ACE-Value is the official score reported in the ACE
task and will be used to report our coreference system’s
performance. Its detailed definition can be found in the
official evaluation document 3. Since ACE-Value is a
weighted metric measuring a coreference system’s rel-
ative value, and it is not sensitive to certain type of
errors (e.g., false-alarm entities if these entities con-
tain correct mentions), we also report results using un-
weighted entity F-measure.

4.2 Results

To compare the proposed twin model with simple
thresholding (Soon et al., 2001; Ng and Cardie, 2002b),

3The official evaluation document can be found at:
www.nist.gov/speech/tests/ace/ace05/doc/
ace05-evalplan.v3.pdf.
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Figure 2: Performance comparison between a thresh-
olding baseline and the twin-model: lines with square
points are the entity F-measure (x100) results; lines
with triangle points are ACE-Value (in %). Solid lines
are baseline while dashed lines are twin-model.

we first train our twin model. To simulate the thresh-
olding approach, a baseline coreference system is cre-
ated by replacing the creation model with a constant,
i.e.,

Pc(1|Et, mt) = θ, (11)

where θ is a number between 0 and 1. At testing time,
a new entity is created with score θ when

Pl(1|ej , mt) < θ, ∀ej ∈ Et.

The decision rule simply implies that if the scores be-
tween the current mention mt and all candidate entities
ej ∈ Et are below the threshold θ, a new entity will be
created.

Performance comparison between the baseline and
the twin-model is plotted in Figure 2. X-axis is the
threshold varying from 0.1 to 0.9 with a step size 0.1.
Two metrics are used to compare the results: two lines
with square data points are the entity F-measure results,
and two lines with triangle points are ACE-Value. Note
that performances for the twin-model are constant since
it does not use thresholding.

As shown in the graph, the twin-model (two dashed
lines) always outperforms the baseline (two solid
lines). A “bad” threshold impacts the entity F-measure
much more than ACE-Value, especially in the region
with high threshold value. Note that a large θ will lead
to more false-alarm entities. The graph suggests that
ACE-Value is much less sensitive than the un-weighted
F-measure in measuring false-alarm errors. For exam-
ple, at θ = 0.9, the baseline F-measure is 0.591 while
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the twin model F-measure is 0.848, a 43.5% difference;
On the other hand, the corresponding ACE-Values are
84.5% (baseline) vs. 88.4% (twin model), a mere 4.6%
relative difference. There are at least two reasons: first,
ACE-Value discounts importance of nominal and pro-
noun entities, so more nominal and pronoun entity er-
rors are not reflected in the metric; Second, ACE-Value
does not penalize false-alarm entities if they contain
correct mentions. The problem associated with ACE-
Value is the reason we include the entity F-measure re-
sults.

Another interesting observation is that an optimal
threshold for the entity F-measure is not necessarily op-
timal for ACE-Value, and vice versa: θ = 0.3 is the
best threshold for the entity F-measure, while θ = 0.5
is optimal for ACE-Value. This is highlighted in Ta-
ble 2, where row “B-opt-F” contains the best results op-
timizing the entity F-measure (at θ = 0.3), row “B-opt-
AV” contains the best results optimizing ACE-Value (at
θ = 0.5), and the last line “Twin-model” contains the
results of the proposed twin-model. It is clear from
Table 2 that thresholding cannot be used to optimize
the entity F-measure and ACE-Value simultaneously.
A sub-optimal threshold could be detrimental to an un-
weighted metric such as the entity F-measure. The pro-
posed twin model eliminates the need for threshold-
ing, a benefit of using the principled creation model.
In practice, the optimal threshold is a free parameter
that has to be tuned every time when a task, dataset and
model changes. Thus the proposed twin model is more
portable when a task or dataset changes.

System F-measure ACE-Value
B-opt-F 84.7 87.5

B-opt-AV 81.1 88.0
Twin-model 84.8 88.4

Table 2: Comparison between the thresholding base-
line and the twin model: optimal threshold depends on
performance metric. The proposed twin-model outper-
forms the baseline without tuning the free parameter.

5 Related Work

Some earlier work (Lappin and Leass, 1994; Kennedy
and Boguraev, 1996) use heuristic to determine
whether a phrase is anaphoric or not. Bean and Riloff
(1999) extracts rules from non-anaphoric noun phrases
and noun phrases patterns, which are then applied to
test data to identify existential noun phrases. It is in-
tended as as pre-filtering step before a coreference res-

olution system is run. Ng and Cardie (2002a) trains a
separate anaphoricity classifier in addition to a corefer-
ence model. The anaphoricity classifier is applied as a
filter and only anaphoric mentions are later considered
by the coreference model. Ng (2004) studies what is
the best way to make use of anaphoricity information
and concludes that the constrained-based and globally-
optimized approach works the best. Poesio et al. (2004)
contains a good summary of recent research work on
discourse new or anaphoricity. Luo et al. (2004) uses
a start model to determine whether a mention is the
first one in a coreference chain, but it is computed ad
hoc without training. Nicolae and Nicolae (2006) con-
structs a graph where mentions are nodes and an edge
represents the likelihood two mentions are in an entity,
and then a graph-cut algorithm is employed to produce
final coreference results.

We take the view that determining whether an
anaphor is coreferential with any candidate antecedent
is part of the coreference process. But we do recog-
nize that the disparity between the two types of events:
while a coreferential relationship can be resolved by
examining the local context of the anaphor and its an-
tecedent, it is necessary to compare the anaphor with
all the preceding candidates before it can be declared
that it is not coreferential with any. Thus, a creation
component Pc(·|Et, mt) is needed to model the second
type of events. A problem arising from the adoption of
the creation model is that it is very expensive to have
a conditional model depending on all preceding enti-
ties Et. To solve this problem, we adopt the MaxEnt
model and impose some reasonable constraints on the
feature functions, which makes it possible to synthe-
size features in the creation model from those of the
link model. The twin model components are intimately
trained and used simultaneously in our coreference sys-
tem.

6 Conclusions

A twin-model is proposed for coreference resolution:
one link component computes how likely a mention is
coreferential with a candidate entity; the other compo-
nent, called creation model, computes the probability
that a mention is not coreferential with any candidate
entity. Log linear or MaxEnt approach is adopted for
building the two components. The twin components
are trained and used simultaneously in our coreference
system.

The creation model depends on all preceding enti-
ties and is often expensive to compute. We impose
some reasonable constraints on feature functions which
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makes it feasible to compute efficiently the features in
the creation model from a subset of link feature val-
ues. We test the proposed twin-model on the ACE 2005
data and the proposed model outperforms a threshold-
ing baseline. Moreover, it is observed that the optimal
threshold in the baseline depends on performance met-
ric, while the proposed model eliminates the need of
tuning the optimal threshold.
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Abstract

Traditional noun phrase coreference res-
olution systems represent features only
of pairs of noun phrases. In this paper,
we propose a machine learning method
that enables features over sets of noun
phrases, resulting in a first-order proba-
bilistic model for coreference. We out-
line a set of approximations that make this
approach practical, and apply our method
to the ACE coreference dataset, achiev-
ing a 45% error reduction over a com-
parable method that only considers fea-
tures of pairs of noun phrases. This result
demonstrates an example of how a first-
order logic representation can be incorpo-
rated into a probabilistic model and scaled
efficiently.

1 Introduction

Noun phrase coreference resolution is the problem
of clustering noun phrases into anaphoric sets. A
standard machine learning approach is to perform a
set of independent binary classifications of the form
“Is mention a coreferent with mention b?”

This approach of decomposing the problem into
pairwise decisions presents at least two related diffi-
culties. First, it is not clear how best to convert the
set of pairwise classifications into a disjoint cluster-
ing of noun phrases. The problem stems from the
transitivity constraints of coreference: If a and b are
coreferent, and b and c are coreferent, then a and c
must be coreferent.

This problem has recently been addressed by a
number of researchers. A simple approach is to per-
form the transitive closure of the pairwise decisions.
However, as shown in recent work (McCallum and
Wellner, 2003; Singla and Domingos, 2005), bet-
ter performance can be obtained by performing rela-
tional inference to directly consider the dependence
among a set of predictions. For example, McCal-
lum and Wellner (2005) apply a graph partitioning
algorithm on a weighted, undirected graph in which
vertices are noun phrases and edges are weighted by
the pairwise score between noun phrases.

A second and less studied difficulty is that the
pairwise decomposition restricts the feature set to
evidence about pairs of noun phrases only. This re-
striction can be detrimental if there exist features of
sets of noun phrases that cannot be captured by a
combination of pairwise features. As a simple exam-
ple, consider prohibiting coreferent sets that consist
only of pronouns. That is, we would like to require
that there be at least one antecedent for a set of pro-
nouns. The pairwise decomposition does not make
it possible to capture this constraint.

In general, we would like to construct arbitrary
features over a cluster of noun phrases using the
full expressivity of first-order logic. Enabling this
sort of flexible representation within a statistical
model has been the subject of a long line of research
on first-order probabilistic models (Gaifman, 1964;
Halpern, 1990; Paskin, 2002; Poole, 2003; Richard-
son and Domingos, 2006).

Conceptually, a first-order probabilistic model
can be described quite compactly. A configura-
tion of the world is represented by a set of predi-
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Figure 1: An example noun coreference graph in
which vertices are noun phrases and edge weights
are proportional to the probability that the two nouns
are coreferent. Partitioning such a graph into disjoint
clusters corresponds to performing coreference res-
olution on the noun phrases.

cates, each of which has an associated real-valued
parameter. The likelihood of each configuration of
the world is proportional to a combination of these
weighted predicates. In practice, however, enu-
merating all possible configurations, or even all the
predicates of one configuration, can result in in-
tractable combinatorial growth (de Salvo Braz et al.,
2005; Culotta and McCallum, 2006).

In this paper, we present a practical method to per-
form training and inference in first-order models of
coreference. We empirically validate our approach
on the ACE coreference dataset, showing that the
first-order features can lead to an 45% error reduc-
tion.

2 Pairwise Model

In this section we briefly review the standard pair-
wise coreference model. Given a pair of noun
phrases xij = {xi, xj}, let the binary random vari-
able yij be 1 if xi and xj are coreferent. Let F =
{fk(xij , y)} be a set of features over xij . For exam-
ple, fk(xij , y) may indicate whether xi and xj have
the same gender or number. Each feature fk has an
associated real-valued parameter λk. The pairwise
model is

p(yij |xij) =
1

Zxij

exp
∑

k

λkfk(xij , yij)

where Zxij is a normalizer that sums over the two
settings of yij .

This is a maximum-entropy classifier (i.e. logis-
tic regression) in which p(yij |xij) is the probability
that xi and xj are coreferent. To estimate Λ = {λk}
from labeled training data, we perform gradient as-
cent to maximize the log-likelihood of the labeled
data.

Two critical decisions for this method are (1) how
to sample the training data, and (2) how to combine
the pairwise predictions at test time. Systems of-
ten perform better when these decisions complement
each other.

Given a data set in which noun phrases have been
manually clustered, the training data can be cre-
ated by simply enumerating over each pair of noun
phrases xij , where yij is true if xi and xj are in
the same cluster. However, this approach generates
a highly unbalanced training set, with negative ex-
amples outnumbering positive examples. Instead,
Soon et al. (2001) propose the following sampling
method: Scan the document from left to right. Com-
pare each noun phrase xi to each preceding noun
phrase xj , scanning from right to left. For each pair
xi, xj , create a training instance 〈xij , yij〉, where yij

is 1 if xi and xj are coreferent. The scan for xj ter-
minates when a positive example is constructed, or
the beginning of the document is reached. This re-
sults in a training set that has been pruned of distant
noun phrase pairs.

At testing time, we can construct an undirected,
weighted graph in which vertices correspond to
noun phrases and edge weights are proportional to
p(yij |xij). The problem is then to partition the graph
into clusters with high intra-cluster edge weights and
low inter-cluster edge weights. An example of such
a graph is shown in Figure 1.

Any partitioning method is applicable here; how-
ever, perhaps most common for coreference is to
perform greedy clustering guided by the word or-
der of the document to complement the sampling
method described above (Soon et al., 2001). More
precisely, scan the document from left-to-right, as-
signing each noun phrase xi to the same cluster
as the closest preceding noun phrase xj for which
p(yij |xij) > δ, where δ is some classification
threshold (typically 0.5). Note that this method con-
trasts with standard greedy agglomerative cluster-
ing, in which each noun phrase would be assigned
to the most probable cluster according to p(yij |xij).
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Choosing the closest preceding phrase is common
because nearby phrases are a priori more likely to
be coreferent.

We refer to the training and inference methods de-
scribed in this section as the Pairwise Model.

3 First-Order Logic Model

We propose augmenting the Pairwise Model to
enable classification decisions over sets of noun
phrases.

Given a set of noun phrases xj = {xi}, let the bi-
nary random variable yj be 1 if all the noun phrases
xi ∈ xj are coreferent. The features fk and weights
λk are defined as before, but now the features can
represent arbitrary attributes over the entire set xj .
This allows us to use the full flexibility of first-order
logic to construct features about sets of nouns. The
First-Order Logic Model is

p(yj |xj) =
1

Zxj

exp
∑

k

λkfk(xj , yj)

where Zxj is a normalizer that sums over the two
settings of yj .

Note that this model gives us the representational
power of recently proposed Markov logic networks
(Richardson and Domingos, 2006); that is, we can
construct arbitrary formulae in first-order logic to
characterize the noun coreference task, and can learn
weights for instantiations of these formulae. How-
ever, naively grounding the corresponding Markov
logic network results in a combinatorial explosion of
variables. Below we outline methods to scale train-
ing and prediction with this representation.

As in the Pairwise Model, we must decide how to
sample training examples and how to combine inde-
pendent classifications at testing time. It is impor-
tant to note that by moving to the First-Order Logic
Model, the number of possible predictions has in-
creased exponentially. In the Pairwise Model, the
number of possible y variables is O(|x|2), where
x is the set of noun phrases. In the First-Order
Logic Model, the number of possible y variables is
O(2|x|): There is a y variable for each possible el-
ement of the powerset of x. Of course, we do not
enumerate this set; rather, we incrementally instan-
tiate y variables as needed during prediction.

A simple method to generate training examples
is to sample positive and negative cluster examples

uniformly at random from the training data. Positive
examples are generated by first sampling a true clus-
ter, then sampling a subset of that cluster. Negative
examples are generated by sampling two positive ex-
amples and merging them into the same cluster.

At testing time, we perform standard greedy ag-
glomerative clustering, where the score for each
merger is proportional to the probability of the
newly formed clustering according to the model.
Clustering terminates when there exists no addi-
tional merge that improves the probability of the
clustering.

We refer to the system described in this section as
First-Order Uniform.

4 Error-driven and Rank-based training
of the First-Order Model

In this section we propose two enhancements to
the training procedure for the First-Order Uniform
model.

First, because each training example consists of
a subset of noun phrases, the number of possible
training examples we can generate is exponential in
the number of noun phrases. We propose an error-
driven sampling method that generates training ex-
amples from errors the model makes on the training
data. The algorithm is as follows: Given initial pa-
rameters Λ, perform greedy agglomerative cluster-
ing on training document i until an incorrect cluster
is formed. Update the parameter vector according to
this mistake, then repeat for the next training docu-
ment. This process is repeated for a fixed number of
iterations.

Exactly how to update the parameter vector is ad-
dressed by the second enhancement. We propose
modifying the optimization criterion of training to
perform ranking rather than classification of clus-
ters. Consider a training example cluster with a neg-
ative label, indicating that not all of the noun phrases
it contains are coreferent. A classification training
algorithm will “penalize” all the features associated
with this cluster, since they correspond to a negative
example. However, because there may exists subsets
of the cluster that are coreferent, features represent-
ing these positive subsets may be unjustly penalized.

To address this problem, we propose constructing
training examples consisting of one negative exam-
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Figure 2: An example noun coreference factor graph
for the Pairwise Model in which factors fc model the
coreference between two nouns, and ft enforce the
transitivity among related decisions. The number of
y variables increases quadratically in the number of
x variables.

ple and one “nearby” positive example. In particular,
when agglomerative clustering incorrectly merges
two clusters, we select the resulting cluster as the
negative example, and select as the positive example
a cluster that can be created by merging other exist-
ing clusters.1 We then update the weight vector so
that the positive example is assigned a higher score
than the negative example. This approach allows
the update to only penalize the difference between
the two features of examples, thereby not penaliz-
ing features representing any overlapping coreferent
clusters.

To implement this update, we use MIRA (Mar-
gin Infused Relaxed Algorithm), a relaxed, online
maximum margin training algorithm (Crammer and
Singer, 2003). It updates the parameter vector with
two constraints: (1) the positive example must have
a higher score by a given margin, and (2) the change
to Λ should be minimal. This second constraint is
to reduce fluctuations in Λ. Let s+(Λ,xj) be the
unnormalized score for the positive example and
s−(Λ,xk) be the unnormalized score of the neg-
ative example. Each update solves the following

1Of the possible positive examples, we choose the one with
the highest probability under the current model to guard against
large fluctuations in parameter updates

fc
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x1

y23
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y13 fc

fc

ft
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Figure 3: An example noun coreference factor graph
for the First-Order Model in which factors fc model
the coreference between sets of nouns, and ft en-
force the transitivity among related decisions. Here,
the additional node y123 indicates whether nouns
{x1, x2, x3} are all coreferent. The number of y
variables increases exponentially in the number of
x variables.

quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2

s.t.
s+(Λ,xj)− s−(Λ,xk) ≥ 1

In this case, MIRA with a single constraint can be
efficiently solved in one iteration of the Hildreth and
D’Esopo method (Censor and Zenios, 1997). Ad-
ditionally, we average the parameters calculated at
each iteration to improve convergence.

We refer to the system described in this section as
First-Order MIRA.

5 Probabilistic Interpretation

In this section, we describe the Pairwise and First-
Order models in terms of the factor graphs they ap-
proximate.

For the Pairwise Model, a corresponding undi-
rected graphical model can be defined as

P (y|x) =
1

Zx

∏
yij∈y

fc(yij , xij)∏
yij ,yjk∈y

ft(yij , yj,k, yik, xij , xjk, xik)
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where Zx is the input-dependent normalizer and fac-
tor fc parameterizes the pairwise noun phrase com-
patibility as fc(yij , xij) = exp(

∑
k λkfk(yij , xij)).

Factor ft enforces the transitivity constraints by
ft(·) = −∞ if transitivity is not satisfied, 1 oth-
erwise. This is similar to the model presented in
McCallum and Wellner (2005). A factor graph for
the Pairwise Model is presented in Figure 2 for three
noun phrases.

For the First-Order model, an undirected graphi-
cal model can be defined as

P (y|x) =
1

Zx

∏
yj∈y

fc(yj ,xj)

∏
yj∈y

ft(yj ,xj)

where Zx is the input-dependent nor-
malizer and factor fc parameterizes the
cluster-wise noun phrase compatibility as
fc(yj ,xj) = exp(

∑
k λkfk(yj , x

j)). Again,
factor ft enforces the transitivity constraints by
ft(·) = −∞ if transitivity is not satisfied, 1 other-
wise. Here, transitivity is a bit more complicated,
since it also requires that if yj = 1, then for any
subset xk ⊆ xj , yk = 1. A factor graph for the
First-Order Model is presented in Figure 3 for three
noun phrases.

The methods described in Sections 2, 3 and 4 can
be viewed as estimating the parameters of each fac-
tor fc independently. This approach can therefore
be viewed as a type of piecewise approximation of
exact parameter estimation in these models (Sutton
and McCallum, 2005). Here, each fc is a “piece”
of the model trained independently. These pieces
are combined at prediction time using clustering al-
gorithms to enforce transitivity. Sutton and McCal-
lum (2005) show that such a piecewise approxima-
tion can be theoretically justified as minimizing an
upper bound of the exact loss function.

6 Experiments

6.1 Data
We apply our approach to the noun coreference ACE
2004 data, containing 443 news documents with
28,135 noun phrases to be coreferenced. 336 doc-
uments are used for training, and the remainder for

testing. All entity types are candidates for corefer-
ence (pronouns, named entities, and nominal enti-
ties). We use the true entity segmentation, and parse
each sentence in the corpus using a phrase-structure
grammar, as is common for this task.

6.2 Features
We follow Soon et al. (2001) and Ng and Cardie
(2002) to generate most of our features for the Pair-
wise Model. These include:

• Match features - Check whether gender, num-
ber, head text, or entire phrase matches

• Mention type (pronoun, name, nominal)

• Aliases - Heuristically decide if one noun is the
acronym of the other

• Apposition - Heuristically decide if one noun is
in apposition to the other

• Relative Pronoun - Heuristically decide if one
noun is a relative pronoun referring to the other.

• Wordnet features - Use Wordnet to decide if
one noun is a hypernym, synonym, or antonym
of another, or if they share a hypernym.

• Both speak - True if both contain an adjacent
context word that is a synonym of “said.” This
is a domain-specific feature that helps for many
newswire articles.

• Modifiers Match - for example, in the phrase
“President Clinton”, “President” is a modifier
of “Clinton”. This feature indicates if one noun
is a modifier of the other, or they share a modi-
fier.

• Substring - True if one noun is a substring of
the other (e.g. “Egypt” and “Egyptian”).

The First-Order Model includes the following fea-
tures:

• Enumerate each pair of noun phrases and com-
pute the features listed above. All-X is true if
all pairs share a feature X , Most-True-X is true
if the majority of pairs share a feature X , and
Most-False-X is true if most of the pairs do not
share feature X .
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• Use the output of the Pairwise Model for each
pair of nouns. All-True is true if all pairs are
predicted to be coreferent, Most-True is true if
most pairs are predicted to be coreferent, and
Most-False is true if most pairs are predicted
to not be coreferent. Additionally, Max-True
is true if the maximum pairwise score is above
threshold, and Min-True if the minimum pair-
wise score is above threshold.

• Cluster Size indicates the size of the cluster.

• Count how many phrases in the cluster are
of each mention type (name, pronoun, nom-
inal), number (singular/plural) and gender
(male/female). The features All-X and Most-
True-X indicate how frequent each feature is
in the cluster. This feature can capture the soft
constraint such that no cluster consists only of
pronouns.

In addition to the listed features, we also include
conjunctions of size 2, for example “Genders match
AND numbers match”.

6.3 Evaluation
We use the B3 algorithm to evaluate the predicted
coreferent clusters (Amit and Baldwin, 1998). B3

is common in coreference evaluation and is similar
to the precision and recall of coreferent links, ex-
cept that systems are rewarded for singleton clus-
ters. For each noun phrase xi, let ci be the number
of mentions in xi’s predicted cluster that are in fact
coreferent with xi (including xi itself). Precision for
xi is defined as ci divided by the number of noun
phrases in xi’s cluster. Recall for xi is defined as
the ci divided by the number of mentions in the gold
standard cluster for xi. F1 is the harmonic mean of
recall and precision.

6.4 Results
In addition to Pairwise, First-Order Uniform, and
First-Order MIRA, we also compare against Pair-
wise MIRA, which differs from First-Order MIRA
only by the fact that it is restricted to pairwise fea-
tures.

Table 1 suggests both that first-order features and
error-driven training can greatly improve perfor-
mance. The First-Order Model outperforms the Pair-

F1 Prec Rec
First-Order MIRA 79.3 86.7 73.2

Pairwise MIRA 72.5 92.0 59.8
First-Order Uniform 69.2 79.0 61.5

Pairwise 62.4 62.5 62.3

Table 1: B3 results for ACE noun phrase corefer-
ence. FIRST-ORDER MIRA is our proposed model
that takes advantage of first-order features of the
data and is trained with error-driven and rank-based
methods. We see that both the first-order features
and the training enhancements improve performance
consistently.

wise Model in F1 measure for both standard train-
ing and error-driven training. We attribute some of
this improvement to the capability of the First-Order
model to capture features of entire clusters that may
indicate some phrases are not coreferent. Also, we
attribute the gains from error-driven training to the
fact that training examples are generated based on
errors made on the training data. (However, we
should note that there are also small differences in
the feature sets used for error-driven and standard
training results.)

Error analysis indicates that often noun xi is cor-
rectly not merged with a cluster xj when xj has a
strong internal coherence. For example, if all 5 men-
tions of France in a document are string identical,
then the system will be extremely cautious of merg-
ing a noun that is not equivalent to France into xj ,
since this will turn off the “All-String-Match” fea-
ture for cluster xj .

To our knowledge, the best results on this dataset
were obtained by the meta-classification scheme of
Ng (2005). Although our train-test splits may differ
slightly, the best B-Cubed F1 score reported in Ng
(2005) is 69.3%, which is considerably lower than
the 79.3% obtained with our method. Also note that
the Pairwise baseline obtains results similar to those
in Ng and Cardie (2002).

7 Related Work

There has been a recent interest in training methods
that enable the use of first-order features (Paskin,
2002; Daumé III and Marcu, 2005b; Richardson
and Domingos, 2006). Perhaps the most related is
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“learning as search optimization” (LASO) (Daumé
III and Marcu, 2005b; Daumé III and Marcu,
2005a). Like the current paper, LASO is also an
error-driven training method that integrates predic-
tion and training. However, whereas we explic-
itly use a ranking-based loss function, LASO uses
a binary classification loss function that labels each
candidate structure as correct or incorrect. Thus,
each LASO training example contains all candidate
predictions, whereas our training examples contain
only the highest scoring incorrect prediction and the
highest scoring correct prediction. Our experiments
show the advantages of this ranking-based loss func-
tion. Additionally, we provide an empirical study to
quantify the effects of different example generation
and loss function decisions.

Collins and Roark (2004) present an incremental
perceptron algorithm for parsing that uses “early up-
date” to update the parameters when an error is en-
countered. Our method uses a similar “early update”
in that training examples are only generated for the
first mistake made during prediction. However, they
do not investigate rank-based loss functions.

Others have attempted to train global scoring
functions using Gibbs sampling (Finkel et al., 2005),
message propagation, (Bunescu and Mooney, 2004;
Sutton and McCallum, 2004), and integer linear pro-
gramming (Roth and Yih, 2004). The main distinc-
tions of our approach are that it is simple to imple-
ment, not computationally intensive, and adaptable
to arbitrary loss functions.

There have been a number of machine learning
approaches to coreference resolution, traditionally
factored into classification decisions over pairs of
nouns (Soon et al., 2001; Ng and Cardie, 2002).
Nicolae and Nicolae (2006) combine pairwise clas-
sification with graph-cut algorithms. Luo et al.
(2004) do enable features between mention-cluster
pairs, but do not perform the error-driven and rank-
ing enhancements proposed in our work. Denis and
Baldridge (2007) use a ranking loss function for pro-
noun coreference; however the examples are still
pairs of pronouns, and the example generation is not
error driven. Ng (2005) learns a meta-classifier to
choose the best prediction from the output of sev-
eral coreference systems. While in theory a meta-
classifier can flexibly represent features, they do not
explore features using the full flexibility of first-

order logic. Also, their method is neither error-
driven nor rank-based.

McCallum and Wellner (2003) use a conditional
random field that factors into a product of pairwise
decisions about pairs of nouns. These pairwise de-
cisions are made collectively using relational infer-
ence; however, as pointed out in Milch et al. (2004),
this model has limited representational power since
it does not capture features of entities, only of pairs
of mention. Milch et al. (2005) address these issues
by constructing a generative probabilistic model,
where noun clusters are sampled from a generative
process. Our current work has similar representa-
tional flexibility as Milch et al. (2005) but is discrim-
inatively trained.

8 Conclusions and Future Work

We have presented learning and inference proce-
dures for coreference models using first-order fea-
tures. By relying on sampling methods at training
time and approximate inference methods at testing
time, this approach can be made scalable. This re-
sults in a coreference model that can capture features
over sets of noun phrases, rather than simply pairs of
noun phrases.

This is an example of a model with extremely
flexible representational power, but for which exact
inference is intractable. The simple approximations
we have described here have enabled this more flex-
ible model to outperform a model that is simplified
for tractability.

A short-term extension would be to consider fea-
tures over entire clusterings, such as the number of
clusters. This could be incorporated in a ranking
scheme, as in Ng (2005).

Future work will extend our approach to a wider
variety of tasks. The model we have described here
is specific to clustering tasks; however a similar for-
mulation could be used to approach a number of lan-
guage processing tasks, such as parsing and relation
extraction. These tasks could benefit from first-order
features, and the present work can guide the approx-
imations required in those domains.

Additionally, we are investigating more sophis-
ticated inference algorithms that will reduce the
greediness of the search procedures described here.
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Abstract

We explore the problem of retrieving
semi-structured documents from a real-
world collection using a structured query.
We formally develop Structured Rele-
vance Models (SRM), a retrieval model
that is based on the idea that plausible
values for a given field could be inferred
from the context provided by the other
fields in the record. We then carry out a
set of experiments using a snapshot of the
National Science Digital Library (NSDL)
repository, and queries that only mention
fields missing from the test data. For such
queries, typical field matching would re-
trieve no documents at all. In contrast, the
SRM approach achieves a mean average
precision of over twenty percent.

1 Introduction

This study investigates information retrieval on
semi-structured information, where documents con-
sist of several textual fields that can be queried in-
dependently. If documents containedsubjectand
author fields, for example, we would expect to see
queries looking for documents abouttheory of rela-
tivity by the authorEinstein.

This setting suggests exploring the issue of inex-
act match—isspecial theory of relativityrelevant?—
that has been explored elsewhere (Cohen, 2000).
Our interest is in an extreme case of that problem,
where the content of a field is not corrupted or in-

correct, but is actually absent. We wish to find rele-
vant information in response to a query such as the
one above even if a relevant document is completely
missing thesubjectandauthorfields.

Our research is motivated by the challenges we
encountered in working with the National Science
Digital Library (NSDL) collection.1 Each item in
the collection is a scientific resource, such as a re-
search paper, an educational video, or perhaps an
entire website. In addition to its main content, each
resource is annotated withmetadata, which provides
information such as the author or creator of the re-
source, its subject area, format (text/image/video)
and intended audience – in all over 90 distinct fields
(though some are very related). Making use of such
extensive metadata in a digital library paves the way
for constructing highly-focused models of the user’s
information need. These models have the potential
to dramatically improve the user experience in tar-
geted applications, such as the NSDL portals. To
illustrate this point, suppose that we are running
an educational portal targeted at elementary school
teachers, and some user requests teaching aids for
an introductory class on gravity. An intelligent
search system would be able to translate the request
into a structured query that might look something
like: subject=’gravity’ AND audience=’grades 1-4’
AND format=’image,video’ AND rights=’free-for-
academic-use’. Such a query can be efficiently an-
swered by a relational database system.

Unfortunately, using a relational engine to query a
semi-structured collection similar to NSDL will run
into a number of obstacles. The simplest problem is

1http://www.nsdl.org
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that natural language fields are filled inconsistently:
e.g., theaudiencefield contains values such asK-
4, K-6, second grade, andlearner, all of which are
clearly semantically related.

A larger problem, and the one we focus on in this
study, is that of missing fields. For example 24%
of the items in the NSDL collection have no sub-
ject field, 30% are missing the author information,
and over 96% mention no target audience (reading
level). This means that a relational query for ele-
mentary school material will consider at most 4% of
all potentially relevant resources in the NSDL col-
lection.2

The goal of our work is to introduce a retrieval
model that will be capable of answering complex
structured queries over a semi-structured collection
with corrupt and missing field values. This study
focuses on the latter problem, an extreme version
of the former. Our approach is to use a generative
model to compute how plausible a word would ap-
pear in a record’s empty field given the context pro-
vided by the other fields in the record.

The remainder of this paper is organized as fol-
lows. We survey previous attempts at handling semi-
structured data in section 2. Section 3 will provide
the details of our approach, starting with a high-level
view, then providing a mathematical framework, and
concluding with implementation details. Section 4
will present an extensive evaluation of our model on
the large set of queries over the NSDL collection.
We will summarize our results and suggest direc-
tions for future research in Section 5.

2 Related work

The issue of missing field values is addressed in a
number of recent publications straddling the areas of
relational databases and machine learning. In most
cases, researchers introduce a statistical model for
predicting the value of a missing attribute or relation,
based on observed values. Friedman et al (1999) in-
troduce a technique called Probabilistic Relational
Models (PRM) for automatically learning the struc-
ture of dependencies in a relational database. Taskar

2Some of the NSDL metadata fields overlap substantially in
meaning, so it might be argued that the overlapping fields will
cover the collection better. Under the broadest possible inter-
pretation of field meanings, more than 7% of the documents
still contain no subject and 95% still contain no audience field.

et al (2001) demonstrate how PRM can be used to
predict the category of a given research paper and
show that categorization accuracy can be substan-
tially improved by leveraging the relational structure
of the data. Heckerman et al (2004) introduce the
Probabilistic Entity Relationship (PER) model as an
extension of PRM that treats relations between enti-
ties as objects. Neville at al (2003) discuss predict-
ing binary labels in relational data using Relational
Probabilistic Trees (RPT). Using this method they
successfully predict whether a movie was a box of-
fice hit based on other movies that share some of
the properties (actors, directors, producers) with the
movie in question.

Our work differs from most of these approaches in
that we work with free-text fields, whereas database
researchers typically deal with closed-vocabulary
values, which exhibit neither the synonymy nor the
polysemy inherent in natural language expressions.
In addition, the goal of our work is different: we aim
for accuraterankingof records by their relevance to
the user’s query, whereas database research has typ-
ically focused onpredictingthe missing value.

Our work is related to a number of existing ap-
proaches to semi-structured text search. Desai et
al (1987) followed by Macleod (1991) proposed us-
ing the standard relational approach to searching
unstructured texts. The lack of an explicit rank-
ing function in their approaches was partially ad-
dressed by Blair (1988). Fuhr (1993) proposed the
use of Probabilistic Relational Algebra (PRA) over
the weights of individual term matches. Vasan-
thukumar et al (1996) developed a relational imple-
mentation of the inference network retrieval model.
A similar approach was taken by de Vries and
Wilschut (1999), who managed to improve the ef-
ficiency of the approach. De Fazio et al (1995) in-
tegrated IR and RDBMS technology using an ap-
proached called cooperative indexing. Cohen (2000)
describes WHIRL – a language that allows efficient
inexact matching of textual fields within SQL state-
ments. A number of relevant works are also pub-
lished in the proceedings of theINEX workshop.3

The main difference between these endeavors and
our work is that we are explicitly focusing on the
cases where parts of the structured data are missing

3http://inex.is.informatik.uni-duisburg.de/index.html
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or mis-labeled.

3 Structured Relevance Model

In this section we will provide a detailed description
of our approach to searching semi-structured data.
Before diving into the details of our model, we want
to clearly state the challenge we intend to address
with our system.

3.1 Task: finding relevant records

The aim of our system is to identify a set of
records relevant to a structured query provided by
the user. We assume the query specifies a set of
keywords for each field of interest to the user, for
exampleQ: subject=’physics,gravity’ AND audi-
ence=’grades 1-4’4. Each record in the database is
a set of natural-language descriptions for each field.
A record is considered relevant if itcould plausibly
be annotated with the query fields. For example, a
record clearly aimed at elementary school students
would be considered relevant toQ even if it does not
contain’grades 1-4’ in its description of the target
audience. In fact, our experiments will specifically
focus on finding relevant records that contain no di-
rect match to the specified query fields, explicitly
targeting the problem of missing data and inconsis-
tent schemata.

This task is not a typical IR task because the
fielded structure of the query is a critical aspect of
the processing, not one that is largely ignored in fa-
vor of pure content based retrieval. On the other
hand, the approach used is different from most DB
work because cross-field dependencies are a key
component of the technique. In addition, the task
is unusual for both communities because it consid-
ers an unusual case where the fields in the query do
not occur at all in the documents being searched.

3.2 Overview of the approach

Our approach is based on the idea that plausible val-
ues for a given field could be inferred from the con-
text provided by the other fields in the record. For
instance, a resource titled’Transductive SVMs’and
containing highly technical language in its descrip-
tion is unlikely to be aimed at elementary-school stu-

4For this paper we will focus on simple conjunctive queries.
Extending our model to more complex queries is reserved for
future research.

dents. In the following section we will describe a
statistical model that will allow us to guess the val-
ues of un-observed fields. At the intuitive level, the
model takes advantage of the fact that records sim-
ilar in one respect will often be similar in others.
For example, if two resources share the same author
and have similar titles, they are likely to be aimed at
the same audience. Formally, our model is based on
thegenerativeparadigm. We will describe a proba-
bilistic process that could be viewed, hypothetically,
as the source of every record in our collection. We
will assume that the query provided by our user is
also a sample from this generative process, albeit a
very short one. We will use the observed query fields
(e.g.audienceandsubject) to estimate the likely val-
ues for other fields, which would beplausiblein the
context of the observed subject and audience. The
distributions over plausible values will be calledrel-
evance models, since they are intended to mimic the
kind of record that might be relevant to the observed
query. Finally, all records in the database will be
ranked by their information-theoretic similarity to
these relevance models.

3.3 Definitions

We start with a set of definitions that will be used
through the remainder of this paper. LetC be a
collection of semi-structured records. Each record
w consists of a set of fieldsw1. . .wm. Each
field wi is a sequence of discrete variables (words)
wi,1. . .wi,ni , taking values in the field vocabulary
Vi.5 When a record contains no information for the
i’th field, we assumeni=0 for that record. A user’s
queryq takes the same representation as a record
in the database:q={qi,j∈Vi : i=1..m, j = 1..ni}.
We will usepi to denote alanguage modeloverVi,
i.e. a set of probabilitiespi(v)∈[0, 1], one for each
word v, obeying the constraintΣvpi(v) = 1. The
set of all possible language models overVi will be
denoted as the probability simplexIPi. We define
π : IP1×· · ·×IPm→[0, 1] to be a discrete measure
function that assigns a probability massπ(p1. . .pm)
to a set ofm language models, one for each of the
m fields present in our collection.

5We allow each field to have its own vocabularyVi, since we
generally do not expect author names to occur in the audience
field, etc. We also allowVi to share same words.
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3.4 Generative Model

We will now present a generative process that will be
viewed as a hypothetical source that produced ev-
ery record in the collectionC. We stress that this
process is purely hypothetical; its only purpose is to
model the kinds of dependencies that are necessary
to achieve effective ranking of records in response to
the user’s query. We assume that each recordw in
the database is generated in the following manner:

1. Pickm distributionsp1. . .pm according toπ

2. For each fieldi = 1. . .m:

(a) Pick the lengthni of thei′th field of w
(b) Draw i.i.d. wordswi,1. . .wi,ni from pi

Under this process, the probability of observing a
record{wi,j : i=1..m, j=1..ni} is given by the fol-
lowing expression:

∫

IP1...IPm

[
m∏

i=1

ni∏
j=1

pi(wi,j)

]
π(p1. . .pm)dp1. . .dpm (1)

3.4.1 A generative measure function

The generative measure functionπ plays a critical
part in equation (1): it specifies the likelihood of us-
ing different combinations of language models in the
process of generatingw. We use a non-parametric
estimate forπ, which relies directly on the combi-
nations of language models that are observed in the
training part of the collection. Each training record
w1. . .wm corresponds to a unique combination of
language modelspw

1 . . .pw
m defined by the following

equation:

pw
i (v) =

#(v,wi) + µicv

ni + µi
(2)

Here#(v,wi) represents the number of times the
word v was observed in thei’th field of w, ni

is the length of thei’th field, and cv is the rela-
tive frequency ofv in the entire collection. Meta-
parametersµi allow us to control the amount of
smoothing applied to language models of different
fields; their values are set empirically on a held-out
portion of the data.

We defineπ(p1. . .pm) to have mass1
N when

its argumentp1. . .pm corresponds to one of theN

recordsw in the training partCt of our collection,
and zero otherwise:

π(p1. . .pm) =
1

N

∑
w∈Ct

m∏
i=1

1pi=pw
i

(3)

Herepw
i is the language model associated with the

training recordw (equation 2), and1x is the Boolean
indicator function that returns 1 when its predicatex
is true and zero when it is false.

3.4.2 Assumptions and limitations of the model

The generative model described in the previous
section treats each field in the record as abag of
words with no particular order. This representation
is often associated with the assumption ofword in-
dependence. We would like to stress that our model
does not assume word independence, on the con-
trary, it allows for strongun-ordereddependencies
among the words – both within a field, and across
different fields within a record. To illustrate this
point, suppose we letµi→0 in equation (2) to re-
duce the effects of smoothing. Now consider the
probability of observing the word’elementary’ in
the audience field together with the word’differen-
tial’ in the title (equation 1). It is easy to verify that
the probability will be non-zero only if some train-
ing recordw actually contained these words in their
respective fields – an unlikely event. On the other
hand, the probability of’elementary’and ’differen-
tial’ co-occurring in the same title might be consid-
erably higher.

While our model does not assume word indepen-
dence, it does ignore the relative ordering of the
words in each field. Consequently, the model will
fail whenever the order of words, or their proximity
within a field carries a semantic meaning. Finally,
our generative model does not capture dependencies
across different records in the collection, each record
is drawn independently according to equation (1).

3.5 Using the model for retrieval

In this section we will describe how the generative
model described above can be used to find database
records relevant to the structured query provided by
the user. We are given a structured queryq, and
a collection of records, partitioned into the training
portionCt and the testing portionCe. We will use
the training records to estimate a set ofrelevance
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records average unique
covered length words

title 655,673 (99%) 7 102,772
description 514,092 (78%) 38 189,136

subject 504,054 (77%) 12 37,385
content 91,779 (14%) 743 575,958

audience 22,963 (3.5%) 4 119

Table 1: Summary statistics for the five NSDL fields
used in our retrieval experiments.

modelsR1. . .Rm, intended to reflect the user’s in-
formation need. We will then rank testing records by
their divergence from these relevance models. A rel-
evanceRi(v) specifies how plausible it is that word
v would occur in thei’th field of a record, given
that the record contains a perfect match to the query
fieldsq1. . .qm:

Ri(v) =
P (q1. . .v◦qi. . .qm)

P (q1. . .qi. . .qm)
(4)

We usev◦qi to denote appending wordv to the
string qi. Both the numerator and the denomina-
tor are computed using equation (1). Once we have
computed relevance modelsRi for each of them
fields, we can rank testing recordsw′ by their sim-
ilarity to these relevance models. As a similarity
measure we use weighted cross-entropy, which is an
extension of the ranking formula originally proposed
by (Lafferty and Zhai, 2001):

H(R1..m;w1..m) =

m∑
i=1

αi

∑
v∈Vi

Ri(v) log pw
i (v) (5)

The outer summation goes over every field of inter-
est, while the inner extends over all the words in the
vocabulary of thei’th field. Ri are computed accord-
ing to equation (4), whilepw

i are estimated from
equation (2). Meta-parametersαi allow us to vary
the importance of different fields in the final rank-
ing; the values are selected on a held-out portion of
the data.

4 Experiments

4.1 Dataset and queries

We tested the performance of our model on a Jan-
uary 2005 snapshot of the National Science Digi-
tal Library repository. The snapshot contains a to-
tal of 656,992 records, spanning 92 distinct (though

sometimes related) fields.6Only 7 of these fields
are present in every record, and half the fields are
present in less than 1% of the records. An average
record contains only 17 of the 92 fields. Our experi-
ments focus on a subset of 5 fields (title, description,
subject, contentand audience). These fields were
selected for two reasons: (i) they occur frequently
enough to allow a meaningful evaluation and (ii)
they seem plausible to be included in a potential
query.7 Of these fields,title represents the title of the
resource,descriptionis a very brief abstract,content
is a more detailed description (but not the full con-
tent) of the resource,subjectis a library-like clas-
sification of the topic covered by the resource, and
audiencereflects the target reading level (e.g.ele-
mentary schoolor post-graduate). Summary statis-
tics for these fields are provided in Table 1.

The dataset was randomly split into three sub-
sets: thetraining set, which comprised 50% of the
records and was used for estimating the relevance
models as described in section 3.5; theheld-out set,
which comprised 25% of the data and was used to
tune the smoothing parametersµi and the bandwidth
parametersαi; and theevaluation set, which con-
tained 25% of the records and was used to evaluate
the performance of the tuned model8.

Our experiments are based on a set of 127 auto-
matically generated queries. We randomly split the
queries into two groups, 64 for training and 63 for
evaluation. The queries were constructed by com-
bining two randomly pickedsubjectwords with two
audiencewords, and then discarding any combi-
nation that had less than 10 exact matches in any
of the three subsets of our collection. This proce-
dure yields queries such asQ91={subject:’artificial
intelligence’ AND audience=’researchers’}, or
Q101={subject:’philosophy’ AND audience=’high
school’}.
4.2 Evaluation paradigm

We evaluate our model by its ability to find “rele-
vant” records in the face of missing values. We de-

6As of May 2006, the NSDL contains over 1.5 million doc-
uments.

7The most frequent NSDL fields (id, icon, url, link and 4
brandfields) seem unlikely to be used in user queries.

8In real use, typical pseudo relevance feedback scheme can
be followed: retrieve top-k documents to build relevance mod-
els then perform IR again on the same whole collection
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fine a recordw to be relevant to the user’s queryq
if every keyword inq is found in the corresponding
field of w. For example, in order to be relevant to
Q101 a record must contain the word‘philosophy’in
the subject field and words‘high’ and‘school’ in the
audience field. If either of the keywords is missing,
the record is considered non-relevant.9

When the testing records are fully observable,
achieving perfect retrieval accuracy is trivial: we
simply return all records that match all query key-
words in the subject and audience fields. As we
stated earlier, our main interest concerns the sce-
nario when parts of the testing data are missing. We
are going to simulate this scenario in a rather ex-
treme manner bycompletelyremoving thesubject
and audiencefields from all testing records. This
means that a straightforward approach – matching
query fields against record fields – will yield no rel-
evant results. Our approach will rank testing records
by comparing theirtitle, descriptionand content
fields against the query-based relevance models, as
discussed in section 3.5.

We will use the standard rank-based evaluation
metrics: precisionand recall. Let NR be the total
number of records relevant to a given query, sup-
pose that the firstK records in our ranking contain
NK relevant ones. Precision at rankK is defined
as NK

K and recall is defined asNK
NR

. Average preci-
sion is defined as the mean precision over all ranks
where relevant items occur.R-precision is defined
as precision at rankK=NR.

4.3 Baseline systems

Our experiments will compare the ranking perfor-
mance of the following retrieval systems:

cLM is a cheatingversion of un-structured text
search using a state-of-the-art language-modeling
approach (Ponte and Croft, 1998). We disregard
the structure, take all query keywords and run them
against aconcatenationof all fields in the testing
records. This is a “cheating” baseline, since the con-

9This definition of relevance is unduly conservative by the
standards of Information Retrieval researchers. Many records
that might be considered relevant by a human annotator will be
treated as non-relevant, artificially decreasing the accuracy of
any retrieval algorithm. However, our approach has the advan-
tage of being fully automatic: it allows us to test our model on
a scale that would be prohibitively expensive with manual rele-
vance judgments.

catenation includes theaudienceandsubjectfields,
which are supposed to be missing from the testing
records. We use Dirichlet smoothing (Lafferty and
Zhai, 2001), with parameters optimized on the train-
ing data. This baseline mimics the core search capa-
bility currently available on the NSDL website.

bLM is a combination of SQL-like structured
matching and unstructured search with query ex-
pansion. We take all training records that contain
an exact match to our query and select 10 highly-
weighted words from thetitle, description, andcon-
tentfields of these records. We run the resulting 30
words as a language modeling query against the con-
catenation oftitle, description, andcontentfields in
the testing records. This is a non-cheating baseline.

bMatch is a structured extension of bLM. As in
bLM, we pick training records that contain an ex-
act match to the query fields. Then we match 10
highly-weightedtitle words, against thetitle field of
testing records, do the same for thedescriptionand
contentfields, and merge the three resulting ranked
lists. This is a non-cheating baseline that is similar
to our model (SRM). The main difference is that this
approach uses exact matching to select the training
records, whereas SRM leverages a best-match lan-
guage modeling algorithm.

SRM is the Structured Relevance Model, as de-
scribed in section 3.5. For reasons of both effec-
tiveness and efficiency, we firstly run the original
query to retrieve top-500 records, then use these
records to build SRMs. When calculating the cross
entropy(equ. 5), for each field we only include the
top-100 words which will appear in that field with
the largest probabilities.

Note that our baselines do not include a standard
SQL approach directly on testing records. Such
an approach would have perfect performance in a
“cheating” scenario with observablesubjectandau-
diencefields, but would not match any records when
the fields are removed.

4.4 Experimental results

Table 2 shows the performance of our model (SRM)
against the three baselines. The model parameters
were tuned using the 64 training queries on thetrain-
ing andheld-outsets. The results are for the 63 test
queries run against theevaluationcorpus. (Similar
results occur if the 64 training queries are run against
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cLM bMatch bLM SRM %change improved
Rel-ret: 949 582 914 861 -5.80 26/50

Interpolated Recall - Precision:
at 0.00 0.3852 0.3730 0.4153 0.5448 31.2 33/49
at 0.10 0.3014 0.3020 0.3314 0.4783 44.3 42/56
at 0.20 0.2307 0.2256 0.2660 0.3641 36.9 40/59
at 0.30 0.2105 0.1471 0.2126 0.2971 39.8 36/58
at 0.40 0.1880 0.1130 0.1783 0.2352 31.9 36/58
at 0.50 0.1803 0.0679 0.1591 0.1911 20.1 32/57
at 0.60 0.1637 0.0371 0.1242 0.1439 15.8 27/51
at 0.70 0.1513 0.0161 0.1001 0.1089 8.7 21/42
at 0.80 0.1432 0.0095 0.0901 0.0747 -17.0 18/36
at 0.90 0.1292 0.0055 0.0675 0.0518 -23.2 12/27
at 1.00 0.1154 0.0043 0.0593 0.0420 -29.2 9/23

Avg.Prec. 0.1790 0.1050 0.1668 0.2156 29.25 43/63
Precision at:

5 docs 0.1651 0.2159 0.2413 0.3556 47.4 32/43
10 docs 0.1571 0.1651 0.2063 0.2889 40.0 34/48
15 docs 0.1577 0.1471 0.1841 0.2360 28.2 32/49
20 docs 0.1540 0.1349 0.1722 0.2024 17.5 28/47
30 docs 0.1450 0.1101 0.1492 0.1677 12.4 29/50

100 docs 0.0913 0.0465 0.0849 0.0871 2.6 37/57
200 docs 0.0552 0.0279 0.0539 0.0506 -6.2 33/53
500 docs 0.0264 0.0163 0.0255 0.0243 -4.5 26/48

1000 docs 0.0151 0.0092 0.0145 0.0137 -5.8 26/50
R-Prec. 0.1587 0.1204 0.1681 0.2344 39.44 31/49

Table 2: Performance of the 63 test queries retrieving 1000 documents on the evaluation data. Bold figures
show statistically significant differences. Across all 63 queries, there are 1253 relevant documents.

theevalutioncorpus.)

The upper half of Table 2 shows precision at
fixed recall levels; the lower half shows precision
at different ranks. The%changecolumn shows rel-
ative difference between our model and the base-
line bLM. The improvedcolumn shows the num-
ber of queries where SRM exceeded bLM vs. the
number of queries where performance was different.
For example,33/49 means that SRM out-performed
bLM on 33 queries out of63, underperformed on
49−33=16 queries, and had exactly the same per-
formance on63−49=14 queries. Bold figures in-
dicate statistically significant differences (according
to the sign test withp < 0.05).

The results show that SRM outperforms three
baselines in the high-precision region, beating
bLM’s mean average precision by 29%. User-
oriented metrics, such as R-precision and precision
at 10 documents, are improved by 39.4% and 44.3%
respectively. The absolute performance figures are
also very encouraging. Precision of 28% at rank 10
means that on average almost 3 out of the top 10
records in the ranked list are relevant, despite the re-
quested fields not being available to the model.

We note that SRM continues to outperform bLM
until very high recall and until the 100-document
cutoff. After that, SRM degrades rapidly with re-
spect to bLM. We feel the drop in effectiveness is of
marginal interest because precision is already well
below 10% and few users will be continuing to that
depth in the list.

It is encouraging to see that SRM outperforms
both cLM, the cheating baseline that takes advantage
of the field values that are supposed to be “miss-
ing”, and bMatch, suggesting that best-match re-
trieval provides a superior strategy for selecting a set
of appropriate training records.

5 Conclusions

We have developed and empirically validated a new
retrieval model for semi-structured text. The model
is based on the idea that missing or corrupted val-
ues for one field can be inferred from values in other
fields of the record. The cross-field inference makes
it possible to find documents in response to a struc-
tured query when those query fields do not exist in
the relevant documents at all.

We validated the SRM approach on a large
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archive of the NSDL repository. We developed a
large set of structured Boolean queries that had rel-
evant documents in the test portion of collection.
We then indexed the documentswithout the fields
used in the queries. As a result, using standard field
matching approaches, not a single document would
be returned in response to the queries—in particular,
no relevant documents would be found.

We showed that standard information retrieval
techniques and structured field matching could be
combined to address this problem, but that the SRM
approach outperforms them. We note that SRM
brought two relevant documents into the top five—
again, querying on missing fields—and achieved an
average precision of 23%, a more than 35% im-
provement over a state-of-the-art relevance model
approach combining the standard field matching.

Our work is continuing by exploring methods
for handling fields with incorrect or corrupted val-
ues. The challenge becomes more than just inferring
what values might be there; it requires combining
likely missing values with confidence in the values
already present: if an audience field contains ’under-
graduate’, it should be unlikely that ’K-6’ would be
a plausible value, too.

In addition to using SRMs for retrieval, we are
currently extending the ideas to provide field valida-
tion and suggestions for data entry and validation:
the same ideas used to find documents with miss-
ing field values can also be used to suggest potential
values for a field and to identify values that seem
inappropriate. We have also begun explorations to-
ward using inferred values to help a user browse
when starting from some structured information—
e.g., given values for two fields, what values are
probable for other fields.
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Abstract

We introduce a novel ranking algorithm
called GRASSHOPPER, which ranks items
with an emphasis on diversity. That is, the
top items should be different from each
other in order to have a broad coverage
of the whole item set. Many natural lan-
guage processing tasks can benefit from
such diversity ranking. Our algorithm is
based on random walks in an absorbing
Markov chain. We turn ranked items into
absorbing states, which effectively pre-
vents redundant items from receiving a
high rank. We demonstrateGRASSHOP-

PER’s effectiveness on extractive text sum-
marization: our algorithm ranks between
the 1st and 2nd systems on DUC 2004
Task 2; and on a social network analy-
sis task that identifies movie stars of the
world.

1 Introduction

Many natural language processing tasks involve
ranking a set of items. Sometimes we want the top
items to be not only good individually but alsodi-
versecollectively. For example, extractive text sum-
marization generates a summary by selecting a few
good sentences from one or more articles on the
same topic (Goldstein et al., 2000). This can be for-
mulated as ranking all the sentences, and taking the
top ones. A good sentence is one that is represen-
tative, i.e., similar to many other sentences, so that

it likely conveys the central meaning of the articles.
On the other hand, we do not want multiple near-
identical sentences. The top sentences should be di-
verse.

As another example, in information retrieval on
news events, an article is often published by multi-
ple newspapers with only minor changes. It is unde-
sirable to rank all copies of the same article highly,
even though it may be the most relevant. Instead,
the top results should be different and complemen-
tary. In other words, one wants ‘subtopic diversity’
in retrieval results (Zhai et al., 2003).

The need for diversity in ranking is not unique to
natural language processing. In social network anal-
ysis, people are connected by their interactions, e.g.,
phone calls. Active groups of people have strong in-
teractions among them, but many groups may exist
with fewer interactions. If we want a list of people
that represent various groups, it is important to con-
sider both activity and diversity, and not to fill the
list with people from the same active groups.

Given the importance of diversity in ranking,
there has been significant research in this area. Per-
haps the most well-known method is maximum
marginal relevance (MMR) (Carbonell and Gold-
stein, 1998), as well as cross-sentence informational
subsumption (Radev, 2000), mixture models (Zhang
et al., 2002), subtopic diversity (Zhai et al., 2003),
diversity penalty (Zhang et al., 2005), and others.
The basic idea is to penalize redundancy by lowering
an item’s rank if it is similar to items already ranked.
However, these methods often treat centrality rank-
ing and diversity ranking separately, sometimes with
heuristic procedures.
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We proposeGRASSHOPPER(GraphRandom-walk
with Absorbing StateS that HOPs amongPEaks
for Ranking), a novel ranking algorithm that en-
courages diversity.GRASSHOPPERis an alternative
to MMR and variants, with a principled mathemat-
ical model and strong empirical performance. It
ranks a set of items such that: 1. A highly ranked
item is representative of a local group in the set,
i.e., it is similar to many other items (centrality);
2. The top items cover as many distinct groups as
possible (diversity); 3. It incorporates an arbitrary
pre-specified ranking as prior knowledge (prior).
ImportantlyGRASSHOPPERachieves these in a uni-
fied framework ofabsorbing Markov chain random
walks. The key idea is the following: We define
a random walk on a graph over the items. Items
which have been ranked so far become absorbing
states. These absorbing states ‘drag down’ the im-
portance of similar unranked states, thus encourag-
ing diversity. Our model naturally balances central-
ity, diversity, and prior. We discuss the algorithm
in Section 2. We presentGRASSHOPPER’s empiri-
cal results on text summarization and social network
analysis in Section 3.

2 The GRASSHOPPER Algorithm

2.1 The Input

GRASSHOPPERrequires three inputs: a graphW , a
probability distributionr that encodes the prior rank-
ing, and a weightλ ∈ [0, 1] that balances the two.

The user needs to supply a graph withn nodes,
one for each item. The graph is represented by an
n× n weight matrixW , wherewij is the weight on
the edge fromi to j. It can be either directed or undi-
rected.W is symmetric for undirected graphs. The
weights are non-negative. The graph does not need
to be fully connected: if there is no edge from item
i to j, thenwij = 0. Self-edges are allowed. For ex-
ample, in text summarization one can create an undi-
rected, fully connected graph on the sentences. The
edge between sentencesi, j has weightwij , their co-
sine similarity. In social network analysis one can
create a directed graph withwij being the number
of phone callsi made toj. The graph should be
constructed carefully to reflect domain knowledge.
For examples, see (Erkan and Radev, 2004; Mihal-
cea and Tarau, 2004; Pang and Lee, 2004).

The user can optionally supply an arbitrary rank-
ing on the items as prior knowledge. In this
caseGRASSHOPPERcan be viewed as a re-ranking
method. For example, in information retrieval,
the prior ranking can be the ranking by relevance
scores. In text summarization, it can be the po-
sition of sentences in the original article. (There
is evidence that the first few sentences in an ar-
ticle are likely good summaries.) Somewhat un-
conventionally, the prior ranking is represented as
a probability distributionr = (r1, · · · , rn)⊤ such
thatri ≥ 0,

∑n
i=1

ri = 1. The highest-ranked item
has the largest probability, the next item has smaller
probability, and so on. A distribution gives the user
more control. For examplera = (0.1, 0.7, 0.2)⊤

andrb = (0.3, 0.37, 0.33)⊤ both represent the same
ranking of items 2, 3, 1, but with different strengths.
When there is no prior ranking, one can letr =
(1/n, · · · , 1/n)⊤, the uniform distribution.

2.2 Finding the First Item

We find the first item inGRASSHOPPERranking by
teleporting random walks. Imagine a random walker
on the graph. At each step, the walker may do one of
two things: with probabilityλ, she moves to a neigh-
bor state1 according to the edge weights; otherwise
she is teleported to a random state according to the
distributionr. Under mild conditions (which are sat-
isfied in our setting, see below), the stationary distri-
bution of the random walk defines the visiting prob-
abilities of the nodes. The states with large probabil-
ities can be regarded as central items, an idea used
in Google PageRank (Page et al., 1998) and other in-
formation retrieval systems (Kurland and Lee, 2005;
Zhang et al., 2005), text summarization (Erkan and
Radev, 2004), keyword extraction (Mihalcea and Ta-
rau, 2004) and so on. Depending onλ, items high on
the user-supplied prior rankingr may also have large
stationary probabilities, which is a way to incorpo-
rate the prior ranking.

As an example, we created a toy data set with 300
points in Figure 1(a). There are roughly three groups
with different densities. We created a fully con-
nected graph on the data, with larger edge weights
if points are closer2. Figure 1(b) shows the station-
ary distribution of the random walk on the graph.

1We usestate, nodeanditem interchangeably.
2We usewij = exp(−‖xi − xj‖

2/0.16), λ = 1.
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Figure 1: (a) A toy data set. (b) The stationary distributionπ reflects centrality. The item with the largest
probability is selected as the first itemg1. (c) The expected number of visitsv to each node afterg1 becomes
an absorbing state. (d) After bothg1 andg2 become absorbing states. Note the diversity ing1, g2, g3 as they
come from different groups.

Items at group centers have higher probabilities, and
tighter groups have overall higher probabilities.

However, the stationary distribution does not ad-
dress diversity at all. If we were to rank the items
by their stationary distribution, the top list would be
dominated by items from the center group in Fig-
ure 1(b). Therefore we only use the stationary dis-
tribution to find the first item, and use a method
described in the next section to rank the remaining
items.

Formally we first define ann × n raw transition
matrix P̃ by normalizing the rows ofW : P̃ij =
wij/

∑n
k=1

wik, so thatP̃ij is the probability that the
walker moves toj from i. We then make the walk
a teleporting random walkP by interpolating each
row with the user-supplied initial distributionr:

P = λP̃ + (1− λ)1r
⊤, (1)

where1 is an all-1 vector, and1r
⊤ is the outer prod-

uct. If λ < 1 andr does not have zero elements,
our teleporting random walkP is irreducible (possi-
ble to go to any state from any state by teleporting),
aperiodic (the walk can return to a state after any
number of steps), all states are positive recurrent (the
expected return time to any state is finite) and thus
ergodic (Grimmett and Stirzaker, 2001). Therefore
P has a unique stationary distributionπ = P⊤π.
We take the state with the largest stationary proba-
bility to be the first itemg1 in GRASSHOPPERrank-
ing: g1 = argmaxn

i=1 πi.

2.3 Ranking the Remaining Items

As mentioned early, the key idea ofGRASSHOPPER

is to turn ranked items into absorbing states. We
first turn g1 into an absorbing state. Once the ran-
dom walk reaches an absorbing state, the walk is ab-
sorbed and stays there. It is no longer informative to
compute the stationary distribution of an absorbing
Markov chain, because the walk will eventually be
absorbed. Nonetheless, it is useful to compute the
expected number of visitsto each node before ab-
sorption. Intuitively, those nodes strongly connected
to g1 will have many fewer visits by the random
walk, because the walk tends to be absorbed soon
after visiting them. In contrast, groups of nodes far
away fromg1 still allow the random walk to linger
among them, and thus have more visits. In Fig-
ure 1(c), onceg1 becomes an absorbing node (rep-
resented by a circle ‘on the floor’), the center group
is no longer the most prominent: nodes in this group
have fewer visits than the left group. Note now the
y-axis is the number of visits instead of probability.

GRASSHOPPERselects the second itemg2 with the
largest expected number of visits in this absorbing
Markov chain. This naturally inhibits items similar
to g1 and encourages diversity. In Figure 1(c), the
item near the center of the left group is selected as
g2. Onceg2 is selected, it is converted into an ab-
sorbing state, too. This is shown in Figure 1(d). The
right group now becomes the most prominent, since
both the left and center groups contain an absorbing
state. The next itemg3 in ranking will come from the
right group. Also note the range ofy-axis is smaller:
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with more absorbing states, the random walk will be
absorbed sooner. The procedure is repeated until all
items are ranked. The nameGRASSHOPPERreflects
the ‘hopping’ behavior on the peaks.

It is therefore important to compute the expected
number of visits in an absorbing Markov chain. Let
G be the set of items ranked so far. We turn the states
g ∈ G into absorbing states by settingPgg = 1 and
Pgi = 0,∀i 6= g. If we arrange items so that ranked
ones are listed before unranked ones, we can write
P as

P =

[

IG 0

R Q

]

. (2)

HereIG is the identity matrix onG. SubmatricesR
andQ correspond to rows of unranked items, those
from (1). It is known that thefundamental matrix

N = (I−Q)−1 (3)

gives the expected number of visits in the absorbing
random walk (Doyle and Snell, 1984). In particular
Nij is the expected number of visits to statej be-
fore absorption, if the random walk started at statei.
We then average over all starting states to obtainvj ,
the expected number of visits to statej. In matrix
notation,

v =
N⊤

1

n− |G|
, (4)

where|G| is the size ofG. We select the state with
the largest expected number of visits as the next item
g|G|+1 in GRASSHOPPERranking:

g|G|+1 = argmaxn
i=|G|+1

vi. (5)

The completeGRASSHOPPERalgorithm is summa-
rized in Figure 2.

2.4 Some Discussions

To see howλ controls the tradeoff, note whenλ = 1
we ignore the user-supplied prior rankingr, while
whenλ = 0 one can show thatGRASSHOPPERre-
turns the ranking specified byr.

Our data in Figure 1(a) has a cluster struc-
ture. Many methods have exploited such structure,
e.g., (Hearst and Pedersen, 1996; Leuski, 2001; Liu
and Croft, 2004). In fact, a heuristic algorithm is
to first cluster the items, then pick the central items
from each cluster in turn. But it can be difficult to

Input: W , r, λ

1. Create the initial Markov chainP from
W, r, λ (1).

2. ComputeP ’s stationary distributionπ. Pick the
first itemg1 = argmaxi πi.

3. Repeat until all items are ranked:

(a) Turn ranked items into absorbing
states (2).

(b) Compute the expected number of visitsv

for all remaining items (4). Pick the next
itemg|G|+1 = argmaxi vi

Figure 2: TheGRASSHOPPERalgorithm

determine the appropriate number and control the
shape of clusters. In contrast,GRASSHOPPERdoes
not involve clustering. However it is still able to
automatically take advantage of cluster structures in
the data.

In each iteration we need to compute the fun-
damental matrix (3). This involves inverting an
(n − |G|) × (n − |G|) matrix, which is expensive.
However theQ matrix is reduced by one row and
one column in every iteration, but is otherwise un-
changed. This allows us to apply the matrix in-
version lemma (Sherman-Morrison-Woodbury for-
mula) (Press et al., 1992). Then we only need to
invert the matrix once in the first iteration, but not in
subsequent iterations. Space precludes a full discus-
sion, but we point out that it presents a significant
speed up. A Matlab implementation can be found
athttp://www.cs.wisc.edu/∼jerryzhu/
pub/grasshopper.m.

3 Experiments

3.1 Text Summarization

Multi-document extractive text summarization is a
prime application forGRASSHOPPER. In this task, we
must select and rank sentences originating from a
set of documents about a particular topic or event.
The goal is to produce a summary that includes all
the relevant facts, yet avoids repetition that may
result from using similar sentences from multiple
documents. In this section, we demonstrate that
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GRASSHOPPER’s balance of centrality and diversity
makes it successful at this task. We present em-
pirical evidence thatGRASSHOPPERachieves results
competitive with the top text summarizers in the
2004 Document Understanding Conference (http:
//duc.nist.gov). DUC is a yearly text summa-
rization community evaluation, with several tasks in
recent years concentrating on multi-document sum-
marization (described in more detail below).

Many successful text summarization systems
achieve a balance between sentence centrality and
diversity in a two-step process. Here we review the
LexRank system (Erkan and Radev, 2004), which
is most similar to our current approach. LexRank
works by placing sentences in a graph, with edges
based on the lexical similarity between the sentences
(as determined by a cosine measure). Each sen-
tence is then assigned a centrality score by finding
its probability under the stationary distribution of
a random walk on this graph. Unlike the similar
PageRank algorithm (Page et al., 1998), LexRank
uses an undirected graph of sentences rather than
Web pages, and the edge weights are either cosine
values or 0/1 with thresholding. The LexRank cen-
trality can be combined with other centrality mea-
sures, as well as sentence position information. Af-
ter this first step of computing centrality, a sec-
ond step performs re-ranking to avoid redundancy
in the highly ranked sentences. LexRank uses cross-
sentence informational subsumption (Radev, 2000)
to this end, but MMR (Carbonell and Goldstein,
1998) has also been widely used in the text sum-
marization community. These methods essentially
disqualify sentences that are too lexically similar to
sentences ranked higher by centrality. In short, sim-
ilar graph-based approaches to text summarization
rely on two distinct processes to measure each sen-
tence’s importance and ensure some degree of diver-
sity. GRASSHOPPER, on the other hand, achieves the
same goal in a unified procedure.

We applyGRASSHOPPERto text summarization in
the following manner. Our graph contains nodes
for all the sentences in a document set. We
used the Clair Library (http://tangra.si.
umich.edu/clair/clairlib) to split docu-
ments into sentences, apply stemming, and create
a cosine matrix for the stemmed sentences. Cosine
values are computed using TF-IDF vectors. As in

LexRank, edges in the graph correspond to text sim-
ilarity. To create a sparse graph, we use the cosine
threshold value of 0.1 obtained in (Erkan and Radev,
2004). Specifically, the edge weight between sen-
tence vectorssi andsj is defined as

wij =

{

1 if s⊤i sj

‖si‖·‖sj‖
> 0.1

0 otherwise
. (6)

The second input forGRASSHOPPERis an initial
ranking distribution, which we derive from the po-
sition of each sentence in its originating document.
Position forms the basis for lead-based summaries
(i.e., using the firstN sentences as the summary)
and leads to very competitive summaries (Brandow
et al., 1995). We form an initial ranking for each
sentence by computingp−α, wherep is the position
of the sentence in its document, andα is a posi-
tive parameter trained on a development dataset. We
then normalize over all sentences in all documents
to form a valid distributionr ∝ p−α that gives high
probability to sentences closer to the beginning of
documents. With a largerα, the probability assigned
to later sentences decays more rapidly.

To evaluateGRASSHOPPER, we experimented with
DUC datasets. We train our parameters (α andλ)
using the DUC 2003 Task 2 data. This dataset con-
tains 30 document sets, each with an average of 10
documents about a news event. We testGRASSHOP-

PER’s performance on the DUC 2004 Task 2, Tasks
4a and 4b data. DUC 2004 Task 2 has 50 document
sets of 10 documents each. Tasks 4a and 4b explored
cross-lingual summarization. These datasets consist
of Arabic-to-English translations of news stories.
The documents in Task 4a are machine-translated,
while Task 4b’s are manually-translated. Note that
we handle the translated documents in exactly the
same manner as the English documents.

We evaluate our results using the standard text
summarization metric ROUGE (http://www.
isi.edu/∼cyl/ROUGE/). This is a recall-based
measure of text co-occurrence between a machine-
generated summary and model summaries manually
created by judges. ROUGE metrics exist based on
bigram, trigram, and 4-gram overlap, but ROUGE-1
(based on unigram matching) has been found to cor-
relate best with human judgments (Lin and Hovy,
2003).
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Using the DUC 2003 training data, we tunedα
andλ on a small grid (α ∈ {0.125, 0.25, 0.5, 1.0};
λ ∈ {0.0, 0.0625, 0.125, 0.25, 0.5, 0.95}). Specifi-
cally, for each of the 30 DUC 2003 Task 2 document
sets, we computed ROUGE-1 scores comparing our
generated summary to 4 model summaries. We av-
eraged the resulting ROUGE-1 scores across all 30
sets to produce a single average ROUGE-1 score to
assess a particular parameter configuration. After
examining the results for all 24 configurations, we
selected the best one:α = 0.25 andλ = 0.5.

Table 1 presents our results using these parame-
ter values to generate summaries for the three DUC
2004 datasets. Note that the averages listed are ac-
tually averages over 4 model summaries per set, and
over all the sets. Following the standard DUC pro-
tocol, we list the confidence intervals calculated by
ROUGE using a bootstrapping technique. The fi-
nal column compares our results to the official sys-
tems that participated in the DUC 2004 evaluation.
GRASSHOPPERis highly competitive in these text
summarization tasks: in particular it ranks between
the 1st and 2nd automatic systems on 2004 Task 2.
The lower performance in Task 4a is potentially due
to the documents being machine-translated. If they
contain poorly translated sentences, graph edges
based on cosine similarity could be less meaning-
ful. For such a task, more advanced text processing
is probably required.

3.2 Social Network Analysis

As another application ofGRASSHOPPER, we iden-
tify the nodes in a social network that are the most
prominent, and at the same time maximally cover
the network. A node’s prominence comes from its
intrinsic stature, as well as the prominence of the
nodes it touches. However, to ensure that the top-
ranked nodes are representative of the larger graph
structure, it is important to make sure the results are
not dominated by a small group of highly prominent
nodes who are closely linked to one another. This re-
quirement makesGRASSHOPPERa useful algorithm
for this task.

We created a dataset from the Internet Movie
Database (IMDb) that consists of all comedy movies
produced between 2000 and 2006, and have received
more than 500 votes by IMDb users. This results in
1027 movies. We form a social network of actors by

co-star relationship. Not surprisingly, actors from
the United States dominate our dataset, although a
total of 30 distinct countries are represented. We
seek an actor ranking such that the top actors are
prominent. However, we also want the top actors to
be diverse, so they represent comedians from around
the world.

This problem is framed as aGRASSHOPPERrank-
ing problem. For each movie, we considered only
the main stars, i.e., the first five cast members, who
tend to be the most important. The resulting list con-
tains 3452 unique actors. We formed a social net-
work where the nodes are the actors, and undirected
weighted edges connect actors who have appeared in
a movie together. The edge weights are equal to the
number of movies from our dataset in which both
actors were main stars. Actors are also given a self-
edge with weight 1. The co-star graph is given to
GRASSHOPPERas an input. For the prior actor rank-
ing, we simply letr be proportional to the number
of movies in our dataset in which an actor has ap-
peared. We set the weightλ = 0.95. It is important
to note that no country information is ever given to
GRASSHOPPER.

We use two measurements, ‘country coverage’
and ‘movie coverage’, to study the diversity and
prominence of the ranking produced byGRASSHOP-

PER. We compareGRASSHOPPERto two baselines:
ranking based solely on the number of movies an ac-
tor has appeared in,MOVIECOUNT, and a randomly
generated ranking,RANDOM.

First, we calculate ‘country coverage’ as the num-
ber of different countries represented by the topk ac-
tors, for allk values. Each actor represents a single
country—the country that the actor has appeared in
the most. We hypothesize that actors are more likely
to have co-star connections to actors within the same
country, so our social network may have, to some
extent, a clustering structure by country. ‘Country
coverage’ approximates the number of clusters rep-
resented at different ranks.

Figure 3(a) shows that country coverage grows
much more rapidly forGRASSHOPPER than for
MOVIECOUNT. That is, we see more comedians from
around the world ranked highly byGRASSHOPPER.
In contrast, the top ranks ofMOVIECOUNT are dom-
inated by US actors, due to the relative abundance
of US movies on IMDb. Many other countries are
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Number of Average GRASSHOPPER

Dataset Doc. Sets ROUGE-1 95% C.I. Unofficial Rank
DUC 2004 Task 2 50 0.3755 [0.3622, 0.3888] Between 1 & 2 of 34
DUC 2004 Task 4a 24 0.3785 [0.3613, 0.3958] Between 5 & 6 of 11
DUC 2004 Task 4b 24 0.4067 [0.3883, 0.4251] Between 2 & 3 of 11

Table 1: Text summarization results on DUC 2004 datasets.GRASSHOPPERwas configured using parameters
tuned on the DUC 2003 Task 2 dataset. The rightmost column lists what our rank would have been if we
had participated in the DUC 2004 evaluation.

not represented until further down in the ranked
list. This demonstrates thatGRASSHOPPERranking is
successful in returning a more diverse ranking. Be-
cause of the absorbing states inGRASSHOPPER, the
first few highly ranked US actors encourage the se-
lection of actors from other regions of the co-star
graph, which roughly correspond to different coun-
tries. RANDOM achieves even higher country cover-
age initially, but is quickly surpassed byGRASSHOP-

PER. The initial high coverage comes from the ran-
dom selection of actors. However these randomly
selected actors are often not prominent, as we show
next.

Second, we calculate ‘movie coverage’ as the to-
tal number of unique movies the topk actors are
in. We expect that actors who have been in more
movies are more prominent. This is reasonable be-
cause we count an actor in a movie only if the actor
is among the top five actors from that movie. Our
counts thus exclude actors who had only small roles
in numerous movies. Therefore high movie cov-
erage roughly corresponds to ranking more promi-
nent actors highly. It is worth noting that this mea-
sure also partially accounts for diversity, since an
actor whose movies completely overlap with those
of higher-ranked actors contributes nothing to movie
coverage (i.e., his/her movies are already covered by
higher-ranked actors).

Figure 3(b) shows that the movie cover-
age of GRASSHOPPERgrows more rapidly than
MOVIECOUNT, and much more rapidly thanRAN-

DOM. The results show that, while theRANDOM

ranking is diverse, it is not of high quality be-
cause it fails to include many prominent actors in
its high ranks. This is to be expected of a ran-
dom ranking. Since the vast majority of the ac-
tors appear in only one movie, the movie cover-

age curve is roughly linear in the number of ac-
tors. By ranking more prominent actors highly, the
GRASSHOPPERand MOVIECOUNT movie coverage
curves grow faster. Many of the US actors highly
ranked by MOVIECOUNT are co-stars of one an-
other, soGRASSHOPPERoutperformsMOVIECOUNT

in terms of movie coverage too.
We inspect theGRASSHOPPERranking, and find

the top 5 actors to be Ben Stiller, Anthony Anderson,
Johnny Knoxville, Eddie Murphy and Adam San-
dler. GRASSHOPPERalso brings many countries, and
major stars from those countries, into the high ranks.
Examples include Mads Mikkelsen (“synonym to
the great success the Danish film industry has had”),
Cem Yilmaz (“famous Turkish comedy actor, cari-
caturist and scenarist”), Jun Ji-Hyun (“face of South
Korean cinema”), Tadanobu Asano (“Japan’s an-
swer to Johnny Depp”), Aamir Khan (“prominent
Bollywood film actor”), and so on3. These actors
are ranked significantly lower byMOVIECOUNT.

These results indicate thatGRASSHOPPER

achieves both prominence and diversity in ranking
actors in the IMDb co-star graph.

4 Conclusions

GRASSHOPPERranking provides a unified approach
for achieving both diversity and centrality. We have
shown its effectiveness in text summarization and
social network analysis. As future work, one direc-
tion is “partial absorption,” where at each absorbing
state the random walk has an escape probability to
continue the random walk instead of being absorbed.
Tuning the escape probability creates a continuum
between PageRank (if the walk always escapes) and
GRASSHOPPER(if always absorbed). In addition, we
will explore the issue of parameter learning, and

3Quotes from IMDb and Wikipedia.

103



0 100 200 300 400 500
0

5

10

15

20

25

30

k (number of actors)
N

um
be

r 
of

 c
ou

nt
rie

s 
co

ve
re

d
 

 

GRASSHOPPER
MOVIECOUNT
RANDOM

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

k (number of actors)

N
um

be
r 

of
 m

ov
ie

s 
co

ve
re

d

 

 

GRASSHOPPER
MOVIECOUNT
RANDOM

(a) Country coverage (b) Movie coverage

Figure 3: (a) Country coverage at ranks up to 500, showing thatGRASSHOPPERandRANDOM rankings are
more diverse thanMOVIECOUNT. (b) Movie coverage at ranks up to 500, showing thatGRASSHOPPERand
MOVIECOUNT have more prominent actors thanRANDOM. Overall,GRASSHOPPERis the best.

user feedback (e.g., “This item should be ranked
higher.”). We also plan to applyGRASSHOPPERto a
variety of tasks, including information retrieval (for
example ranking news articles on the same event as
in Google News, where many newspapers might use
the same report and thus result in a lack of diversity),
image collection summarization, and social network
analysis for national security and business intelli-
gence.
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Güneş Erkan and Dragomir R. Radev. 2004. LexRank: Graph-
based centrality as salience in text summarization.Journal
of Artificial Intelligence Research.

Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark
Kantrowitz. 2000. Multi-document summarization by sen-
tence extraction. InNAACL-ANLP 2000 Workshop on Auto-
matic summarization, pages 40–48.

Geoffrey R. Grimmett and David R. Stirzaker. 2001.Proba-
bility and Random Processes. Oxford Science Publications,
third edition.

Marti A. Hearst and Jan O. Pedersen. 1996. Reexamining
the cluster hypothesis: Scatter/gather on retrieval results. In
SIGIR-96.

Oren Kurland and Lillian Lee. 2005. PageRank without hyper-
links: Structural re-ranking using links induced by language
models. InSIGIR’05.

Anton Leuski. 2001. Evaluating document clustering for inter-
active information retrieval. InCIKM’01.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic evalua-
tion of summaries using n-gram co-occurrence statistics. In
NAACL’03, pages 71–78.

Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based re-
trieval using language models. InSIGIR’04.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing
order into texts. InEMNLP’04.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. 1998. The PageRank citation ranking: Bringing order
to the web. Technical report, Stanford Digital Library Tech-
nologies Project.

Bo Pang and Lillian Lee. 2004. A sentimental education: Sen-
timent analysis using subjectivity summarization based on
minimum cuts. InACL, pages 271–278.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
1992. Numerical recipes in C: the art of scientific comput-
ing. Cambridge University Press New York, NY, USA.

Dragomir Radev. 2000. A common theory of information fu-
sion from multiple text sources, step one: Cross-document
structure. InProceedings of the 1st ACL SIGDIAL Workshop
on Discourse and Dialogue.

ChengXiang Zhai, William W. Cohen, and John Lafferty. 2003.
Beyond independent relevance: Methods and evaluation
metrics for subtopic retrieval. InSIGIR’03.

Yi Zhang, Jamie Callan, and Thomas Minka. 2002. Novelty
and redundancy detection in adaptive filtering. InSIGIR’02.

Benyu Zhang, Hua Li, Yi Liu, Lei Ji, Wensi Xi, Weiguo Fan,
Zheng Chen, and Wei-Ying Ma. 2005. Improving web
search results using affinity graph. InSIGIR’05.

104



Proceedings of NAACL HLT 2007, pages 105–112,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

A Random Text Model for the Generation of  

Statistical Language Invariants 

 Chris Biemann  

 NLP Dept., University of Leipzig  

 Johannisgasse 26  

04103 Leipzig, Germany 
 

 biem@informatik.uni-leipzig.de  

 
 

Abstract 

A novel random text generation model is  

introduced. Unlike in previous random 

text models, that mainly aim at producing 

a Zipfian distribution of word frequencies, 

our model also takes the properties of 

neighboring co-occurrence into account 

and introduces the notion of sentences in 

random text. After pointing out the defi-

ciencies of related models, we provide a 

generation process that takes neither the 

Zipfian distribution on word frequencies 

nor the small-world structure of the 

neighboring co-occurrence graph as a 

constraint. Nevertheless, these distribu-

tions emerge in the process. The distribu-

tions obtained with the random generation 

model are compared to a sample of natu-

ral language data, showing high agree-

ment also on word length and sentence 

length. This work proposes a plausible 

model for the emergence of large-scale 

characteristics of language without as-

suming a grammar or semantics. 

1 Introduction 

G. K. Zipf (1949) discovered that if all words in a 

sample of natural language are arranged in de-

creasing order of frequency, then the relation be-

tween a word’s frequency and its rank in the list 

follows a power-law. Since then, a significant 

amount of research in the area of quantitative lin-

guistics has been devoted to the question how this 

property emerges and what kind of processes gen-

erate such Zipfian distributions. 

The relation between the frequency of a word at 

rank r and its rank is given by f(r) ∝ r
-z
, where z is 

the exponent of the power-law that corresponds to 

the slope of the curve in a log plot (cf. figure 2). 

The exponent z was assumed to be exactly 1 by 

Zipf; in natural language data, also slightly differ-

ing exponents in the range of about 0.7 to 1.2 are 

observed (cf. Zanette and Montemurro 2002). B. 

Mandelbrot (1953) provided a formula with a 

closer approximation of the frequency distributions 

in language data, noticing that Zipf’s law holds 

only for the medium range of ranks, whereas the 

curve is flatter for very frequent words and steeper 

for high ranks. He also provided a word generation 

model that produces random words of arbitrary 

average length in the following way: With a prob-

ability w, a word separator is generated at each 

step, with probability (1-w)/N, a letter from an al-

phabet of size N is generated, each letter having 

the same probability. This is sometimes called the 

“monkey at the typewriter” (Miller, 1957). The 

frequency distribution follows a power-law for 

long streams of words, yet the equiprobability of 

letters causes the plot to show a step-wise rather 

than a smooth behavior, as examined by Ferrer i 

Cancho and Solé (2002), cf. figure 2. In the same 

study, a smooth rank distribution could be obtained 

by setting the letter probabilities according to letter 

frequencies in a natural language text. But the 

question of how these letter probabilities emerge 

remains unanswered.  

Another random text model was given by 

Simon (1955), which does not take an alphabet of 

single letters into consideration. Instead, at each 

time step, a previously unseen new word is added 

to the stream with a probability a, whereas with 

probability (1-a), the next word is chosen amongst 

the words at previous positions. As words with 

higher frequency in the already generated stream 
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have a higher probability of being added again, this 

imposes a strong competition among different 

words, resulting in a frequency distribution that 

follows a power-law with exponent z=(1-a). This 

was taken up by Zanette and Montemurro (2002), 

who slightly modify Simon’s model. They intro-

duce sublinear vocabulary growth by additionally 

making the new word probability dependent on the 

time step. Furthermore, they introduce a threshold 

on the maximal probability a previously seen word 

can be assigned to for generation, being able to 

modify the exponent z as well as to model the flat-

ter curve for high frequency words. In (Ha et al., 

2002), Zipf’s law is extended to words and 

phrases, showing its validity for syllable-class 

based languages when conducting the extension. 

Neither the Mandelbrot nor the Simon genera-

tion model take the sequence of words into ac-

count. Simon treats the previously generated 

stream as a bag of words, and Mandelbrot does not 

consider the previous stream at all. This is cer-

tainly an over-simplification, as natural language 

exhibits structural properties within sentences and 

texts that are not grasped by bags of words. 

The work by Kanter and Kessler (1995) is, to 

our knowledge, the only study to date that takes the 

word order into account when generating random 

text. They show that a 2-parameter Markov process 

gives rise to a stationary distribution that exhibits 

the word frequency distribution and the letter fre-

quency distribution characteristics of natural lan-

guage. However, the Markov process is initialized 

such that any state has exactly two successor 

states, which means that after each word, only two 

other following words are possible. This certainly 

does not reflect natural language properties, where 

in fact successor frequencies of words follow a 

power-law and more successors can be observed 

for more frequent words. But even when allowing 

a more realistic number of successor states, the 

transition probabilities of a Markov model need to 

be initialized a priori in a sensible way. Further, 

the fixed number of states does not allow for infi-

nite vocabulary. 

In the next section we provide a model that 

does not suffer from all these limitations. 

2 The random text generation model 

When constructing a random text generation 

model, we proceed according to the following 

guidelines (cf. Kumar et al. 1999 for web graph 

generation): 

• simplicity: a generation model should reach 

its goal using the simplest mechanisms pos-

sible but results should still comply to char-

acteristics of real language 

• plausibility: Without claiming that our 

model is an exhaustive description of what 

makes human brains generate and evolve 

language, there should be at least a possibil-

ity that similar mechanisms could operate in 

human brains. For a discussion on the sensi-

tivity of people to bigram statistics, see e.g. 

(Thompson and Newport, 2007). 

• emergence: Rather than constraining the 

model with the characteristics we would like 

to see in the generated stream, these features 

should emerge in the process. 

Our model is basically composed of two parts 

that will be described separately: A word generator 

that produces random words composed of letters 

and a sentence generator that composes random 

sentences of words. Both parts use an internal 

graph structure, where traces of previously gener-

ated words and sentences are memorized. The 

model is inspired by small-world network genera-

tion processes, cf. (Watts and Strogatz 1998, 

Barabási and Albert 1999, Kumar et al. 1999, 

Steyvers and Tenenbaum 2005). A key notion is 

the strategy of following beaten tracks: Letters, 

words and sequences of words that have been gen-

erated before are more likely to be generated again 

in the future - a strategy that is only fulfilled for 

words in Simon’s model.  

But before laying out the generators in detail, 

we introduce ways of testing agreement of our ran-

dom text model with natural language text. 

2.1 Testing properties of word streams 

All previous approaches aimed at reproducing a 

Zipfian distribution on word frequency, which is a 

criterion that we certainly have to fulfill. But there 

are more characteristics that should be obeyed to 

make a random text more similar to natural lan-

guage than previous models: 

• Lexical spectrum: The smoothness or step-

wise shape of the rank-frequency distribu-

tion affects the lexical spectrum, which is 

the probability distribution on word fre-
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quency. In natural language texts, this distri-

bution follows a power-law with an expo-

nent close to 2 (cf. Ferrer i Cancho and Solé, 

2002).  

• Distribution of word length: According to 

(Sigurd et al., 2004), the distribution of word 

frequencies by length follows a variant of 

the gamma distribution 

• Distribution of sentence length: The random 

text’s sentence length distribution should re-

semble natural language. In (Sigurd et al., 

2004), the same variant of the gamma distri-

bution as for word length is fit to sentence 

length. 

• Significant neighbor-based co-occurrence: 

As discussed in (Dunning 1993), it is possi-

ble to measure the amount of surprise to see 

two neighboring words in a corpus at a cer-

tain frequency under the assumption of in-

dependence. At random generation without 

word order awareness, the number of such 

pairs that are significantly co-occurring in 

neighboring positions should be very low. 

We aim at reproducing the number of sig-

nificant pairs in natural language as well as 

the graph structure of the neighbor-based co-

occurrence graph. 

The last characteristic refers to the distribution 

of words in sequence. Important is the notion of 

significance, which serves as a means to distin-

guish random sequences from motivated ones. We 

use the log-likelihood ratio for determining signifi-

cance as in (Dunning, 1993), but other measures 

are possible as well. Note that the model of Kanter 

and Kessler (1995) produces a maximal degree of 

2 in the neighbor-based co-occurrence graph. 

As written language is rather an artifact of the 

most recent millennia then a realistic sample of 

everyday language, we use the beginning of the 

spoken language section of the British National 

Corpus (BNC) to test our model against. For sim-

plicity, all letters are capitalized and special char-

acters are removed, such that merely the 26 letters 

of the English alphabet are contained in the sam-

ple. Being aware that a letter transcription is in 

itself an artifact of written language, we chose this 

as a good-enough approximation, although operat-

ing on phonemes instead of letters would be pref-

erable. The sample contains 1 million words in 

125,395 sentences with an average length of 7.975 

words, which are composed of 3.502 letters in av-

erage. 

2.2 Basic notions of graph theory 

As we use graphs for the representation of memory 

in both parts of the model, some basic notions of 

graph theory are introduced. A graph G(V,E) 

consists of a set of vertices V and a set of 

weighted, directed edges between two vertices 

E⊂V×V×R with R real numbers. The first vertex 

of an edge is called startpoint, the second vertex is 

called endpoint. A function weight: V×V→R 

returns the weight of edges. The indegree 

(outdegree) of a vertex v is defined as the number 

of edges with v as startpoint (endpoint). The 

degree of a vertex is equal to its indegree and 

outdegree if the graph is undirected, i.e. (u,v,w)∈E 

implies (v,u,w)∈E. The neighborhood neigh(v) of 

a vertex v is defined as the set of vertices s∈S 

where (v,s,weight(v,s))∈E. 

The clustering coefficient is the probability that 

two neighbors X and Y of a given vertex Z are 

themselves neighbors, which is measured for 

undirected graphs (Watts and Strogatz, 1998). The 

amount of existing edges amongst the vertices in 

the neighborhood of a vertex v is divided by the 

number of possible edges. The average over all 

vertices is defined as the clustering coefficient C.  

The small-world property holds if the average 

shortest path length between pairs of vertices is 

comparable to a random graph (Erdös and Rényi, 

1959), but its clustering coefficient is much higher. 

A graph is called scale-free (cf. Barabási and 

Albert, 1999), if the degree distribution of vertices 

follows a power-law. 

2.3 Word Generator 

The word generator emits sequences of letters, 

which are generated randomly in the following 

way: The word generator starts with a graph of all 

N letters it is allowed to choose from. Initially, all 

vertices are connected to themselves with weight 1. 

When generating a word, the generator chooses a 

letter x according to its probability P(x), which is 

computed as the normalized weight sum of 

outgoing edges: 
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After the generation of the first letter, the word 

generator proceeds with the next position. At every 

position, the word ends with a probability w∈(0,1) 

or generates a next letter according to the letter 

production probability as given above. For every 

letter bigram, the weight of the directed edge 

between the preceding and current letter in the 

letter graph is increased by one. This results in 

self-reinforcement of letter probabilities: the more 

often a letter is generated, the higher its weight 

sum will be in subsequent steps, leading to an 

increased generation probability. Figure 1 shows 

how a word generator with three letters A,B,C 

changes its weights during the generation of the 

words AA, BCB and ABC. 

    
Figure 1: Letter graph of the word generator. Left: 

initial state. Right.: State after generating AA, 

BCB and ABC. The numbers next to edges are 

edge weights. The probability for the letters for the 

next step are P(A)=0.4, P(B)=0.4 and P(C)=0.2. 

 

The word end probability w directly influences 

the average word length, which is given by 

1+(1/w). For random number generation, we use 

the Mersenne Twister (Masumoto and Nishimura, 

1998). 

The word generator itself does produce a 

smooth Zipfian distribution on word frequencies 

and a lexical spectrum following a power-law. 

Figure 2 shows frequency distribution and lexical 

spectrum of 1 million words as generated by the 

word generator with w=0.2 on 26 letters in 

comparison to a Mandelbrot generator with the 

same parameters. The reader might note that a 

similar behaviour could be reached by just setting 

the probability of generating a letter according to 

its relative frequency in previously generated 

words. The graph seems an unnecessary 

complication for that reason. But retaining the 

letter graph with directed edges gives rise to model 

the sequence of letters for a more plausible 

morphological production in future extensions of 

this model, probably in a similar way than in the 

sentence generator as described in the following 

section.  

As depicted in figure 2, the word generator 

fulfills the requirements on Zipf’s law and the 

lexical spectrum, yielding a Zipfian exponent of 

around 1 and a power-law exponent of 2 for a large 

regime in the lexical spectrum, both matching the 

values as observed previously in natural language 

in e.g. (Zipf, 1949) and (Ferrer i Cancho and Solé, 

2002). In contrast to this, the Mandelbrot model 

shows to have a step-wise rank-frequency 

distribution and a distorted lexical spectrum. 

Hence, the word generator itself is already an 

improvement over previous models as it produces 

a smooth Zipfian distribution and a lexical 

spectrum following a power-law. But to comply to 

the other requirements as given in section 2.1, the 

process has to be extended by a sentence generator.  

           

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

fr
e

q
u

e
n

c
y

rank

rank-frequency

word generator w=0.2
power law z=1

Mandelbrot model

 

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

P
(f

re
q
u
e
n
c
y
)

frequency

lexical spectrum

word generator w=0.2
power law z=2

Mandelbrot model

 
Figure 2: rank-frequency distribution and lexical 

spectrum for the word generator in comparison to 

the Mandelbrot model 

initial state state after 3 words 
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2.4 Sentence Generator 

The sentence generator model retains another di-

rected graph, which memorizes words and their 

sequences. Here, vertices correspond to words and 

edge weights correspond to the number of times 

two words were generated in a sequence. The word 

graph is initialized with a begin-of-sentence (BOS) 

and an end-of-sentence (EOS) symbol, with an 

edge of weight 1 from BOS to EOS. When gener-

ating a sentence, a random walk on the directed 

edges starts at the BOS vertex. With a new word 

probability (1-s), an existing edge is followed from 

the current vertex to the next vertex according to 

its weight: the probability of choosing endpoint X 

from the endpoints of all outgoing edges from the 

current vertex C is given by  
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Otherwise, with probability s∈(0,1), a new 

word is generated by the word generator model, 

and a next word is chosen from the word graph in 

proportion to its weighted indegree: the probability 

of choosing an existing vertex E as successor of a 

newly generated word N is given by 
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For each sequence of two words generated, the 

weight of the directed edge between them is in-

creased by 1. Figure 3 shows the word graph for 

generating in sequence: (empty sentence), AA, AA 

BC, AA, (empty sentence), AA CA BC AA, AA 

CA CA BC. 

 

During the generation process, the word graph 

grows and contains the full vocabulary used so far 

for generating in every time step. It is guaranteed 

that a random walk starting from BOS will finally 

reach the EOS vertex. It can be expected that sen-

tence length will slowly increase during the course 

of generation as the word graph grows and the ran-

dom walk has more possibilities before finally ar-

riving at the EOS vertex. The sentence length is 

influenced by both parameters of the model: the 

word end probability w in the word generator and 

the new word probability s in the sentence genera-

tor. By feeding the word transitions back into the 

generating model, a reinforcement of previously 

generated sequences is reached. Figure 4 illustrates 

the sentence length growth for various parameter 

settings of w and s.  

 
Figure 3: the word graph of the sentence generator 

model. Note that in the last step, the second CA 

was generated as a new word from the word gen-

erator. The generation of empty sentences happens 

frequently. These are omitted in the output. 
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Figure 4: sentence length growth, plotted in aver-

age sentence length per intervals of 10,000 sen-

tences. The straight line in the log plot indicates a 

polynomial growth. 

 

It should be noted that the sentence generator 

produces a very diverse sequence of sentences 

which does not deteriorate in repeating the same 

sentence all over again in later stages. Both word 

and sentence generator can be viewed as weighted 

finite automata (cf. Allauzen et al., 2003) with self-

training.  
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After having defined our random text genera-

tion model, the next section is devoted to testing it 

according to the criteria given in section 2.1. 

3 Experimental results 

To measure agreement with our BNC sample, we 

generated random text with the sentence generator 

using w=0.4 and N=26 to match the English aver-

age word length and setting s to 0.08 for reaching a 

comparable sentence length. The first 50,000 sen-

tences were skipped to reach a relatively stable 

sentence length throughout the sample. To make 

the samples comparable, we used 1 million words 

totaling 125,345 sentences with an average sen-

tence length of 7.977.   

3.1 Word frequency 

The comparison between English and the sentence 

generator w.r.t the rank-frequency distribution is 

depicted in figure 5.  

Both curves follow a power-law with z close to 

1.5, in both cases the curve is flatter for high fre-

quency words as observed by Mandelbrot (1953). 

This effect could not be observed to this extent for 

the word generator alone (cf. figure 2).  
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Figure 5: rank-frequency plot for English and the 

sentence generator 

3.2 Word length 

While the word length in letters is the same in both 

samples, the sentence generator produced more 

words of length 1, more words of length>10 and 

less words of medium length. The deviation in sin-

gle letter words can be attributed to the writing 

system being a transcription of phonemes and few 

phonemes being expressed with only one letter. 

However, the slight quantitative differences do not 

oppose the similar distribution of word lengths in 

both samples, which is reflected in a curve of simi-

lar shape in figure 6 and fits well the gamma dis-

tribution variant of (Sigurd et al., 2004). 
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Figure 6: Comparison of word length distributions. 

The dotted line is the function as introduced in 

(Sigurd et al., 2004) and given by f(x) ∝x
1.5

⋅0.45
x
. 

3.3 Sentence length 

The comparison of sentence length distribution 

shows again a high capability of the sentence gen-

erator to model the distribution of the English 

sample. As can be seen in figure 7, the sentence 

generator produces less sentences of length>25 but 

does not show much differences otherwise. In the 

English sample, there are surprisingly many two-

word sentences. 
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Figure 7: Comparison of sentence length distribu-

tion. 

3.4 Neighbor-based co-occurrence 

In this section, the structure of the significant 

neighbor-based co-occurrence graphs is examined. 
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The significant neighbor-based co-occurrence 

graph contains all words as vertices that have at 

least one co-occurrence to another word exceeding 

a certain significance threshold. The edges are un-

directed and weighted by significance. Ferrer i 

Cancho and Solé (2001) showed that the neighbor-

based co-occurrence graph of the BNC is scale-

free and the small-world property holds.  

For comparing the sentence generator sample to 

the English sample, we compute log-likelihood 

statistics (Dunning, 1993) on neighboring words 

that at least co-occur twice. The significance 

threshold was set to 3.84, corresponding to 5% 

error probability when rejecting the hypothesis of 

mutual independence. For both graphs, we give the 

number of vertices, the average shortest path 

length, the average degree, the clustering coeffi-

cient and the degree distribution in figure 8. Fur-

ther, the characteristics of a comparable random 

graph as defined by (Erdös and Rényi, 1959) are 

shown. 
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Figure 8: Characteristics of the neighbor-based co-

occurrence graphs of English and the generated 

sample. 

 

From the comparison with the random graph it 

is clear that both neighbor-based graphs exhibit the 

small-world property as their clustering coefficient 

is much higher than in the random graph while the 

average shortest path lengths are comparable. In 

quantity, the graph obtained from the generated 

sample has about twice as many vertices but its 

clustering coefficient is about half as high as in the 

English sample. This complies to the steeper rank-

frequency distribution of the English sample (see 

fig. 5), which is, however, much steeper than the 

average exponent found in natural language. The 

degree distributions clearly match with a power-

law exponent of 2, which does not confirm the two 

regimes of different slopes as in (Ferrer i Cancho 

and Solé 2001). The word generator data produced 

an number of significant co-occurrences that lies in 

the range of what can be expected from the 5% 

error of the statistical test. The degree distribution 

plot appears shifted downwards about one decade, 

clearly not matching the distribution of words in 

sequence of natural language. 

 Considering the analysis of the significant 

neighbor-based co-occurrence graph, the claim is 

supported that the sentence generator model repro-

duces the characteristics of word sequences in 

natural language on the basis of bigrams. 

4 Conclusion 

In this work we introduced a random text genera-

tion model that fits well with natural language with 

respect to frequency distribution, word length, sen-

tence length and neighboring co-occurrence. The 

model was not constrained by any a priori distribu-

tion – the characteristics emerged from a 2-level 

process involving one parameter for the word gen-

erator and one parameter for the sentence genera-

tor. This is, to our knowledge, the first random text 

generator that models sentence boundaries beyond 

inserting a special blank character at random: 

rather, sentences are modeled as a path between 

sentence beginning and sentence end which im-

poses restrictions on the words possible at sentence 

beginnings and endings. Considering its simplicity, 

we have therefore proposed a plausible model for 

the emergence of large-scale characteristics of lan-

guage without assuming a grammar or semantics. 

After all, our model produces gibberish – but gib-

berish that is well distributed. 

The studies of Miller (1957) rendered Zipf’s 

law un-interesting for linguistics, as it is a mere 

artifact of language rather than playing an impor-
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tant role in its production, as it emerges when put-

ting a monkey in front of a typewriter. Our model 

does not only explain Zipf’s law, but many other 

characteristics of language, which are obtained 

with a monkey that follows beaten tracks. These 

additional characteristics can be thought of as arti-

facts as well, but we strongly believe that the study 

of random text models can provide insights in the 

process that lead to the origin and the evolution of 

human languages. 

For further work, an obvious step is to improve 

the word generator so that it produces morphologi-

cally more plausible sequences of letters and to 

intertwine both generators for the emergence of 

word categories. Furthermore, it is desirable to 

embed the random generator in models of commu-

nication where speakers parameterize language 

generation of hearers and to examine, which struc-

tures are evolutionary stable (see Jäger, 2003). 

This would shed light on the interactions between 

different levels of human communication. 
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Abstract

Relation extraction is the task of find-
ing semantic relations between entities
from text. The state-of-the-art methods
for relation extraction are mostly based
on statistical learning, and thus all have
to deal with feature selection, which can
significantly affect the classification per-
formance. In this paper, we systemat-
ically explore a large space of features
for relation extraction and evaluate the ef-
fectiveness of different feature subspaces.
We present a general definition of fea-
ture spaces based on a graphic represen-
tation of relation instances, and explore
three different representations of relation
instances and features of different com-
plexities within this framework. Our ex-
periments show that using only basic unit
features is generally sufficient to achieve
state-of-the-art performance, while over-
inclusion of complex features may hurt
the performance. A combination of fea-
tures of different levels of complexity and
from different sentence representations,
coupled with task-oriented feature prun-
ing, gives the best performance.

1 Introduction

An important information extraction task is relation
extraction, whose goal is to detect and characterize
semantic relations between entities in text. For ex-
ample, the text fragment “hundreds of Palestinians

converged on the square” contains thelocatedrela-
tion between thePersonentity “hundreds of Pales-
tinians” and theBounded-Areaentity “the square”.
Relation extraction has applications in many do-
mains, including finding affiliation relations from
web pages and finding protein-protein interactions
from biomedical literature.

Recent studies on relation extraction have shown
the advantages of discriminative model-based sta-
tistical machine learning approach to this problem.
There are generally two lines of work following this
approach. The first utilizes a set of carefully se-
lected features obtained from different levels of text
analysis, from part-of-speech (POS) tagging to full
parsing and dependency parsing (Kambhatla, 2004;
Zhao and Grishman, 2005; Zhou et al., 2005)1. The
second line of work designs kernel functions on
some structured representation (sequences or trees)
of the relation instances to capture the similarity be-
tween two relation instances (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006a; Zhang et al., 2006b). Of particular interest
among the various kernels proposed are the convolu-
tion kernels (Bunescu and Mooney, 2005b; Zhang et
al., 2006a), because they can efficiently compute the
similarity between two instances in a huge feature
space due to their recursive nature. Apart from their
computational efficiency, convolution kernels also
implicitly correspond to some feature space. There-
fore, both lines of work rely on an appropriately de-

1Although Zhao and Grishman (2005) defined a number of
kernels for relation extraction, the method is essentially similar
to feature-based methods.
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fined set of features. As in any learning problem, the
choice of features can affect the performance signif-
icantly.

Despite the importance of feature selection, there
has not been any systematic exploration of the fea-
ture space for relation extraction, and the choices
of features in existing work are somewhat arbitrary.
In this paper, we conduct a systematic study of the
feature space for relation extraction, and evaluate
the effectiveness of different feature subspaces. Our
motivations are twofold. First, based on previous
studies, we want to identify and characterize the
types of features that are potentially useful for rela-
tion extraction, and define a relatively complete and
structured feature space that can be systematically
explored. Second, we want to compare the effective-
ness of different features. Such a study can guide us
to choose the most effective feature set for relation
extraction, or to design convolution kernels in the
most effective way.

We propose and define a unified graphic repre-
sentation of the feature space, and experiment with
three feature subspaces, corresponding to sequences,
syntactic parse trees and dependency parse trees.
Experiment results show that each subspace is ef-
fective by itself, with the syntactic parse tree sub-
space being the most effective. Combining the three
subspaces does not generate much improvement.
Within each feature subspace, using only the basic
unit features can already give reasonably good per-
formance. Adding more complex features may not
improve the performance much or may even hurt
the performance. Task-oriented heuristics can be
used to prune the feature space, and when appropri-
ately done, can improve the performance. A com-
bination of features of different levels of complex-
ity and from different sentence representations, cou-
pled with task-oriented feature pruning, gives the
best performance.

2 Related Work

Zhao and Grishman (2005) and Zhou et al. (2005)
explored a large set of features that are potentially
useful for relation extraction. However, the feature
space was defined and explored in a somewhat ad
hoc manner. We study a broader scope of features
and perform a more systematic study of different

feature subspaces. Zelenko et al. (2003) and Culotta
and Sorensen (2004) used tree kernels for relation
extraction. These kernels can achieve high precision
but low recall because of the relatively strict match-
ing criteria. Bunescu and Mooney (2005a) proposed
a dependency path kernel for relation extraction.
This kernel also suffers from low recall for the same
reason. Bunescu and Mooney (2005b) and Zhang
et. al. (2006a; 2006b) applied convolution string ker-
nels and tree kernels, respectively, to relation extrac-
tion. The convolution tree kernels achieved state-
of-the-art performance. Since convolution kernels
correspond to some explicit large feature spaces, the
feature selection problem still remains.

General structural representations of natural lan-
guage data have been studied in (Suzuki et al.,
2003; Cumby and Roth, 2003), but these models
were not designed specifically for relation extrac-
tion. Our feature definition is similar to these mod-
els, but more specifically designed for relation ex-
traction and systematic exploration of the feature
space. Compared with (Cumby and Roth, 2003), our
feature space is more compact and provides more
guidance on selecting meaningful subspaces.

3 Task Definition

Given a small piece of text that contains two entity
mentions, the task of relation extraction is to decide
whether the text states some semantic relation be-
tween the two entities, and if so, classify the rela-
tion into one of a set of predefined semantic rela-
tion types. Formally, letr = (s, arg1, arg2) de-
note a relation instance, wheres is a sentence,arg1

andarg2 are two entity mentions contained ins, and
arg1 precedesarg2 in the text. Given a set of rela-
tion instances{ri}, each labeled with a typeti ∈ T ,
whereT is the set of predefined relation types plus
the typenil, our goal is to learn a function that maps
a relation instancer to a typet ∈ T . Note that we
do not specify the representation ofs here. Indeed,s
can contain more structured information in addition
to merely the sequence of tokens in the sentence.

4 Feature Space for Relation Extraction

Ideally, we would like to define a feature space with
at least two properties: (1) It should becompletein
the sense that all features potentially useful for the
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classification problem are included. (2) It should
have a goodstructureso that a systematic search in
the space is possible. Below we show how a unified
graph-based feature space can be defined to satisfy
these two properties.

4.1 A Unified View of Features for Relation
Extraction

Before we introduce our definition of the feature
space, let us first look at some typical features used
for relation extraction. Consider the relation in-
stance“hundreds of Palestinians converged on the
square”with arg1 = “hundreds of Palestinians”and
arg2 = “the square”. Various types of information
can be useful for classifying this relation instance.
For example, knowing thatarg1 is an entity of type
Personcan be useful. This feature involves the sin-
gle token“Palestinians”. Another feature, “the head
word of arg1 (Palestinians) is followed by a verb
(converged)”, can also be useful. This feature in-
volves two tokens,“Palestinians” and“converged”,
with a sequence relation. It also involves the knowl-
edge that“Palestinians” is part ofarg1 and “con-
verged” is a verb. If we have the syntactic parse tree
of the sentence, we can obtain even more complex
and discriminative features. For example, the syn-
tactic parse tree of the same relation instance con-
tains the following subtree: [VP→ VBD [PP→ [IN
→ on] NP] ]. If we know thatarg2 is contained in the
NP in this subtree, then this subtree states thatarg2

is in a PP that is attached to a VP, and the proposition
is “on” . This subtree therefore may also a useful
feature. Similarly, if we have the dependency parse
tree of the relation instance, then the dependency
link “square Ã on” states that the token“square”
is dependent on the token“on” , which may also be
a useful feature.

Given that useful features are of various forms, in
order to systematically search the feature space, we
need to first have a unified view of features. This
problem is not trivial because it is not immediately
clear how different types of features can be unified.
We observe, however, that in general features fall
into two categories: (1) properties of a single token,
and (2) relations between tokens. Features that in-
volve attributes of a single token, such as bag-of-
word features and entity attribute features, belong
to the first category, while features that involve se-

quence, syntactic or dependency relations between
tokens belong to the second category. Motivated by
this observation, we can represent relation instances
as graphs, with nodes denoting single tokens or syn-
tactic categories such as NPs and VPs, and edges de-
noting various types of relations between the nodes.

4.2 Relation Instance Graphs

We represent a relation instance as a labeled, di-
rected graphG = (V, E,A, B), whereV is the set
of nodes in the graph,E is the set of directed edges
in the graph, andA, B are functions that assign la-
bels to the nodes.

First, for each nodev ∈ V , A(v) =
{a1, a2, . . . , a|A(v)|} is a set of attributes associated
with nodev, whereai ∈ Σ, andΣ is an alphabet that
contains all possible attribute values. The attributes
are introduced to help generalize the node. For ex-
ample, if nodev represents a token, thenA(v) can
include the token itself, its morphological base form,
its POS, its semantic class (e.g. WordNet synset),
etc. If v also happens to be the head word ofarg1 or
arg2, thenA(v) can also include the entity type and
other entity attributes. If nodev represents a syntac-
tic category such as an NP or VP,A(v) can simply
contain only the syntactic tag.

Next, functionB : V → {0, 1, 2, 3} is introduced
to distinguish argument nodes from non-argument
nodes. For each nodev ∈ V , B(v) indicates how
nodev is related toarg1 andarg2. 0 indicates that
v does not cover any argument, 1 or 2 indicates that
v coversarg1 or arg2, respectively, and 3 indicates
that v covers both arguments. We will see shortly
that only nodes that represent syntactic categories in
a syntactic parse tree can possibly be assigned 3. We
refer toB(v) as theargument tagof v.

We now consider three special instantiations of
this general definition of relation instance graphs.
See Figures 1, 2 and 3 for examples of each of the
three representations.

Sequence: Without introducing any additional
structured information, a sequence representation
preserves the order of the tokens as they occur in the
original sentence. Each node in this graph is a token
augmented with its relevant attributes. For example,
head words ofarg1 andarg2 are augmented with the
corresponding entity types. A token is assigned the
argument tag 1 or 2 if it is the head word ofarg1 or
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Figure 1: An example sequence representation. The
subgraph on the left represents a bigram feature. The
subgraph on the right represents a unigram feature
that states the entity type ofarg2.
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Figure 2: An example syntactic parse tree represen-
tation. The subgraph represents a subtree feature
(grammar production feature).

arg2. Otherwise, it is assigned the argument tag 0.
There is a directed edge fromu to v if and only if
the token represented byv immediately follows that
represented byu in the sentence.

Syntactic Parse Tree: The syntactic parse tree
of the relation instance sentence can be augmented
to represent the relation instance. First, we modify
the tree slightly by conflating each leaf node in the
original parse tree with its parent, which is a preter-
minal node labeled with a POS tag. Then, each node
is augmented with relevant attributes if necessary.
Argument tags are assigned to the leaf nodes in the
same way as in the sequence representation. For an
internal nodev, argument tag 1 or 2 is assigned if
eitherarg1 or arg2 is inside the subtree rooted atv,
and 3 is assigned if both arguments are inside the
subtree. Otherwise, 0 is assigned tov.

Dependency Parse Tree: Similarly, the depen-
dency parse tree can also be modified to represent
the relation instance. Assignment of attributes and
argument tags is the same as for the sequence repre-
sentation. To simplify the representation, we ignore

NNS
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NNP
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Person

VBD
converged

IN
on

DT
the

NN
square

Bounded-Area

00 1 0 0 0 2

of Palestinians

10

Figure 3: An example dependency parse tree rep-
resentation. The subgraph represents a dependency
relation feature betweenarg1 “Palestinians” and
“of” .

the dependency relation types.

4.3 Features

Given the above definition of relation instance
graphs, we are now ready to define features. Intu-
itively, a feature of a relation instance captures part
of the attributive and/or structural properties of the
relation instance graph. Therefore, it is natural to de-
fine a feature as a subgraph of the relation instance
graph. Formally, given a graphG = (V,E, A,B),
which represents a single relation instance, a fea-
ture that exists in this relation instance is a sub-
graphG′ = (V ′, E′, A′, B′) that satisfies the fol-
lowing conditions: V ′ ⊆ V , E′ ⊆ E, and∀v ∈
V ′, A′(v) ⊆ A(v), B′(v) = B(v).

We now show that many features that have been
explored in previous work on relation extraction can
be transformed into this graphic representation. See
Figures 1, 2 and 3 for some examples.

Entity Attributes : Previous studies have shown
that entity types and entity mention types ofarg1

andarg2 are very useful (Zhao and Grishman, 2005;
Zhou et al., 2005; Zhang et al., 2006b). To represent
a single entity attribute, we can take a subgraph that
contains only the node representing the head word of
the argument, labeled with the entity type or entity
mention type. A particularly useful type of features
areconjunctive entity features, which are conjunc-
tions of two entity attributes, one for each argument.
To represent a conjunctive feature such as “arg1 is
a Personentity andarg2 is aBounded-Areaentity”,
we can take a subgraph that contains two nodes, one
for each argument, and each labeled with an en-
tity attribute. Note that in this case, the subgraph
contains two disconnected components, which is al-
lowed by our definition.

Bag-of-Words: These features have also been
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explore by Zhao and Grishman (2005) and Zhou
et. al. (2005). To represent a bag-of-word feature,
we can simply take a subgraph that contains a single
node labeled with the token. Because the node also
has an argument tag, we can distinguish between ar-
gument word and non-argument word.

Bigrams: A bigram feature (Zhao and Grishman,
2005) can be represented by a subgraph consisting
of two connected nodes from the sequence represen-
tation, where each node is labeled with the token.

Grammar Productions: The features in convo-
lution tree kernels for relation extraction (Zhang et
al., 2006a; Zhang et al., 2006b) are sequences of
grammar productions, that is, complete subtrees of
the syntactic parse tree. Therefore, these features
can naturally be represented by subgraphs of the re-
lation instance graphs.

Dependency Relations and Dependency Paths:
These features have been explored by Bunescu and
Mooney (2005a), Zhao and Grishman (2005), and
Zhou et. al. (2005). A dependency relation can be
represented as an edge connecting two nodes from
the dependency tree. The dependency path between
the two arguments can also be easily represented as
a path in the dependency tree connecting the two
nodes that represent the two arguments.

There are some features that are not covered by
our current definition, but can be included if we
modify our relation instance graphs. For example,
gapped subsequence features in subsequence ker-
nels (Bunescu and Mooney, 2005b) can be repre-
sented as subgraphs of the sequence representation
if we add more edges to connect any pair of nodesu
andv provided that the token represented byu oc-
curs somewhere before that represented byv in the
sentence. Since our feature definition is very gen-
eral, our feature space also includes many features
that have not been explored before.

4.4 Searching the Feature Space

Although the feature space we have defined is rel-
atively complete and has a clear structure, it is still
too expensive to exhaustively search the space be-
cause the number of features is exponential in terms
of the size of the relation instance graph. We thus
propose to search the feature space in the follow-
ing bottom-up manner: We start with the conjunc-
tive entity features (defined in Section 4.3), which

have been found effective in previous studies and
are intuitively necessary for relation extraction. We
then systematically add unit features with different
granularities. We first consider the minimum (i.e.
most basic) unit features. We then gradually include
more complex features. The motivations for this
strategy are the following: (1) Using the smallest
features to represent a relation instance graph pre-
sumably covers all unit characteristics of the graph.
(2) Using small subgraphs allows fuzzy matching,
which is good for our task because relation instances
of the same type may vary in their relation instance
graphs, especially with the noise introduced by ad-
jectives, adverbs, or irrelevant propositional phrases.
(3) The number of features of a fixed small size is
polynomial in terms of the size of the relation in-
stance graph. It is therefore feasible to generate all
the small unit features and use any classifier such as
a maximum entropy classifier or an SVM.

In our experiments, we consider three levels of
small unit features in increasing order of their com-
plexity. First, we considerunigramfeaturesGuni =
({u}, ∅, Auni , B), whereAuni(u) = {ai} ⊆ A(u).
In another word, unigram features consist of a sin-
gle node labeled with a single attribute. Examples
of unigram features include bag-of-word features
and non-conjunctive entity attribute features. At the
second level, we considerbigram featuresGbi =
({u, v}, {(u, v)}, Auni , B). Bigram features are
therefore single edges connecting two nodes, where
each node is labeled with a single attribute. The
third level of attributes we consider aretrigram fea-
turesGtri = ({u, v, w}, {(u, v), (u, w)}, Auni , B)
or Gtri = ({u, v, w}, {(u, v), (v, w)}, Auni , B).
Thus trigram features consist of two connected
edges and three nodes, where each node is also la-
beled with a single attribute.

We treat the three relation instance graphs (se-
quences, syntactic parse trees, and dependency parse
trees) as three feature subspaces, and search in each
subspace. For each feature subspace, we incremen-
tally add the unigram, bigram and trigram features
to the working feature set. For the syntactic parse
tree representation, we also consider a fourth level of
small unit features, which are single grammar pro-
ductions such as [VP→ VBD PP], because these
are the smallest features in convolution tree kernels.
After we explore each feature subspace, we try to
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combine the features from the three subspaces to see
whether the performance can be improved, that is,
we test whether the sequence, syntactic and depen-
dency relations can complement each other.

5 Experiments

5.1 Data Set and Experiment Setup

We used the data set from ACE (Automatic Con-
tent Extraction) 2004 evaluation to conduct our ex-
periments. This corpus defines 7 types of relations:
Physical, Personal / Social, Empolyment / Memeber-
ship / Subsidiary, Agent-Artifact, PER / ORG Affili-
ation, GPE AffiliationandDiscourse.

We used Collins parser to parse the sentences in
the corpus because Collins parser gives us the head
of each syntactic category, which allows us to trans-
form the syntactic parse trees into dependency trees.
We discarded sentences that could not be parsed
by Collins parser. The candidate relation instances
were generated by considering all pairs of entities
that occur in the same sentence. We obtained 48625
candidate relation instances in total, among which
4296 instances were positive.

As in most existing work, instead of using the en-
tire sentence, we used only the sequence of tokens
that are inside the minimum complete subtree cov-
ering the two arguments. Presumably, tokens out-
side of this subtree are not so relevant to the task. In
our graphic representation of relation instances, the
attribute set for a token node includes the token it-
self, its POS tag, and entity type, entity subtype and
entity mention type when applicable. The attribute
set for a syntactic category node includes only the
syntactic tag. We used both maximum entropy clas-
sifier and SVM for all experiments. We adopted one
vs. others strategy for the multi-class classification
problem. In all experiments, the performance shown
was based on 5-fold cross validation.

5.2 General Search in the Feature Subspaces

Following the general search strategy, we conducted
the following experiments. For each feature sub-
space, we started with the conjunctive entity features
plus the unigram features. We then incrementally
added bigram and trigram features. For the syntac-
tic parse tree feature space, we conducted an addi-
tional experiment: We added basic grammar produc-

tion features on top of the unigram, bigram and tri-
gram features. Adding production features allows us
to study the effect of adding more complex and pre-
sumably more specific and discriminative features.

Table 1 shows the precision (P), recall (R) and F1
measure (F) from the experiments with the maxi-
mum entropy classifier (ME) and the SVM classi-
fier (SVM). We can compare the results in two di-
mensions. First, within each feature subspace, while
bigram features improved the performance signifi-
cantly over unigrams, trigrams did not improve the
performance very much. This trend is observed for
both classifiers. In the case of the syntactic parse tree
subspace, adding production features even hurt the
performance. This suggests that inclusion of com-
plex features is not guaranteed to improve the per-
formance.

Second, if we compare the best performance
achieved in each feature subspace, we can see that
for both classifiers, syntactic parse tree is the most
effective feature space, while sequence and depen-
dency tree are similar. However, the difference in
performance between the syntactic parse tree sub-
space and the other two subspaces is not very large.
This suggests that each feature subspace alone al-
ready captures most of the useful structural informa-
tion between tokens for relation extraction. The rea-
son why the sequence feature subspace gave good
performance although it contained the least struc-
tural information is probably that many relations de-
fined in the ACE corpus are short-range relations,
some within single noun phrases. For such kind of
relations, sequence information may be even more
reliable than syntactic or dependency information,
which may not be accurate due to parsing errors.

Next, we conducted experiments to combine the
features from the three subspaces to see whether
this could further improve the performance. For se-
quence subspace and dependency tree subspace, we
used up to bigram features, and for syntactic parse
tree subspace, we used up to trigram features. In Ta-
ble 2, we show the experiment results. We can see
that for both classifiers, adding features from the se-
quence subspace or from the dependency tree sub-
space to the syntactic parse tree subspace can im-
prove the performance slightly. But combining se-
quence subspace and dependency tree subspace does
not generate any performance improvement. Again,
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Uni +Bi +Tri +Prod
P 0.647 0.662 0.717

Seq R 0.614 0.701 0.653 N/A
F 0.630 0.681 0.683
P 0.651 0.695 0.726 0.702

ME Syn R 0.645 0.698 0.688 0.691
F 0.648 0.697 0.707 0.696
P 0.647 0.673 0.718

Dep R 0.614 0.676 0.652 N/A
F 0.630 0.674 0.683
P 0.583 0.666 0.684

Seq R 0.586 0.650 0.648 N/A
F 0.585 0.658 0.665
P 0.598 0.645 0.679 0.674

SVM Syn R 0.611 0.663 0.681 0.672
F 0.604 0.654 0.680 0.673
P 0.583 0.644 0.682

Dep R 0.586 0.638 0.645 N/A
F 0.585 0.641 0.663

Table 1: Comparison among the three feature sub-
spaces and the effect of including larger features.

Seq+Syn Seq+Dep Syn+Dep All
P 0.737 0.687 0.695 0.724

ME R 0.694 0.682 0.731 0.702
F 0.715 0.684 0.712 0.713
P 0.689 0.669 0.687 0.691

SVM R 0.686 0.653 0.682 0.686
F 0.688 0.661 0.684 0.688

Table 2: The effect of combining the three feature
subspaces.

this suggests that since many of the ACE relations
are local, there is likely much overlap between se-
quence information and dependency information.

We also tried the convolution tree kernel
method (Zhang et al., 2006a), using an SVM tree
kernel package2. The performance we obtained was
P = 0.705, R = 0.685, and F = 0.6953. This F mea-
sure is higher than the best SVM performance in Ta-
ble 1. The convolution tree kernel uses large subtree
features, but such features are deemphasized with
an exponentially decaying weight. We found that
the performance was sensitive to this decaying fac-
tor, suggesting that complex features can be useful
if they are weighted appropriately, and further study
of how to optimize the weights of such complex fea-
tures is needed.

2http://ai-nlp.info.uniroma2.it/moschitti/Tree-Kernel.htm
3The performance we achieved is lower than that reported

in (Zhang et al., 2006b), due to different data preprocessing,
data partition, and parameter setting.

5.3 Task-Oriented Feature Pruning

Apart from the general bottom-up search strategy we
have proposed, we can also introduce some task-
oriented heuristics based on intuition or domain
knowledge to prune the feature space. In our ex-
periments, we tried the following heuristics.

H1: Zhang et al. (2006a) found that usingpath-
enclosed treeperformed better than usingminimum
complete tree, when convolution tree kernels were
applied. In path-enclosed trees, tokens beforearg1

and afterarg2 as well as their links with other nodes
in the tree are removed. Based on this previous
finding, our first heuristic was to change the syntac-
tic parse tree representation of the relation instances
into path-enclosed trees.

H2: We hypothesize that words such as articles,
adjectives and adverbs are not very useful for rela-
tion extraction. We thus removed sequence unigram
features and bigram features that contain an article,
adjective or adverb.

H3: Similar to H2, we can remove bigrams in the
syntactic parse tree subspace if the bigram contains
an article, adjective or adverb.

H4: Similar to H1, we can also remove the to-
kens beforearg1 and afterarg2 from the sequence
representation of a relation instance.

In Table 3, we show the performance after apply-
ing these heuristics. We started with the best con-
figuration from our previous experiments, that is,
combing up to bigram features in the sequence sub-
space and up to trigram features in the syntactic tree
subspace. We then applied heuristics H1 to H4 in-
crementally unless we saw that a heuristic was not
effective. We found that H1, H2 and H4 slightly
improved the performance, but H3 hurt the perfor-
mance. On the one hand, the improvement suggests
that our original feature configuration included some
irrelevant features, and in turn confirmed that over-
inclusion of features could hurt the performance. On
the other hand, since the improvement brought by
H1, H2 and H4 was rather small, and H3 even hurt
the performance, we could see that it is in general
very hard to find good feature pruning heuristics.

6 Conclusions and Future Work

In this paper, we conducted a systematic study of
the feature space for relation extraction. We pro-
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ME SVM
P R F P R F

Best 0.737 0.694 0.715 0.689 0.686 0.688
+H1 0.714 0.729 0.721 0.698 0.699 0.699
+H2 0.730 0.723 0.726 0.704 0.704 0.704
+H3 0.739 0.704 0.721 0.701 0.696 0.698

-H3+H4 0.746 0.713 0.729 0.702 0.701 0.702

Table 3: The effect of various heuristic feature prun-
ing methods.

posed and defined a unified graphic representation
of features for relation extraction, which serves as a
general framework for systematically exploring fea-
tures defined on natural language sentences. With
this framework, we explored three different repre-
sentations of sentences—sequences, syntactic parse
trees, and dependency trees—which lead to three
feature subspaces. In each subspace, starting with
the basic unit features, we systematically explored
features of different levels of complexity. The stud-
ied feature space includes not only most of the ef-
fective features explored in previous work, but also
some features that have not been considered before.

Our experiment results showed that using a set of
basic unit features from each feature subspace, we
can achieve reasonably good performance. When
the three subspaces are combined, the performance
can improve only slightly, which suggests that the
sequence, syntactic and dependency relations have
much overlap for the task of relation extraction. We
also found that adding more complex features may
not improve the performance much, and may even
hurt the performance. A combination of features
of different levels of complexity and from different
sentence representations, coupled with task-oriented
feature pruning, gives the best performance.

In our future work, we will study how to auto-
matically conduct task-oriented feature search, fea-
ture pruning and feature weighting using statistical
methods instead of heuristics. In this study, we only
considered features from the local context, i.e. the
sentence that contains the two arguments. Some ex-
isting studies use corpus-based statistics for relation
extraction (Hasegawa et al., 2004). In the future, we
will study the effectiveness of these global features.
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Abstract

The task of identifying synonymous re-
lations and objects, or Synonym Resolu-
tion (SR), is critical for high-quality infor-
mation extraction. The bulk of previous
SR work assumed strong domain knowl-
edge or hand-tagged training examples.
This paper investigates SR in the con-
text of unsupervised information extrac-
tion, where neither is available. The pa-
per presents a scalable, fully-implemented
system for SR that runs in O(KN log N)
time in the number of extractions N and
the maximum number of synonyms per
word, K. The system, called RESOLVER,
introduces a probabilistic relational model
for predicting whether two strings are
co-referential based on the similarity of
the assertions containing them. Given
two million assertions extracted from the
Web, RESOLVER resolves objects with
78% precision and an estimated 68% re-
call and resolves relations with 90% pre-
cision and 35% recall.

1 Introduction

Web Information Extraction (WIE) sys-
tems extract assertions that describe a rela-
tion and its arguments from Web text (e.g.,
(is capital of, D.C.,United States)). WIE systems
can extract hundreds of millions of assertions
containing millions of different strings from the

Web (e.g., the TEXTRUNNER system (Banko et al.,
2007)).1 WIE systems often extract assertions that
describe the same real-world object or relation using
different names. For example, a WIE system might
extract (is capital city of, Washington, U.S.),
which describes the same relationship as above but
contains a different name for the relation and each
argument.

Synonyms are prevalent in text, and the Web cor-
pus is no exception. Our data set of two million as-
sertions extracted from a Web crawl contained over
a half-dozen different names each for the United
States and Washington, D.C., and three for the “is
capital of” relation. The top 80 most commonly
extracted objects had an average of 2.9 extracted
names per entity, and several had as many as 10
names. The top 100 most commonly extracted re-
lations had an average of 4.9 synonyms per relation.

We refer to the problem of identifying synony-
mous object and relation names as Synonym Res-
olution (SR).2 An SR system for WIE takes a set of
assertions as input and returns a set of clusters, with
each cluster containing coreferential object strings
or relation strings. Previous techniques for SR have
focused on one particular aspect of the problem, ei-
ther objects or relations. In addition, the techniques
either depend on a large set of training examples, or
are tailored to a specific domain by assuming knowl-
edge of the domain’s schema. Due to the number
and diversity of the relations extracted, these tech-

1For a demo see www.cs.washington.edu/research/textrunner.
2Ironically, SR has a number of synonyms in the literature,

including Entity Resolution, Record Linkage, and Deduplica-
tion.

121



niques are not feasible for WIE systems. Schemata
are not available for the Web, and hand-labeling
training examples for each relation would require a
prohibitive manual effort.

In response, we present RESOLVER, a novel,
domain-independent, unsupervised synonym resolu-
tion system that applies to both objects and relations.
RESOLVER clusters coreferential names together us-
ing a probabilistic model informed by string similar-
ity and the similarity of the assertions containing the
names. Our contributions are:

1. A scalable clustering algorithm that runs in
time O(KN log N) in the number of extrac-
tions N and maximum number of synonyms
per word, K, without discarding any poten-
tially matching pair, under exceptionally weak
assumptions about the data.

2. An unsupervised probabilistic model for pre-
dicting whether two object or relation names
co-refer.

3. An empirical demonstration that RESOLVER

can resolve objects with 78% precision and
68% recall, and relations with 90% precision
and 35% recall.

The next section discusses previous work. Section
3 introduces our probabilistic model for SR. Section
4 describes our clustering algorithm. Section 5 de-
scribes extensions to our basic SR system. Section
6 presents our experiments, and section 7 discusses
our conclusions and areas for future work.

2 Previous Work

The DIRT algorithm (Lin and Pantel, 2001) ad-
dresses a piece of the unsupervised SR problem.
DIRT is a heuristic method for finding synonymous
relations, or “inference rules.” DIRT uses a depen-
dency parser and mutual information statistics over
a corpus to identify relations that have similar sets of
arguments. In contrast, our algorithm provides a for-
mal probabilistic model that applies equally well to
relations and objects, and we provide an evaluation
of the algorithm in terms of precision and recall.

There are many unsupervised approaches for ob-
ject resolution in databases, but unlike our algo-
rithm these approaches depend on a known, fixed
schema. Ravikumar and Cohen (Ravikumar and Co-
hen, 2004) present an unsupervised approach to ob-

ject resolution using Expectation-Maximization on
a hierarchical graphical model. Several other re-
cent approaches leverage domain-specific informa-
tion and heuristics for object resolution. For ex-
ample, many (Dong et al., 2005; Bhattacharya and
Getoor, 2005; Bhattacharya and Getoor, 2006) rely
on evidence from observing which strings appear as
arguments to the same relation simultaneously (e.g.,
co-authors of the same publication). While this is
useful information when resolving authors in the ci-
tation domain, it is extremely rare to find relations
with similar properties in extracted assertions. None
of these approaches applies to the problem of resolv-
ing relations. See (Winkler, 1999) for a survey of
this area.

Several supervised learning techniques make en-
tity resolution decisions (Kehler, 1997; McCallum
and Wellner, 2004; Singla and Domingos, 2006), but
of course these systems depend on the availability
of training data, and often on a significant number
of labeled examples per relation of interest. These
approaches also depend on complex probabilistic
models and learning algorithms, and they have order
O(n3) time complexity, or worse. They currently do
not scale to the amounts of data extracted from the
Web. Previous systems were tested on at most a few
thousand examples, compared with millions or hun-
dreds of millions of extractions from WIE systems
such as TEXTRUNNER.

Coreference resolution systems (e.g., (Lappin and
Leass, 1994; Ng and Cardie, 2002)), like SR sys-
tems, try to merge references to the same object (typ-
ically pronouns, but potentially other types of noun
phrases). This problem differs from the SR problem
in several ways: first, it deals with unstructered text
input, possibly with syntactic annotation, rather than
relational input. Second, it deals only with resolv-
ing objects. Finally, it requires local decisions about
strings; that is, the same word may appear twice in a
text and refer to two different things, so each occur-
rence of a word must be treated separately.

The PASCAL Recognising Textual Entailment
Challenge proposes the task of recognizing when
two sentences entail one another, and many authors
have submitted responses to this challenge (Dagan et
al., 2006). Synonym resolution is a subtask of this
problem. Our task differs significantly from the tex-
tual entailment task in that it has no labeled training
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data, and its input is in the form of relational extrac-
tions rather than raw text.

Two probabilistic models for information extrac-
tion have a connection with ours. Our probabilistic
model is partly inspired by the ball-and-urns abstrac-
tion of information extraction presented by Downey
et al. (2005) Our task and probability model are dif-
ferent from theirs, but we make many of the same
modeling assumptions. Second, we follow Snow et
al.’s work (2006) on taxonomy induction in incorpo-
rating transitive closure constraints in our probabil-
ity calculations, as explained below.

3 Probabilistic Model

Our probabilistic model provides a formal, rigorous
method for resolving synonyms in the absence of
training data. It has two sources of evidence: the
similarity of the strings themselves (i.e., edit dis-
tance) and the similarity of the assertions they ap-
pear in. This second source of evidence is some-
times referred to as “distributional similarity” (Hin-
dle, 1990).

Section 3.2 presents a simple model for predict-
ing whether a pair of strings co-refer based on string
similarity. Section 3.3 then presents a model called
the Extracted Shared Property (ESP) Model for pre-
dicting whether a pair of strings co-refer based on
their distributional similarity. Finally, a method is
presented for combining these models to come up
with an overall prediction for coreference decisions
between two clusters of strings.

3.1 Terminology and Notation

We use the following notation to describe the proba-
bilistic models. The input is a data set D containing
extracted assertions of the form a = (r, o1, . . . , on),
where r is a relation string and each oi is an object
string representing the arguments to the relation. In
our data, all of the extracted assertions are binary, so
n = 2. The subset of all assertions in D containing
a string s is called Ds.

For strings si and sj , let Ri,j be the random vari-
able for the event that si and sj refer to the same
entity. Let Rt

i,j denote the event that Ri,j is true,
and Rf

i,j denote the event that it is false.
A pair of strings (r, s2) is called a property of

a string s1 if there is an assertion (r, s1, s2) ∈ D

or (r, s2, s1) ∈ D. A pair of strings (s1, s2) is
an instance of a string r if there is an assertion
(r, s1, s2) ∈ D. Equivalently, the property p =
(r, s2) applies to s1, and the relation r applies to
the instance i = (s1, s2). Finally, two strings x and
y share a property (or instance) if both x and y are
extracted with the same property (or instance).

3.2 String Similarity Model

Many objects appear with multiple names that are
substrings, acronyms, abbreviations, or other sim-
ple variations of one another. Thus string similarity
can be an important source of evidence for whether
two strings co-refer. Our probabilistic String Sim-
ilarity Model (SSM) assumes a similarity function
sim(s1, s2): STRING× STRING → [0, 1]. The
model sets the probability of s1 co-referring with s2

to a smoothed version of the similarity:

P (Rt
i,j |sim(s1, s2)) =

α ∗ sim(s1, s2) + 1
α + β

The particular choice of α and β make little differ-
ence to our results, so long as they are chosen such
that the resulting probability can never be one or
zero. In our experiments α = 20 and β = 5, and we
use the well-known Monge-Elkan string similarity
function for objects and the Levenshtein string edit-
distance function for relations (Cohen et al., 2003).

3.3 The Extracted Shared Property Model

The Extracted Shared Property (ESP) Model out-
puts the probability that s1 and s2 co-refer
based on how many properties (or instances) they
share. As an example, consider the strings
“Mars” and “Red Planet”, which appear in our
data 659 and 26 times respectively. Out of
these extracted assertions, they share four proper-
ties. For example, (lacks, Mars, ozone layer) and
(lacks, Red P lanet, ozone layer) both appear as
assertions in our data. The ESP model determines
the probability that “Mars” and “Red Planet” refer
to the same entity after observing k, the number of
properties that apply to both, n1, the total number
of extracted properties for “Mars”, and n2, the total
number of extracted properties for “Red Planet.”

ESP models the extraction of assertions as a
generative process, much like the URNS model
(Downey et al., 2005). For each string si, a certain
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number, Pi, of properties of the string are written on
balls and placed in an urn. Extracting ni assertions
that contain si amounts to selecting a subset of size
ni from these labeled balls.3 Properties in the urn are
called potential properties to distinguish them from
extracted properties.

To model coreference decisions, ESP uses a pair
of urns, containing Pi and Pj balls respectively, for
the two strings si and sj . Some subset of the Pi

balls have the exact same labels as an equal-sized
subset of the Pj balls. Let the size of this sub-
set be Si,j . The ESP model assumes that corefer-
ential strings share as many potential properties as
possible, though only a few of the potential proper-
ties will be extracted for both. For non-coreferential
strings, the number of shared potential properties is a
strict subset of the potential properties of each string.
Thus if Ri,j is true then Si,j = min(Pi, Pj), and if
Ri,j is false then Si,j < min(Pi, Pj).

The ESP model makes several simplifying as-
sumptions in order to make probability predictions.
As is suggested by the ball-and-urn abstraction, it
assumes that each ball for a string is equally likely
to be selected from its urn. Because of data sparsity,
almost all properties are very rare, so it would be dif-
ficult to get a better estimate for the prior probability
of selecting a particular potential property. Second,
it assumes that without knowing the value of k, ev-
ery value of Si,j is equally likely, since we have no
better information. Finally, it assumes that all sub-
sets of potential properties are equally likely to be
shared by two non-coreferential objects, regardless
of the particular labels on the balls, given the size of
the shared subset.

Given these assumptions, we can derive an ex-
pression for P (Rt

i,j). First, note that there are(Pi
ni

)(Pj
nj

)
total ways of extracting ni and nj asser-

tions for si and sj . Given a particular value of Si,j ,
the number of ways in which ni and nj assertions
can be extracted such that they share exactly k is
given by

Count(k, ni, nj |Pi, Pj , Si,j) =
(Si,j

k

) ∑
r,s≥0

(Si,j−k
r+s

)(r+s
r

)( Pi−Si,j

ni−(k+r)

)( Pj−Si,j

nj−(k+s)

)

By our assumptions,

3Unlike the URNS model, balls are drawn without replace-
ment because each extracted property is distinct in our data.

P (k|ni, nj , Pi, Pj , Si,j) =

Count(k, ni, nj |Pi, Pj , Si,j)(Pi
ni

)(Pj
nj

) (1)

Let Pmin = min(Pi, Pj). The result below fol-
lows from Bayes’ Rule and our assumptions above:

Proposition 1 If two strings si and sj have Pi and
Pj potential properties (or instances), and they ap-
pear in extracted assertions Di and Dj such that
|Di| = ni and |Dj | = nj , and they share k extracted
properties (or instances), the probability that si and
sj co-refer is:

P (Rt
i,j |Di, Dj , Pi, Pj) =

P (k|ni, nj , Pi, Pj , Si,j = Pmin)∑
k≤Si,j≤Pmin

P (k|ni, nj , Pi, Pj , Si,j)
(2)

Substituting equation 1 into equation 2 gives us a
complete expression for the probability we are look-
ing for.

Note that the probability for Ri,j depends on just
two hidden parameters, Pi and Pj . Since we have
no labeled data to estimate these parameters from,
we tie these parameters to the number of times the
respective strings si and sj are extracted. Thus we
set Pi = N × ni, and we set N = 50 in our experi-
ments.

3.4 Combining the Evidence

For each potential coreference relationship Ri,j ,
there are now two pieces of probabilistic evidence.
Let Ee

i,j be the evidence for ESP, and let Es
i,j be the

evidence for SSM. Our method for combining the
two uses the Naı̈ve Bayes assumption that each piece
of evidence is conditionally independent, given the
coreference relation:

P (Es
i,j , E

e
i,j |Ri,j) = P (Es

i,j |Ri,j)P (Ee
i,j |Ri,j)

Given this simplifying assumption, we can com-
bine the evidence to find the probability of a cofer-
ence relationship by applying Bayes’ Rule to both
sides (we omit the i, j indices for brevity):

P (Rt|Es, Ee) =

P (Rt|Es)P (Rt|Ee)(1− P (Rt))∑
i∈{t,f} P (Ri|Es)P (Ri|Ee)(1− P (Ri))
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3.5 Comparing Clusters of Strings
Our algorithm merges clusters of strings with one
another, using one of the above models. However,
these models give probabilities for coreference deci-
sions between two individual strings, not two clus-
ters of strings.

We follow the work of Snow et al. (2006) in in-
corporating transitive closure constraints in proba-
bilistic modeling, and make the same independence
assumptions. The benefit of this approach is that the
calculation for merging two clusters depends only
on coreference decisions between individual strings,
which can be calculated independently.

Let a clustering be a set of coreference relation-
ships between pairs of strings such that the corefer-
ence relationships obey the transitive closure prop-
erty. We let the probability of a set of assertions D
given a clustering C be:

P (D|C) =
∏

Rt
i,j∈C

P (Di ∪Dj |Rt
i,j)×

∏

Rf
i,j∈C

P (Di ∪Dj |Rf
i,j)

The metric used to determine if two clusters
should be merged is the likelihood ratio, or the prob-
ability for the set of assertions given the merged
clusters over the probability given the original clus-
tering. Let C ′ be a clustering that differs from C
only in that two clusters in C have been merged in
C ′, and let ∆C be the set of coreference relation-
ships in C ′ that are true, but the corresponding ones
in C are false. This metric is given by:

P (D|C ′)/P (D|C) =
∏

Rt
i,j∈∆C P (Rt

i,j |Di ∪Dj)(1− P (Rt
i,j))∏

Rt
i,j∈∆C(1− P (Rt

i,j |Di ∪Dj))P (Rt
i,j)

The probability P (Rt
i,j |Di∪Dj) may be supplied

by the SSM, ESP, or combination model. In our ex-
periments, we let the prior for the SSM model be
0.5. For the ESP and combined models, we set the
prior to P (Rt

i,j) = 1
min(P1,P2) .

4 RESOLVER’s Clustering Algorithm

Our clustering algorithm iteratively merges clusters
of co-referential names, making each iteration in

S := set of all strings
For each property or instance p,

Sp := {s ∈ S|s has property p}
1. Scores := {}
2. Build index mapping properties (and instances)

to strings with those properties (instances)
3. For each property or instance p:

If |Sp| < Max:
For each pair {s1, s2} ⊂ Sp:

Add mergeScore(s1, s2) to Scores
4. Repeat until no merges can be performed:

Sort Scores
UsedClusters := {}
While score of top clusters c1, c2

is above Threshold:
Skip if either is in UsedClusters
Merge c1 and c2

Add c1, c2 to UsedClusters
Merge properties containing c1, c2

Recalculate merge scores as in Steps 1-3

Figure 1: RESOLVER’s Clustering Algorithm

time O(N log N) in the number of extracted as-
sertions. The algorithm requires only basic assump-
tions about which strings to compare. Previous work
on speeding up clustering algorithms for SR has ei-
ther required far stronger assumptions, or else it has
focused on heuristic methods that remain, in the
worst case, O(N2) in the number of distinct objects.

Our algorithm, a greedy agglomerative clustering
method, is outlined in Figure 1. The first novel part
of the algorithm, step 3, compares pairs of strings
that share the same property or instance, so long as
no more than Max strings share that same property
or instance. After the scores for all comparisons are
made, each string is assigned its own cluster. Then
the scores are sorted and the best cluster pairs are
merged until no pair of clusters has a score above
threshold. The second novel aspect of this algorithm
is that as it merges clusters in Step 4, it merges prop-
erties containing those clusters in a process we call
mutual recursion, which is discussed below.

This algorithm compares every pair of clusters
that have the potential to be merged, assuming two
properties of the data. First, it assumes that pairs
of clusters with no shared properties are not worth
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comparing. Since the number of shared properties
is a key source of evidence for our approach, these
clusters almost certainly will not be merged, even if
they are compared, so the assumption is quite rea-
sonable. Second, the approach assumes that clus-
ters sharing only properties that apply to very many
strings (more than Max) need not be compared.
Since properties shared by many strings provide lit-
tle evidence that the strings are coreferential, this as-
sumption is reasonable for SR. We use Max = 50
in our experiments. Less than 0.1% of the properties
are thrown out using this cutoff.

4.1 Algorithm Analysis

Let D be the set of extracted assertions. The follow-
ing analysis shows that one iteration of merges takes
time O(N log N), where N = |D|. Let NC be
the number of comparisons between strings in step
3. To simplify the analysis, we consider only those
properties that contain a relation string and an argu-
ment 1 string. Let A be the set of all such properties.
NC is linear in N :4

NC =
∑

p∈A

|Sp| × (|Sp| − 1)
2

≤ (Max− 1)
2

×
∑

p∈A

|Sp|

=
(Max− 1)

2
×N

Note that this bound is quite loose because most
properties apply to only a few strings. Step 4 re-
quires time O(N log N) to sort the comparison
scores and perform one iteration of merges. If the
largest cluster has size K, in the worst case the al-
gorithm will take K iterations. In our experiments,
the algorithm never took more than 9 iterations.

4.2 Relation to other speed-up techniques

The merge/purge algorithm (Hernandez and Stolfo,
1995) assumes the existence of a particular attribute
such that when the data set is sorted on this attribute,
matching pairs will all appear within a narrow win-
dow of one another. This algorithm is O(M log M)
where M is the number of distinct strings. However,
there is no attribute or set of attributes that comes

4If the Max parameter is allowed to vary with log|D|,
rather than remaining constant, the same analysis leads to a
slightly looser bound that is still better than O(N2).

close to satisfying this assumption in the context of
domain-independent information extraction.

There are several techniques that often provide
speed-ups in practice, but in the worst case they
make O(M2) comparisons at each merge iteration,
where M is the number of distinct strings. This can
cause problems on very large data sets. Notably,
McCallum et al. (2000) use a cheap comparison
metric to place objects into overlapping “canopies,”
and then use a more expensive metric to cluster ob-
jects appearing in the same canopy. The RESOLVER

clustering algorithm is in fact an adaptation of the
canopy method; it adds the restriction that strings are
not compared when they share only high-frequency
properties. The canopy method works well on high-
dimensional data with many clusters, which is the
case with our problem, but its time complexity is
worse than ours.

For information extraction data, a complexity of
O(M2) in the number of distinct strings turns out
to be considerably worse than our algorithm’s com-
plexity of O(N log N) in the number of extracted
assertions. This is because the data obeys a Zipf law
relationship between the frequency of a string and its
rank, so the number of distinct strings grows linearly
or almost linearly with the number of assertions.5

4.3 Mutual Recursion

Mutual recursion refers to the novel property of
our algorithm that as it clusters relation strings to-
gether into sets of synonyms, it collapses proper-
ties together for object strings and potentially finds
more shared properties between coreferential object
strings. Likewise, as it clusters objects together into
sets of coreferential names, it collapses instances of
relations together and potentially finds more shared
instances between coreferential relations. Thus the
clustering decisions for relations and objects mutu-
ally depend on one another.

For example, the strings “Kennedy” and “Pres-
ident Kennedy” appear in 430 and 97 assertions
in our data, respectively, but none of their ex-
tracted properties match exactly. Many properties,

5The exact relationship depends on the shape parameter z
of the Zipf curve. If z < 1, as it is for our data set, the num-
ber of total extractions grows linearly with the number of dis-
tinct strings extracted. If z = 1, then n extractions will contain
Ω( n

ln n
) distinct strings.
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however, almost match. For example, the asser-
tions (challenged,Kennedy, Premier Krushchev)
and (stood up to,President Kennedy,Kruschev)
both appear in our data. Because “challenged” and
“stood up to” are similar, and “Krushchev” and “Pre-
mier Krushchev” are similar, our algorithm is able
to merge these pairs into two clusters, thereby creat-
ing a new shared property between “Kennedy” and
“President Kennedy.” Eventually it can merge these
two strings as well.

5 Extensions to RESOLVER

While the basic RESOLVER system can cluster syn-
onyms accurately and quickly, there is one type of
error that it frequently makes. In some cases, it has
difficulty distinguishing between similar pairs of ob-
jects and identical pairs. For example, “Virginia”
and “West Virginia” share several extractions be-
cause they have the same type, and they have high
string similarity. As a result, RESOLVER clusters
these two together. The next two sections describe
two extensions to RESOLVER that address the prob-
lem of similarity vs. identity.

5.1 Function Filtering

RESOLVER can use functions and one-to-one rela-
tions to help distinguish between similar and identi-
cal pairs. For example, West Virginia and Virginia
have different capitals: Richmond and Charleston,
respectively. If both of these facts are extracted, and
if RESOLVER knows that the “capital of” relation is
functional, it should prevent Virginia and West Vir-
ginia from merging.

The Function Filter prevents merges between
strings that have different values for the same func-
tion. More precisely, it decides that two strings y1

and y2 match if their string similarity is above a high
threshold. It prevents a merge between strings x1

and x2 if there exist a function f and extractions
f(x1, y1) and f(x2, y2), and there are no such ex-
tractions such that y1 and y2 match (and vice versa
for one-to-one relations). Experiments described in
section 6 show that the Function Filter can improve
the precision of RESOLVER without significantly af-
fecting its recall.

While the Function Filter currently uses func-
tions and one-to-one relations as negative evidence,

it is also possible to use them as positive evidence.
For example, the relation “married” is not strictly
one-to-one, but for most people the set of spouses
is very small. If a pair of strings are extracted
with the same spouse—e.g., “FDR” and “President
Roosevelt” share the property (“married”, “Eleanor
Roosevelt”)—this is far stronger evidence that the
two strings are identical than if they shared some
random property.

Unfortunately, various techniques that attempted
to model this insight, including a TF-IDF weighting
of properties, yielded essentially no improvement of
RESOLVER. One major reason is that there are rel-
atively few examples of shared functional or one-
to-one properties because of sparsity. This idea de-
serves more investigation, however, and is an area
for future work.

5.2 Using Web Hitcounts

While names for two similar objects may often ap-
pear together in the same sentence, it is relatively
rare for two different names of the same object to
appear in the same sentence. RESOLVER exploits
this fact by querying the Web to determine how often
a pair of strings appears together in a large corpus.
When the hitcount is high, RESOLVER can prevent
the merge.

Specifically, the Coordination-Phrase Filter
searches for hitcounts of the phrase “s1 and s2”,
where s1 and s2 are a candidate pair for merging.
It then computes a variant of pointwise mutual
information, given by

coordination score(s1, s2) =
hits(s1 and s2)2

hits(s1)× hits(s2)

The filter prevents any merge for which the coor-
dination score is above a threshold, which is de-
termined on a development set. The results of
Coordination-Phrase filtering are discussed in the
next section.

6 Experiments

Our experiments demonstrate that the ESP model
is significantly better at resolving synonyms than a
widely-used distributional similarity metric, the co-
sine similarity metric (CSM) (Salton and McGill,
1983), and that RESOLVER is significantly better at
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resolving synonyms than either of its components,
SSM or ESP.

We test these models on a data set of 2.1 million
assertions extracted from a Web crawl.6 All models
ran over all assertions, but compared only those ob-
jects or relations that appeared at least 25 times in
the data, to give the ESP and CSM models sufficient
data for estimating similarity. However, the mod-
els do use strings that appear less than 25 times as
features. In all, the data contains 9,797 distinct ob-
ject strings and 10,151 distinct relation strings that
appear at least 25 times.

We judged the precision of each model by manu-
ally labeling all of the clusters that each model out-
puts. Judging recall would require inspecting not
just the clusters that the system outputs, but the en-
tire data set, to find all of the true clusters. Be-
cause of the size of the data set, we instead esti-
mated recall over a smaller subset of the data. We
took the top 200 most frequent object strings and top
200 most frequent relation strings in the data. For
each one of these high-frequency strings, we man-
ually searched through all strings with frequency
over 25 that shared at least one property, as well
as all strings that contained one of the keywords in
the high-frequency strings or obvious variations of
them. We manually clustered the resulting matches.
The top 200 object strings formed 51 clusters of size
greater than one, with an average cluster size of 2.9.
For relations, the top 200 strings and their matches
formed 110 clusters with size greater than one, with
an average cluster size of 4.9. We measured the re-
call of our models by comparing the set of all clus-
ters containing at least one of the high-frequency
words against these gold standard clusters.

For our precision and recall measures, we only
compare clusters of size two or more, in order to
focus on the interesting cases. Using the term hy-
pothesis cluster for clusters created by one of the
models, we define the precision of a model to be the
number of elements in all hypothesis clusters which
are correct divided by the total number of elements
in hypothesis clusters. An element s is marked cor-
rect if a plurality of the elements in s’s cluster refer
to the same entity as s; we break ties arbitrarily, as

6The data is made available at
http://www.cs.washington.edu/homes/ayates/.

they do not affect results. We define recall as the
sum over gold standard clusters of the most num-
ber of elements found in a single hypothesis cluster,
divided by the total number of elements in gold stan-
dard clusters.

For the ESP and SSM models in our experiment,
we prevented mutual recursion by clustering rela-
tions and objects separately. Only the full RE-
SOLVER system uses mutual recursion. For the CSM
model, we create for each distinct string a row vec-
tor, with each column representing a property. If that
property applies to the string, we set the value of
that column to the inverse frequency of the property
and zero otherwise. CSM finds the cosine of the an-
gle between the vectors for each pair of strings, and
merges the best pairs that score above threshold.

Each model requires a threshold parameter to de-
termine which scores are suitable for merging. For
these experiments we arbitrarily chose a threshold
of 3 for the ESP model (that is, the data needs to
be 3 times more likely given the merged cluster than
the unmerged clusters in order to perform the merge)
and chose thresholds for the other models by hand so
that the difference between them and ESP would be
roughly even between precision and recall, although
for relations it was harder to improve the recall. It is
an important item for future work to be able to esti-
mate these thresholds and perhaps other parameters
of our models from unlabeled data, but the chosen
parameters worked well enough for the experiments.
Table 1 shows the precision and recall of our models.

6.1 Discussion
ESP significantly outperforms CSM on both object
and relation clustering. CSM had particular trouble
with lower-frequency strings, judging far too many
of them to be co-referential on too little evidence. If
the threshold for clustering using CSM is increased,
however, the recall begins to approach zero.

ESP and CSM make predictions based on a very
noisy signal. “Canada,” for example, shares more
properties with “United States” in our data than
“U.S.” does, even though “Canada” appears less of-
ten than “U.S.” The results show that both models
perform below the SSM model on its own for object
merging, and both perform slightly better than SSM
on relations because of SSM’s poor recall.

We found a significant improvement in both pre-
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Objects Relations
Model Prec. Rec. F1 Prec. Rec. F1
CSM 0.51 0.36 0.42 0.62 0.29 0.40
ESP 0.56 0.41 0.47 0.79 0.33 0.47
SSM 0.62 0.53 0.57 0.85 0.25 0.39
RESOLVER 0.71 0.66 0.68 0.90 0.35 0.50

Table 1: Comparison of the cosine similarity metric (CSM), RESOLVER components (SSM and ESP), and the RESOLVER

system. Bold indicates the score is significantly different from the score in the row above at p < 0.05 using the chi-squared test

with one degree of freedom. Using the same test, RESOLVER is also significantly different from ESP and CSM in recall on objects,

and from CSM and SSM in recall on relations. RESOLVER’s F1 on objects is a 19% increase over SSM’s F1. RESOLVER’s F1 on

relations is a 28% increase over SSM’s F1.

cision and recall when using a combined model over
using SSM alone. RESOLVER’s F1 is 19% higher
than SSM’s on objects, and 28% higher on relations.

In a separate experiment we found that mutual re-
cursion provides mixed results. A combination of
SSM and ESP without mutual recursion had a preci-
sion of 0.76 and recall of 0.59 on objects, and a pre-
cision of 0.91 and recall of 0.35 on relations. Mutual
recursion increased recall and decreased precision
for both objects and relations. None of the differ-
ences were statistically significant, however.

There is clearly room for improvement on the SR
task. Except for the problem of confusing similar
and identical pairs (see section 5), error analysis
shows that most of RESOLVER’s mistakes are be-
cause of two kinds of errors:
1. Extraction errors. For example, “US News”
gets extracted separately from “World Report”, and
then RESOLVER clusters them together because they
share almost all of the same properties.
2. Multiple word senses. For example, there are two
President Bushes; also, there are many terms like
“President” and “Army” that can refer to many dif-
ferent entities.

6.2 Experiments with Extensions

The extensions to RESOLVER attempt to address
the confusion between similar and identical pairs.
Experiments with the extensions, using the same
datasets and metrics as above, demonstrate that the
Function Filter (FF) and the Coordination-Phrase
Filter (CPF) boost RESOLVER’s performance.

FF requires as input the set of functional and one-
to-one relations in the data. Table 2 contains a sam-

is capital of is capital city of
named after was named after
headquartered in is headquartered in

Table 2: A sample of the set of functions used by the Func-
tion Filter.

Model Prec. Rec. F1
RESOLVER 0.71 0.66 0.68
RESOLVER+FF 0.74 0.66 0.70
RESOLVER+CPF 0.78 0.68 0.73
RESOLVER+FF+CPF 0.78 0.68 0.73

Table 3: Comparison of object merging results for the
RESOLVER system, RESOLVER plus Function Filtering (RE-

SOLVER+FF), RESOLVER plus Coordination-Phrase Filter-
ing (RESOLVER+CPF), and RESOLVER plus both types of fil-
tering (RESOLVER+FF+CPF). Bold indicates the score is sig-

nificantly different from RESOLVER’s score at p < 0.05 us-

ing the chi-squared test with one degree of freedom. RE-

SOLVER+CPF’s F1 on objects is a 28% increase over SSM’s

F1, and a 7% increase over RESOLVER’s F1.

pling of the manually-selected functions used in our
experiment. Automatically discovering such func-
tions from extractions has been addressed in Ana-
Maria Popescu’s dissertation (Popescu, 2007), and
we did not attempt to duplicate this effort in RE-
SOLVER.

Table 3 contains the results of our experiments.
With coordination-phrase filtering, RESOLVER’s F1
is 28% higher than SSM’s on objects, and 6% higher
than RESOLVER’s F1 without filtering. While func-
tion filtering is a promising idea, FF provides a
smaller benefit than CPF on this dataset, and the
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merges that it prevents are, with a few exceptions,
a subset of the merges prevented by CPF. This is in
part due to the limited number of functions available
in the data. In addition to outperforming FF on this
dataset, CPF has the added advantage that it does not
require additional input, like a set of functions.

7 Conclusion and Future Work

We have shown that the unsupervised and scalable
RESOLVER system is able to find clusters of co-
referential object names in extracted relations with
a precision of 78% and a recall of 68% with the aid
of coordination-phrase filtering, and can find clus-
ters of co-referential relation names with precision
of 90% and recall of 35%. We have demonstrated
significant improvements over using simple similar-
ity metrics for this task by employing a novel prob-
abilistic model of coreference.

In future work, we plan to use RESOLVER on a
much larger data set of over a hundred million as-
sertions, further testing its scalability and its abil-
ity to improve in accuracy given additional data.
We also plan to add techniques for handling mul-
tiple word senses. Finally, to make the probabilistic
model more accurate and easier to use, we plan to
investigate methods for automatically estimating its
parameters from unlabeled data.
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Abstract

In this paper, we empirically demonstrate
what we call the domain restriction hy-
pothesis, claiming that semantically re-
lated terms extracted from a corpus tend
to be semantically coherent. We apply
this hypothesis to define a post-processing
module for the output of Espresso, a state
of the art relation extraction system, show-
ing that irrelevant and erroneous relations
can be filtered out by our module, in-
creasing the precision of the final output.
Results are confirmed by both quantita-
tive and qualitative analyses, showing that
very high precision can be reached.

1 Introduction

Relation extraction is a fundamental step in
many natural language processing applications such
as learning ontologies from texts (Buitelaar et
al., 2005) and Question Answering (Pasca and
Harabagiu, 2001).

The most common approach for acquiring con-
cepts, instances and relations is to harvest semantic
knowledge from texts. These techniques have been
largely explored and today they achieve reasonable
accuracy. Harvested lexical resources, such as con-
cept lists (Pantel and Lin, 2002), facts (Etzioni et
al., 2002) and semantic relations (Pantel and Pen-
nacchiotti, 2006) could be then successfully used in
different frameworks and applications.

The state of the art technology for relation extrac-
tion primarily relies on pattern-based approaches

(Snow et al., 2006). These techniques are based on
the recognition of the typical patterns that express
a particular relation in text (e.g. “X such as Y”
usually expresses an is-a relation). Yet, text-based
algorithms for relation extraction, in particular
pattern-based algorithms, still suffer from a number
of limitations due to complexities of natural lan-
guage, some of which we describe below.

Irrelevant relations. These are valid relations
that are not of interest in the domain at hand. For
example, in a political domain, “Condoleezza Rice
is a football fan” is not as relevant as “Condoleezza
Rice is the Secretary of State of the United States”.
Irrelevant relations are ubiquitous, and affect ontol-
ogy reliability, if used to populate it, as the relation
drives the wrong type of ontological knowledge.
Erroneous or false relations. These are particu-
larly harmful, since they directly affect algorithm
precision. A pattern-based relation extraction
algorithm is particularly likely to extract erroneous
relations if it uses generic patterns, which are
defined in (Pantel and Pennacchiotti, 2006) as
broad coverage, noisy patterns with high recall and
low precision (e.g. “X of Y” for part-of relation).
Harvesting algorithms either ignore generic patterns
(Hearst, 1992) (affecting system recall) or use man-
ually supervised filtering approaches (Girju et al.,
2006) or use completely unsupervised Web-filtering
methods (Pantel and Pennacchiotti, 2006). Yet,
these methods still do not sufficiently mitigate the
problem of erroneous relations.
Background knowledge. Another aspect that
makes relation harvesting difficult is related to the
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nature of semantic relations: relations among enti-
ties are mostly paradigmatic (de Saussure, 1922),
and are usually established in absentia (i.e., they are
not made explicit in text). According to Eco’s posi-
tion (Eco, 1979), the background knowledge (e.g.
“persons are humans”) is often assumed by the
writer, and thus is not explicitly mentioned in text.
In some cases, such widely-known relations can be
captured by distributional similarity techniques but
not by pattern-based approaches.
Metaphorical language. Even when paradigmatic
relations are explicitly expressed in texts, it can
be very difficult to distinguish between facts and
metaphoric usage (e.g. the expression “My mind is
a pearl” occurs 17 times on the Web, but it is clear
that mind is not a pearl, at least from an ontological
perspective).

The considerations above outline some of the dif-
ficulties of taking a purely lexico-syntactic approach
to relation extraction. Pragmatic issues (background
knowledge and metaphorical language) and onto-
logical issues (irrelevant relation) can not be solved
at the syntactic level. Also, erroneous relations can
always arise. These considerations lead us to the
intuition that extraction can benefit from imposing
some additional constraints.

In this paper, we integrate Espresso with a lex-
ical distribution technique modeling semantic co-
herence through semantic domains (Magnini et al.,
2002). These are defined as common discourse top-
ics which demonstrate lexical coherence, such as
ECONOMICS or POLITICS. We explore whether se-
mantic domains can provide the needed additional
constraints to mitigate the acceptance of erroneous
relations. At the lexical level, semantic domains
identify clusters of (domain) paradigmatically re-
lated terms. We believe that the main advantage of
adopting semantic domains in relation extraction is
that relations are established mainly among terms in
the same Domain, while concepts belonging to dif-
ferent fields are mostly unrelated (Gliozzo, 2005),
as described in Section 2. For example, in a chem-
istry domain, an is-a will tend to relate only terms of
that domain (e.g., nitrogen is-a element), while out-
of-domain relations are likely to be erroneous e.g.,
driver is-a element.
By integrating pattern-based and distributional ap-

proaches we aim to capture the two characteristic
properties of semantic relations:

• Syntagmatic properties: if two terms X and
Y are in a given relation, they tend to co-
occur in texts, and are mostly connected by spe-
cific lexical-syntactic patterns (e.g., the patter
“X is a Y ” connects terms in is-a relations).
This aspect is captured using a pattern-based
approach.

• Domain properties: if a semantic relation
among two terms X and Y holds, both X
and Y should belong to the same semantic
domain (i.e. they are semantically coherent),
where semantic domains are sets of terms
characterized by very similar distributional
properties in a (possibly domain specific)
corpus.

In Section 2, we develop the concept of semantic do-
main and an automatic acquisition procedure based
on Latent Semantic Analysis (LSA) and we provide
empirical evidence of the connection between rela-
tion extraction and domain modelling. Section 3 de-
scribes the Espresso system. Section 4 concerns our
integration of semantic domains and Espresso. In
Section 5, we evaluate the impact of our LSA do-
main restriction module on improving a state of the
art relation extraction system. In Section 6 we draw
some interesting research directions opened by our
work.

2 Semantic Domains

Semantic domains are common areas of human
discussion, which demonstrate lexical coherence,
such as ECONOMICS, POLITICS, LAW, SCIENCE,
(Magnini et al., 2002). At the lexical level, se-
mantic domains identify clusters of (domain) related
lexical-concepts, i.e. sets of highly paradigmatically
related words also known as Semantic Fields.

In the literature, semantic domains have been
inferred from corpora by adopting term clustering
methodologies (Gliozzo, 2005), and have been used
for several NLP tasks, such as Text Categorization
and Ontology Learning (Gliozzo, 2006).

Semantic domains can be described by Domain
Models (DMs) (Gliozzo, 2005). A DM is a com-
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putational model for semantic domains, that repre-
sents domain information at the term level, by defin-
ing a set of term clusters. Each cluster represents a
Semantic Domain, i.e. a set of terms that often co-
occur in texts having similar topics. A DM is repre-
sented by a k × k′ rectangular matrix D, containing
the domain relevance for each term with respect to
each domain, as illustrated in Table 1.

MEDICINE COMPUTER SCIENCE

HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 1: Example of a Domain Model

DMs can be acquired from texts in a completely
unsupervised way by exploiting a lexical coherence
assumption. To this end, term clustering algorithms
can be used with each cluster representing a Se-
mantic Domain. The degree of association among
terms and clusters, estimated by the learning algo-
rithm, provides a domain relevance function. For
our experiments we adopted a clustering strategy
based on LSA (Deerwester et al., 1990), following
the methodology described in (Gliozzo, 2005). The
input of the LSA process is a term-by-document ma-
trix T reporting the term frequencies in the whole
corpus for each term. The matrix is decomposed by
means of a Singular Value Decomposition (SVD),
identifying the principal components of T. This op-
eration is done off-line, and can be efficiently per-
formed on large corpora. SVD decomposes T into
three matrixes T ' VΣk′UT where Σk′ is the di-
agonal k × k matrix containing the highest k′ ¿ k
eigenvalues of T on the diagonal, and all the re-
maining elements are 0. The parameter k′ is the
dimensionality of the domain and can be fixed in
advance1. Under this setting we define the domain
matrix DLSA

2 as

DLSA = INV
√

Σk′ (1)

where IN is a diagonal matrix such that iNi,i =
1q

〈 ~w′i,
~w′i〉

and ~w′i is the ith row of the matrix V
√

Σk′ .

1It is not clear how to choose the right dimensionality. In
our experiments we used 100 dimensions.

2Details of this operation can be found in (Gliozzo, 2005).

Once a DM has been defined by the matrix D, the
Domain Space is a k′ dimensional space, in which
both texts and terms are associated to Domain Vec-
tors (DVs), i.e. vectors representing their domain
relevancies with respect to each domain. The DV
~t′i for the term ti ∈ V is the ith row of D, where
V = {t1, t2, . . . , tk} is the vocabulary of the corpus.
The domain similarity φd(ti, tj) among terms is then
estimated by the cosine among their corresponding
DVs in the Domain Space, defined as follows:

φd(ti, tj) =
〈~ti, ~tj〉√

〈~ti, ~ti〉〈~tj , ~tj〉
(2)

Figure 1: Probability of finding paradigmatic rela-
tions

The main advantage of adopting semantic do-
mains for relation extraction is that they allow us to
impose a domain restriction on the set of candidate
pairs of related terms. In fact, semantic relations can
be established mainly among terms in the same Se-
mantic Domain, while concepts belonging to differ-
ent fields are mostly unrelated.

To show the validity of the domain restriction we
conducted a preliminary experiment, contrasting the
probability for two words to be related in Word-
Net (Magnini and Cavaglià, 2000) with their domain
similarity, measured in the Domain Space induced
from the British National Corpus. In particular, for
each couple of words, we estimated the domain sim-
ilarity, and we collected word pairs in sets charac-
terized by different ranges of similarity (e.g. all the
pairs between 0.8 and 0.9). Then we estimated the
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probability of each couple of words in different sets
to be linked by a semantic relation in WordNet, such
as synonymy, hyperonymy, co-hyponymy and do-
main in WordNet Domains (Magnini et al., 2002).
Results in Figure 1 show a monotonic crescent rela-
tion between these two quantities. In particular the
probability for two words to be related tends to 0
when their similarity is negative (i.e., they are not
domain related), supporting the basic hypothesis of
this work. In Section 4 we will show that this prop-
erty can be used to improve the overall performances
of the relation extraction algorithm.

3 The pattern-based Espresso system

Espresso (Pantel and Pennacchiotti, 2006) is a
corpus-based general purpose, broad, and accurate
relation extraction algorithm requiring minimal su-
pervision, whose core is based on the framework
adopted in (Hearst, 1992). Espresso introduces two
main innovations that guarantee high performance:
(i) a principled measure for estimating the reliabil-
ity of relational patterns and instances; (ii) an algo-
rithm for exploiting generic patterns. Generic pat-
terns are broad coverage noisy patterns (high recall
and low precision), e.g. “X of Y” for the part-of re-
lation. As underlined in the introduction, previous
algorithms either required significant manual work
to make use of generic patterns, or simply ignore
them. Espresso exploits an unsupervised Web-based
filtering method to detect generic patterns and to dis-
tinguish their correct and incorrect instances.

Given a specific relation (e.g. is-a) and a POS-
tagged corpus, Espresso takes as input few seed
instances (e.g. nitrogen is-a element) or seed surface
patterns (e.g. X/NN such/JJ as/IN Y/NN). It then
incrementally learns new patterns and instances
by iterating on the following three phases, until a
specific stop condition is met (i.e., new patterns are
below a pre-defined threshold of reliability).

Pattern Induction. Given an input set of seed
instances I , Espresso infers new patterns connecting
as many instances as possible in the given corpus.
To do so, Espresso uses a slight modification of the
state of the art algorithm described in (Ravichandran
and Hovy, 2002). For each instance in input, the
sentences containing it are first retrieved and then

generalized, by replacing term expressions with a
terminological label using regular expressions on
the POS-tags. This generalization allows to ease
the problem of data sparseness in small corpora.
Unfortunately, as patterns become more generic,
they are more prone to low precision.

Pattern Ranking and Selection. Espresso ranks
all extracted patterns using a reliability measure rπ

and discards all but the top-k P patterns, where k is
set to the number of patterns from the previous iter-
ation plus one. rπ captures the intuition that a reli-
able pattern is one that is both highly precise and one
that extracts many instances. rπ is formally defined
as the average strength of association between a pat-
tern p and each input instance i in I , weighted by the
reliability rι of the instance i (described later):

rπ(p) =

∑
i∈I

(
pmi(i,p)
maxpmi

∗ rι(i)
)

|I|
where pmi(i, p) is the pointwise mutual information
(pmi) between i and p (estimated with Maximum
Likelihood Estimation), and maxpmi is the maxi-
mum pmi between all patterns and all instances.

Instance Extraction, Ranking, Selection.
Espresso extracts from the corpus the set of in-
stances I matching the patterns in P . In this phase
generic patterns are detected, and their instances
are filtered, using a technique described in detail in
(Pantel and Pennacchiotti, 2006). Instances are then
ranked using a reliability measure rι, similar to that
adopted for patterns. A reliable instance should be
highly associated with as many reliable patterns as
possible:

rι(i) =

∑
p∈P

(
pmi(i,p)
maxpmi

∗ rπ(i)
)

|P |
Finally, the best scoring instances are selected for
the following iteration. If the number of extracted
instances is too low (as often happens in small
corpora) Espresso enters an expansion phase, in
which instances are expanded by using web based
and syntactic techniques.
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The output Espresso is a list of instances
i = (X, Y ) ∈ I , ranked according to rι(i). This
score accounts for the syntagmatic similarity be-
tween X and Y , i.e., how strong is the co-occurrence
of X and Y in texts with a given pattern p.

A key role in the Espresso algorithm is played
by the reliability measures. The accuracy of the
whole extraction process is in fact highly sensitive
to the ranking of patterns and instances because, at
each iteration, only the best scoring entities are re-
tained. For instance, if an erroneous instance is se-
lected after the first iteration, it could in theory af-
fect the following pattern extraction phase and cause
drift in consequent iterations. This issue is criti-
cal for generic patterns (where precision is still a
problem, even with Web-based filtering), and could
sometimes also affect non-generic patterns.

It would be then useful to integrate Espresso with
a technique able to retain only very precise in-
stances, without compromising recall. As syntag-
matic strategies are already in place, another strategy
is needed. In the next Section, we show how this can
be achieved using instance domain information.

4 Integrating syntagmatic and domain
information

The strategy of integrating syntagmatic and do-
main information has demonstrated to be fruitful in
many NLP tasks, such as Word Sense Disambigua-
tion and open domain Ontology Learning (Gliozzo,
2006). According to the structural view (de Saus-
sure, 1922), both aspects contribute to determine
the linguistic value (i.e. the meaning) of words:
the meaning of lexical constituents is determined
by a complex network of semantic relations among
words. This suggests that relation extraction can
benefit from accounting for both syntagmatic and
domain aspects at the same time.

To demonstrate the validity of this claim we can
explore many different integration schemata. For ex-
ample we can restrict the search space (i.e. the set of
candidate instances) to the set of all those terms be-
longing to the same domain. Another possibility is
to exploit a similarity metric for domain relatedness
to re-rank the output instances I of Espresso, hoping
that the top ranked ones will mostly be those which
are correct. One advantage of this latter method-

ology is that it can be applied to the output of any
relation extraction system without any modification
to the system itself. In addition, this methodology
can be evaluated by adopting standard Information
Retrieval (IR) measures, such as mean average pre-
cision (see Section 5). Because of these advantages,
we decided to adopt the re-ranking procedure.

The procedure is defined as follows: each in-
stance extracted by Espresso is assigned a Domain
Similarity score φd(X, Y ) estimated in the domain
space according to Equation 2; a higher score is
then assigned to the instances that tend to co-occur
in the same documents in the corpus. For exam-
ple, the candidate instances ethanol is-a nonaro-
matic alcohol has a higher score than ethanol is-a
something, as ethanol and alcohol are both from the
chemistry domain, while something is a generic term
and is thus not associated to any domain.

Instances are then re-ranked according to
φd(X, Y ), which is used as the new index of
reliability instead of the original reliability scores
of Espresso. In Subsection 5.2 we will show that
the re-ranking technique improves the original
reliability scores of Espresso.

5 Evaluation

In this Section we evaluate the benefits of applying
the domain information to relation extraction (ESP-
LSA), by measuring the improvements of Espresso
due to domain based re-ranking.

5.1 Experimental Settings

As a baseline system, we used the ESP- implemen-
tation of Espresso described in (Pantel and Pennac-
chiotti, 2006). ESP- is a fully functioning Espresso
system, without the generic pattern filtering module
(ESP+). We decided to use ESP- for two main rea-
sons. First, the manual evaluation process would
have been too time consuming, as ESP+ extracts
thousands of relations. Also, the small scale experi-
ment for EXP- allows us to better analyse and com-
pare the results.

To perform the re-ranking operation, we acquired
a Domain Model from the input corpus itself. To this
aim we performed a SVD of the term by document
matrix T describing the input corpus, indexing all
the candidate terms recognized by Espresso.
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As an evaluation benchmark, we adopted the
same instance sets extracted by ESP- in the ex-
periment described in (Pantel and Pennacchiotti,
2006). We used an input corpus of 313,590 words,
a college chemistry textbook (Brown et al. 2003),
pre-processed using the Alembic Workbench POS-
tagger (Day et al. 1997). We considered the fol-
lowing relations: is-a, part-of, reaction (a relation
of chemical reaction among chemical entities) and
production (a process or chemical element/object
producing a result). ESP- extracted 200 is-a, 111
part-of, 40 reaction and 196 production instances.

5.2 Quantitative Analysis

The experimental evaluation compared the accuracy
of the ranked set of instances extracted by ESP- with
the re-ranking produced on these instances by ESP-
LSA. By analogy to IR, we are interested in ex-
tracting positive instances (i.e. semantically related
words). Accordingly, we utilize the standard defi-
nitions of precision and recall typically used in IR .
Table 2 reports the Mean Average Precision obtained
by both ESP- and ESP-LSA on the extracted rela-
tions, showing the substantial improvements on all
the relations due to domain based re-ranking.

ESP- ESP-LSA
is-a 0.54 0.75 (+0.21)
part-of 0.65 0.82 (+0.17)
react 0.75 0.82 (+0.07)
produce 0.55 0.62 (+0.07)

Table 2: Mean Average Precision reported by ESP-
and ESP-LSA

Figures 2, 3, 4 and 5 report the precision/recall
curves obtained for each relation, estimated by mea-
suring the precision / recall at each point of the
ranked list. Results show that precision is very high
especially for the top ranked relations extracted by
ESP-LSA. Precision reaches the upper bound for the
top ranked part of the part-of relation, while it is
close to 0.9 for the is-a relation. In all cases, the
precision reported by the ESP-LSA system surpass
those of the ESP- system at all recall points.

5.3 Qualitative Analysis

Table 3 shows the best scoring instances for ESP-
and ESP-LSA on the evaluated relations. Results

Figure 2: Syntagmatic vs. Domain ranking for the
is-a relation

Figure 3: Syntagmatic vs. Domain ranking for the
produce relation

show that ESP-LSA tends to assign a much lower
score to erroneous instances, as compared to the
original Espresso reliability ranking. For exam-
ple for the part-of relation, the ESP- ranks the er-
roneous instance geometry part-of ion in 23th po-
sition, while ESP-LSA re-ranks it in 92nd. In
this case, a lower score is assigned because ge-
ometry is not particularly tied to the domain of
chemistry. Also, ESP-LSA tends to penalize in-
stances derived from parsing/tokenization errors:
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Figure 4: Syntagmatic vs. Domain ranking for the
part-of relation

Figure 5: Syntagmatic vs. Domain ranking for the
react relation

] binary hydrogen compounds hydrogen react ele-
ments is 16th for ESP-, while in the last tenth of
the ESP-LSA. In addition, out-of-domain relations
are successfully interpreted by ESP-LSA. For ex-
ample, the instance sentences part-of exceptions is
a possibly correct relation, but unrelated to the do-
main, as an exception in chemistry has nothing to
do with sentences. This instance lies at the bottom
of the ESP-LSA ranking, while is in the middle of
ESP- list. Also, low ranked and correct relations ex-

tracted by ESP- emerge with ESP-LSA. For exam-
ple, magnesium metal react elemental oxygen lies at
the end of ESP- rank, as there are not enough syntag-
matic evidence (co-occurrences) that let the instance
emerge. The domain analysis of ESP-LSA promotes
this instance to the 2nd rank position. However, in
few cases, the strategy adopted by ESP-LSA tends
to promote erroneous instances (e.g. high voltage
produce voltage). Yet, results show that these are
isolated cases.

6 Conclusion and future work

In this paper, we propose the domain restriction hy-
pothesis, claiming that semantically related terms
extracted from a corpus tend to be semantically co-
herent. Applying this hypothesis, we presented a
new method to improve the precision of pattern-
based relation extraction algorithms, where the inte-
gration of domain information allows the system to
filter out many irrelevant relations, erroneous can-
didate pairs and metaphorical language relational
expressions, while capturing the assumed knowl-
edge required to discover paradigmatic associations
among terms. Experimental evidences supports this
claim both qualitatively and quantitatively, opening
a promising research direction, that we plan to ex-
plore much more in depth. In the future, we plan
to compare LSA to other term similarity measures,
to train the LSA model on large open domain cor-
pora and to apply our technique to both generic and
specific corpora in different domains. We want also
to increase the level of integration of the LSA tech-
nique in the Espresso algorithm, by using LSA as an
alternative reliability measure at each iteration. We
will also explore the domain restriction property of
semantic domains to develop open domain ontology
learning systems, as proposed in (Gliozzo, 2006).

The domain restriction hypothesis has potential
to greatly impact many applications where match-
ing textual expressions is a primary component. It is
our hope that by combining existing ranking strate-
gies in applications such as information retrieval,
question answering, information extraction and doc-
ument classification, with knowledge of the coher-
ence of the underlying text, one will see significant
improvements in matching accuracy.
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Relation ESP- ESP - LSA
X is-a Y Aluminum ; metal F ; electronegative atoms

nitride ion ; strong Br O ; electronegative atoms
heat flow ; calorimeter NaCN ; cyanide salt

complete ionic equation ; spectator NaCN ; cyanide salts
X part-of Y elements ; compound amino acid building blocks ; tripeptide

composition ; substance acid building blocks ; tripeptide
blocks ; tripeptide powdered zinc metal ; battery

elements ; sodium chloride building blocks ; tripeptide
X react Y hydrazine ; water magnesium metal ; elemental oxygen

magnesium metal ; hydrochloric acid nitrogen ; ammonia
magnesium ; oxygen sodium metal ; chloride

magnesium metal ; acid carbon dioxide ; methane
X produce Y bromine ; bromide high voltage ; voltage

oxygen ; oxide reactions ; reactions
common fuels ; dioxide dr jekyll ; hyde

kidneys ; stones yellow pigments ; green pigment

Table 3: Top scoring relations extracted by ESP- and ESP-LSA.
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Abstract

This paper presents two Markov chain
Monte Carlo (MCMC) algorithms for
Bayesian inference of probabilistic con-
text free grammars (PCFGs) from ter-
minal strings, providing an alternative
to maximum-likelihood estimation using
the Inside-Outside algorithm. We illus-
trate these methods by estimating a sparse
grammar describing the morphology of
the Bantu language Sesotho, demonstrat-
ing that with suitable priors Bayesian
techniques can infer linguistic structure
in situations where maximum likelihood
methods such as the Inside-Outside algo-
rithm only produce a trivial grammar.

1 Introduction

The standard methods for inferring the parameters of
probabilistic models in computational linguistics are
based on the principle of maximum-likelihood esti-
mation; for example, the parameters of Probabilistic
Context-Free Grammars (PCFGs) are typically es-
timated from strings of terminals using the Inside-
Outside (IO) algorithm, an instance of the Ex-
pectation Maximization (EM) procedure (Lari and
Young, 1990). However, much recent work in ma-
chine learning and statistics has turned away from
maximum-likelihood in favor of Bayesian methods,
and there is increasing interest in Bayesian methods
in computational linguistics as well (Finkel et al.,
2006). This paper presents two Markov chain Monte

Carlo (MCMC) algorithms for inferring PCFGs and
their parses from strings alone. These can be viewed
as Bayesian alternatives to the IO algorithm.

The goal of Bayesian inference is to compute a
distribution over plausible parameter values. This
“posterior” distribution is obtained by combining the
likelihood with a “prior” distributionP(θ) over pa-
rameter valuesθ. In the case of PCFG inferenceθ is
the vector of rule probabilities, and the prior might
assert a preference for a sparse grammar (see be-
low). The posterior probability of each value ofθ
is given by Bayes’ rule:

P(θ|D) ∝ P(D|θ)P(θ). (1)

In principle Equation 1 defines the posterior prob-
ability of any value ofθ, but computing this may
not be tractable analytically or numerically. For this
reason a variety of methods have been developed to
support approximate Bayesian inference. One of the
most popular methods is Markov chain Monte Carlo
(MCMC), in which a Markov chain is used to sam-
ple from the posterior distribution.

This paper presents two new MCMC algorithms
for inferring the posterior distribution over parses
and rule probabilities given a corpus of strings. The
first algorithm is a component-wise Gibbs sampler
which is very similar in spirit to the EM algo-
rithm, drawing parse trees conditioned on the cur-
rent parameter values and then sampling the param-
eters conditioned on the current set of parse trees.
The second algorithm is a component-wise Hastings
sampler that “collapses” the probabilistic model, in-
tegrating over the rule probabilities of the PCFG,
with the goal of speeding convergence. Both algo-
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rithms use an efficient dynamic programming tech-
nique to sample parse trees.

Given their usefulness in other disciplines, we
believe that Bayesian methods like these are likely
to be of general utility in computational linguis-
tics as well. As a simple illustrative example, we
use these methods to infer morphological parses for
verbs from Sesotho, a southern Bantu language with
agglutinating morphology. Our results illustrate that
Bayesian inference using a prior that favors sparsity
can produce linguistically reasonable analyses in sit-
uations in which EM does not.

The rest of this paper is structured as follows.
The next section introduces the background for our
paper, summarizing the key ideas behind PCFGs,
Bayesian inference, and MCMC. Section 3 intro-
duces our first MCMC algorithm, a Gibbs sampler
for PCFGs. Section 4 describes an algorithm for
sampling trees from the distribution over trees de-
fined by a PCFG. Section 5 shows how to integrate
out the rule weight parametersθ in a PCFG, allow-
ing us to sample directly from the posterior distribu-
tion over parses for a corpus of strings. Finally, Sec-
tion 6 illustrates these methods in learning Sesotho
morphology.

2 Background

2.1 Probabilistic context-free grammars

Let G = (T,N, S,R) be a Context-Free Grammar
in Chomsky normal form with no useless produc-
tions, whereT is a finite set ofterminal symbols, N
is a finite set ofnonterminal symbols(disjoint from
T ), S ∈ N is a distinguished nonterminal called the
start symbol, andR is a finite set ofproductionsof
the formA → B C or A → w, whereA,B,C ∈ N
andw ∈ T . In what follows we useβ as a variable
ranging over(N ×N) ∪ T .

A Probabilistic Context-Free Grammar(G, θ) is
a pair consisting of a context-free grammarG and
a real-valued vectorθ of length|R| indexed by pro-
ductions, whereθA→β is theproduction probability
associated with the productionA → β ∈ R. We
require thatθA→β ≥ 0 and that for all nonterminals
A ∈ N ,

∑

A→β∈R θA→β = 1.

A PCFG(G, θ) defines a probability distribution

over treest as follows:

PG(t|θ) =
∏

r∈R

θfr(t)
r

wheret is generated byG andfr(t) is the number
of times the productionr = A → β ∈ R is used
in the derivation oft. If G does not generatet let
PG(t|θ) = 0. The yield y(t) of a parse treet is
the sequence of terminals labeling its leaves. The
probability of a stringw ∈ T+ of terminals is the
sum of the probability of all trees with yieldw, i.e.:

PG(w|θ) =
∑

t:y(t)=w

PG(t|θ).

2.2 Bayesian inference for PCFGs

Given a corpus of stringsw = (w1, . . . , wn), where
eachwi is a string of terminals generated by a known
CFG G, we would like to be able to infer the pro-
duction probabilitiesθ that best describe that corpus.
Takingw to be our data, we can apply Bayes’ rule
(Equation 1) to obtain:

P(θ|w) ∝ PG(w|θ)P(θ), where

PG(w|θ) =
n
∏

i=1

PG(wi|θ).

Using t to denote a sequence of parse trees forw,
we can compute the joint posterior distribution over
t andθ, and then marginalize overt, with P(θ|w) =
∑

t
P(t, θ|w). The joint posterior distribution ont

andθ is given by:

P(t, θ|w) ∝ P(w|t)P(t|θ)P(θ)

=

(

n
∏

i=1

P(wi|ti)P(ti|θ)

)

P(θ)

with P(wi|ti) = 1 if y(ti) = wi, and0 otherwise.

2.3 Dirichlet priors

The first step towards computing the posterior dis-
tribution is to define a prior onθ. We takeP(θ) to
be a product of Dirichlet distributions, with one dis-
tribution for each non-terminalA ∈ N . The prior
is parameterized by a positive real valued vectorα
indexed by productionsR, so each production prob-
ability θA→β has a corresponding Dirichlet param-
eterαA→β. Let RA be the set of productions inR
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with left-hand sideA, and letθA and αA refer to
the component subvectors ofθ and α respectively
indexed by productions inRA. The Dirichlet prior
PD(θ|α) is:

PD(θ|α) =
∏

A∈N

PD(θA|αA), where

PD(θA|αA) =
1

C(αA)

∏

r∈RA

θαr−1
r and

C(αA) =

∏

r∈RA
Γ(αr)

Γ(
∑

r∈RA
αr)

(2)

where Γ is the generalized factorial function and
C(α) is a normalization constant that does not de-
pend onθA.

Dirichlet priors are useful because they arecon-
jugate to the distribution over trees defined by a
PCFG. This means that the posterior distribution
on θ given a set of parse trees,P(θ|t, α), is also a
Dirichlet distribution. Applying Bayes’ rule,

PG(θ|t, α) ∝ PG(t|θ) PD(θ|α)

∝

(

∏

r∈R

θfr(t)
r

)(

∏

r∈R

θαr−1
r

)

=
∏

r∈R

θfr(t)+αr−1
r

which is a Dirichlet distribution with parameters
f(t) + α, where f(t) is the vector of production
counts int indexed byr ∈ R. We can thus write:

PG(θ|t, α) = PD(θ|f(t) + α)

which makes it clear that the production counts com-
bine directly with the parameters of the prior.

2.4 Markov chain Monte Carlo

Having defined a prior onθ, the posterior distribu-
tion over t and θ is fully determined by a corpus
w. Unfortunately, computing the posterior probabil-
ity of even a single choice oft andθ is intractable,
as evaluating the normalizing constant for this dis-
tribution requires summing over all possible parses
for the entire corpus and all sets of production prob-
abilities. Nonetheless, it is possible to define al-
gorithms that sample from this distribution using
Markov chain Monte Carlo (MCMC).

MCMC algorithms construct a Markov chain
whose statess ∈ S are the objects we wish to sam-
ple. The state spaceS is typically astronomically

large — in our case, the state space includes all pos-
sible parses of the entire training corpusw — and
the transition probabilitiesP(s′|s) are specified via a
scheme guaranteed to converge to the desired distri-
butionπ(s) (in our case, the posterior distribution).
We “run” the Markov chain (i.e., starting in initial
states0, sample a states1 from P(s′|s0), then sam-
ple states2 from P(s′|s1), and so on), with the prob-
ability that the Markov chain is in a particular state,
P(si), converging toπ(si) asi →∞.

After the chain has run long enough for it to ap-
proach its stationary distribution, the expectation
Eπ[f ] of any functionf(s) of the states will be
approximated by the average of that function over
the set of sample states produced by the algorithm.
For example, in our case, given samples(ti, θi) for
i = 1, . . . , ℓ produced by an MCMC algorithm, we
can estimateθ as

Eπ[θ] ≈
1

ℓ

ℓ
∑

i=1

θi

The remainder of this paper presents two MCMC
algorithms for PCFGs. Both algorithms proceed by
setting the initial state of the Markov chain to a guess
for (t, θ) and then sampling successive states using
a particular transition matrix. The key difference be-
twen the two algorithms is the form of the transition
matrix they assume.

3 A Gibbs sampler for P(t, θ|w, α)

The Gibbs sampler (Geman and Geman, 1984) is
one of the simplest MCMC methods, in which tran-
sitions between states of the Markov chain result
from sampling each component of the state condi-
tioned on the current value of all other variables. In
our case, this means alternating between sampling
from two distributions:

P(t|θ,w, α) =
n
∏

i=1

P(ti|wi, θ), and

P(θ|t,w, α) = PD(θ|f(t) + α)

=
∏

A∈N

PD(θA|fA(t) + αA).

Thus every two steps we generate a new sample of
t andθ. This alternation between parsing and up-
dating θ is reminiscent of the EM algorithm, with
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Figure 1: A Bayes net representation of dependen-
cies among the variables in a PCFG.

the Expectation step replaced by samplingt and the
Maximization step replaced by samplingθ.

The dependencies among variables in a PCFG are
depicted graphically in Figure 1, which makes clear
that the Gibbs sampler is highly parallelizable (just
like the EM algorithm). Specifically, the parsesti
are independent givenθ and so can be sampled in
parallel from the following distribution as described
in the next section.

PG(ti|wi, θ) =
PG(ti|θ)

PG(wi|θ)

We make use of the fact that the posterior is a
product of independent Dirichlet distributions in or-
der to sampleθ from PD(θ|t, α). The production
probabilitiesθA for each nonterminalA ∈ N are
sampled from a Dirchlet distibution with parameters
α′A = fA(t) + αA. There are several methods for
samplingθ = (θ1, . . . , θm) from a Dirichlet distri-
bution with parametersα = (α1, . . . , αm), with the
simplest being samplingxj from a Gamma(αj) dis-
tribution for j = 1, . . . ,m and then settingθj =
xj/

∑m
k=1 xk (Gentle, 2003).

4 Efficiently sampling from P(t|w, θ)

This section completes the description of the Gibbs
sampler for(t, θ) by describing a dynamic program-
ming algorithm for sampling trees from the set of
parses for a string generated by a PCFG. This al-
gorithm appears fairly widely known: it was de-
scribed by Goodman (1998) and Finkel et al (2006)
and used by Ding et al (2005), and is very simi-
lar to other dynamic programming algorithms for
CFGs, so we only summarize it here. The algo-
rithm consists of two steps. The first step con-
structs a standard “inside” table or chart, as used in

the Inside-Outside algorithm for PCFGs (Lari and
Young, 1990). The second step involves a recursion
from larger to smaller strings, sampling from the
productions that expand each string and construct-
ing the corresponding tree in a top-down fashion.

In this section we takew to be a string of terminal
symbolsw = (w1, . . . , wn) where eachwi ∈ T ,
and definewi,k = (wi+1, . . . , wk) (i.e., the sub-
string from wi+1 up to wk). Further, letGA =
(T,N,A,R), i.e., a CFG just likeG except that the
start symbol has been replaced withA, so,PGA

(t|θ)
is the probability of a treet whose root node is la-
beledA andPGA

(w|θ) is the sum of the probabili-
ties of all trees whose root nodes are labeledA with
yield w.

The Inside algorithm takes as input a PCFG
(G, θ) and a stringw = w0,n and constructs a ta-
ble with entriespA,i,k for eachA ∈ N and 0 ≤
i < k ≤ n, wherepA,i,k = PGA

(wi,k|θ), i.e., the
probability ofA rewriting towi,k. The table entries
are recursively defined below, and computed by enu-
merating all feasiblei, k andA in any order such that
all smaller values ofk−i are enumerated before any
larger values.

pA,k−1,k = θA→wk

pA,i,k =
∑

A→B C∈R

∑

i<j<k

θA→B C pB,i,j pC,j,k

for all A,B,C ∈ N and0 ≤ i < j < k ≤ n. At the
end of the Inside algorithm,PG(w|θ) = pS,0,n.

The second step of the sampling algorithm uses
the function SAMPLE, which returns a sample from
PG(t|w, θ) given the PCFG(G, θ) and the inside
table pA,i,k. SAMPLE takes as arguments a non-
terminal A ∈ N and a pair of string positions
0 ≤ i < k ≤ n and returns a tree drawn from
PGA

(t|wi,k, θ). It functions in a top-down fashion,
selecting the productionA → B C to expand theA,
and then recursively calling itself to expandB and
C respectively.

function SAMPLE(A, i, k) :
if k − i = 1 then return TREE(A,wk)
(j,B,C) = MULTI (A, i, k)
return TREE(A, SAMPLE(B, i, j), SAMPLE(C, j, k))

In this pseudo-code, TREE is a function that con-
structs unary or binary tree nodes respectively, and
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MULTI is a function that produces samples from
a multinomial distribution over the possible “split”
positions j and nonterminal childrenB and C,
where:

P(j,B,C) =
θA→B C PGB

(wi,j|θ) PGC
(wj,k|θ)

PGA
(wi,k|θ)

5 A Hastings sampler forP(t|w, α)

The Gibbs sampler described in Section 3 has
the disadvantage that each sample ofθ re-
quires reparsing the training corpusw. In
this section, we describe a component-wise
Hastings algorithm for sampling directly from
P(t|w, α), marginalizing over the produc-
tion probabilities θ. Transitions between
states are produced by sampling parsesti from
P(ti|wi, t−i, α) for each stringwi in turn, where
t−i = (t1, . . . , ti−1, ti+1, . . . , tn) is the current set
of parses forw−i = (w1, . . . , wi−1, wi+1, . . . , wn).
Marginalizing over θ effectively means that the
production probabilities are updated after each
sentence is parsed, so it is reasonable to expect
that this algorithm will converge faster than the
Gibbs sampler described earlier. While the sampler
does not explicitly provide samples ofθ, the results
outlined in Sections 2.3 and 3 can be used to sample
the posterior distribution overθ for each sample of
t if required.

Let PD(θ|α) be a Dirichlet product prior, and let
∆ be the probability simplex forθ. Then by inte-
grating over the posterior Dirichlet distributions we
have:

P(t|α) =

∫

∆
PG(t|θ)PD(θ|α)dθ

=
∏

A∈N

C(αA + fA(t))

C(αA)
(3)

whereC was defined in Equation 2. Because we
are marginalizing overθ, the treesti become depen-
dent upon one another. Intuitively, this is because
wi may provide information aboutθ that influences
how some other stringwj should be parsed.

We can use Equation 3 to compute the conditional
probabilityP(ti|t−i, α) as follows:

P(ti|t−i, α) =
P(t|α)

P(t−i|α)

=
∏

A∈N

C(αA + fA(t))

C(αA + fA(t−i))

Now, if we could sample from

P(ti|wi, t−i, α) =
P(wi|ti)P(ti|t−i, α)

P(wi|t−i, α)

we could construct a Gibbs sampler whose states
were the parse treest. Unfortunately, we don’t even
know if there is an efficient algorithm for calculat-
ing P(wi|t−i, α), let alone an efficient sampling al-
gorithm for this distribution.

Fortunately, this difficulty is not fatal. A Hast-
ings sampler for a probability distributionπ(s) is
an MCMC algorithm that makes use of aproposal
distribution Q(s′|s) from which it draws samples,
and uses an acceptance/rejection scheme to define a
transition kernel with the desired distributionπ(s).
Specifically, given the current states, a samples′ 6=
s drawn fromQ(s′|s) is accepted as the next state
with probability

A(s, s′) = min

{

1,
π(s′)Q(s|s′)

π(s)Q(s′|s)

}

and with probability1 −A(s, s′) the proposal is re-
jected and the next state is the current states.

We use a component-wise proposal distribution,
generating new proposed values forti, where i is
chosen at random. Our proposal distribution is the
posterior distribution over parse trees generated by
the PCFG with grammarG and production proba-
bilities θ′, whereθ′ is chosen based on the current
t−i as described below. Each step of our Hastings
sampler is as follows. First, we computeθ′ from
t−i as described below. Then we samplet′i from
P(ti|wi, θ

′) using the algorithm described in Sec-
tion 4. Finally, we accept the proposalt′i given the
old parseti for wi with probability:

A(ti, t
′

i) = min

{

1,
P(t′i|wi, t−i, α)P(ti|wi, θ

′)

P(ti|wi, t−i, α)P(t′i|wi, θ′)

}

= min

{

1,
P(t′i|t−i, α)P(ti|wi, θ

′)

P(ti|t−i, α)P(t′i|wi, θ′)

}

The key advantage of the Hastings sampler over the
Gibbs sampler here is that because the acceptance
probability is a ratio of probabilities, the difficult to
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computeP(wi|t−i, α) is a common factor of both
the numerator and denominator, and hence is not re-
quired. TheP (wi|ti) term also disappears, being1
for both the numerator and the denominator since
our proposal distribution can only generate trees for
whichwi is the yield.

All that remains is to specify the production prob-
abilities θ′ of the proposal distributionP(t′i|wi, θ

′).
While the acceptance rule used in the Hastings
algorithm ensures that it produces samples from
P(ti|wi, t−i, α) with any proposal grammarθ′ in
which all productions have nonzero probability, the
algorithm is more efficient (i.e., fewer proposals are
rejected) if the proposal distribution is close to the
distribution to be sampled.

Given the observations above about the corre-
spondence between terms inP(ti|t−i, α) and the
relative frequency of the corresponding productions
in t−i, we setθ′ to the expected valueE[θ|t−i, α] of
θ givent−i andα as follows:

θ′r =
fr(t−i) + αr

∑

r′∈RA
fr′(t−i) + αr′

6 Inferring sparse grammars

As stated in the introduction, the primary contribu-
tion of this paper is introducing MCMC methods
for Bayesian inference to computational linguistics.
Bayesian inference using MCMC is a technique of
generic utility, much like Expectation-Maximization
and other general inference techniques, and we be-
lieve that it belongs in every computational linguist’s
toolbox alongside these other techniques.

Inferring a PCFG to describe the syntac-
tic structure of a natural language is an obvi-
ous application of grammar inference techniques,
and it is well-known that PCFG inference us-
ing maximum-likelihood techniques such as the
Inside-Outside (IO) algorithm, a dynamic program-
ming Expectation-Maximization (EM) algorithm for
PCFGs, performs extremely poorly on such tasks.
We have applied the Bayesian MCMC methods de-
scribed here to such problems and obtain results
very similar to those produced using IO. We be-
lieve that the primary reason why both IO and the
Bayesian methods perform so poorly on this task
is that simple PCFGs are not accurate models of
English syntactic structure. We know that PCFGs

α = (0.1, 1.0)
α = (0.5, 1.0)
α = (1.0, 1.0)

Binomial parameterθ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

Figure 2: A Dirichlet priorα on a binomial parame-
ter θ1. As α1 → 0, P(θ1|α) is increasingly concen-
trated around0.

that represent only major phrasal categories ignore
a wide variety of lexical and syntactic dependen-
cies in natural language. State-of-the-art systems
for unsupervised syntactic structure induction sys-
tem uses models that are very different to these kinds
of PCFGs (Klein and Manning, 2004; Smith and
Eisner, 2006).1

Our goal in this section is modest: we aim merely
to provide an illustrative example of Bayesian infer-
ence using MCMC. As Figure 2 shows, when the
Dirichlet prior parameterαr approaches 0 the prior
probabilityPD(θr|α) becomes increasingly concen-
trated around 0. This ability to bias the sampler
toward sparse grammars (i.e., grammars in which
many productions have probabilities close to 0) is
useful when we attempt to identify relevant produc-
tions from a much larger set of possible productions
via parameter estimation.

The Bantu language Sesotho is a richly agglutina-
tive language, in which verbs consist of a sequence
of morphemes, including optional Subject Markers
(SM), Tense (T), Object Markers (OM), Mood (M)
and derivational affixes as well as the obligatory
Verb stem (V), as shown in the following example:

re
SM

-a
T

-di
OM

-bon
V

-a
M

“We see them”
1It is easy to demonstrate that the poor quality of the PCFG

models is the cause of these problems rather than search or other
algorithmic issues. If one initializes either the IO or Bayesian
estimation procedures with treebank parses and then runs the
procedure using the yields alone, the accuracy of the parsesuni-
formly decreases while the (posterior) likelihood uniformly in-
creases with each iteration, demonstrating that improvingthe
(posterior) likelihood of such models does not improve parse
accuracy.
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We used an implementation of the Hastings sampler
described in Section 5 to infer morphological parses
t for a corpusw of 2,283 unsegmented Sesotho
verb types extracted from the Sesotho corpus avail-
able from CHILDES (MacWhinney and Snow, 1985;
Demuth, 1992). We chose this corpus because the
words have been morphologically segmented manu-
ally, making it possible for us to evaluate the mor-
phological parses produced by our system. We con-
structed a CFGG containing the following produc-
tions

Word → V
Word → V M
Word → SM V M
Word → SM T V M
Word → SM T OM V M

together with productions expanding the pretermi-
nalsSM, T, OM, V andM to each of the 16,350 dis-
tinct substrings occuring anywhere in the corpus,
producting a grammar with 81,755 productions in
all. In effect, G encodes the basic morphologi-
cal structure of the Sesotho verb (ignoring factors
such as derivation morphology and irregular forms),
but provides no information about the phonological
identity of the morphemes.

Note thatG actually generates afinite language.
However,G parameterizes the probability distribu-
tion over the strings it generates in a manner that
would be difficult to succintly characterize except
in terms of the productions given above. Moreover,
with approximately 20 times more productions than
training strings, each string is highly ambiguous and
estimation is highly underconstrained, so it provides
an excellent test-bed for sparse priors.

We estimated the morphological parsest in two
ways. First, we ran the IO algorithm initialized
with a uniform initial estimateθ0 for θ to produce
an estimate of the MLÊθ, and then computed the
Viterbi parseŝt of the training corpusw with respect
to the PCFG(G, θ̂). Second, we ran the Hastings
sampler initialized with trees sampled from(G, θ0)
with several different values for the parameters of
the prior. We experimented with a number of tech-
niques for speeding convergence of both the IO and
Hastings algorithms, and two of these were particu-
larly effective on this problem. Annealing, i.e., us-
ing P(t|w)1/τ in place ofP(t|w) whereτ is a “tem-
perature” parameter starting around 5 and slowly ad-

justed toward 1, sped the convergence of both algo-
rithms. We ran both algorithms for several thousand
iterations over the corpus, and both seemed to con-
verge fairly quickly onceτ was set to 1. “Jittering”
the initial estimate ofθ used in the IO algorithm also
sped its convergence.

The IO algorithm converges to a solution where
θWord→ V = 1, and every stringw ∈ w is analysed
as a single morphemeV. (In fact, in this grammar
P(wi|θ) is the empirical probability ofwi, and it is
easy to prove that thisθ is the MLE).

The samplest produced by the Hastings algo-
rithm depend on the parameters of the Dirichlet
prior. We setαr to a single valueα for all pro-
ductionsr. We found that forα > 10−2 the sam-
ples produced by the Hastings algorithm were the
same trivial analyses as those produced by the IO
algorithm, but asα was reduced below thist be-
gan to exhibit nontrivial structure. We evaluated
the quality of the segmentations in the morpholog-
ical analysest in terms of unlabeled precision, re-
call, f-score and exact match (the fraction of words
correctly segmented into morphemes; we ignored
morpheme labels because the manual morphological
analyses contain many morpheme labels that we did
not include inG). Figure 3 contains a plot of how
these quantities vary withα; obtaining an f-score of
0.75 and an exact word match accuracy of 0.54 at
α = 10−5 (the corresponding values for the MLÊθ
are both 0). Note that we obtained good results asα
was varied over several orders of magnitude, so the
actual value ofα is not critical. Thus in this appli-
cation the ability to prefer sparse grammars enables
us to find linguistically meaningful analyses. This
ability to find linguistically meaningful structure is
relatively rare in our experience with unsupervised
PCFG induction.

We also experimented with a version of IO modi-
fied to perform Bayesian MAP estimation, where the
Maximization step of the IO procedure is replaced
with Bayesian inference using a Dirichlet prior, i.e.,
where the rule probabilitiesθ(k) at iterationk are es-
timated using:

θ(k)
r ∝ max(0,E[fr|w, θ(k−1)] + α− 1).

Clearly such an approach is very closely related to
the Bayesian procedures presented in this article,
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Figure 3: Accuracy of morphological segmentations
of Sesotho verbs proposed by the Hastings algo-
rithms as a function of Dirichlet prior parameter
α. F-score, precision and recall are unlabeled mor-
pheme scores, while Exact is the fraction of words
correctly segmented.

and in some circumstances this may be a useful
estimator. However, in our experiments with the
Sesotho data above we found that for the small val-
ues ofα necessary to obtain a sparse solution,the
expected rule countE[fr] for many rulesr was less
than1−α. Thus on the next iterationθr = 0, result-
ing in there being no parse whatsoever for many of
the strings in the training data. Variational Bayesian
techniques offer a systematic way of dealing with
these problems, but we leave this for further work.

7 Conclusion

This paper has described basic algorithms for per-
forming Bayesian inference over PCFGs given ter-
minal strings. We presented two Markov chain
Monte Carlo algorithms (a Gibbs and a Hastings
sampling algorithm) for sampling from the posterior
distribution over parse trees given a corpus of their
yields and a Dirichlet product prior over the produc-
tion probabilities. As a component of these algo-
rithms we described an efficient dynamic program-
ming algorithm for sampling trees from a PCFG
which is useful in its own right. We used these
sampling algorithms to infer morphological analy-
ses of Sesotho verbs given their strings (a task on
which the standard Maximum Likelihood estimator
returns a trivial and linguistically uninteresting so-
lution), achieving 0.75 unlabeled morpheme f-score
and 0.54 exact word match accuracy. Thus this
is one of the few cases we are aware of in which
a PCFG estimation procedure returns linguistically

meaningful structure. We attribute this to the ability
of the Bayesian prior to prefer sparse grammars.

We expect that these algorithms will be of inter-
est to the computational linguistics community both
because a Bayesian approach to PCFG estimation is
more flexible than the Maximum Likelihood meth-
ods that currently dominate the field (c.f., the use
of a prior as a bias towards sparse solutions), and
because these techniques provide essential building
blocks for more complex models.
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Abstract

We relate the problem of finding the best
application of a Synchronous Context-
Free Grammar (SCFG) rule during pars-
ing to a Markov Random Field. This
representation allows us to use the the-
ory of expander graphs to show that the
complexity of SCFG parsing of an input
sentence of lengthN is Ω(N cn), for a
grammar with maximum rule lengthn and
some constantc. This improves on the
previous best result ofΩ(N c

√
n).

1 Introduction

Recent interest in syntax-based methods for statis-
tical machine translation has lead to work in pars-
ing algorithms for synchronous context-free gram-
mars (SCFGs). Generally, parsing complexity de-
pends on the length of the longest rule in the gram-
mar, but the exact nature of this relationship has only
recently begun to be explored. It has been known
since the early days of automata theory (Aho and
Ullman, 1972) that the languages of string pairs gen-
erated by a synchronous grammar can be arranged in
an infinite hierarchy, with each rule size≥ 4 pro-
ducing languages not possible with grammars re-
stricted to smaller rules. For any grammar with
maximum rule sizen, a fairly straightforward dy-
namic programming strategy yields anO(Nn+4) al-
gorithm for parsing sentences of lengthN . How-
ever, this is often not the best achievable complexity,
and the exact bounds of the best possible algorithms
are not known. Satta and Peserico (2005) showed
that a permutation can be defined for any lengthn

such that tabular parsing strategies must take at least
Ω(N c

√
n), that is, the exponent of the algorithm is

proportional to the square root of the rule length.
In this paper, we improve this result, showing that
in the worst case the exponent grows linearly with
the rule length. Using a probabilistic argument, we
show that the number of easily parsable permuta-
tions grows slowly enough that most permutations
must be difficult, where by difficult we mean that the
exponent in the complexity is greater than a constant
factor times the rule length. Thus, not only do there
exist permutations that have complexity higher than
the square root case of Satta and Peserico (2005),
but in fact the probability that a randomly chosen
permutation will have higher complexity approaches
one as the rule length grows.

Our approach is to first relate the problem of
finding an efficient parsing algorithm to finding the
treewidthof a graph derived from the SCFG rule’s
permutation. We then show that this class of graphs
areexpander graphs, which in turn means that the
treewidth grows linearly with the graph size.

2 Synchronous Parsing Strategies

We write SCFG rules as productions with one
lefthand side nonterminal and two righthand side
strings. Nonterminals in the two strings are linked
with superscript indices; symbols with the same in-
dex must be further rewritten synchronously. For ex-
ample,

X → A(1) B(2) C(3) D(4), A(1) B(2) C(3) D(4)

(1)
is a rule with four children and no reordering, while

X → A(1) B(2) C(3) D(4), B(2) D(4) A(1) C(3)

(2)
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Algorithm 1 BottomUpParser(grammarG, input stringse, f )
for x0, xn such that1 < x0 < xn < |e| in increasing order ofxn − x0 do

for y0, yn such that1 < y0 < yn < |f | in increasing order ofyn − y0 do
for RulesR of form X → X

(1)
1 ...X

(n)
n , X

(π(1))
π(1) ...X

(π(n))
π(n) in G do

p = P (R) max
x1..xn−1
y1..yn−1

∏

i

δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

δ(X, x0, xn, y0, yn) = max{δ(X, x0, xn, y0, yn), p}
end for

end for
end for

expresses a more complex reordering. In general,
we can take indices in the first grammar dimen-
sion to be consecutive, and associate a permutation
π with the second dimension. If we useXi for
0 ≤ i ≤ n as a set of variables over nonterminal
symbols (for example,X1 andX2 may both stand
for nonterminalA), we can write rules in the gen-
eral form:

X0 → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

Grammar rules also contain terminal symbols, but as
their position does not affect parsing complexity, we
focus on nonterminals and their associated permuta-
tion π in the remainder of the paper. In a probabilis-
tic grammar, each ruleR has an associated proba-
bility P (R). The synchronous parsing problem con-
sists of finding the tree covering both strings having
the maximum product of rule probabilities.1

We assume synchronous parsing is done by stor-
ing a dynamic programming table of recognized
nonterminals, as outlined in Algorithm 1. We refer
to a dynamic programming item for a given nonter-
minal with specified boundaries in each language as
a cell. The algorithm computes cells by maximiz-
ing overboundary variablesxi andyi, which range
over positions in the two input strings, and specify
beginning and end points for the SCFG rule’s child
nonterminals.

The maximization in the inner loop of Algo-
rithm 1 is the most expensive part of the proce-
dure, as it would takeO(N2n−2) with exhaustive

1We describe our methods in terms of the Viterbi algorithm
(using the max-product semiring), but they also apply to non-
probabilistic parsing (boolean semiring), language modeling
(sum-product semiring), and Expectation Maximization (with
inside and outside passes).

search; making this step more efficient is our fo-
cus in this paper. The maximization can be done
with further dynamic programming, storing partial
results which contain some subset of an SCFG rule’s
righthand side nonterminals that have been recog-
nized. A parsing strategy for a specific SCFG rule
consists of an order in which these subsets should
be combined, until all the rule’s children have been
recognized. The complexity of an individual parsing
step depends on the number of free boundary vari-
ables, each of which can takeO(N) values. It is
often helpful to visualize parsing strategies on the
permutation matrixcorresponding to a rule’s per-
mutationπ. Figure 1 shows the permutation matrix
of rule (2) with a three-step parsing strategy. Each
panel shows one combination step along with the
projections of the partial results in each dimension;
the endpoints of these projections correspond to free
boundary variables. The second step has the high-
est number of distinct endpoints, five in the vertical
dimension and three horizontally, meaning parsing
can be done in timeO(N8).

As an example of the impact that the choice of
parsing strategy can make, Figure 2 shows a per-
mutation for which a clever ordering of partial re-
sults enables parsing in timeO(N10) in the length
of the input strings. Permutations having this pattern
of diagonal stripes can be parsed using this strat-
egy in timeO(N10) regardless of the lengthn of
the SCFG rule, whereas a naı̈ve strategy proceeding
from left to right in either input string would take
timeO(Nn+3).

2.1 Markov Random Fields for Cells

In this section, we connect the maximization of
probabilities for a cell to the Markov Random Field
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Figure 1: The tree on the left defines a three-step parsing strategy for rule (2). In each step, the two subsets
of nonterminals in the inner marked spans are combined into a new chart item withthe outer spans. The
intersection of the outer spans, shaded, has now been processed. Ticmarks indicate distinct endpoints of the
spans being combined, corresponding to the free boundary variables.

(MRF) representation, which will later allow us to
use algorithms and complexity results based on the
graphical structure of MRFs. A Markov Random
Field is defined as a probability distribution2 over a
set of variablesx that can be written as a product of
factorsfi that are functions of various subsetsxi of
x. The probability of an SCFG rule instance com-
puted by Algorithm 1 can be written in this func-
tional form:

δR(x) = P (R)
∏

i

fi(xi)

where
x = {xi, yi} for 0 ≤ i ≤ n

xi = {xi−1, xi, yπ(i)−1, yπ(i)}

and the MRF has one factorfi for each child nonter-
minal Xi in the grammar ruleR. The factor’s value
is the probability of the child nonterminal, which can
be expressed as a function of its four boundaries:

fi(xi) = δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

For reasons that are explained in the following
section, we augment our Markov Random Fields
with a dummy factor for the completed parent non-
terminal’s chart item. Thus there is one dummy fac-
tor d for each grammar rule:

d(x0, xn, y0, yn) = 1

expressed as a function of the fourouter boundary
variablesof the completed rule, but with a constant

2In our case unnormalized.

Figure 2: A parsing strategy maintaining two spans
in each dimension isO(N10) for any length permu-
tation of this general form.

value of 1 so as not to change the probabilities com-
puted.

Thus an SCFG rule withn child nonterminals al-
ways results in a Markov Random Field with2n+2
variables andn + 1 factors, with each factor a func-
tion of exactly four variables.

Markov Random Fields are often represented as
graphs. Afactor graph representation has a node
for each variable and factor, with an edge connect-
ing each factor to the variables it depends on. An ex-
ample for rule (2) is shown in Figure 3, with round
nodes for variables, square nodes for factors, and a
diamond for the special dummy factor.

2.2 Junction Trees

Efficient computation on Markov Random Fields
is performed by first transforming the MRF into
a junction tree (Jensen et al., 1990; Shafer and
Shenoy, 1990), and then applying the standard
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y0 y1 y2 y3 y4

f1 f2 f3 f4

x0 x1 x2 x3 x4

Figure 3: Markov Random Field for rule (2).

message-passing algorithm for graphical models
over this tree structure. The complexity of the mes-
sage passing algorithm depends on the structure of
the junction tree, which in turn depends on the graph
structure of the original MRF.

A junction tree can be constructed from a Markov
Random Field by the following three steps:

• Connect all variable nodes that share a factor,
and remove factor nodes. This results in the
graphs shown in Figure 4.

• Choose atriangulation of the resulting graph,
by adding chords to any cycle of length greater
than three.

• Decompose the triangulated graph into a tree of
cliques.

We call nodes in the resulting tree, corresponding
to cliques in the triangulated graph,clusters. Each
cluster has apotential function, which is a function
of the variables in the cluster. For each factor in the
original MRF, the junction tree will have at least one
cluster containing all of the variables on which the
factor is defined. Each factor is associated with one
such cluster, and the cluster’s potential function is
set to be the product of its factors, for all combina-
tions of variable values. Triangulation ensures that
the resulting tree satisfies thejunction tree property,
which states that for any two clusters containing the
same variablex, all nodes on the path connecting the
clusters also containx. A junction tree derived from
the MRF of Figure 3 is shown in Figure 5.

The message-passing algorithm for graphical
models can be applied to the junction tree. The algo-

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 4: The graphs resulting from connecting
all interacting variables for the identity permutation
(1, 2, 3, 4) (top) and the(2, 4, 1, 3) permutation of
rule (2) (bottom).

rithm works from the leaves of the tree inward, alter-
nately multiplying in potential functions and maxi-
mizing over variables that are no longer needed, ef-
fectively distributing themax and product operators
so as to minimize the interaction between variables.
The complexity of the message-passing isO(nNk),
where the junction tree containO(n) clusters,k is
the maximum cluster size, and each variable in the
cluster can takeN values.

However, the standard algorithm assumes that the
factor functions are predefined as part of the input.
In our case, however, the factor functions themselves
depend on message-passing calculations from other
grammar rules:

fi(xi) = δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

= max
R′:Xi→α,β

P (R′) max
x
′:

x′0=xi−1,x′
n′

=xi

y′0=yπ(i−1),y
′

n′
=yπ(i)

δR′

(x′) (3)

We must modify the standard algorithm in order
to interleave computation among the junction trees
corresponding to the various rules in the grammar,
using the bottom-up ordering of computation from
Algorithm 1. Where, in the standard algorithm, each
message contains a complete table for all assign-
ments to its variables, we break these into a sepa-
rate message for each individual assignment of vari-
ables. The overall complexity is unchanged, because
each assignment to all variables in each cluster is
still considered only once.

The dummy factord ensures that every junction
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Figure 5: Junction tree for rule (2).

tree we derive from an SCFG rule has a cluster con-
taining all four outer boundary variables, allowing
efficient lookup of the inner maximization in (3).
Because the outer boundary variables need not ap-
pear throughout the junction tree, this technique al-
lows reuse of some partial results across different
outer boundaries. As an example, consider message
passing on the junction tree of shown in Figure 5,
which corresponds to the parsing strategy of Fig-
ure 1. Only the final step involves all four bound-
aries of the complete cell, but the most complex step
is the second, with a total of eight boundaries. This
efficient reuse would not be achieved by applying
the junction tree technique directly to the maximiza-
tion operator in Algorithm 1, because we would be
fixing the outer boundaries and computing the junc-
tion tree only over the inner boundaries.

3 Treewidth and Tabular Parsing

The complexity of the message passing algorithm
over an MRF’s junction tree is determined by the
treewidthof the MRF. In this section we show that,
because parsing strategies are in direct correspon-
dence with valid junction trees, we can use treewidth
to analyze the complexity of a grammar rule.

We define a tabular parsing strategy as any dy-
namic programming algorithm that stores partial re-
sults corresponding to subsets of a rule’s child non-
terminals. Such a strategy can be represented as a
recursive partition of child nonterminals, as shown
in Figure 1(left). We show below that a recursive
partition of children having maximum complexityk
at any step can be converted into a junction tree hav-
ing k as the maximum cluster size. This implies that
finding the optimal junction tree will give a parsing
strategy at least as good as the strategy of the opti-
mal recursive partition.

A recursive partition of child nonterminals can be

converted into a junction tree as follows:

• For each leaf of the recursive partition, which
represents a single child nonterminali, cre-
ate a leaf in the junction tree with the cluster
(xi−1, xi, yπ(i)−1, yπ(i)) and the potential func-
tion fi(xi−1, xi, yπ(i)−1, yπ(i)).

• For each internal node in the recursive parti-
tion, create a corresponding node in the junc-
tion tree.

• Add each variablexi to all nodes in the junction
tree on the path from the node for child nonter-
minal i− 1 to the node for child nonterminali.
Similarly, add each variableyπ(i) to all nodes
in the junction tree on the path from the node
for child nonterminalπ(i) − 1 to the node for
child nonterminalπ(i).

Because each variable appears as an argument of
only two factors, the junction tree nodes in which it
is present form a linear path from one leaf of the tree
to another. Since each variable is associated only
with nodes on one path through the tree, the result-
ing tree will satisfy the junction tree property. The
tree structure of the original recursive partition im-
plies that the variable rises from two leaf nodes to
the lowest common ancestor of both leaves, and is
not contained in any higher nodes. Thus each node
in the junction tree contains variables correspond-
ing to the set of endpoints of the spans defined by
the two subsets corresponding to its two children.
The number of variables at each node in the junction
tree is identical to the number of free endpoints at
the corresponding combination in the recursive par-
tition.

Because each recursive partition corresponds to a
junction tree with the same complexity, finding the
best recursive partition reduces to finding the junc-
tion tree with the best complexity, i.e., the smallest
maximum cluster size.

Finding the junction tree with the smallest clus-
ter size is equivalent to finding the input graph’s
treewidth, the smallestk such that the graph can be
embedded in ak-tree. In general, this problem was
shown to be NP-complete by Arnborg et al. (1987).
However, because the treewidth of a given rule lower
bounds the complexity of its tabular parsing strate-
gies, parsing complexity for general rules can be
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bounded with treewidth results for worst-case rules,
without explicitly identifying the worst-case permu-
tations.

4 Treewidth Grows Linearly

In this section, we show that the treewidth of the
graphs corresponding to worst-case permutations
growths linearly with the permutation’s length. Our
strategy is as follows:

1. Define a 3-regular graph for an input permu-
tation consisting of a subset of edges from the
original graph.

2. Show that the edge-expansion of the 3-regular
graph grows linearly for randomly chosen per-
mutations.

3. Use edge-expansion to bound the spectral gap.

4. Use spectral gap to bound treewidth.

For the first step, we defineH = (V, E) as a ran-
dom 3-regular graph on2n vertices obtained as fol-
lows. Let G1 = (V1, E1) andG2 = (V2, E2) be
cycles, each on a separate set ofn vertices. These
two cycles correspond to the edges(xi, xi+1) and
(yi, yi+1) in the graphs of the type shown in Fig-
ure 4. LetM be a random perfect matching be-
tweenV1 andV2. The matching represents the edges
(xi, yπ(i)) produced from the input permutationπ.
Let H be the union ofG1, G2, andM . While H
contains only some of the edges in the graphs de-
fined in the previous section, removing edges cannot
increase the treewidth.

For the second step of the proof, we use a proba-
bilistic argument detailed in the next subsection.

For the third step, we will use the following con-
nection between the edge-expansion and the eigen-
value gap (Alon and Milman, 1985; Tanner, 1984).

Lemma 4.1 Let G be ak-regular graph. Letλ2 be
the second largest eigenvalue ofG. Leth(G) be the
edge-expansion ofG. Then

k − λ2 ≥
h(G)2

2k
.

Finally, for the fourth step, we use a relation be-
tween the eigenvalue gap and treewidth for regu-
lar graphs shown by Chandran and Subramanian
(2003).

Lemma 4.2 Let G be ak-regular graph. Letn be
the number of vertices ofG. Let λ2 be the second
largest eigenvalue ofG. Then

tw(G) ≥
⌊ n

4k
(k − λ2)

⌋

− 1

Note that in our settingk = 3. In order to use
Lemma 4.2 we will need to give a lower bound on
the eigenvalue gapk − λ2 of G.

4.1 Edge Expansion

Theedge-expansionof a set of verticesT is the ra-
tio of the number of edges connecting vertices inT
to the rest of the graph, divided by the number of
vertices inT ,

|E(T, V − T )|

|T |

where we assume that|T | ≤ |V |/2. The edge ex-
pansion of a graph is the minimum edge expansion
of any subset of vertices:

h(G) = min
T⊆V

|E(T, V − T )|

min{|T |, |V − T |}
.

Intuitively, if all subsets of vertices are highly con-
nected to the remainder of the graph, there is no way
to decompose the graph into minimally interacting
subgraphs, and thus no way to decompose the dy-
namic programming problem of parsing into smaller
pieces.

Let
(

n
k

)

be the standard binomial coefficient, and
for α ∈ R, let

(

n

≤ α

)

=

⌊α⌋
∑

k=0

(

n

k

)

.

We will use the following standard inequality valid
for 0 ≤ α ≤ n:

(

n

≤ α

)

≤
(ne

α

)α
(4)

Lemma 4.3 With probability at least0.98 the graph
H has edge-expansion at least1/50.

Proof :
Let ε = 1/50. Assume thatT ⊆ V is a set with a
small edge-expansion, i. e.,

|E(T, V − T )| ≤ ε|T |, (5)
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and |T | ≤ |V |/2 = n. Let Ti = T ∩ Vi and let
ti = |Ti|, for i = 1, 2. We will w.l.o.g. assume
t1 ≤ t2. We will denote asℓi the number of spans of
consecutive vertices fromEi contained inT . Thus
2ℓi = |E(Ti, Vi − Ti)|, for i = 1, 2. The spans
counted byℓ1 andℓ2 correspond to continuous spans
counted in computing the complexity of a chart pars-
ing operation. However, unlike in the diagrams in
the earlier part of this paper, in our graph theoretic
argument there is no requirement thatT select only
corresponding pairs of vertices fromV1 andV2.

There are at least2(ℓ1+ℓ2)+t2−t1 edges between
T andV − T . This is because there are2ℓi edges
within Vi at the left and right boundaries of theℓi

spans, and at leastt2− t1 edges connecting the extra
vertices fromT2 that have no matching vertex inT1.
Thus from assumption (5) we have

t2 − t1 ≤ ε(t1 + t2)

which in turn implies

t1 ≤ t2 ≤
1 + ε

1− ε
t1. (6)

Similarly, using (6), we have

ℓ1 + ℓ2 ≤
ε

2
(t1 + t2) ≤

ε

1− ε
t1. (7)

That is, for T to have small edge expansion,
the vertices inT1 andT2 must be collected into a
small number of spansℓ1 andℓ2. This limit on the
number of spans allows us to limit the number of
ways of choosingT1 and T2. Suppose thatt1 is
given. Any pairT1, T2 is determined by the edges
in E(T1, V1 − T1), andE(T2, V2 − T2), and two
bits (corresponding to the possible “swaps” ofTi

with Vi − Ti). Note that we can choose at most
2ℓ1 + 2ℓ2 ≤ t1 · 2ε/(1− ε) edges in total. Thus the
number of choices ofT1 andT2 is bounded above by

4 ·

(

2n

≤ 2ε
1−ε t1

)

. (8)

For a given choice ofT1 andT2, for T to have
small edge expansion, there must also not be too
many edges that connectT1 to vertices inV2 − T2.
Let k be the number of edges betweenT1 andT2.
There are at leastt1 + t2 − 2k edges betweenT and
V − T and from assumption (5) we have

t1 + t2 − 2k ≤ ε(t1 + t2)

Thus

k ≥ (1− ε)
t1 + t2

2
≥ (1− ε)t1. (9)

The probability that there are≥ (1− ε)t1 edges be-
tweenT1 andT2 is bounded by

(

t1
≤ εt1

)(

t2
n

)(1−ε)t1

where the first term selects vertices inT1 connected
to T2, and the second term upper bounds the proba-
bility that the selected vertices are indeed connected
to T2. Using 6, we obtain a bound in terms oft1
alone:

(

t1
≤ εt1

)(

1 + ε

1− ε
·
t1
n

)(1−ε)t1

, (10)

Combining the number of ways of choosingT1

andT2 (8) with the bound on the probability that the
edgesM from the input permutation connect almost
all the vertices inT1 to vertices fromT2 (10), and
using the union bound over values oft1, we obtain
that the probabilityp that there existsT ⊆ V with
edge-expansion less thanε is bounded by:

2

⌊n/2⌋
∑

t1=0

4·

(

2n

≤ 2ε
1−ε t1

)(

t1
≤ εt1

)(

1 + ε

1− ε
·
t1
n

)(1−ε)t1

(11)
where the factor of2 is due to the assumptiont1 ≤
t2.

The graphH is connected and henceT has at least
one out-going edge. Therefore ift1 + t2 ≤ 1/ε, the
edge-expansion ofT is at leastε. Thus a set with
edge-expansion less thanε must havet1 + t2 ≥ 1/ε,
which, by (6), impliest1 ≥ (1 − ε)/(2ε). Thus the
sum in (11) can be taken fort from ⌈(1 − ε)/(2ε)⌉
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to ⌊n/2⌋. Using (4) we obtain

p ≤ 8

⌊n/2⌋
∑

t1=⌈ 1−ε

2ε
⌉





(

2ne
2ε

1−ε t1

)
2ε

1−ε
t1 (

t1e

εt1

)εt1

(

1 + ε

1− ε
·
t1
n

)(1−ε)t1
]

=

8

⌊n/2⌋
∑

t1=⌈ 1−ε

2ε
⌉

(

(

e(1− ε)

ε

)
2ε

1−ε
(e

ε

)ε

(

1 + ε

1− ε

)1−ε( t1
n

)1−ε− 2ε

1−ε

)t1

.

(12)

We will use t1/n ≤ 1/2 and plugε = 1/50 into
(12). We obtain

p ≤ 8
∞
∑

t1=25

0.74t1 ≤ 0.02.

�

While this constant bound onp is sufficient for
our main complexity result, it can further be shown
thatp approaches zero asn increases, from the fact
that the geometric sum in (12) converges, and each
term for fixedt1 goes to zero asn grows.

This completes the second step of the proof as
outlined at the beginning of this section. The con-
stant bound on the edge expansion implies a constant
bound on the eigenvalue gap (Lemma 4.1), which in
turn implies anΩ(n) bound on treewidth (Lemma
4.2), yielding:

Theorem 4.4 Tabular parsing strategies for Syn-
chronous Context-Free Grammars containing rules
with all permutations of lengthn require time
Ω(N cn) in the input string lengthN for some con-
stantc.

We have shown our result without explicitly con-
structing a difficult permutation, but we close with
one example. The zero-based permutations of length
p, wherep is prime,π(i) = i−1 mod p for 0 <
i < p, andπ(0) = 0, provide a known family of
expander graphs (see Hoory et al. (2006)).

5 Conclusion

We have shown in the exponent in the complex-
ity of polynomial-time parsing algorithms for syn-
chronous context-free grammars grows linearly with
the length of the grammar rules. While it is very
expensive computationally to test whether a speci-
fied permutation has a parsing algorithm of a certain
complexity, it turns out that randomly chosen per-
mutations are difficult with high probability.
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Abstract 

This paper introduces an unsupervised 
morphological segmentation algorithm 
that shows robust performance for four 
languages with different levels of mor-
phological complexity. In particular, our 
algorithm outperforms Goldsmith’s Lin-
guistica and Creutz and Lagus’s Mor-
phessor for English and Bengali, and 
achieves performance that is comparable 
to the best results for all three PASCAL 
evaluation datasets. Improvements arise 
from (1) the use of relative corpus fre-
quency and suffix level similarity for de-
tecting incorrect morpheme attachments 
and (2) the induction of orthographic rules 
and allomorphs for segmenting words 
where roots exhibit spelling changes dur-
ing morpheme attachments. 

1 Introduction 

Morphological analysis is the task of segmenting a 
word into morphemes, the smallest meaning-
bearing elements of natural languages. Though 
very successful, knowledge-based morphological 
analyzers operate by relying on manually designed 
segmentation heuristics (e.g. Koskenniemi (1983)), 
which require a lot of linguistic expertise and are 
time-consuming to construct. As a result, research 
in morphological analysis has exhibited a shift to 
unsupervised approaches, in which a word is typi-
cally segmented based on morphemes that are 
automatically induced from an unannotated corpus. 
Unsupervised approaches have achieved consider-

able success for English and many European lan-
guages (e.g. Goldsmith (2001), Schone and Juraf-
sky (2001), Freitag (2005)). The recent PASCAL 
Challenge on Unsupervised Segmentation of 
Words into Morphemes1  has further intensified 
interest in this problem, selecting as target lan-
guages English as well as two highly agglutinative 
languages, Turkish and Finnish. However, the 
evaluation of the Challenge reveals that (1) the 
success of existing unsupervised morphological 
parsers does not carry over to the two agglutinative 
languages, and (2) no segmentation algorithm 
achieves good performance for all three languages. 

Motivated by these state-of-the-art results, our 
goal in this paper is to develop an unsupervised  
morphological segmentation algorithm that can 
work well across different languages. With this 
goal in mind, we evaluate our algorithm on four 
languages with different levels of morphological 
complexity, namely English, Turkish, Finnish and 
Bengali. It is worth noting that Bengali is an under-
investigated Indo-Aryan language that is highly 
inflectional and lies between English and Turk-
ish/Finnish in terms of morphological complexity. 
Experimental results demonstrate the robustness of 
our algorithm across languages: it not only outper-
forms Goldsmith’s (2001) Linguistica and Creutz 
and Lagus’s (2005) Morphessor for English and 
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when 
evaluated on all three datasets in the Challenge.  

The performance improvements of our segmen-
tation algorithm over existing morphological ana-
lyzers can be attributed to our extending Keshava 
and Pitler’s (2006) segmentation method, the best 
performer for English in the aforementioned 

                                                           
1 http://www.cis.hut.fi/morphochallenge2005/ 
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PASCAL Challenge, with the capability of han-
dling two under-investigated problems: 
Detecting incorrect attachments. Many existing 
morphological parsers incorrectly segment “candi-
date” as “candid”+“ate”, since they fail to identify 
that the morpheme “ate” should not attach to the 
word “candid”. Schone and Jurafsky’s (2001) work 
represents one of the few attempts to address this 
inappropriate morpheme attachment problem, in-
troducing a method that exploits the semantic re-
latedness between word pairs. In contrast, we 
propose two arguably simpler, yet effective tech-
niques that rely on relative corpus frequency and 
suffix level similarity to solve the problem. 
Inducing orthographic rules and allomorphs.  
One problem with Keshava and Pitler’s algorithm 
is that it fails to segment words where the roots 
exhibit spelling changes during attachment to mor-
phemes (e.g. “denial” = “deny”+“al”). To address 
this problem, we automatically acquire allomorphs 
and orthographic change rules from an unannotated 
corpus. These rules also allow us to output the ac-
tual segmentation of the words that exhibit spelling 
changes during morpheme attachment, thus avoid-
ing the segmentation of “denial” as “deni”+”al”, as 
is typically done in existing morphological parsers. 
    In addition to addressing the aforementioned 
problems, our segmentation algorithm has two ap-
pealing features. First, it can segment words with 
any number of morphemes, whereas many analyz-
ers can only be applied to words with one root and 
one suffix (e.g. DéJean (1998), Snover and Brent 
(2001)). Second, it exhibits robust performance 
even when inducing morphemes from a very large 
vocabulary, whereas Goldsmith’s (2001) and 
Freitag’s (2005) morphological analyzers perform 
well only when a small vocabulary is employed, 
showing deteriorating performance as the vocabu-
lary size increases.  

The rest of this paper is organized as follows. 
Section 2 presents related work on unsupervised 
morphological analysis. In Section 3, we describe 
our basic morpheme induction algorithm. We then 
show how to exploit the induced morphemes to (1) 
detect incorrect attachments by using relative cor-
pus frequency (Section 4) and suffix level similar-
ity (Section 5) and (2) induce orthographic rules 
and allomorphs (Section 6). Section 7 describes 
our algorithm for segmenting a word using the in-
duced morphemes. We present evaluation results 
in Section 8 and conclude in Section 9. 

2 Related Work 

As mentioned in the introduction, the problem of 
unsupervised morphological learning has been ex-
tensively studied for English and many other 
European languages. In this section, we will give 
an overview of the related work on this problem. 

Harris (1955) develops a strategy for identifying 
morpheme boundaries that checks whether the 
number of different letters following a sequence of 
letters exceeds some given threshold. DéJean 
(1998) improves Harris’s segmentation algorithm 
by first inducing a list of 100 most frequent mor-
phemes and then using those morphemes for word 
segmentation. The aforementioned PASCAL Chal-
lenge on Unsupervised Word Segmentation has 
undoubtedly intensified interest in this problem. 
Among the participating groups, Keshava and Pit-
ler’s (2006) segmentation algorithm combines the 
ideas of DéJean and Harris and achieves the best 
result for the English dataset, but it only offers me-
diocre performance for Finnish and Turkish.   

There is another class of unsupervised morpho-
logical learning algorithms whose design is driven 
by the Minimum Description Length (MDL) prin-
ciple. Specifically, EM is used to iteratively seg-
ment a list of words using some predefined 
heuristics until the length of the morphological 
grammar converges to a minimum. Brent et al. 
(1995) are the first to introduce an information-
theoretic notion of compression to represent the 
MDL framework. Goldsmith (2001) also adopts 
the MDL approach, providing a new compression 
system that incorporates signatures when measur-
ing the length of the morphological grammar. 
Creutz (2003) proposes a probabilistic maximum a 
posteriori formulation that uses prior distributions 
of morpheme length and frequency to measure the 
goodness of an induced morpheme, achieving bet-
ter results for Finnish but worse results for English 
in comparison to Goldsmith’s Linguistica. 

3 The Basic Morpheme Induction Algo-
rithm 

Our unsupervised segmentation algorithm is com-
posed of two steps: (1) inducing prefixes, suffixes 
and roots from a vocabulary that consists of words 
taken from a large corpus, and (2) segmenting a 
word using these induced morphemes. This section 
describes our basic morpheme induction method. 
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3.1 Extracting a List of Candidate Affixes 

The first step of our morpheme induction method 
involves extracting a list of candidate prefixes and 
suffixes. We rely on a fairly simple idea originally 
proposed by Keshava and Pitler (2006) for extract-
ing candidate affixes. Assume that �  and 

�
 are two 

character sequences and � �
 is the concatenation of 

�  and 
�

. If � �
 and �  are both found in the vocabu-

lary, then we extract 
�

 as a candidate suffix. Simi-
larly, if � �

 and 
�

 are both found in the vocabulary, 
then we extract �  as a candidate prefix.  

The above affix induction method is arguably 
overly simplistic and therefore can generate many 
spurious affixes. To filter spurious affixes, we (1) 
score each affix by multiplying its frequency (i.e. 
the number of distinct words to which each affix 
attaches) and its length2, and then (2) retain only 
the K top-scoring affixes, where K is set differently 
for prefixes and suffixes. The value of K is some-
what dependent on the vocabulary size, as the af-
fixes in a larger vocabulary system are generated 
from a larger number of words.  For example, we 
set the thresholds to 70 for prefixes and 50 for suf-
fixes for English; on the other hand, since the Fin-
nish vocabulary is almost six times larger than that 
of English, we set the corresponding thresholds to 
be approximately six times larger (400 and 300 for 
prefixes and suffixes respectively).3  

3.2 Detecting Composite Suffixes 

Next, we detect and remove composite suffixes (i.e. 
suffixes that are formed by combining multiple 
suffixes [e.g. “ers” = “er”+“s”]) from our induced 
suffix list, because their presence can lead to un-
der-segmentation of words (e.g. “walkers”, whose 
correct segmentation is “walk”+“er”+“s”, will be 
erroneously segmented as “walk”+“ers”). Compos-
ite suffix detection is a particularly important prob-
lem for languages like Bengali in which composite 
suffixes are abundant (see Dasgupta and Ng 
(2007)). Note, however, that simple concatenation 
of multiple suffixes does not always produce a 
composite suffix. For example, “ent”, “en” and “t” 
all are valid suffixes in English, but “ent” is not a 

                                                           
2 The dependence on frequency and length is motivated by the observation that 
less-frequent and shorter affixes (especially those of length 1) are more likely to 
be erroneous (see Goldsmith (2001)). 
3 Since this method for setting our vocabulary-dependent thresholds is fairly 
simple, the use of these thresholds should not be viewed as rendering our seg-
mentation algorithm language-dependent.    

composite suffix. Hence, we need a more sophisti-
cated method for composite suffix detection.  

 Our detection method is motivated by the fol-
lowing observation: if xy is a composite suffix and 
a word w combines with xy, then it is highly likely 
that w will also combine with its first component 
suffix x. Note that this property does not hold for 
non-composite suffixes. For instance, words that 
combine with the non-composite suffix “ent” (e.g. 
“absorb”) do not combine with its first component 
suffix “en”. Consequently, given two suffixes x 
and y, our method posits xy as a composite suffix if 
xy and x are similar in terms of the words to which 
they attach. Specifically, we consider xy and x to 
be similar if their similarity value as computed by 
the formula below is greater than 0.6: 

||
|'|)|(),(

W

W
xyxPxxySimilarity == , 

where |W � | is the number of distinct words that 
combine with both xy and x, and |W| is the number 
of  distinct words that combine with xy. 

3.3 Extracting a List of Candidate Roots 

Finally, we extract a list of candidate roots using 
the induced list of affixes as follows. For each 
word, w, in the vocabulary, we check whether w is 
divisible, i.e. whether w can be segmented as r+x 
or p+r, where p is an induced prefix, x is an in-
duced suffix, and r is a word in the vocabulary. We 
then add w to the root list if it is not divisible. 
Note, however, that the resulting root list may con-
tain compound words (i.e. words with multiple 
roots). Hence, we make another pass over our root 
list to remove any word that is a concatenation of 
multiple words in the vocabulary. 

4 Detecting Incorrect Attachments Using 
Relative Frequency 

Our induced root list is not perfect: many correct 
roots are missing due to over-segmentation. For 
example, since “candidate” and “candid” are in the 
vocabulary and “ate” is an induced suffix, our root 
induction method will incorrectly segment “candi-
date” as “candid”+“ate”; as a result, it does not 
consider “candidate” as a root. So, to improve the 
root induction method, we need to determine that 
the attachment of the morpheme “ate” to the root 
word “candid” is incorrect. In this section, we pro-
pose a simple yet novel idea of using relative cor-
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pus frequency to determine whether the attachment 
of a morpheme to a root word is plausible or not.  

Consider again the two words “candidate” and 
“candid”. While “candidate” occurs 6380 times in 
our corpus, “candid” occurs only 119 times. This 
frequency disparity can be an important clue to 
determining that there is no morphological relation 
between “candidate” and “candid”. Similar obser-
vation is also made by Yarowsky and Wicentowski 
(2000), who successfully employ relative fre-
quency similarity or disparity to rank candidate 
VBD/VB pairs (e.g. “sang”/“sing”) that are irregu-
lar in nature. Unlike Yarowsky and Wicentowski, 
however, our goal is to detect incorrect affix at-
tachments and improve morphological analysis.  

Our incorrect attachment detection algorithm, 
which exploits frequency disparity, is based on the 
following hypothesis: if a word w is formed by 
attaching an affix m to a root word r, then the cor-
pus frequency of w is likely to be less than that of r 
(i.e. the frequency ratio of w to r is less than one). 
In other words, we hypothesize that the inflectional 
or derivational forms of a root word occur less fre-
quently in a corpus than the root itself.  

To illustrate this hypothesis, Table 1 shows 
some randomly chosen English words together 
with their word-root frequency ratios (WRFRs).  
The <word, root> pairs in the left side of the table 
are examples of correct attachments, whereas those 
in the right side are not. Note that only those words 
that represent correct attachments have a WRFR 
less than 1. 

The question, then, is: to what extent does our 
hypothesis hold? To investigate this question, we 
generated examples of correct attachments by ran-
domly selecting 400 words from our English vo-
cabulary and then removing those that are root 
words, proper nouns, or compound words. We then 
manually segmented each of the remaining 378 
words as Prefix+Root or Root+Suffix with the aid 
of the CELEX lexical database (Baayean et al., 
1996). Somewhat surprisingly, we found that the 
WRFR is less than 1 in only 71.7% of these at-
tachments. When the same experiment was re-
peated on 287 hand-segmented Bengali words, the 
hypothesis achieves a higher accuracy of 83.6%.  

To better understand why our hypothesis does 
not work well for English, we measured its accu-
racy separately for the Root+Suffix words and the 
Prefix+Root words, and found that the hypothesis 
fails mostly on the suffixal attachments (see Table 

2).  Though surprising at first glance, the relatively 
poor accuracy on suffixal attachments can be at-
tributed to the fact that many words in English 
(e.g. “amusement”, “winner”) appear more fre-
quently in our corpus than their corresponding root 
forms (e.g. “amuse”, “win”). For Bengali, our hy-
pothesis fails mainly on verbs, whose inflected 
forms occur more often in our corpus than their 
roots. This violation of the hypothesis can be at-
tributed to the grammatical rule that the main verb 
of a Bengali sentence has to be inflected according 
to the subject in order to maintain sentence order. 

To improve the accuracy of our hypothesis on 
detecting correct attachments, we relax our initial 
hypothesis as follows: if an attachment is correct, 
then the corresponding WRFR is less than some 
predefined threshold t, where t > 1. However, we 
do not want t to be too large, since our algorithm 
may then determine many incorrect attachments as 
correct. In addition, since our hypothesis has a high 
accuracy for prefixal attachments than suffixal at-
tachments, the threshold we employ for prefixes 
can be smaller than that for suffixes. Taking into 
account these considerations, we use a threshold of 
10 for suffixes and 2 for prefixes for all the lan-
guages we consider in this paper. 
 

Correct Parses Incorrect Parses 
Word Root WRFR Word Root WRFR 
bear-able bear 0.01 candid-ate candid 53.6 
attend-ance attend 0.24 medic-al medic 483.9 
arrest-ing arrest 0.06 prim-ary prim 327.4 
sub-group group 0.0002 ac-cord cord 24.0 
re-cycle cycle 0.028 ad-diction diction 52.7 
un-settle settle 0.018 de-crease crease 20.7 

Table 1: Word-root frequency ratios 
 
 Root+Suffix Prefix+Root Overall 
 # of words 344 34 378 
WRFR < 1 70.1% 88.2% 71.7% 

Table 2: Hypothesis validation for English 
 

Now we can employ our hypothesis to detect in-
correct attachments and improve root induction as 
follows. For each word, w, in the vocabulary, we 
check whether (1) w can be segmented as r+x or 
p+r, where p and x are valid prefixes and suffixes 
respectively and r is another word in the vocabu-
lary, and (2) the WRFR for w and r is less than our 
predefined thresholds (10 for suffixes and 2 for 
prefixes). If both conditions are satisfied, it means 
that w is divisible. Hence, we add w into the list of 
roots if at least one of the conditions is violated. 
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5 Suffix Level Similarity 

Many of the incorrect suffixal attachments have a 
WRFR between 1 and 10, but the detection algo-
rithm described in the previous section will deter-
mine all of them as correct attachments. Hence, in 
this section, we propose another technique, which 
we call suffix level similarity, to identify some of 
these incorrect attachments. 

Suffix level similarity is motivated by the fol-
lowing observation: if a word w combines with a 
suffix x, then w should also combine with the suf-
fixes that are “morphologically similar” to x. To 
exemplify, consider the suffix “ate” and the root 
word “candid”. The words that combine with the 
suffix “ate” (e.g. “alien”, “fabric”, “origin”) also 
combine with suffixes like “ated”, “ation” and “s”. 
Given this observation, the question of whether 
“candid” combines with the suffix “ate” then lies 
in whether or not “candid” combines with “ated”, 
“s” and “ation”. The fact that “candid” does not 
combine with many of the above suffixes provides 
suggestive evidence that “candidate” cannot be 
derived from “candid”.  

More specifically, to check whether a word w 
combines with a suffix x using suffix level simial-
rity, we (1) find the set of words Wx that can com-
bine with x; (2) find the set of suffixes Sx that 
attach to all of the words in Wx under the constraint 
that Sx does not contain x; and (3) find the 10 suf-
fixes in Sx that are most “similar” to x. The ques-
tion, then, is how to define similarity. Intuitively, a 
good similarity metric should reflect, for instance, 
the fact that “ated” is a better suffix to consider in 
the attachment decision for “ate” than “s” (i.e. 
“ated” is more similar to “ate” than “s”), since “s” 
attaches to most nouns and verbs in English and 
hence should not be a distinguishing feature for 
incorrect attachment detection.  

We employ a probabilistic measure (PM) that 
computes the similarity between suffixes x and y as 
the product of (1) the probability of a word com-
bining with y given that it combines with x and (2) 
the probability of a word combining with x given 
that it combines with y. More specifically, 

,*)|(*)|(),(
21 n

n

n

n
yxPxyPyxPM ==  

where n1 is the number of distinct words that com-
bine with x, n2 is the number of distinct words that 

combine with y, and n is the number of distinct 
words that combine with both x and y.4  

After getting the 10 suffixes that are most simi-
lar to x, we employ them as features and use the 
associated similarity values (we scale them linearly 
between 1 and 10) as the weights of these 10 fea-
tures. The decision of whether a suffix x can attach 
to a word w depends on whether the following ine-
quality is satisfied: 

,
10

1
twf ii >�  

where fi is a boolean variable that has the value 1 if 
w combines with xi, where xi is one of the 10 suf-
fixes that are most similar to x; wi is the scaled 
similarity between x and xi; and t is a predefined 
threshold that is greater than 0. 

One potential problem with suffix level similar-
ity is that it is an overly strict condition for those 
words that combine with only one or two suffixes 
in the vocabulary. For example, if the word “char-
acter” has just one variant in the vocabulary (e.g. 
“characters”), suffix level similarity will determine 
the attachment of “s” to “character” as incorrect, 
since the weighted sum in the above inequality will 
be 0. To address this sparseness problem, we rely 
on both relative corpus frequency and suffix level 
similarity to identify incorrect attachments. Spe-
cifically, if the WRFR of a <word, root> pair is 
between 1 and 10, we determine that an attachment 
to the root is incorrect if 

 

-WRFR + �  * (suffix level similarity) < 0, 
 

where �  is set to 0.15. 
Finally, since long words have a higher chance 

of getting segmented, we do not apply suffix level 
similarity to words whose length is greater than 10. 

6 Inducing Orthographic Rules and Al-
lomorphs 

The biggest drawback of the system, described 
thus far, is its failure to segment words where the 
roots exhibit spelling changes during attachment to 
morphemes (e.g. “denial” = “deny”+“al”). The 
reasons are (1) the system does not have any 
knowledge of language-specific orthographic rules 
(e.g. in English, the character ‘y’ at the morpheme 
boundary is changed to ‘i’ when the root combines 

                                                           
4 Note that this metric has the desirable property of returning a low similarity 
value for “s”: while n is likely to be large, it will be offset by a large n2. 
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with the suffix “al”), and (2) the vocabulary we 
employ for morpheme induction does not normally 
contain the allomorphic variations of the roots 
(e.g. “deni” is allomorphic variation of “deny”). To 
segment these words correctly, we need to generate 
the allomorphs and orthographic rules automati-
cally given a set of induced roots and affixes.  

Before giving the details of the generation 
method, we note that the induction of orthographic 
rules is a challenging problem, since different lan-
guages exhibit orthographic changes in different 
ways. For some languages (e.g. English) rules are 
mostly predictable, whereas for others (e.g. Fin-
nish) rules are highly irregular. It is hard to obtain 
a generalized mapping function that aligns every 
<root, allomorph> pair, considering the fact that 
our system is unsupervised. An additional chal-
lenge is to ensure that the incorporation of these 
orthographic rules will not adversely affect system 
performance (i.e. they will not be applied to regu-
lar words and thus segment them incorrectly). 
Yarowsky and Wicentowski (2000) propose an 
interesting algorithm that employs four similarity 
measures to successfully identify the most prob-
able root of a highly irregular word. Unlike them, 
however, our goal is to (1) check whether the 
learned rules can actually improve an unsupervised 
morphological system, not just to align <root, al-
lomorph> pair, and (2) examine whether our sys-
tem is extendable to different languages.  

Taking into consideration the aforementioned 
challenges, our induction algorithm will (1) handle 
orthographic character changes that occur only at 
morpheme boundaries; (2) generate allomorphs for 
suffixal attachments only5, assuming that roots ex-
hibit the character changes during attachment, not 
suffixes; and (3) learn rules that aligns <root, allo-
morph> pairs of edit distance 1 (which may in-
volve 1-character replacement, deletion or 
insertion). Despite these limitations, we will see 
that the incorporation of the induced rules im-
proves segmentation accuracy significantly. 

 Let us first discuss how we learn a replacement 
rule, which identifies <allomorph, root> pairs 
where the last character of the root is replaced by 
another character. The steps are as follows: 
(1) Inducing candidate allomorphs 
If � A

�
 is a word in the vocabulary (e.g. “denial”, 

where � =“den”, A=“i”, and 
�

=“al”), 
�

 is an in-
                                                           
5 We only learn rules for suffixes of length greater than 1, since most suffixes of 
length 1 do not participate in orthographic changes.  

duced suffix, � B is an induced root (e.g. “deny”, 
where B=“y”), and the attachment of 

�
 to � B is 

correct according to relative corpus frequency (see 
Section 4), then we hypothesize that � A is an allo-
morph of � B. For each induced suffix, we use this 
hypothesis to generate the allomorphs and identify 
those that are generated from at least two suffixes 
as candidate allomorphs. We denote the list of 
<candidate allomorph, root, suffix> tuples by L. 
(2) Learning orthographic rules 
Every <candidate allomorph, root, suffix> tuple as 
learned above is associated with an orthographic 
rule. For example, from the words “denial”, “deny” 
and suffix “al”, we learn the rule “y:i / _ + al”6; 
from “social”, “sock” and “al”, we learn the rule 
“k:i / _ + al”, which, however, is erroneous. So, we 
check whether each of the learned rules occurs fre-
quently enough for all the <allomorph, root> pairs 
associated with a suffix, with the goal of filtering 
the low-frequency orthographic rules. Specifically, 
for each suffix 

�
, we repeat the following steps: 

(a) Counting the frequency of rules. Let L�  be the 
list of <candidate allomorph, root> pairs in L that 
are associated with the suffix 

�
. For each pair p in 

L� , we first check whether its candidate allomorph 
appears in any other <candidate allomorph, root> 
pairs in L� . If not, we increment the frequency of 
the orthographic rule associated with p by 1. For 
example, the pair <“deni”, “deny”> increases the 
frequency of the rule “y:i” by 1 on condition that 
“deni” does not appear in any other pairs.  
(b) Filtering the rules. We first remove the infre-
quent rules, specifically those that are induced by 
less than 15% of the tuples in L� . Then we check 
whether there exists two rules of the form A:B and 
A:C in the induced rule list. If so, then we have a 
morphologically undesirable situation where the 
character A changes to B and C under the same 
environment (i.e. 

�
). To address this problem, we 

first calculate the strength of a rule as follows: 

�
=

@
@):(
):():(

Afrequency

BAfrequency
BAstrength  

We then retain only those rules whose fre-
quency*strength is greater than some predefined 
threshold. We denote the list of rules that satisfy 
the above constraints by R� . 
(c) Identifying valid allomorphs. For each rule in 
R� , we identify the associated <candidate allo-
                                                           
6 This is the Chomsky and Halle notation for representing orthographic rules. a:b 
/ c _ d means a changes to b when the left context is c and the right context is d. 
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morph, root> pairs in L� . We refer to the candidate 
allomorphs in each of those pairs as valid allo-
morphs and add them to the list of roots. We also 
remove from the original root list the words that 
can be segmented by the induced allomorphs and 
the associated rules (e.g. “denial”). 
(d) Identifying composite suffixes. For each rule 
in R� , we also check whether it can identify com-
posite suffixes where the first component suffix’s 
last character is replaced during attachment to the 
second component suffix (e.g.  “liness” = 
“ly”+“ness”). Specifically, if (1) A:B / _ 

�
 is a rule 

in R� , (2) � A
�

 (say “liness”), 
�

 (say “ness”) and � B 
(say “ly”) are induced suffixes, and (3) � A

�
 satis-

fies the requirements of a composite suffix (see 
Section 3.2), then we determine that � A

�
 is a com-

posite suffix composed of � B and 
�

. 
We employ the same procedure for learning in-

sertion and deletion rules, except that strength is 
always set to 1 for these two types of rules. The 
threshold we set at step (b) is somewhat dependent 
on the vocabulary size, since the frequency count 
of each rule will naturally be larger when a larger 
vocabulary is used. Following our method for set-
ting vocabulary-dependent thresholds (see Section 
3.1), we set the threshold to 4 for English and 25 
for Finnish, for instance. 

Finally, we adapt our candidate allomorph de-
tection method described above to induce allo-
morphs that are generated through orthographic 
changes of edit distance greater than 1. Specifi-
cally, if � �

 is a word in the induced root list (e.g. 
“stability”7, where � =“stabil” and 

�
=“ity”), 

�
 is an 

induced suffix, and the attachment of 
�

 to �  is cor-
rect according to suffix level similarity, then we 
hypothesize that �  (“stabil”) is a candidate allo-
morph. For each induced suffix, we use this hy-
pothesis to generate candidate allomorphs and 
consider as valid allomorphs only those that are 
generated from at least three different suffixes.8 

7 Word Segmentation 

After inducing the morphemes, we can use them to 
segment a word w in the test set. Specifically, we 
                                                           
7 The correct segmentation of “stability” is “stable”+“ity”.  The “stabil”-“stable” 
allomorph-root pair is an example of an orthographic change of edit distance 2. 
8 This technique can also be used to induce out-of-vocabulary (OOV) roots. For 
example, the presence of “perplexity”, “perplexed” and “perplexing” in a vo-
cabulary allows us to induce the root “perplex”. OOV root induction is particu-
larly important for languages like Bengali, where verb roots mostly take the 
imperative form and hence are absent in a vocabulary created from a newspaper 
corpus, which normally comprises only the first and third person verb forms. 

(1) generate all possible segmentations of w using 
only the induced affixes and roots, and (2) apply a 
sequence of tests to remove candidate segmenta-
tions until we are left with only one candidate, 
which we take to be the final segmentation of w. 

Our first test involves removing any candidate 
segmentation m1m2 … mn that violates any of the 
linguistic constraints below: 

• At least one of m1, m2, …, mn is a root. 
• For 1 ≤ i < n, if mi is a prefix, then mi+1 must 

be a root or a prefix. 
• For 1 < i ≤ n, if mi is a suffix, then mi-1 must 

be a root or a suffix. 
• m1 can’t be a suffix and mn can’t be a prefix.  
Next, we apply our second test, in which we re-

tain only those candidate segmentations that have 
the smallest number of morphemes. For example, 
if “friendly” has two candidate segmentations 
“friend”+“ly” and “fri”+“end”+“ly”, we will select 
the first one to be the segmentation of w. 

If more than one candidate segmentation still ex-
ists, we score each remaining candidate using the 
heuristic below, selecting the highest-scoring can-
didate to be the final segmentation of w.  Basically, 
we score each candidate segmentation by adding 
the strength of each morpheme in the segmenta-
tion, where (1) the strength of an affix is the num-
ber of distinct words in the vocabulary to which 
the affix attaches, multiplied by the length of the 
affix, and (2) the strength of a root is the number of 
distinct morphemes with which the root combines, 
again multiplied by the length of the root. 

8 Evaluation 

In this section, we will first evaluate our segmenta-
tion algorithm for English and Bengali, and then 
examine its performance on the PASCAL datasets. 

8.1 Experimental Setup 

Vocabulary creation. We extracted our English 
vocabulary from the Wall Street Journal corpus of 
the Penn Treebank and the BLLIP corpus, preproc-
essing the documents by first tokenizing them and 
then removing capitalized words, punctuations and 
numbers. In addition, we removed words of fre-
quency 1 from BLLIP, because many of them are 
proper nouns and misspelled words. The final Eng-
lish vocabulary consists of approximately 60K dis-
tinct words. We applied the same pre-processing 
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steps to five years of articles taken from the Ben-
gali newspaper Prothom Alo to generate our Ben-
gali vocabulary, which consists of 140K words. 
Test set preparation. To create our English test 
set, we randomly chose �000 words from our vo-
cabulary that are at least 4-character long9 and also 
appear in CELEX. Although 95% of the time we 
adopted the segmentation proposed by CELEX, in 
some cases the CELEX segmentations are errone-
ous (e.g. “rolling” and “lodging” remain unseg-
mented in CELEX). As a result, we cross-check 
with the online version of Merriam-Webster to 
make the necessary changes. To create the Bengali 
test set, we randomly chose 5000 words from our 
vocabulary and manually removed proper nouns 
and misspelled words from the set before giving it 
to two of our linguists for hand-segmentation. The 
final test set contains 4191 words. 
Evaluation metrics.  We use two standard metrics 
-- exact accuracy and F-score -- to evaluate the 
performance of our segmentation algorithm on the 
test sets. Exact accuracy is the percentage of the 
words whose proposed segmentation is identical to 
the correct segmentation. F-score is the harmonic 
mean of recall and precision, which are computed 
based on the placement of morpheme boundaries.10   

8.2 Results for English and Bengali 

The baseline systems. We use two publicly avail-
able and widely used unsupervised morphological 
learning systems -- Goldsmith’s (2001) Linguis-
tica11 and Creutz and Lagus’s (2005) Morphessor 
1.012 -- as our baseline systems. The first two rows 
of Table 3 show the results of these systems for our 
test sets (with all the training parameters set to 
their default values). As we can see, Linguistica 
performs substantially better for English in terms 
of both exact accuracy and F-score, whereas Mor-
phessor outperforms Linguistica for Bengali.   
Our segmentation algorithm. Results of our 
segmentation algorithm are shown in rows 3-6 of 
Table 3. Specifically, row 3 shows the results of 
our basic segmentation system as described in Sec-
tion 3. Rows 4-6 show the results where our three 
techniques (i.e. relative frequency, suffix level 

                                                           
9 Words of length less than 4 do not have any morphological segmentation in 
English. Hence, by imposing this length restriction on the words in our test set, 
we effectively make the evaluation more challenging. This is also the reason for 
our using words that are at least 3-character long in the Bengali test set.  
10 See http://www.cis.hut.fi/morphochallenge2005/evaluation.shtml for details. 
11 http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/ 
12 http://www.cis.hut.fi/projects/morpho/ 

similarity and allomorph detection) are incorpo-
rated into the basic system one after the other. It is 
worth mentioning that (1) our basic algorithm al-
ready outperforms the baseline systems in terms of 
both exact accuracy and F-score; and (2) while 
each of our additions to the basic algorithm boosts 
system performance, relative corpus frequency and 
allomorph detection contribute to performance im-
provements particularly significantly. As we can 
see, the best segmentation performance is achieved 
when all of our three additions are applied to the 
basic algorithm.  

 
 English 

 
Bengali 

 A P R F A P R F 
Linguistica 68.9 

 
84.8 75.7 80.0 36.3 58.2 63.3 60.6 

Morphessor 64.9 
 

69.6 85.3 76.6 56.5 89.7 67.4 76.9 

Basic in-
duction 

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4 

Relative 
frequency 

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7 

Suffix level 
similarity 

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9 

Allomorph 
detection 

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1 

Table 3: Results (reported in terms of exact accu-
racy (A), precision (P), recall (R) and F-score (F)) 

8.3 PASCAL Challenge Results 

To get an idea of how our algorithm performs in 
comparison to the PASCAL participants, we con-
ducted evaluations on the PASCAL datasets for 
English, Finnish and Turkish. Table 4 shows the F-
scores of four segmentation algorithms for these 
three datasets: the best-performing PASCAL sys-
tem (Winner), Morphessor, our system that uses 
the basic morpheme induction algorithm (Basic), 
and our system with all three extensions incorpo-
rated (Complete). Below we discuss these results. 
English. There are 533 test cases in this dataset. 
Using the vocabulary created as described in Sec-
tion 8.1, our Complete algorithm achieves an F-
score of 79.4%, which outperforms the winner 
(Keshava and Pitler, 2006) by 2.6%. Although our 
basic morpheme induction algorithm is similar to 
that of Keshava and Pitler, a closer examination of 
the results reveals that F-score increases signifi-
cantly with the incorporation of relative frequency 
and allomorph detection. 
Finnish and Turkish. The real challenge in the 
PASCAL Challenge is the evaluation on Finnish 
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and Turkish due to their morphological richness. 
We use the 400K and 300K most frequent words 
from the Finnish and Turkish datasets provided by 
the organizers as our vocabulary. When tested on 
the gold standard of 661 Finnish and 775 Turkish 
words, our Complete system achieves F-scores of 
65.2% and 66.2%, which are better than the win-
ner’s scores (Bernhard (2006)). In addition, Com-
plete outperforms Basic by 3-6% in F-score; these 
results suggest that the new techniques proposed in 
this paper (especially allomorph detection) are also 
very effective for Finnish and Turkish. 
 

 English Finnish Turkish 
Winner 76.8 64.7 65.3 
Morphessor 66.2 66.4 70.1 
Basic 75.8 59.2 63.4 
Complete 79.4 65.2 66.2 

Table 4: F-scores for the PASCAL gold standards 
 
   As mentioned in the introduction, none of the 
participating PASCAL systems offers robust per-
formance across different languages. For instance, 
Keshava and Pitler’s algorithm, the winner for 
English, has F-scores of only 47% and 54% for 
Finnish and Turkish respectively, whereas Bern-
hard’s algorithm, the winner for Finnish and Turk-
ish, achieves an F-score of only 66% for English. 
On the other hand, our algorithm outperforms the 
winners for all the languages in the competition, 
demonstrating its robustness across languages.  

Finally, although Morphessor achieves better re-
sults for Turkish and Finnish than our Complete 
system, it performs poorly for English, having an 
F-score of only 66.2%. On the other hand, our re-
sults for Finnish and Turkish are not significantly 
poorer than those of Morphessor. 

9 Conclusions 

We have presented an unsupervised word segmen-
tation algorithm that offers robust performance 
across languages with different levels of morpho-
logical complexity. Our algorithm not only outper-
forms Linguistica and Morphessor for English and 
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when 
evaluated against all three target languages --
English, Turkish, and Finnish -- in the Challenge. 
Experimental results indicate that the use of rela-
tive corpus frequency for incorrect attachment de-
tection and the induction of orthographic rules and 

allomorphs have contributed to the performance of 
our algorithm particularly significantly. 
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Abstract

This paper reports experiments in
which pCRU — a generation framework
that combines probabilistic generation
methodology with a comprehensive
model of the generation space — is
used to semi-automatically create sev-
eral versions of a weather forecast text
generator. The generators are evaluated
in terms of output quality, development
time and computational efficiency against
(i) human forecasters, (ii) a traditional
handcrafted pipelinedNLG system, and
(iii) a HALOGEN-style statistical genera-
tor. The most striking result is that despite
acquiring all decision-making abilities
automatically, the bestpCRU generators
receive higher scores from human judges
than forecasts written by experts.

1 Introduction and background

Over the last decade, there has been a lot of in-
terest in statistical techniques among researchers in
natural language generation (NLG), a field that was
largely unaffected by the statistical revolution in
NLP that started in the 1980s. Since Langkilde and
Knight’s influential work on statistical surface real-
isation (Knight and Langkilde, 1998), a number of
statistical and corpus-based methods have been re-
ported. However, this interest does not appear to
have translated into practice: of the 30 implemented
systems and modules with development starting in

or after 2000 that are listed on a keyNLG website1,
only five have any statistical component at all (an-
other six involve techniques that are in some way
corpus-based). The likely reasons for this lack of
take-up are that (i) many existing statisticalNLG

techniques are inherently expensive, requiring the
set of alternatives to be generated in full before the
statistical model is applied to select the most likely;
and (ii) statisticalNLG techniques have not been
shown to produce outputs of high enough quality.

There has also been a rethinking of the traditional
modularNLG architecture (Reiter, 1994). Some re-
search has moved towards a more comprehensive
view, e.g. construing the generation task as a single
constraint satisfaction problem. Precursors to cur-
rent approaches were Hovy’sPAULINE which kept
track of the satisfaction status of global ‘rhetori-
cal goals’ (Hovy, 1988), and Power et al.’sICON-
OCLAST which allowed users to fine-tune different
combinations of global constraints (Power, 2000).
In recent comprehensive approaches, the focus is on
automatic adaptability, e.g. automatically determin-
ing degrees of constraint violability on the basis of
corpus frequencies. Examples include Langkilde’s
(2005) general approach to generation and parsing
based on constraint optimisation, and Marciniak and
Strube’s (2005) integrated, globally optimisable net-
work of classifiers and constraints.

Both probabilistic and recent comprehensive
trends have developed at least in part to address two
interrelated issues inNLG: the considerable amount

1Bateman and Zock’s list of NLG systems,
http://www.fb10.uni-bremen.de/anglistik/
langpro/NLG-table/, 20/01/2006.
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of time and expense involved in building new sys-
tems, and the almost complete lack in the field of
reusable systems and modules. Both trends have
the potential to improve on development time and
reusability, but have drawbacks.

Existing statisticalNLG (i) uses corpus statistics to
inform heuristic decisions in what is otherwise sym-
bolic generation (Varges and Mellish, 2001; White,
2004; Paiva and Evans, 2005); (ii) appliesn-gram
models to select the overall most likely realisation
after generation (HALOGEN family); or (iii) reuses
an existing parsing grammar or treebank for surface
realisation (Velldal et al., 2004; Cahill and van Gen-
abith, 2006).N -gram models are not linguistically
informed, (i) and (iii) come with a substantial man-
ual overhead, and (ii) overgenerates vastly and has a
high computational cost (see also Section 3).

Existing comprehensive approaches tend to in-
cur a manual overhead (finetuning inICONOCLAST,
corpus annotation in Langkilde and Marciniak &
Strube). Handling violability of soft constraints is
problematic, and converting corpus-derived prob-
abilities into costs associated with constraints
(Langkilde, Marciniak & Strube) turns straightfor-
ward statistics into anad hocsearch heuristic. Older
approaches are not globally optimisable (PAULINE)
or involve exhaustive search (ICONOCLAST).

The pCRU language generation framework com-
bines a probabilistic generation methodology with
a comprehensive model of the generation space,
where probabilistic choice informs generation as it
goes along, instead of after all alternatives have been
generated. pCRU uses existing techniques (Belz,
2005), but extends these substantially. This paper
describes thepCRU framework and reports experi-
ments designed to rigorously testpCRU in practice
and to determine whether improvements in develop-
ment time and reusability can be achieved without
sacrificing quality of outputs.

2 pCRU language generation

pCRU (Belz, 2006) is a probabilistic language gen-
eration framework that was developed with the aim
of providing the formal underpinnings for creating
NLG systems that are driven by comprehensive prob-
abilistic models of the entire generation space (in-
cluding deep generation).NLG systems tend to be

composed of generation rules that apply transforma-
tions to representations (performing different tasks
in different modules). The basic idea inpCRU is
that as long as the generation rules are all of the
form relation(arg1, ...argn) → relation1(arg1, ...argp)

... relationm(arg1, ...argq), m ≥ 1, n, p, q ≥ 0, then the
set of all generation rules can be seen as defining
a context-free language and a single probabilistic
model can be estimated from raw or annotated text
to guide generation processes.

pCRU uses straightforward context-free technol-
ogy in combination with underspecification tech-
niques, to encode abase generator as a set of ex-
pansion rulesG composed ofn-ary relations with
variable and constant arguments (Section 2.1). In
non-probabilistic mode, the output is the set of fully
expanded (fully specified) forms that can be de-
rived from the input. ThepCRU (probabilisticCRU)
decision-maker is created by estimating a proba-
bility distribution over the base generator from an
unannotated corpus of example texts. This distri-
bution is used in one of several ways to drive gen-
eration processes, maximising the likelihood either
of individual expansions or of entire generation pro-
cesses (Section 2.2).

2.1 Specifying the range of alternatives

Using context-free representational underspecifica-
tion, or CRU, (Belz, 2004), the generation space is
encoded as (i) a setG of expansion rules composed
of n-ary relationsrelation(arg1, ...argn) where the
argi are constants or variables over constants; and
(ii) argument and relation type hierarchies. Any sen-
tential form licensed byG can be the input to the
generation process which expands it under unify-
ing variable substitution until no further expansion is
possible. The output (in non-probabilistic mode) is
the set of fully expanded forms (i.e. consisting only
of terminals) that can be derived from the input.

The rules inG define the steps in which inputs can
be incrementally specified from, say, content to se-
mantic, syntactic and finally surface representations.
G therefore defines specificity relations between all
sentential forms, i.e. defines which representation is
underspecified with respect to which other represen-
tations. The generation process is construed explic-
itly as the task of incrementally specifying one or
more word strings.
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Within the limits of context-freeness and atom-
icity of feature values,CRU is neutral with respect
to actual linguistic knowledge representation for-
malisms used to encode generation spaces. The
main motivation for a context-free formalism is
the advantage of low computational cost, while the
inclusion of arguments on (non)terminals permits
keeping track of contextual features.

2.2 Selection among alternatives

ThepCRU decision-making component is created by
estimating a probability distribution over the set of
expansion rules that encodes the generation space
(the base generator), as follows:

1 Convert corpus into multi-treebank:determine
for each sentence all (left-most) derivation trees
licensed by the base generator’sCRU rules, us-
ing maximal partial derivations if there is no com-
plete derivation tree; annotate the (sub)strings in
the sentence with the derivation trees, resulting in
a set ofgeneration treesfor the sentence.

2 Train base generator:Obtain frequency counts
for each individual generation rule from the multi-
treebank, adding1/n to the count for every rule,
wheren is the number of alternative derivation
trees; convert counts into probability distributions
over alternative rules, using add-1 smoothing and
standard maximum likelihood estimation.

The resulting probability distribution is used in
one of the following three ways to control gener-
ation. Of these, only the first requires the genera-
tion forest to be created in full, whereas both greedy
modes prune the generation space to a single path:

1 Viterbi generation:do a Viterbi search of the gen-
eration forest for a given input, which maximises
the joint likelihood of all decisions taken in the
generation process. This selects the most likely
generation process, but is considerably more ex-
pensive than the greedy modes.

2 Greedy generation:make the single most likely
decision at each choice point (rule expansion) in
a generation process. This is not guaranteed to
result in the most likely generation process, but
the computational cost is very low.

3 Greedy roulette-wheel generation:use a non-
uniform random distribution proportional to the
likelihoods of alternatives. E.g. if there are two

alternative decisionsD1 andD2, with the model
giving p(D1) = 0.8 andp(D2) = 0.2, then the
proportion of times the generator decidesD1 ap-
proaches80% andD2 20% in the limit.

2.3 The pCRU-1.0 generation package

The technology described in the two preceding sec-
tions has been implemented in thepCRU-1.0 soft-
ware package. The user defines a generation space
by creating a base generator composed of:

1. the setN of underspecifiedn-ary relations

2. the setW of fully specifiedn-ary relations
3. a setR of context-free generation rulesn → α,

n ∈ N , α ∈ (W ∪ N)∗

4. a typed feature hierarchy defining argument
types and values

This base generator is then trained (as described
above) on raw text corpora to provide a probability
distribution over generation rules. Optionally, ann-
gram language model can also be created from the
same corpus. The generator is then run in one of the
three modes above or one of the following:

1. Random: ignoring pCRU probabilities, ran-
domly select generation rules.

2. N -gram: ignoring pCRU probabilities, gener-
ate set of alternatives and select the most likely
according to then-gram language model.

The random mode serves as a baseline for gen-
eration quality: a trained generator must be able to
do better, otherwise all the work is done by the base
generator (and none by the probabilities). Then-
gram mode works exactly likeHALOGEN-style gen-
eration: the generator generates all realisations that
the rules allow and then picks one based on then-
gram model. This is a point of comparison with
existing statisticalNLG techniques and also serves
as a baseline in terms of computational expense: a
generator usingpCRU probabilities should be able
to produce realisations faster.

3 Building and evaluating pCRU wind
forecast text generators

The automatic generation of weather forecasts is
one of the success stories ofNLP. The restrictive-
ness of the sublanguage has made the domain of
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Oil1/Oil2/Oil3_FIELDS
05-10-00

05/06 SSW 18 22 27 3.0 4.8 SSW 2.59
05/09 S 16 20 25 2.7 4.3 SSW 2.39
05/12 S 14 17 21 2.5 4.0 SSW 2.29
05/15 S 14 17 21 2.3 3.7 SSW 2.28
...

FORECAST FOR:-
Oil1/Oil2/Oil3 FIELDS
...
2.FORECAST 06-24 GMT, THURSDAY, 05-Oct 2000
=====WARNINGS: RISK THUNDERSTORM. =======
WIND(KTS) CONFIDENCE: HIGH

10M: SSW 16-20 GRADUALLY BACKING SSE
THEN FALLING VARIABLE 04-08 BY
LATE EVENING

...

Figure 1: Meteorological data file and wind forecast
for 05-10-2000, a.m. (oil fields anonymised).

weather forecasting particularly attractive toNLG re-
searchers, and a number of weather forecast genera-
tion systems have been created.

A recent example of weather forecast text gener-
ation is the SUMTIME project (Reiter et al., 2005)
which developed a commercially usedNLG system
that generates marine weather forecasts for offshore
oil rigs from numerical forecast data produced by
weather simulation programs. The SUMTIME cor-
pus is used in the experiments below.

3.1 Data

Each instance in the SUMTIME corpus consists of
three numerical data files (the outputs of weather
simulators) and the forecast file written by the fore-
caster on the basis of the data (Figure 1 shows an
example). The experiments below focused on a.m.
forecasts of wind characteristics. Content determi-
nation (deciding which meteorological data to in-
clude in a forecast) was carried out off-line.

The corpus consists of 2,123 instances (22,985
words) of which half are a.m. forecasts. This may
not seem much, but considering the small number of
vocabulary items and syntactic structures, the cor-
pus provides extremely good coverage (an initial im-
pression confirmed by the small differences between
training and testing data results below).

3.2 The base generator

The base generator2 was written semi-auto-
matically in two steps. First, a simple chunker
was run over the corpus to split wind statements

2For a fragment of the rule set, see Belz (2006).

into wind direction, wind speed, gust speed,
gust statements, time expressions, verb phrases,
pre-modifiers, and post-modifiers. Preterminal
generation rules were automatically created from
the resulting chunks. Then, higher-level rules which
combine chunks into larger components, taking
care of text structuring, aggregation and elision,
were manually authored. The top-level generation
rules interpret wind statements as sequences of
independent units of information, ensuring a linear
increase in complexity with increasing input length.
Inputs encode meteorological data (as shown in Ta-
ble 1), and were pre-processed to determine certain
types of information, including whether a change
in wind direction was clockwise or anti-clockwise,
and whether change in wind speed was an increase
or a decrease. The final generator takes as inputs
number vectors of length 7 to 60, and generates up
to 1.6 × 1031 alternative realisations for an input.

The job of the base generator is to describe the
textual variety found in the corpus. It makes no deci-
sions about when to prefer one variant over another.

3.3 Training

The corpus was divided at random into 90% train-
ing data and 10% testing data. The training set
was multi-treebanked with the base generator and
the multi-treebank then used to create the probabil-
ity distribution for the base generator (as described
in Section 2.2). A back-off 2-gram model with
Good-Turing discounting and no lexical classes was
also created from the training set, using theSRILM

toolkit, (Stolcke, 2002).pCRU-1.0 was then run in
all five modes to generate forecasts for the inputs in
both training and test sets.

This procedure was repeated five times for hold-
out cross-validation. The small amount of variation
across the five repeats, and the small differences be-
tween results for training and test sets (Table 2) in-
dicated that five repeats were sufficient.

3.4 Evaluation

3.4.1 Evaluation methods

The two automatic metrics used in the evalua-
tions, NIST andBLEU have been shown to correlate
highly with expert judgments (Pearson correlation
coefficients0.82 and0.79 respectively) in this do-
main (Belz and Reiter, 2006).
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Input [[1,SSW,16,20,-,-,0600],[2,SSE,-,-,-,-,NOTIME],[3,VAR,04,08,-,-,2400]]
Corpus SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 4-8 BY LATE EVENING
Reference 1 SSW’LY 16-20 GRADUALLY BACKING SSE’LY THEN DECREASING VARIABLE 4-8 BY LATE EVENING
Reference 2 SSW 16-20 GRADUALLY BACKING SSE BY 1800 THEN FALLING VARIABLE 4-8 BY LATE EVENING
SUMT IME-Hyb. SSW 16-20 GRADUALLY BACKING SSE THEN BECOMING VARIABLE 10 OR LESS BY MIDNIGHT
pCRU-greedy SSW 16-20 BACKING SSE FOR A TIME THEN FALLING VARIABLE 4-8 BY LATE EVENING
pCRU-roulette SSW 16-20 GRADUALLY BACKING SSE AND VARIABLE 4-8
pCRU-viterbi SSW 16-20 BACKING SSE VARIABLE 4-8 LATER
pCRU-2gram SSW 16-20 BACKING SSE VARIABLE 4-8 LATER
pCRU-random SSW 16-20 AT FIRST FROM MIDDAY BECOMING SSE DURING THE AFTERNOON THEN VARIABLE 4-8

Table 1: Forecast texts (for 05-10-2000) generated by each of the pCRU generators, the SUMTIME-Hybrid
system and three experts. The corresponding input to the generators is shown in the first row.

BLEU (Papineni et al., 2002) is a precision met-
ric that assesses the quality of a translation in terms
of the proportion of its wordn-grams (n ≤ 4 has
become standard) that it shares with several refer-
ence translations.BLEU also incorporates a ‘brevity
penalty’ to counteract scores increasing as length de-
creases.BLEU scores range from 0 to 1.

TheNIST metric (Doddington, 2002) is an adapta-
tion of BLEU, but whereBLEU gives equal weight to
all n-grams,NIST gives more weight to less frequent
(hence more informative)n-grams. There is evi-
dence thatNIST correlates better with human judg-
ments thanBLEU (Doddington, 2002; Belz and Re-
iter, 2006).

The results below include human scores from two
separate experiments. The first was an experiment
with 9 subjects experienced in reading marine fore-
casts (Belz and Reiter, 2006), the second is a new
experiment with 14 similarly experienced subjects3.
The main differences were that in Experiment 1,
subjects rated on a scale from 0 to 5 and were asked
for overall quality scores, whereas in Experiment 2,
subjects rated on a 1–7 scale and were asked for lan-
guage quality scores.

In comparing differentpCRU modes,NIST and
BLEU scores were computed against the test set part
of the corpus which contains texts by five different
authors. In the two human experiments,NIST and
BLEU scores were computed against sets of multi-
ple reference texts (2 for each date in Experiment 1,
and 3 in Experiment 2) written by forecasters who
had not contributed to the corpus. One-wayANOVAs
with post-hoc TukeyHSD tests were used to analyse
variance and statistical significance of all results.

Table 1 shows forecast texts generated by each of

3Belz and Reiter, in preparation.

NIST-5 BLEU-4
T pCRU-greedy 8.208(0.033) 0.647(0.002)

R pCRU-roulette 7.035(0.138) 0.496(0.010)

A pCRU-2gram 6.734(0.086) 0.523(0.008)

I pCRU-viterbi 6.643(0.023) 0.524(0.002)

N pCRU-random 4.799(0.036) 0.296(0.002)

pCRU-greedy 6.927(0.131) 0.636(0.016)

T pCRU-roulette 6.193(0.121) 0.496(0.022)

E pCRU-2gram 5.663(0.185) 0.514(0.019)

S pCRU-viterbi 5.650(0.161) 0.519(0.021)

T pCRU-random 4.535(0.078) 0.313(0.005)

Table 2:NIST-5 andBLEU-4 scores for training and
test sets (average variation from the mean).

the systems included in the evaluations reported be-
low, together with the corresponding input and three
texts created by humans for the same data.

3.4.2 Comparing different generation modes

Table 2 shows results for the five differentpCRU

generation modes, for training sets (top) and test sets
(bottom), in terms ofNIST-5 andBLEU-4 scores av-
eraged over the five runs of the hold-out validation,
with average mean deviation figures across the runs
shown in brackets.

The Tukey Test produced the following results for
the differences between means in Table 2. For the
training set, results are the same forNIST andBLEU

scores: all differences are significant atP < 0.01,
except for the differences in scores forpCRU-2gram
andpCRU-viterbi. For the test set andNIST, again all
differences are significant atP < 0.01, except for
pCRU-2gram vs.pCRU-viterbi. For the test set and
BLEU, three differences are non-significant:pCRU-
2gram vs.pCRU-viterbi, pCRU-2gram vs.pCRU-
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Experiment 1 Experiment 2
SUMTIME-Hyb. 3.82(1) 4.61(2)

pCRU-greedy 3.59(2) 4.79(1)

pCRU-roulette 3.22(3) 4.54(3)

Table 3: Scores for handcrafted system and two best
pCRU-systems from two human experiments.

roulette, andpCRU-viterbi vs.pCRU-roulette.
NIST-5 depends on test set size, and is necessar-

ily lower for the (smaller) test set, but theBLEU-4
scores indicate that performance was slightly worse
on test sets. The deviation figures show that varia-
tion was also higher on the test sets.

The clearest result is thatpCRU-greedy is ranked
highest, andpCRU-random lowest, by considerable
margins. pCRU-roulette is ranked second byNIST-
5 and fourth byBLEU-4. pCRU-2gram andpCRU-
viterbi are virtually indistinguishable.

Experts in both human experiments agreed with
theNIST-5 rankings of the modes exactly.

3.4.3 Text quality against handcrafted system

The pCRU modes were also evaluated against
the SUMTIME-Hybrid system (running in ‘hybrid’
mode, taking inputs as in Table 1). Table 3 shows
averaged evaluation scores by subjects in the two in-
dependent experiments described above. There were
altogether 6 and 7 systems evaluated in these experi-
ments, respectively, and the differences between the
scores shown here were not significant when sub-
jected to the Tukey Test, meaning that both experi-
ments failed to show that experts can tell the differ-
ence in the language quality of the texts generated by
the handcrafted SUMTIME-Hybrid system and the
two bestpCRU-greedy systems.

3.4.4 Text quality against human forecasters

In the first experiment, the human evaluators gave
an average score of 3.59 topCRU-greedy, 3.22 to
the corpus texts, and 3.03 to another (human) fore-
caster. In Experiment 2, the average human scores
were 4.79 forpCRU-greedy, and 4.50 for the corpus
texts. Although in each experiment separately, sta-
tistical significance could not be shown for the dif-
ferences between these means, in combination the
scores provide evidence that the evaluators thought
pCRU-greedy better than the human-written texts.

3.4.5 Computing time

The following table shows average number of sec-
onds taken to generate one forecast, averaged over
the five cross-validation runs (mean variation figures
across the runs in brackets):

Training sets Test sets
pCRU-greedy: 1.65s(= 0.02) 1.58s(< 0.04)

pCRU-roulette: 1.61s(< 0.02) 1.58s(< 0.05)

pCRU-viterbi: 1.74s(< 0.02) 1.70s(= 0.04)

pCRU-2gram: 2.83s(< 0.02) 2.78s(< 0.09)

Forecasts for the test sets were generated some-
what faster than for the training sets in all modes.
Variation was greater for test sets. Differences
betweenpCRU-greedy andpCRU-roulette are very
small, but pCRU-viterbi took 1/10 of a second
longer, andpCRU-2gram took more than1 second
longer to generate the average forecast4.

3.4.6 Brevity bias

N -gram models have a built-in bias in favour of
shorter strings, because they calculate the likelihood
of a string of words as the joint probability of the
words, or, more precisely, as the product of the prob-
abilities of each word given then − 1 preceding
words. The likelihood of any string will therefore
generally be lower than that of any of its substrings.

Using a smaller data set for which all systems had
outputs, the average number of words in the fore-
casts generated by the different systems was:

pCRU-random: 19.43
SUMTIME-Hybrid: 12.39
pCRU-greedy: 11.51
Corpus: 11.28
pCRU-roulette: 10.48
pCRU-2gram: 7.66
pCRU-viterbi: 7.54

pCRU-random has no preference for shorter
strings, its average string length is almost twice that
of the otherpCRU-generators. The 2-gram generator
prefers shorter strings, while the Viterbi generator
prefers shorter generation processes, and these pref-
erences result in the shortest texts. The poor evalu-
ation results above for then-gram and Viterbi gen-
erators indicate that this brevity bias can be harm-

4The Viterbi and the 2-gram generator were implemented
identically, except for then-gram model look-up.
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ful in NLG. The remaining generators achieve good
matches to the average forecast length in the corpus.

3.4.7 Development time

The most time-consuming part ofNLG system de-
velopment is not encoding the range of alternatives,
but the decision-making capabilities that enable se-
lection among them. In SUMTIME (Section 3), these
were the result of corpus analysis and consultation
with writers and readers of marine forecasts. In the
pCRU wind forecast generators, the decision-making
capabilities are acquired automatically, no expert
knowledge or corpus annotation is used.

The SUMTIME team estimate5 that very approx-
imately 12 person months went directly into devel-
oping the SUMTIME microplanner and realiser (the
components functionally analogous to thepCRU-
generators), and 24 on generic activities such as
expert consultation, which also benefited the mi-
croplanner/realiser. ThepCRU wind forecasters
were built in less than a month, including familiari-
sation with the corpus, building the chunker and cre-
ating the generation rules themselves. However, the
SUMTIME system also generates wave forecasts and
appropriate layout and canned text. A generous esti-
mate is that it would take another two person months
to equip thepCRU forecaster with these capabilities.

This is not to say that the two research efforts re-
sulted in exactly the same thing. It is clear that fore-
cast readers prefer the SUMTIME system, but the
point is that it did come with a substantial price tag
attached. ThepCRU approach allows control over
the trade-off between cost and quality.

4 Discussion

The main contributions of the research described
in this paper are: (i) a generation methodology
that improves substantially on development time and
reusability compared to traditional hand-crafted sys-
tems; (ii) techniques for training linguistically in-
formed decision-making components for probabilis-
tic NLG from raw corpora; and (iii) results that show
that probabilisticNLG can produce high-quality text.
Results also show that (i) a preference for shorter
realisations can be harmful inNLG; and that (ii)
linguistically literate, probabilisticNLG can outper-

5Personal communication with E. Reiter and S. Sripada.

form HALOGEN-style shallow statistical methods, in
terms of quality and efficiency.

An interesting question concerns the contribution
of the manually built component (the base genera-
tor) to the quality of the outputs. The random mode
serves as an absolute baseline in this respect: it in-
dicates how well a particular base generator per-
forms on its own. However, different base genera-
tors have different effects on the generation modes.
The base generator that was used in previous exper-
iments (Belz, 2005) encoded a less structured gen-
eration space and the set of concepts it used were
less fine-grained (e.g. it did not distinguish between
an increase and a decrease in wind speed, consid-
ering both simply a change), and therefore it lacked
some information necessary for deriving conditional
probabilities for lexical choice (e.g.fresheningvs.
easing). As predicted (Belz, 2005, p. 21), improve-
ments to the base generator made little difference to
the results forpCRU-2gram (up fromBLEU 0.45 to
0.5), but greatly improved the performance of the
greedy mode (up from0.43 to 0.64).

A basic question for statisticalNLG is whether
surface string likelihoods are enough to resolve re-
maining non-determinism in generators, or whether
likelihoods at the more abstract level of generation
rules are needed. The former always prefers the
most frequent variant regardless of context, whereas
in the latter probabilities can attach to linguistic ob-
jects and be conditioned on contextual features (e.g.
one useful feature in the forecast text generators en-
coded whether a rule was being applied at the be-
ginning of a text). The results reported in this paper
provide evidence that probabilistic generation can be
more powerful thann-gram based post-selection.

5 Conclusions

The pCRU approach to generation makes it possi-
ble to combine the potential accuracy and subtlety
of symbolic generation rules with detailed linguis-
tic features on the one hand, and the robustness and
handle on nondeterminism provided by probabili-
ties associated with these rules, on the other. The
evaluation results for thepCRU generators show that
outputs of high quality can be produced with this
approach, that it can speed up development and im-
prove reusability of systems, and that in some modes
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it is more efficient and less brevity-biased than exist-
ing HALOGEN-stylen-gram techniques.

The current situation inNLG recalls NLU in the
late 1980s, when symbolic and statisticalNLP were
separate research paradigms, a situation memorably
caricatured by Gazdar (1996), before rapidly mov-
ing towards a paradigm merger in the early 1990s.
A similar development is currently underway inMT

where — after several years of statisticalMT dom-
inating the field — researchers are now beginning
to bring linguistic knowledge into statistical tech-
niques (Charniak et al., 2003; Huang et al., 2006),
and this trend looks set to continue. The lesson from
NLU and MT appears to be that higher quality re-
sults when the symbolic and statistical paradigms
join forces. The research reported in this paper is
intended to be a first step in this direction forNLG.
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Abstract

This paper explores the use of statisti-

cal machine translation (SMT) methods

for tactical natural language generation.

We present results on using phrase-based

SMT for learning to map meaning repre-

sentations to natural language. Improved

results are obtained by inverting a seman-

tic parser that uses SMT methods to map

sentences into meaning representations.

Finally, we show that hybridizing these

two approaches results in still more accu-

rate generation systems. Automatic and

human evaluation of generated sentences

are presented across two domains and four

languages.

1 Introduction

This paper explores the use of statistical machine

translation (SMT) methods in natural language gen-

eration (NLG), specifically the task of mapping

statements in a formal meaning representation lan-

guage (MRL) into a natural language (NL), i.e. tacti-

cal generation. Given a corpus of NL sentences each

paired with a formal meaning representation (MR),

it is easy to use SMT to construct a tactical gener-

ator, i.e. a statistical model that translates MRL to

NL. However, there has been little, if any, research

on exploiting recent SMT methods for NLG.

In this paper we present results on using a re-

cent phrase-based SMT system, PHARAOH (Koehn

et al., 2003), for NLG.1 Although moderately effec-

1We also tried IBM Model 4/REWRITE (Germann, 2003), a
word-based SMT system, but it gave much worse results.

tive, the inability of PHARAOH to exploit the for-

mal structure and grammar of the MRL limits its ac-

curacy. Unlike natural languages, MRLs typically

have a simple, formal syntax to support effective au-

tomated processing and inference. This MRL struc-

ture can also be used to improve language genera-

tion.

Tactical generation can also be seen as the inverse

of semantic parsing, the task of mapping NL sen-

tences to MRs. In this paper, we show how to “in-

vert” a recent SMT-based semantic parser, WASP

(Wong and Mooney, 2006), in order to produce a

more effective generation system. WASP exploits

the formal syntax of the MRL by learning a trans-

lator (based on a statistical synchronous context-

free grammar) that maps an NL sentence to a lin-

earized parse-tree of its MR rather than to a flat MR

string. In addition to exploiting the formal MRL

grammar, our approach also allows the same learned

grammar to be used for both parsing and genera-

tion, an elegant property that has been widely ad-

vocated (Kay, 1975; Jacobs, 1985; Shieber, 1988).

We present experimental results in two domains pre-

viously used to test WASP’s semantic parsing abil-

ity: mapping NL queries to a formal database query

language, and mapping NL soccer coaching instruc-

tions to a formal robot command language. WASP
−1

is shown to produce a more accurate NL generator

than PHARAOH.

We also show how the idea of generating from

linearized parse-trees rather than flat MRs, used

effectively in WASP
−1, can also be exploited in

PHARAOH. A version of PHARAOH that exploits

this approach is experimentally shown to produce

more accurate generators that are more competi-

tive with WASP
−1’s. Finally, we also show how
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((bowner our {4})

(do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6

should stay in the left side of our half.

(a) CLANG

answer(state(traverse 1(riverid(’ohio’))))

What states does the Ohio run through?

(b) GEOQUERY

Figure 1: Sample meaning representations

aspects of PHARAOH’s phrase-based model can be

used to improve WASP
−1, resulting in a hybrid sys-

tem whose overall performance is the best.

2 MRLs and Test Domains

In this work, we consider input MRs with a hi-

erarchical structure similar to Moore (2002). The

only restriction on the MRL is that it be defined

by an available unambiguous context-free grammar

(CFG), which is true for almost all computer lan-

guages. We also assume that the order in which MR

predicates appear is relevant, i.e. the order can affect

the meaning of the MR. Note that the order in which

predicates appear need not be the same as the word

order of the target NL, and therefore, the content

planner need not know about the target NL grammar

(Shieber, 1993).

To ground our discussion, we consider two ap-

plication domains which were originally used to

demonstrate semantic parsing. The first domain is

ROBOCUP. In the ROBOCUP Coach Competition

(www.robocup.org), teams of agents compete in a

simulated soccer game and receive coach advice

written in a formal language called CLANG (Chen

et al., 2003). The task is to build a system that trans-

lates this formal advice into English. Figure 1(a)

shows a piece of sample advice.

The second domain is GEOQUERY, where a func-

tional, variable-free query language is used for

querying a small database on U.S. geography (Kate

et al., 2005). The task is to translate formal queries

into NL. Figure 1(b) shows a sample query.

3 Generation using SMT Methods

In this section, we show how SMT methods can be

used to construct a tactical generator. This is in con-

trast to existing work that focuses on the use of NLG

in interlingual MT (Whitelock, 1992), in which the

roles of NLG and MT are switched. We first con-

sider using a phrase-based SMT system, PHARAOH,

for NLG. Then we show how to invert an SMT-based

semantic parser, WASP, to produce a more effective

generation system.

3.1 Generation using PHARAOH

PHARAOH (Koehn et al., 2003) is an SMT system

that uses phrases as basic translation units. Dur-

ing decoding, the source sentence is segmented into

a sequence of phrases. These phrases are then re-

ordered and translated into phrases in the target lan-

guage, which are joined together to form the output

sentence. Compared to earlier word-based methods

such as IBM Models (Brown et al., 1993), phrase-

based methods such as PHARAOH are much more

effective in producing idiomatic translations, and

are currently the best performing methods in SMT

(Koehn and Monz, 2006).

To use PHARAOH for NLG, we simply treat the

source MRL as an NL, so that phrases in the MRL

are sequences of MR tokens. Note that the grammat-

icality of MRs is not an issue here, as they are given

as input.

3.2 WASP: The Semantic Parsing Algorithm

Before showing how generation can be performed

by inverting a semantic parser, we present a brief

overview of WASP (Wong and Mooney, 2006), the

SMT-based semantic parser on which this work is

based.

To describe WASP, it is best to start with an ex-

ample. Consider the task of translating the English

sentence in Figure 1(a) into CLANG. To do this,

we may first generate a parse tree of the input sen-

tence. The meaning of the sentence is then ob-

tained by combining the meanings of the phrases.

This process can be formalized using a synchronous

context-free grammar (SCFG), originally developed

as a grammar formalism that combines syntax anal-

ysis and code generation in compilers (Aho and Ull-

man, 1972). It has been used in syntax-based SMT

to model the translation of one NL to another (Chi-

ang, 2005). A derivation for a SCFG gives rise to

multiple isomorphic parse trees. Figure 2 shows a

partial parse of the sample sentence and its corre-
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RULE

If CONDITION

TEAM

our

player UNUM

4

has the ball

...

(a) English

RULE

( CONDITION

(bowner TEAM

our

{ UNUM

4

})

...)

(b) CLANG

Figure 2: Partial parse trees for the CLANG statement and its English gloss shown in Figure 1(a)

sponding CLANG parse from which an MR is con-

structed. Note that the two parse trees are isomor-

phic (ignoring terminals).

Each SCFG rule consists of a non-terminal, X ,

on the left-hand side (LHS), and a pair of strings,

〈α, β〉, on the right-hand side (RHS). The non-

terminals in β are a permutation of the non-terminals

in α (indices are used to show their correspondence).

In WASP, α denotes an NL phrase, and X → β is

a production of the MRL grammar. Below are the

SCFG rules that generate the parses in Figure 2:

RULE → 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2 )〉

CONDITION → 〈TEAM 1 player UNUM 2 has the

ball , (bowner TEAM 1 {UNUM 2 })〉

TEAM → 〈our , our〉
UNUM → 〈4 , 4〉

All derivations start with a pair of co-indexed start

symbols of the MRL grammar, 〈S 1 , S 1 〉, and each

step involves the rewriting of a pair of co-indexed

non-terminals (by α and β, respectively). Given an

input sentence, e, the task of semantic parsing is to

find a derivation that yields 〈e, f〉, so that f is an MR

translation of e.

Parsing with WASP requires a set of SCFG rules.

These rules are learned using a word alignment

model, which finds an optimal mapping from words

to MR predicates given a set of training sentences

and their correct MRs. Word alignment models have

been widely used for lexical acquisition in SMT

(Brown et al., 1993; Koehn et al., 2003). To use

a word alignment model in the semantic parsing

scenario, we can treat the MRL simply as an NL,

and MR tokens as words, but this often leads to

poor results. First, not all MR tokens carry spe-

cific meanings. For example, in CLANG, parenthe-

ses and braces are delimiters that are semantically

vacuous. Such tokens can easily confuse the word

alignment model. Second, MR tokens may exhibit

polysemy. For example, the CLANG predicate pt

has three meanings based on the types of arguments

it is given (Chen et al., 2003). Judging from the pt

token alone, the word alignment model would not be

able to identify its exact meaning.

A simple, principled way to avoid these difficul-

ties is to represent an MR using a list of productions

used to generate it. This list is used in lieu of the

MR in a word alignment. Figure 3 shows an exam-

ple. Here the list of productions corresponds to the

top-down, left-most derivation of an MR. For each

MR there is a unique linearized parse-tree, since

the MRL grammar is unambiguous. Note that the

structure of the parse tree is preserved through lin-

earization. This allows us to extract SCFG rules in a

bottom-up manner, assuming the alignment is n-to-1
(each word is linked to at most one production). Ex-

traction starts with productions whose RHS is all ter-

minals, followed by those with non-terminals. (De-

tails can be found in Wong and Mooney (2006).)

The rules extracted from Figure 3 would be almost

the same as those used in Figure 2, except the one for

bowner: CONDITION → 〈TEAM 1 player UNUM 2

has (1) ball, (bowner TEAM 1 {UNUM 2 })〉. The

token (1) denotes a word gap of size 1, due to the un-

aligned word the that comes between has and ball.

It can be seen as a non-terminal that expands to at

most one word, allowing for some flexibility in pat-

tern matching.

In WASP, GIZA++ (Och and Ney, 2003) is used

to obtain the best alignments from the training ex-

amples. Then SCFG rules are extracted from these

alignments. The resulting SCFG, however, can be
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RULE → (CONDITION DIRECTIVE)

TEAM → our

UNUM → 4

If

our

player

4

has

the

ball

CONDITION → (bowner TEAM {UNUM})

Figure 3: Partial word alignment for the CLANG statement and its English gloss shown in Figure 1(a)

ambiguous. Therefore, a maximum-entropy model

that defines the conditional probability of deriva-

tions (d) given an input sentence (e) is used for dis-

ambiguation:

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (1)

The feature functions, fi, are the number of times

each rule is used in a derivation. Zλ(e) is the

normalizing factor. The model parameters, λi, are

trained using L-BFGS (Nocedal, 1980) to maxi-

mize the conditional log-likelihood of the training

examples (with a Gaussian prior). The decoding

task is thus to find a derivation d
⋆ that maximizes

Prλ(d⋆|e), and the output MR translation, f⋆, is the

yield of d
⋆. This can be done in cubic time with re-

spect to the length of e using an Earley chart parser.

3.3 Generation by Inverting WASP

Now we show how to invert WASP to produce

WASP
−1, and use it for NLG. We can use the same

grammar for both parsing and generation, a partic-

ularly appealing aspect of using WASP. Since an

SCFG is fully symmetric with respect to both gen-

erated strings, the same chart used for parsing can

be easily adapted for efficient generation (Shieber,

1988; Kay, 1996).

Given an input MR, f , WASP
−1 finds a sentence

e that maximizes Pr(e|f). It is difficult to directly

model Pr(e|f), however, because it has to assign

low probabilities to output sentences that are not

grammatical. There is no such requirement for pars-

ing, because the use of the MRL grammar ensures

the grammaticality of all output MRs. For genera-

tion, we need an NL grammar to ensure grammati-

cality, but this is not available a priori.

This motivates the noisy-channel model for

WASP
−1, where Pr(e|f) is divided into two smaller

components:

arg max
e

Pr(e|f) = arg max
e

Pr(e) Pr(f |e) (2)

Pr(e) is the language model, and Pr(f |e) is the

parsing model. The generation task is to find a sen-

tence e such that (1) e is a good sentence a priori,

and (2) its meaning is the same as the input MR. For

the language model, we use an n-gram model, which

is remarkably useful in ranking candidate generated

sentences (Knight and Hatzivassiloglou, 1995; Ban-

galore et al., 2000; Langkilde-Geary, 2002). For the

parsing model, we re-use the one from WASP (Equa-

tion 1). Hence computing (2) means maximizing the

following:

max
e

Pr(e) Pr(f |e)

≈ max
d∈D(f)

Pr(e(d)) Prλ(d|e(d))

= max
d∈D(f)

Pr(e(d)) · exp
∑

i
λifi(d)

Zλ(e(d))
(3)

where D(f) is the set of derivations that are con-

sistent with f , and e(d) is the output sentence that

a derivation d yields. Compared to most exist-

ing work on generation, WASP−1 has the following

characteristics:

1. It does not require any lexical information in

the input MR, so lexical selection is an integral

part of the decoding algorithm.

2. Each predicate is translated to a phrase. More-

over, it need not be a contiguous phrase (con-

sider the SCFG rule for bowner in Section 3.2).

For decoding, we use an Earley chart generator

that scans the input MR from left to right. This im-

plies that each chart item covers a certain substring

of the input MR, not a subsequence in general. It
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requires the order in which MR predicates appear

to be fixed, i.e. the order determines the meaning

of the MR. Since the order need not be identical to

the word order of the target NL, there is no need for

the content planner to know the target NL grammar,

which is learned from the training data.

Overall, the noisy-channel model is a weighted

SCFG, obtained by intersecting the NL side of the

WASP SCFG with the n-gram language model. The

chart generator is very similar to the chart parser, ex-

cept for the following:

1. To facilitate the calculation of Pr(e(d)), chart

items now include a list of (n−1)-grams that encode

the context in which output NL phrases appear. The

size of the list is 2N + 2, where N is the number of

non-terminals to be rewritten in the dotted rule.

2. Words are generated from word gaps through

special rules (g) → 〈α, ∅〉, where the word gap,

(g), is treated as a non-terminal, and α is the NL

string that fills the gap (|α| ≤ g). The empty set

symbol indicates that the NL string does not carry

any meaning. There are similar constructs in Car-

roll et al. (1999) that generate function words. Fur-

thermore, to improve efficiency, our generator only

considers gap fillers that have been observed during

training.

3. The normalizing factor in (3), Zλ(e(d)), is not

a constant and varies across the output string, e(d).
(Note that Zλ(e) is fixed for parsing.) This is un-

fortunate because the calculation of Zλ(e(d)) is ex-

pensive, and it is not easy to incorporate it into the

chart generation algorithm. Normalization is done

as follows. First, compute the k-best candidate out-

put strings based on the unnormalized version of (3),

Pr(e(d)) · exp
∑

i
λifi(d). Then re-rank the list by

normalizing the scores using Zλ(e(d)), which is ob-

tained by running the inside-outside algorithm on

each output string. This results in a decoding al-

gorithm that is approximate—the best output string

might not be in the k-best list—and takes cubic time

with respect to the length of each of the k candidate

output strings (k = 100 in our experiments).

Learning in WASP−1 involves two steps. First, a

back-off n-gram language model with Good-Turing

discounting and no lexical classes2 is built from all

2This is to ensure that the same language model is used in
all systems that we tested.

training sentences using the SRILM Toolkit (Stolcke,

2002). We use n = 2 since higher values seemed to

cause overfitting in our domains. Next, the parsing

model is trained as described in Section 3.2.

4 Improving the SMT-based Generators

The SMT-based generation algorithms, PHARAOH

and WASP
−1, while reasonably effective, can be

substantially improved by borrowing ideas from

each other.

4.1 Improving the PHARAOH-based Generator

A major weakness of PHARAOH as an NLG sys-

tem is its inability to exploit the formal structure of

the MRL. Like WASP
−1, the phrase extraction al-

gorithm of PHARAOH is based on the output of a

word alignment model such as GIZA++ (Koehn et

al., 2003), which performs poorly when applied di-

rectly to MRLs (Section 3.2).

We can improve the PHARAOH-based generator

by supplying linearized parse-trees as input rather

than flat MRs. As a result, the basic translation units

are sequences of MRL productions, rather than se-

quences of MR tokens. This way PHARAOH can

exploit the formal grammar of the MRL to produce

high-quality phrase pairs. The same idea is used in

WASP
−1 to produce high-quality SCFG rules. We

call the resulting hybrid NLG system PHARAOH++.

4.2 Improving the WASP-based Generator

There are several aspects of PHARAOH that can be

used to improve WASP
−1. First, the probabilistic

model of WASP−1 is less than ideal as it requires

an extra re-ranking step for normalization, which is

expensive and prone to over-pruning. To remedy this

situation, we can borrow the probabilistic model of

PHARAOH, and define the parsing model as:

Pr(d|e(d)) =
∏

d∈d

w(r(d)) (4)

which is the product of the weights of the rules used

in a derivation d. The rule weight, w(X → 〈α, β〉),
is in turn defined as:

P (β|α)λ1P (α|β)λ2Pw(β|α)λ3Pw(α|β)λ4 exp(−|α|)λ5

where P (β|α) and P (α|β) are the relative frequen-

cies of β and α, and Pw(β|α) and Pw(α|β) are
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the lexical weights (Koehn et al., 2003). The word

penalty, exp(−|α|), allows some control over the

output sentence length. Together with the language

model, the new formulation of Pr(e|f) is a log-

linear model with λi as parameters. The advantage

of this model is that maximization requires no nor-

malization and can be done exactly and efficiently.

The model parameters are trained using minimum

error-rate training (Och, 2003).

Following the phrase extraction phase in

PHARAOH, we eliminate word gaps by incorpo-

rating unaligned words as part of the extracted

NL phrases (Koehn et al., 2003). The reason is

that while word gaps are useful in dealing with

unknown phrases during semantic parsing, for

generation, using known phrases generally leads to

better fluency. For the same reason, we also allow

the extraction of longer phrases that correspond to

multiple predicates (but no more than 5).

We call the resulting hybrid system WASP−1++.

It is similar to the syntax-based SMT system of Chi-

ang (2005), which uses both SCFG and PHARAOH’s

probabilistic model. The main difference is that we

use the MRL grammar to constrain rule extraction,

so that significantly fewer rules are extracted, mak-

ing it possible to do exact inference.

5 Experiments

We evaluated all four SMT-based NLG systems in-

troduced in this paper: PHARAOH, WASP
−1, and the

hybrid systems, PHARAOH++ and WASP
−1++.

We used the ROBOCUP and GEOQUERY corpora

in our experiments. The ROBOCUP corpus consists

of 300 pieces of coach advice taken from the log files

of the 2003 ROBOCUP Coach Competition. The ad-

vice was written in CLANG and manually translated

to English (Kuhlmann et al., 2004). The average

MR length is 29.47 tokens, or 12.82 nodes for lin-

earized parse-trees. The average sentence length is

22.52. The GEOQUERY corpus consists of 880 En-

glish questions gathered from various sources. The

questions were manually translated to the functional

GEOQUERY language (Kate et al., 2005). The av-

erage MR length is 17.55 tokens, or 5.55 nodes for

linearized parse-trees. The average sentence length

is 7.57.

Reference: If our player 2, 3, 7 or 5 has the ball

and the ball is close to our goal line ...

PHARAOH++: If player 3 has the ball is in 2 5 the

ball is in the area near our goal line ...

WASP
−1++: If players 2, 3, 7 and 5 has the ball

and the ball is near our goal line ...

Figure 4: Sample partial system output in the

ROBOCUP domain

ROBOCUP GEOQUERY

BLEU NIST BLEU NIST

PHARAOH 0.3247 5.0263 0.2070 3.1478

WASP
−1 0.4357 5.4486 0.4582 5.9900

PHARAOH++ 0.4336 5.9185 0.5354 6.3637

WASP
−1++ 0.6022 6.8976 0.5370 6.4808

Table 1: Results of automatic evaluation; bold type

indicates the best performing system (or systems)

for a given domain-metric pair (p < 0.05)

5.1 Automatic Evaluation

We performed 4 runs of 10-fold cross validation, and

measured the performance of the learned generators

using the BLEU score (Papineni et al., 2002) and the

NIST score (Doddington, 2002). Both MT metrics

measure the precision of a translation in terms of the

proportion of n-grams that it shares with the refer-

ence translations, with the NIST score focusing more

on n-grams that are less frequent and more informa-

tive. Both metrics have recently been used to eval-

uate generators (Langkilde-Geary, 2002; Nakanishi

et al., 2005; Belz and Reiter, 2006).

All systems were able to generate sentences for

more than 97% of the input. Figure 4 shows some

sample output of the systems. Table 1 shows the

automatic evaluation results. Paired t-tests were

used to measure statistical significance. A few

observations can be made. First, WASP
−1 pro-

duced a more accurate generator than PHARAOH.

Second, PHARAOH++ significantly outperformed

PHARAOH, showing the importance of exploiting

the formal structure of the MRL. Third, WASP
−1++

significantly outperformed WASP
−1. Most of the

gain came from PHARAOH’s probabilistic model.

Decoding was also 4–11 times faster, despite ex-

act inference and a larger grammar due to extrac-

tion of longer phrases. Lastly, WASP
−1++ signifi-

cantly outperformed PHARAOH++ in the ROBOCUP
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ROBOCUP GEOQUERY

Flu. Ade. Flu. Ade.

PHARAOH++ 2.5 2.9 4.3 4.7

WASP−1++ 3.6 4.0 4.1 4.7

Table 2: Results of human evaluation

domain. This is because WASP
−1++ allows dis-

contiguous NL phrases and PHARAOH++ does not.

Such phrases are commonly used in ROBOCUP

for constructions like: players 2 , 3 , 7 and 5;

26.96% of the phrases generated during testing were

discontiguous. When faced with such predicates,

PHARAOH++ would consistently omit some of the

words: e.g. players 2 3 7 5, or not learn any phrases

for those predicates at all. On the other hand, only

4.47% of the phrases generated during testing for

GEOQUERY were discontiguous, so the advantage of

WASP
−1++ over PHARAOH++ was not as obvious.

Our BLEU scores are not as high as those re-

ported in Langkilde-Geary (2002) and Nakanishi et

al. (2005), which are around 0.7–0.9. However,

their work involves the regeneration of automati-

cally parsed text, and the MRs that they use, which

are essentially dependency parses, contain extensive

lexical information of the target NL.

5.2 Human Evaluation

Automatic evaluation is only an imperfect substitute

for human assessment. While it is found that BLEU

and NIST correlate quite well with human judgments

in evaluating NLG systems (Belz and Reiter, 2006),

it is best to support these figures with human evalu-

ation, which we did on a small scale. We recruited 4

native speakers of English with no previous experi-

ence with the ROBOCUP and GEOQUERY domains.

Each subject was given the same 20 sentences for

each domain, randomly chosen from the test sets.

For each sentence, the subjects were asked to judge

the output of PHARAOH++ and WASP
−1++ in terms

of fluency and adequacy. They were presented with

the following definition, adapted from Koehn and

Monz (2006):

Score Fluency Adequacy

5 Flawless English All meaning

4 Good English Most meaning

3 Non-native English Some meaning

PHARAOH++ WASP
−1++

BLEU NIST BLEU NIST

English 0.5344 5.3289 0.6035 5.7133

Spanish 0.6042 5.6321 0.6175 5.7293

Japanese 0.6171 4.5357 0.6585 4.6648

Turkish 0.4562 4.2220 0.4824 4.3283

Table 3: Results of automatic evaluation on the mul-

tilingual GEOQUERY data set

Score Fluency Adequacy

2 Disfluent English Little meaning

1 Incomprehensible No meaning

For each generated sentence, we computed the av-

erage of the 4 human judges’ scores. No score

normalization was performed. Then we compared

the two systems using a paired t-test. Table 2

shows that WASP
−1++ produced better generators

than PHARAOH++ in the ROBOCUP domain, con-

sistent with the results of automatic evaluation.

5.3 Multilingual Experiments

Lastly, we describe our experiments on the mul-

tilingual GEOQUERY data set. The 250-example

data set is a subset of the larger GEOQUERY cor-

pus. All English questions in this data set were

manually translated into Spanish, Japanese and

Turkish, while the corresponding MRs remain un-

changed. Table 3 shows the results, which are sim-

ilar to previous results on the larger GEOQUERY

corpus. WASP
−1++ outperformed PHARAOH++

for some language-metric pairs, but otherwise per-

formed comparably.

6 Related Work

Numerous efforts have been made to unify the tasks

of semantic parsing and tactical generation. One of

the earliest espousals of the notion of grammar re-

versability can be found in Kay (1975). Shieber

(1988) further noted that not only a single gram-

mar can be used for parsing and generation, but the

same language-processing architecture can be used

for both tasks. Kay (1996) identified parsing charts

as such an architecture, which led to the develop-

ment of various chart generation algorithms: Car-

roll et al. (1999) for HPSG, Bangalore et al. (2000)

for LTAG, Moore (2002) for unification grammars,
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White and Baldridge (2003) for CCG. More re-

cently, statistical chart generators have emerged, in-

cluding White (2004) for CCG, Carroll and Oepen

(2005) and Nakanishi et al. (2005) for HPSG. Many

of these systems, however, focus on the task of sur-

face realization—inflecting and ordering words—

which ignores the problem of lexical selection. In

contrast, our SMT-based methods integrate lexical

selection and realization in an elegant framework

and automatically learn all of their linguistic knowl-

edge from an annotated corpus.

7 Conclusion

We have presented four tactical generation systems

based on various SMT-based methods. In particular,

the hybrid system produced by inverting the WASP

semantic parser shows the best overall results across

different application domains.
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Abstract

We present a sentence compression system based
on synchronous context-free grammars (SCFG),
following the successful noisy-channel approach
of (Knight and Marcu, 2000). We define a head-
driven Markovization formulation of SCFG dele-
tion rules, which allows us to lexicalize probabili-
ties of constituent deletions. We also use a robust
approach for tree-to-tree alignment between arbi-
trary document-abstract parallel corpora, which lets
us train lexicalized models with much more data
than previous approaches relying exclusively on
scarcely available document-compression corpora.
Finally, we evaluate different Markovized models,
and find that our selected best model is one that ex-
ploits head-modifier bilexicalization to accurately
distinguish adjuncts from complements, and that
produces sentences that were judged more gram-
matical than those generated by previous work.

1 Introduction
Sentence compression addresses the problem of re-
moving words or phrases that are not necessary
in the generated output of, for instance, summa-
rization and question answering systems. Given
the need to ensure grammatical sentences, a num-
ber of researchers have used syntax-directed ap-
proaches that perform transformations on the out-
put of syntactic parsers (Jing, 2000; Dorr et al.,
2003). Some of them (Knight and Marcu, 2000;
Turner and Charniak, 2005) take an empirical ap-
proach, relying on formalisms equivalent to proba-
bilistic synchronous context-free grammars (SCFG)

∗This material is based on research supported in part
by the U.S. National Science Foundation (NSF) under Grant
No. IIS-05-34871 and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-06-C-0023.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or DARPA.

(Lewis and Stearns, 1968; Aho and Ullman, 1969) to
extract compression rules from aligned Penn Tree-
bank (PTB) trees. While their approach proved suc-
cessful, their reliance on standard maximum like-
lihood estimators for SCFG productions results in
considerable sparseness issues, especially given the
relative flat structure of PTB trees; in practice, many
SCFG productions are seen only once. This problem
is exacerbated for the compression task, which has
only scarce training material available.

In this paper, we present a head-driven
Markovization of SCFG compression rules, an
approach that was successfully used in syntactic
parsing (Collins, 1999; Klein and Manning, 2003)
to alleviate issues intrinsic to relative frequency
estimation of treebank productions. Markovization
for sentence compression provides several benefits,
including the ability to condition deletions on
a flexible amount of syntactic context, to treat
head-modifier dependencies independently, and to
lexicalize SCFG productions.

Another part of our effort focuses on better align-
ment models for extracting SCFG compression rules
from parallel data, and to improve upon (Knight
and Marcu, 2000), who could only exploit 1.75% of
the Ziff-Davis corpus because of stringent assump-
tions about human abstractive behavior. To alleviate
their restrictions, we rely on a robust approach for
aligning trees of arbitrary document-abstract sen-
tence pairs. After accounting for sentence pairs with
both substitutions and deletions, we reached a reten-
tion of more than 25% of the Ziff-Davis data, which
greatly benefited the lexical probabilities incorpo-
rated into our Markovized SCFGs.

Our work provides three main contributions:
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(1) Our lexicalized head-driven Markovization
yields more robust probability estimates, and our
compressions outperform (Knight and Marcu, 2000)
according to automatic and human evaluation.
(2) We provide a comprehensive analysis of the im-
pact of different Markov orders for sentence com-
pression, similarly to a study done for PCFGs (Klein
and Manning, 2003). (3) We provide a framework
for exploiting document-abstract sentence pairs that
are not purely compressive, and augment the avail-
able training resources for syntax-directed sentence
compression systems.

2 Synchronous Grammars for Sentence
Compression

One successful syntax-driven approach (Knight and
Marcu, 2000, henceforth K&M) relies on syn-
chronous context-free grammars (SCFG) (Lewis
and Stearns, 1968; Aho and Ullman, 1969). SCFGs
can be informally defined as context-free grammars
(CFGs) whose productions have two right-hand side
strings instead of one, namely source and target
right-hand side. In the case of sentence compres-
sion, we restrict the target side to be a sub-sequence
of the source side (possibly identical), and we will
call this restricted grammar a deletion SCFG. For in-
stance, a deletion SCFG rule that removes an adver-
bial phrase (ADVP) between an noun phrase (NP)
and a verb phrase (VP) may be written as follows:

S→ 〈NP ADVP VP, NP VP〉
In a sentence compression framework similar to

the one presented by K&M, we build SCFGs that
are fully trainable from a corpus of document and
reduced sentences. Such an approach comprises
two subproblems: (1) transform tree pairs into syn-
chronous grammar derivations; (2) based on these
derivations, assign probabilities to deletion SCFG
productions, and more generally, to compressions
produced by such grammars. Since the main point of
our paper lies in the exploration of better probability
estimates through Markovization and lexicalization
of SCFGs, we first address the latter problem, and
discuss the task of building synchronous derivations
only later in Section 4.

2.1 Stochastic Synchronous Grammars

The overall goal of a sentence compression system is
to transform a given input sentence f into a concise

and grammatical sentence c ∈ C, which is a sub-
sequence of f . Similarly to K&M and many suc-
cessful syntactic parsers (Collins, 1999; Klein and
Manning, 2003), our sentence compression system
is generative, and attempts to find the optimal com-
pression ĉ by estimating the following function:1

ĉ = arg max
c∈C

{
p(c|f)

}
= arg max

c∈C

{
p(f , c)

}
(1)

If τ(f , c) is the set of all tree pairs that yield (f , c)
according to some underlying SCFG, we can esti-
mate the probability of the sentence pair using:

p(f , c) =
∑

(πf ,πc)∈τ(f ,c)

P (πf , πc) (2)

We note that, in practice (and as in K&M), Equa-
tion 2 is often approximated by restricting τ(f , c)
to a unique full tree π̂f , the best hypothesis of an
off-the-shelf syntactic parser. This implies that each
possible compression c is the target-side yield of at
most one SCFG derivation.

As in standard PCFG history-based models, the
probability of the entire structure (Equation 2) is fac-
tored into probabilities of grammar productions. If
θ is a derivation θ = r1 ◦ · · · ◦ rj · · · ◦ rJ , where
rj denotes the SCFG rule lj → 〈αjf , α

j
c〉, we get:

p(πf , πc) =
J∏
j=1

p(αjf , α
j
c|lj) (3)

The question we will now address is how to esti-
mate the probability p(αjf , α

j
c|lj) of each SCFG pro-

duction.

2.2 Lexicalized Head-Driven Markovization of
Synchronous Grammars

A main issue in our enterprise is to reliably estimate
productions of deletion SCFGs. In a sentence com-
pression framework as the one presented by K&M,
we use aligned trees of the form of the Penn Tree-
bank (PTB) (Marcus et al., 1994) to acquire and
score SCFG productions. However, the use of the
PTB structure faces many challenges also encoun-
tered in probabilistic parsing.

1In their noisy-channel approach, K&M further break down
p(c, f) into p(f |c) · p(c), which we refrain from doing for rea-
sons that will become obvious later.
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Firstly, PTB tree structures are relatively flat, par-
ticularly within noun phrases. For instance, adjec-
tive phrases (ADJP)—which are generally good can-
didates for deletions—appear in 90 different NP-
rooted SCFG productions in Ziff-Davis,2 61 of
which appear only once, e.g., NP → 〈DT ADJP JJ
NN NN, DT JJ NN NN〉. While it may seem ad-
vantageous to maintain many constituents within the
same domain of locality of an SCFG production, as
we may hope to exploit its large syntactic context to
condition deletions more accurately, the sparsity of
such productions make them poor candidates for rel-
ative frequency estimation, especially in a task with
limited quantities of training material. Indeed, our
base training corpus described in Section 4 contains
only 951 SCFG productions, 593 appearing once.

Secondly, syntactic categories in the PTB are par-
ticularly coarse grained, and lead to many incorrect
context-free assumptions. Some important distinc-
tions, such as between arguments and adjuncts, are
beyond the scope of the PTB annotation, and it is
often difficult to determine out of context whether a
given constituent can safely be deleted from a right-
hand side.

One first type of annotation that can effectively be
added to each syntactic category is its lexical head
and head part-of-speech (POS), following work in
syntactic parsing (Collins, 1999). This type of an-
notation is particular beneficial in the case of, e.g.,
prepositional phrases (PP), which may be either
complement or adjunct. As in the case of Figure 1
(in which adjuncts appear in italic), knowing that the
PP headed by “from” appears in a VP headed by
“fell” helps us to determine that the PP is a com-
plement to the verb “fell”, and that it should pre-
sumably not be deleted. Conversely, the PP headed
by “because” modifying the same verb is an adjunct,
and can safely be deleted if unimportant.3 Also, as
discussed in (Klein and Manning, 2003), POS an-
notation can be useful as a means of backing off
to more frequently occurring head-modifier POS oc-
currences (e.g., VBD-IN) when specific bilexical co-

2Details about the SCFG extraction procedure are given in
Section 4. In short, we refer here to a grammar generated from
823 sentence pairs.

3The PP headed by “from” is an optional argument, and thus
may still be deleted. Our point is that lexical information in gen-
eral should help give lower scores to deletions of constituents
that are grammatically more prominent.

NN

Earning

NP

RB

also

ADVP

VBD

fell IN

from DT

the

JJ

year-ago

NN

period

NP

PP

IN

because

IN

of VBG

slowing

NN

microchip

NN

demand

NP

PP

VP .

.

S

Figure 1: Penn Treebank tree with adjuncts in italic.

occurrences are sparsely seen (e.g., “fell”-“from”).
At a lower level, lexicalization is clearly desirable
for pre-terminals. Indeed, current SCFG models
such as K&M have no direct way of preventing
highly improbable single word removals, such as
deletions of adverbs “never” or “nowhere”, which
may turn a negative statement into a positive one.4

A second type of annotation that can be added to
syntactic categories is the so-called parent annota-
tion (Johnson, 1998), which was effectively used in
syntactic parsing to break unreasonable context-free
assumptions. For instance, a PP with a VP parent
is marked as PPˆVP. It is reasonable to assume that,
e.g., that constituents deep inside a PP have more
chances to be removed than otherwise expected, and
one may seek to increase the amount of vertical
context that is available for conditioning each con-
stituent deletion.

To achieve the above desiderata for better SCFG
probability estimates—i.e., reduce the amount of
sister annotation within each SCFG production, by
conditioning deletions on a context smaller than an
entire right-hand side, and at the same time in-
crease the amount of ancestor and descendent an-
notation through parent (or ancestor) annotation and
lexicalization—we follow the approach of (Collins,
1999; Klein and Manning, 2003), i.e., factor-
ize n-ary grammar productions into products of n
right-hand side probabilities, a technique sometimes
called Markovization.

Markovization is generally head-driven, i.e., re-
flects a decomposition centered around the head of
each CFG production:

l→ ∆Lm · · ·L1HR1 · · ·Rn∆ (4)
4K&M incorporate lexical probabilities through n-gram

models, but such language models are obviously not good for
preventing such unreasonable deletions.
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where H is the head, L1, . . . , Lm the left modi-
fiers, R1, . . . , Rn are right modifiers, and ∆ termi-
nation symbols needed for accurate probability es-
timations (e.g., to capture the fact that certain con-
stituents are more likely than others to be the right-
most constituent); for simplicity, we will ignore ∆
in later discussions. For a given SCFG production
l → 〈αf , αc〉, we ask, given the source RHS αf
that is assumed given (e.g., provided by a syntactic
parser), which of its RHS elements are also present
in αc. That is, we write:

p(αc|αf , l) = (5)

p(kml , · · · , k1
l , kh, k

1
r , · · · , knr |αf , l)

where kh, kil , k
j
r (‘k’ for keep) are binary variables

that are true if and only if constituentsH,Li, Rj (re-
spectively) of the source RHS αf are present in the
target side αc. Note that the conditional probabil-
ity in Equation 5 enables us to estimate Equation 3,
since p(αf , αc|l) = p(αc|αf , l) · p(αf |l). We can
rely on a state-of-the-art probabilistic parser to ef-
fectively compute either p(αf |l) or the probability
of the entire tree πf , and need not worry about esti-
mating this term. In the case of sentence compres-
sion from the one-best hypothesis of the parser, we
can ignore p(αf |l) altogether, since πf is the same
for all compressions.

We can rewrite Equation 5 exactly using a head-
driven infinite-horizon Markovization:

p(αc|αf , l) = p(kh|αf , l) (6)

·
∏

i=1...m

p(kil |k1
l , · · · , ki−1

l , kh, αf , l)

·
∏

i=1...n

p(kir|k1
r , · · · , ki−1

r , kh,Λ, αf , l)

where Λ = (k1
l , · · · , kml ) is a term needed by the

chain rule. One key issue is to make linguistically
plausible assumptions to determine which condi-
tioning variables in the terms should be deleted. Fol-
lowing our discussion in the first part of this section,
we may start by making an order-s Markov approx-
imation centered around the head, i.e., we condi-
tion each binary variable (e.g., kir) on a context of
up to s sister constituents between the current con-
stituent and the head (e.g., (Ri−s, . . . , Ri)). In or-
der to incorporate bilexical dependencies between

the head and each modifier, we also condition all
modifier probabilities on head variables H (and kh).
These assumptions are overall quite similar to the
ones made in Markovized parsing models. If we as-
sume that all other conditioning variables in Equa-
tion 6 are irrelevant, we write:

p(αc|αf , l) = ph(kh|H, l) (7)

·
∏

i=1...m

pl(kil |Li−s, ..., Li, ki−sl , ..., ki−1
l ,H, kh, l)

·
∏

i=1...n

pr(kir|Ri−s, ..., Ri, ki−sr , ..., ki−1
r ,H, kh, l)

Note that it is important to condition deletions on
both constituent histories (Ri−s, . . . , Ri) and non-
deletion histories (ki−sr , . . . , ki−1

r ); otherwise we
would be unable to perform deletions that must op-
erate jointly, as in production S→〈ADVP COMMA
NP VP, NP VP〉 (in which the ADVP should not be
deleted without the comma). Without binary his-
tories, we often observed superfluous punctuation
symbols and dangling coordinate conjunctions ap-
pearing in our outputs.

Finally, we label l with an order-v ancestor anno-
tation, e.g., for the VP in Figure 1, l = ε for v = 0,
l =VPˆS for v = 2, and so on. We also replace H
and modifiers Li and Ri by lexicalized entries, e.g.,
H =(VP,VBD,fell) and Ri =(PP,IN,from). Note
that to estimate pl(kil | · · · ), we only lexicalize Li

andH , and none of the other conditioning modifiers,
since this would, of course, introduce too many con-
ditioning variables (the same goes for pr(kir| · · · )).
The question of how much sister and vertical (s and
v) context is needed for effective sentence compres-
sion, and whether to use lexical or POS annotation,
will be evaluated in detail in Section 5.

3 The Data
To acquire SCFG productions, we used Ziff-Davis,
a corpus of technical articles and human abstractive
summaries. Articles and summaries are paired by
document, so the first step was to perform sentence
alignment. In the particular case of sentence com-
pression, a simple approach is to just consider com-
pression pairs (f,c), where c is a substring of f. K&M
identified only 1,087 such paired sentences in the en-
tire corpus, which represents a recall of 1.75%.

For our empirical evaluations, we split the data as
follows: among the 1,055 sentences that were taken
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to train systems described in K&M, we selected the
first 32 sentence pairs to be an auxiliary test corpus
(for future work), the next 200 sentences to be our
development corpus, and the remaining 823 to be
our base training corpus (ZD-0), which will be aug-
mented with additional data as explained in the next
section. We feel it is important to use a relatively
large development corpus, since we will provide in
Section 5 detailed analyses of model selection on
the development set (e.g., by evaluating different
Markov structures), and we want these findings to
be as significant as possible. Finally, we used the
same test data as K&M for human evaluation pur-
poses (32 sentence pairs).

4 Tree Alignment and Synchronous Gram-
mar Inference

We now describe methods to train SCFG models
from sentence pairs. Given a tree pair (f , c), whose
respective parses (πf , πc) were generated by the
parser described in (Charniak and Johnson, 2005),
the goal is to transform the tree pair into SCFG
derivations, in order to build relative frequency es-
timates for our Markovized models from observed
SCFG productions. Clearly, the two trees may
sometimes be structurally quite different (e.g., a
given PP may attach to an NP in πf , while attach-
ing to VP in πc), and it is not always possible to
build an SCFG derivation given the constraints in
(πf , πc). The approach taken by K&M is to analyze
both trees and count an SCFG rule whenever two
nodes are “deemed to correspond”, i.e., roots are the
same, and αc is a sub-sequence of αf . This leads
to a quite restricted number of different productions
on our base training set (ZD-0): 823 different pro-
ductions were extracted, 593 of which appear only
once. This first approach has serious limitations;
the assumption that sentence compression appropri-
ately models human abstractive data is particularly
problematic. This considerably limits the amount
of training data that can be exploited in Ziff-Davis
(which contains overall more than 4,000 documents-
abstract pairs), and this makes it very difficult to
train lexicalized models.

An approach to slightly loosen this assumption
is to consider document-abstract sentence pairs in
which the condensed version contains one or more
substitutions or insertions. Consider for example

DT[3]

The[4]

JJ[5]

second[6]

NN[7]

computer[8]

NP[2]

VBD

started RP

up

PRT

VP CC

and VBD[10]

ran[11] IN[13]

without[14] NN[16]

incident[17]

NP[15]

PP[12]

VP[9]

VP .[18]

.[19]

S[1]

DT[3]

The[4]

JJ[5]

second[6]

NN[7]

unit[8]

NP[2]

VBD[10]

ran[11] IN[13]

without[14] NN[16]

incident[17]

NP[15]

PP[12]

VP[9] .[18]

.[19]

S[1]

Figure 2: Full sentence and its revision. While the latter is not a
compression of the former, it could still be used to gather statis-
tics to train a sentence compression system, e.g., to learn the
reduction of a VP coordination.

the tree pair in Figure 2: the two sentences are syn-
tactically very close, but the substitution of “com-
puter” with “unit” makes this sentence pair unus-
able in the framework presented in K&M. Arguably,
there should be ways to exploit abstract sentences
that are slightly reworded in addition to being com-
pressed. To use sentence pairs with insertions and
substitutions, we must find a way to align tree pairs
in order to identify SCFG productions. More specif-
ically, we must define a constituent alignment be-
tween the paired abstract and document sentences,
which determine how the two trees are synchronized
in a derivation. Obtaining this alignment is no triv-
ial matter as the number of non-deleting edits in-
creases. To address this, we synchronized tree pairs
by finding the constituent alignment that minimizes
the edit distance between the two trees, i.e., mini-
mize the number of terminals and non-terminals in-
sertions, substitutions and deletions.5 While criteria

5The minimization problem is known to be NP hard, so we
used an approximation algorithm (Zhang and Shasha, 1989) that
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other than minimum tree edit distance may be effec-
tive, we found—after manual inspections of align-
ments between sentences with less than five non-
deleting edits—that this method generally produces
good alignments. A sample alignment is provided in
Figure 2. Once a constituent alignment is available,
it is then trivial to extract all deletion SCFG rules
available in a tree pair, e.g., NP→ 〈DT JJ NN, DT
JJ NN〉 in the figure.

We also exploited more general tree productions
known as synchronous tree substitution grammar
(STSG) rules, in an approach quite similar to (Turner
and Charniak, 2005). For instance, the STSG rule
rooted at S can be decomposed into two SCFG pro-
ductions if we allow unary rules such as VP→VP to
be freely added to the compressed tree. More specif-
ically, we decompose any STSG rule that has in its
target (compressed) RHS a single context free pro-
duction, and that contains in its source (full) RHS
a single context free production adjoined with any
number of tree adjoining grammar (TAG) auxiliary
trees (Joshi et al., 1975). In the figure, the initial tree
is S → NP VP, and the adjoined (auxiliary) tree is
VP → VP CC VP.6 We found this approach quite
helpful, since most useful compressions that mimic
TAG adjoining operations are missed by the extrac-
tion procedure of K&M.

Since we found that exploiting sentence pairs con-
taining insertions had adverse consequences in terms
of compression accuracies, we only report experi-
ments with sentence pairs containing no insertions.
We gathered sentence pairs with up to six substi-
tutions using minimum edit distance matching (we
will refer to these sets as ZD-0 to ZD-6). With a
limit of up to six substitutions (ZD-6), we were able
to train our models on 16,787 sentences, which rep-
resents about 25% of the total number of summary
sentences of the Ziff-Davis corpus.

5 Experiments
All experiments presented in this section are per-
formed on the Ziff-Davis corpus. We note first that
all probability estimates of our Markovized gram-

runs in polynomial time.
6To determine whether a given one-level tree is an auxiliary,

we simply check the following properties: all its leaves but one
(the “foot node”) must be nodes attached to deleted subtrees
(e.g., VP and CC in the figure), and the foot node (VP[9]) must
have the same syntactic category as the root node.

mars are smoothed. Indeed, incorporating lexical
dependencies within models trained on data sets as
small as 16,000 sentence pairs would be quite fu-
tile without incorporating robust smoothing tech-
niques. Different smoothing techniques were eval-
uated with our models, and we found that interpo-
lated Witten-Bell discounting was the method that
performed best. We used relative frequency es-
timates for each of the models presented in Sec-
tion 2.2 (i.e., ph, pl, pr), and trained pl separately
from pr. We interpolated our most specific models
(lexical heads, POS tags, ancestor and sister annota-
tion) with lower-order models.7

Automatic evaluation on development sets is per-
formed using word-level classification accuracy, i.e.,
the number of words correctly classified as being
either deleted or not deleted, divided by the to-
tal number of words. In our first evaluation, we
experimented with different horizontal and vertical
Markovizations (Table 1). First, it appears that ver-
tical annotation is moderately helpful. It provides
gains in accuracy ranging from .5% to .9% for v = 1
over a simpler models (v = 0), but higher orders
(v > 1) have a tendency to decrease performance.
On the other hand, sister annotation of order 1 is
much more critical, and provides 4.1% improvement
over a simpler model (s = 0, v = 0). Manual exami-
nations of compression outputs confirmed this anal-
ysis: without sister annotation, deletion of punctu-
ation and function words (determiners, coordinate
conjunctions, etc.) is often inaccurate, and compres-
sions clearly lack fluency. This annotation is also
helpful for phrasal deletions; for instance, we found
that PPs are deleted in 31.4% of cases in Ziff-Davis
if they do not immediately follow the head con-
stituent, but this percentage drops to 11.1% for PPs
that immediately follow the head. It seems, how-
ever, that increasing sister annotation beyond s > 1
only provide limited improvements.

In our second evaluation reported in Table 2, we
7We relied on the SRI language modeling (SRILM) toolkit

library for all smoothing experiments. We used the following
order in our deleted interpolation of ph: lexical head, head POS,
ancestor annotation, and head category. For pl and pr , we re-
moved first: lexical head, lexical head of the modifier, head
POS, head POS of the modifier, sister annotation (Li deleted
before kil ), kh, category of the head, category of the modifier.
We experimented with different deletion interpolation order-
ings, and this ordering appears to work quite well in practice,
and was used in all experiments reported in this paper.
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assessed the usefulness of lexical and POS anno-
tation (setting s and v to 0). In the table, we use
M to denote any of the modifiers Li or Ri, and
c, t, w respectively represent syntactic constituent,
POS, and lexical conditioning. While POS annota-
tion is clearly advantageous compared to using only
syntactic categories, adding lexical variables to the
model also helps. As is shown in the table, it is es-
pecially important to know the lexical head of the
modifier we are attempting to delete. The addition of
wm to conditioning variables provides an improve-
ment of 1.3% (from 66.5% to 67.8%) on our op-
timal Ziff-Davis training corpus (ZD-6). Further-
more, bilexical head-modifier dependencies provide
a relatively small improvement of .5% (from 69.8%
to 70.3%) over the best model that does not incor-
porate the lexical head wh. Note that lexical con-
ditioning also helps in the case where the training
data is relatively small (ZD-0), though differences
are less significant, and bilexical dependencies actu-
ally hurt performance. In subsequent experiments,
we experimented with different Markovizations and
lexical dependency combination, and finally settled
with a model (s = 1 and v = 1) incorporating all
conditioning variables listed in the last line of Ta-
ble 2. This final tuning was combined with human
inspection of generated outputs, since certain modi-
fications that positively impacted output quality sel-
dom changed accuracies.

We finally took the best configuration selected
above, and evaluated our model against the noisy-
channel model of K&M on the 32 test sentences se-
lected by them. We performed both automatic and
human evaluation against the output produced by
Knight and Marcu’s original implementation of their
noisy channel model (Table 3). In the former case,
we also provide Simple String Accuracies (SSA).8

For human evaluation, we hired six native-speaker
judges who scored grammaticality and content (im-
portance) with scores from 1 to 5, using instructions
as described in K&M. Both types of evaluations fa-
vored our Markovized model against the noisy chan-
nel model.

Table 4 shows several outputs of our system

8SSA is defined as: SSA = 1 − (I + D + S)/R. The
numerator terms are respectively the number of inserts, deletes,
and substitutions, and R is the length of the reference compres-
sion.

Vertical Horizontal Order
Order s = 0 s = 1 s = 2 s = 3
v = 0 63 67.1 67.2 67.2
v = 1 63.9 67.6 67.7 67.7
v = 2 65.7 66.6 66.9 66.9
v = 3 65.2 66.8 67.1 67

Table 1: Markovizations accuracies on Ziff-Davis devel set.

Conditioning Variables ZD-0 ZD-3 ZD-6
M=cm H=ch 62.2 62.4 64.4
M=(cm, tm) H=ch 63.0 63.4 66.5
M=(cm, wm) H=ch 64.2 65.2 66.7
M=(cm, tm, wm) H=ch 63.8 65.8 67.8
M=(cm, tm, wm) H=(ch, th) 66.7 68.6 69.8
M=(cm, tm, wm) H=(ch, wh) 66.9 68.9 70.3
M=(cm, tm, wm) H=(ch, th, wh) 66.3 69.1 69.8

Table 2: Accuracies on Ziff-Davis devel set with different head-
modifier annotations.

Models Acc SSA Grammar Content Len(%)
NoisyC 61.3 14.6 4.37 ± 0.5 3.87 ± 1.2 70.4
Markov 67.9 31.7 4.68 ± 0.4 4.22 ± 0.4 62.7
Human - - 4.95 ± 0.1 4.43 ± 0.3 53.3

Table 3: Accuracies on Ziff-Davis test set.

(Markov) that significantly differed from the output
of the noisy channel model (NoisyC), which con-
firms our finding that Markovized models can pro-
duce quite grammatical output. Our compression for
the first sentence underlines one of the advantages of
constituent-based classifiers, which have the ability
of deleting a very long phrase (here, a PP) at once.
The three next sentences display some advantages
of our approach over the K&M model: here, the lat-
ter model performs deletion with too little lexico-
syntactic information, and accidentally removes cer-
tain modifiers that are sometimes, but not always,
good candidates for deletions (e.g., ADJP in Sen-
tence 2, PP in sentences 3 and 4). On the other hand,
our model keeps these constituent intact. Finally, the
fifth and last example is one of the only three cases
(among the 32 sentences) where our model produced
a sentence we judged clearly ungrammatical. After
inspection, we found that our parser assigned par-
ticularly errorful trees to those inputs, which may
partially explain these ungrammatical outputs.

6 Related Work
A relatively large body of work addressed the prob-
lem of sentence compression. One successful recent
approach (McDonald, 2006) combines a discrimi-
native framework with a set of features that cap-
ture information similar to the K&M model. Mc-
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Input Many debugging features, including user-defined break points
and variable-watching and message-watching windows, have
been added.

NoisyC Many debugging features, including user-defined points and
variable-watching and message-watching windows, have been
added.

Markov Many debugging features have been added.
Human Many debugging features have been added.
Input The chemical etching process used for glare protection is effec-

tive and will help if your office has the fluorescent-light overkill
that ’s typical in offices.

NoisyC The process used for glare protection is and will help if your
office has the overkill

Markov The chemical etching process used for glare protection is ef-
fective.

Human Glare protection is effective.
Input The utilities will be bundled with Quickdex II in a $90 pack-

age called super quickdex, which is expected to ship in late
summer.

NoisyC The utilities will be bundled
Markov The utilities will be bundled with Quickdex II.
Human The utilities will be bundled with Quickdex II.
Input The discounted package for the SparcServer 470 is priced at

$89,900, down from the regular $107,795.
NoisyC The package for the 470 is priced
Markov The discounted package for the SparcServer 470 is at $89,900.
Human The SparcServer 470 is priced at $89,900, down from the reg-

ular $107,795.
Input Prices range from $5,000 for a microvax 2000 to $179,000 for

the vax 8000 or higher series.
NoisyC Prices range from $5,000 for a 2000 to $179,000 for the vax

8000 or higher series.
Markov Prices range from $5,000 for a microvax for the vax.
Human Prices range from $5,000 to $179,000.

Table 4: Compressions of sample test sentences.

Donald’s features include compression bigrams, as
well as soft syntactic evidence extracted from parse
trees and dependency trees. The strength of McDon-
ald’s approach partially stems from its robustness
against redundant and noisy features, since each fea-
ture is weighted proportionally to its discriminative
power, and his approach is thus hardly penalized
by uninformative features. In contrast, our work
puts much more emphasis on feature analysis than
on efficient optimization, and relies on a statisti-
cal framework (maximum-likelihood estimates) that
strives for careful feature selection and combination.
It also describes and evaluates models incorporating
syntactic evidence that is new to the sentence com-
pression literature, such as head-modifier bilexical
dependencies, and nth-order sister and vertical an-
notation. We think this work leads to a better un-
derstanding of what type of syntactic and lexical ev-
idence makes sentence compression work. Further-
more, our work leaves the door open to uses of our
factored model in a constituent-based or word-based
discriminative framework, in which each elemen-
tary lexico-syntactic structure of this paper can be
discriminatively weighted to directly optimize com-
pression quality. Since McDonald’s approach does

not incorporate SCFG deletion rules, and conditions
deletions on less lexico-syntactic context, we believe
this will lead to levels of performance superior to
both papers.

7 Conclusions
We presented a sentence compression system based
on SCFG deletion rules, for which we defined
a head-driven Markovization formulation. This
Markovization enabled us to incorporate lexical con-
ditioning variables into our models. We empirically
evaluated different Markov structures, and obtained
a best system that generates particularly grammati-
cal sentences according to a human evaluation. Our
sentence compression system is freely available for
research and educational purposes.
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Abstract 

This paper addresses the problem of clas-
sifying Chinese unknown words into 
fine-grained semantic categories defined 
in a Chinese thesaurus. We describe 
three novel knowledge-based models that 
capture the relationship between the se-
mantic categories of an unknown word 
and those of its component characters in 
three different ways. We then combine 
two of the knowledge-based models with 
a corpus-based model which classifies 
unknown words using contextual infor-
mation. Experiments show that the 
knowledge-based models outperform 
previous methods on the same task, but 
the use of contextual information does 
not further improve performance.  

1 Introduction 

Research on semantic annotation has focused 
primarily on word sense disambiguation (WSD), 
i.e., the task of determining the appropriate sense 
for each instance of a polysemous word out of a 
set of senses defined for the word in some lexi-
con. Much less work has been done on semantic 
classification of unknown words, i.e., words that 
are not listed in the lexicon. However, real texts 
typically contain a large number of unknown 
words. Successful classification of unknown 
words is not only useful for lexical acquisition, 
but also necessary for natural language process-
ing (NLP) tasks that require semantic annotation.  
    This paper addresses the problem of classify-
ing Chinese unknown words into fine-grained 
semantic categories defined in a Chinese thesau-
rus, Cilin (Mei et al., 1984). This thesaurus clas-
sifies over 70,000 words into 12 major catego-
ries, including human (A), concrete object (B), 

time and space (C), abstract object (D), attributes 
(E), actions (F), mental activities (G), activities 
(H), physical states (I), relations (J), auxiliaries 
(K), and honorifics (L). The 12 major categories 
are further divided into 94 medium categories, 
which in turn are subdivided into 1428 small 
categories. Each small category contains syno-
nyms that are close in meaning. For example, 
under the major category D, the medium cate-
gory Dm groups all words that refer to institu-
tions, and the small category Dm05 groups all 
words that refer to educational institutions, e.g., 
学校 xuéxiào ‘school’. Unknown word classifi-
cation involves a much larger search space than 
WSD. In classifying words into small categories 
in Cilin, the search space for a polysemous 
known word consists of all the categories the 
word belongs to, but that for an unknown word 
consists of all the 1428 small categories.  

Research on WSD has concentrated on using 
contextual information, which may be limited 
for infrequent unknown words. On the other 
hand, Chinese characters carry semantic infor-
mation that is useful for predicting the semantic 
properties of the words containing them. We pre-
sent three novel knowledge-based models that 
capture the relationship between the semantic 
categories of an unknown word and those of its 
component characters in three different ways, 
and combine two of them with a corpus-based 
model that uses contextual information to clas-
sify unknown words. Experiments show that the 
combined knowledge-based model achieves an 
accuracy of 61.6% for classifying unknown 
words into small categories in Cilin, but the use 
of contextual information does not further im-
prove performance.   

The rest of the paper is organized as follows. 
Section 2 details the three novel knowledge-
based models proposed for this task. Section 3 
describes a corpus-based model. Section 4 re-
ports the experiment results of the proposed 
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models. Section 5 compares these results with 
previous results. Section 6 concludes the paper 
and points to avenues for further research.  

2 Knowledge-based Models 

This section describes three novel knowledge-
based models for semantic classification of Chi-
nese unknown words, including an overlapping-
character model, a character-category association 
model, and a rule-based model. These models 
model the relationship between the semantic 
category of an unknown word and those of its 
component characters in three different ways. 

2.1 The Baseline Model 

The baseline model predicts the category of an 
unknown word by counting the number of over-
lapping characters between the unknown word 
and the member words in each category. As 
words in the same category are similar in mean-
ing and the meaning of a Chinese word is gener-
ally the composition of the meanings of its char-
acters, it is common for words in the same cate-
gory to share one or more character. This model 
tests the hypothesis that speakers draw upon the 
repertoire of characters that relate to a concept 
when creating new words to realize it.  

For each semantic category in Cilin, the set of 
unique characters in its member words are ex-
tracted, and the number of times each character 
occurs in word-initial, word-middle, and word-
final positions is recorded. With this informa-
tion, we develop two variants of the baseline 
model, which differ from each other in terms of 
whether it takes into consideration the positions 
in which the characters occur in words.   

In variant 1, the score of a category is the sum 
of the number of occurrences of each character 
of the target word in the category, as in (1), 
where tj denotes a category, w denotes the target 
word, ci denotes the ith character in w, n is the 
length of w, and f(ci) is the frequency of ci in tj.   
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In variant 2, the score of a category is the sum 
of the number of occurrences of each character 
of the unknown word in the category in its corre-
sponding position, as in (2), where pi denotes the 
position of ci in w, which could be word-initial, 
word-middle, or word-final, and f(ci,pi) denotes 
the frequency of ci in position pi in tj.   
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In each variant, the category with the maxi-
mum score for a target word is proposed as the 
category of the word.   

2.2 Character-Category Associations 

The relationship between the semantic category 
of an unknown word and those of its component 
characters can also be captured in a more sophis-
ticated way using information-theoretical models. 
We use two statistical measures, mutual infor-
mation and χ2, to compute character-category 
associations and word-category associations. 
Chen (2004) used the χ2 measure to compute 
character-character and word-word associations, 
but not word-category associations. We use 
word-category associations to directly predict 
the semantic categories of unknown words.  

The mutual information and χ2 measures are 
calculated as in (3) and (4), where Asso(c,tj) de-
notes the association between a character c and a 
semantic category tj, and P(X) and f(X) denote 
the probability and frequency of X respectively. 
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    Once the character-category associations are 
calculated, the association between a word w and 
a category tj, Asso(w,tj), can be calculated as the 
sum of the weighted associations between each 
of the word’s characters and the category, as in 
(6), where ci denotes the ith character of w, |w| 
denotes the length of w, and λi denotes the weight 
of Asso(ci,tj). The λ’s add up to 1. The weights 
are determined empirically based on the posi-
tions of the characters in the word.   
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As in variant 2 of the baseline model, the 
character-category association model can also be 
made sensitive to the positions in which the 
characters occur in the words. To this end, we 
first need to compute the position-sensitive asso-
ciations between a category and a character in 
the word-initial, word-middle, and word-final 
positions separately. The position-sensitive asso-
ciation between an unknown word and a cate-
gory can then be computed as the sum of the 
weighted position-sensitive associations between 
each of its characters and the category.  
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Once the word-category associations are com-
puted, we can propose the highest ranked cate-
gory or a ranked list of categories for each un-
known word.  

2.3 A Rule-Based Model 

The third knowledge-based model uses linguistic 
rules to classify unknown words based on the 
syntactic and semantic categories of their com-
ponent characters. Rule-based models have not 
been used for this task before. However, there 
are some regularities in the relationship between 
the semantic categories of unknown words and 
those of their component characters that can be 
captured in a more direct and effective way by 
linguistic rules than by statistical models. 

A separate set of rules are developed for 
words of different lengths. Rules are initially 
developed based on knowledge about Chinese 
word formation, and are then refined by examin-
ing the development data. In general, the com-
plete rule set takes a few hours to develop.   

 The rule in (7) is developed for bisyllabic un-
known words. This rule proposes the common 
category of a bisyllabic word’s two characters as 
its category. It is especially useful for words 
with a parallel structure, i.e., words whose two 
characters have the same meaning and syntactic 
category, e.g., 坍塌 tāntā ‘collapse’, where 坍 
tān and 塌 tā both mean ‘collapse’ and share the 
category Id05. The thresholds for fA and fB are 
determined empirically and are both set to 1 if 
AB is a noun and to 0 and 3 respectively other-
wise.  
 
(7) For a bisyllabic word AB, if A and B share a cate-

gory c1, let fA and fB denote the number of times 
A and B occur in word-initial and word-final po-
sitions in c respectively. If fA and fB both surpass 
the predetermined thresholds, propose c for AB. 

 
A number of rules are developed for trisyl-

labic words. While most rules in the model are 
general, the first rule in this set is rather specific, 
as it handles words with three specific prefixes, 
大 dà ‘big’, 小 xiăo ‘little’, and 老 lăo ‘old’, 
which usually do not change the category of the 
root word. The other four rules again utilize the 
categories of the unknown word’s component 
characters. The rules in (8b) and (8c) are similar 
to the rule in (7). The ones in (8d) and (8e) 
search for neighbor words with a similar struc-
ture as the target word. Eligible neighbors have a 
                                                 
1 A and B may each belong to more than one category.  

common morpheme with the target word in the 
same position and a second morpheme that 
shares a category with the second morpheme of 
the target word. For example, an eligible 
neighbor for 推销商 tuīxiāo-shāng ‘sales-man’ 
is 销售商 xiāoshòu-shāng ‘distribut-or’. These 
two words share the morpheme 商 shāng ‘busi-
nessman’ in the word-final position, and the 
morphemes 推销 tuīxiāo ‘to market’ and 销售 
xiāoshòu ‘distribute’ share the category He03. 
The rule in (8d) therefore applies in this case. 

 
(8) For a trisyllabic word ABC: 

a. If A equals 大 dà ‘big’, 小 xiăo ‘little’, or 老 
lăo ‘old’, propose the category of AB for 
ABC if C is the diminutive suffix 儿 er or the 
category of BC for ABC otherwise. 

b. If A and BC share a category c, propose c for 
ABC. 

c. If AB and C share a category c, propose c for 
ABC. 

d. If there is a word XYC such that XY and AB 
share a category, propose the category of 
XYC for ABC. 

e. If there is a word XBC such that X and A 
share a category, propose the category of 
XBC for ABC. 

 
The rules for four-character words are given 

in (9). Like the rules in (8d) and (8e), these rules 
also search for neighbors of the target word.   
 
(9) For a four-character word ABCD: 

a. If there is a word XYZD/YZD such that 
XYZ/YZ and ABC share a category, propose 
the category of XYZ/YZ for ABCD. 

b. If there is a word ABCX such that X and D 
share a category, propose the category of 
ABCX for ABCD. 

c. If there is a word XYCD such that XY and AB 
share a category, propose the category of 
XYCD for ABCD. 

d. If there is a word XBCD/BCD, propose the 
category of XBCD/BCD for ABCD. 

3 A Corpus-Based Model 

The knowledge-based models described above 
classify unknown words using information about 
the syntactic and semantic categories of their 
component characters. Another useful source of 
information is the context in which unknown 
words occur. While contextual information is the 
primary source of information used in WSD re-
search and has been used for acquiring semantic 
lexicons and classifying unknown words in other 
languages (e.g., Roark and Charniak 1998; Ci-
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aramita 2003; Curran 2005), it has been used in 
only one previous study on semantic classifica-
tion of Chinese unknown words (Chen and Lin, 
2000). Part of the goal of this study is to investi-
gate whether and how these two different 
sources of information can be combined to im-
prove performance on semantic classification of 
Chinese unknown words.  

To this end, we first use the knowledge-based 
models to propose a list of five candidate catego-
ries for the target word, then extract a general-
ized context for each category in Cilin from a 
corpus, and finally compute the similarity be-
tween the context of the target word and the gen-
eralized context of each of its candidate catego-
ries. Comparing the context of the target word 
with generalized contexts of categories instead 
of contexts of individual words alleviates the 
data-sparseness problem, as infrequent words 
have limited contextual information. Limiting 
the search space for each target word to the top 
five candidate categories reduces the computa-
tional cost that comes with the full search space.  

3.1 Context Extraction and Representation 

A generalized context for each semantic cate-
gory is built from the contexts of its member 
words. This is done based on the assumption that 
as the words in the same category have the same 
or similar meaning, they tend to occur in similar 
contexts. In terms of context extraction and rep-
resentation, we need to consider four factors. 

 
Member Words The issue here is whether to 
include the contexts of polysemous member 
words in building the generalized context of a 
category. Including these contexts without dis-
crimination introduces noise. To measure the 
effect of such noise, we build two versions of 
generalized context for each category, one using 
contexts of unambiguous member words only, 
and the other using contexts of all member 
words.  

 
Context Words There are two issues in select-
ing words for context representation. First, 
words that contribute little information to the 
discrimination of meaning of other words, in-
cluding conjunctions, numerals, auxiliaries, and 
non-Chinese sequences, are excluded. Second, to 
model the effect of frequency on the context 
words’ contribution to meaning discrimination, 
we use two sets of context words: one consists of 
the 1000 most frequent words in the corpus; the 
other consists of all words in the corpus.  

Window Size For WSD, both topical context 
and microcontext have been used (Ide and 
Véronis 1998). Topical context includes substan-
tive words that co-occur with the target word 
within a larger window, whereas microcontext 
includes words in a small window around the 
target word. We experiment with topical context 
and microcontext with window sizes of 100 and 
6 respectively (i.e., 50 and 3 words to the left 
and right of the target word respectively).  
 
Context Representation We represent the con-
text of a category as a vector <w1, w2, ..., wn>, 
where n is the total number of context words, 
and wi is the weight of the ith context word. To 
arrive at this representation, we first record the 
number of times each context word occurs 
within a specified window of each member word 
of a category in the corpus as a vector <f1, f2, ..., 
fn>, where fi is the number of times the ith con-
text word co-occurs with a member word of the 
category. We then compute the weight of a con-
text word w in context c, W(w, c), using mutual 
information and t-test, which were reported by 
Weeds and Weir (2005) to perform the best on a 
pseudo-disambiguation task. These weight func-
tions are computed as in (10) and (11), where N 
denotes the size of the corpus.  

(10) 
)()(

),(log),(
cPwP

cwPcwWPMI =  

(11) 
NcwP

cPwPcwP
cwWt

),(
)()(),(

),(
−

=  

3.2 Contextual Similarity Measurement 

We compute the similarity between the context 
vectors of the unknown word and its candidate 
categories using cosine. The cosine of two n-
dimensional vectors xr and yr , cos( xr , yr ), is com-
puted as in (12), where xi and yi denote the 
weight of the ith context word in xr and yr . 
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4 Results 

4.1 Experiment Setup 

The models are developed and tested using the 
Contemporary Chinese Corpus from Peking 
University (Yu et al. 2002) and the extended 
Cilin released by the Information Retrieval Lab 
at Harbin Institute of Technology. The corpus 
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contains all the articles published in January, 
1999 in People’s Daily, a major newspaper in 
China. It contains over 1.12 million tokens and is 
word-segmented and POS-tagged. Table 1 sum-
marizes the distribution of words in Cilin. Of the 
76,029 words in Cilin, 35,151 are found in the 
Contemporary Chinese Corpus.  
 
Length Unambiguous Polysemous Total 

1 2,674 2,068 4,742 
2 39,057 5,403 44,460 
3 15,112 752 15,864 
4 9,397 942 10,338 
≥5 590 34 624 

Total 66,830 9,199 76,029 
Table 1: Word distribution in the extended Cilin 
 

We classify words into the third-level catego-
ries in the extended Cilin, which are equivalent 
to the small categories in the original Cilin. The 
development and test sets consist of 3,000 words 
each, which are randomly selected from the sub-
set of words in Cilin that are two to four charac-
ters long, that have occurred in the Contempo-
rary Chinese Corpus, and that are tagged as 
nouns, verbs, or adjectives in the corpus. The 
words in the development and test sets are also 
controlled for frequency, with 1/3 of them occur-
ring 1-3 times, 3-6 times, and 7 or more times in 
the corpus respectively.  

As Chen (2004) noted, excluding all the 
words in the development and test data in the 
testing stage worsens the data-sparseness prob-
lem for knowledge-based models, as some cate-
gories have few member words, and some char-
acters appear in few words in some categories. 
To alleviate this problem, the remove-one 
method is used for testing the knowledge-based 
models. In other words, the models are re-trained 
for each test word using information about all 
the words in Cilin except the test word. The cor-
pus-based model is trained once using the train-
ing data only, as the data-sparseness problem is 
alleviated by using generalized contexts of cate-
gories. Finally, if a word is polysemous, it is 
considered to have been correctly classified if 
the proposed category is one of its categories. 

4.2 Results of the Baseline Model 

Tables 2 and 3 summarize the results of the 
baseline model in terms of the accuracy of its 
best guess and best five guesses respectively.  

The columns labeled “Non-filtered” report re-
sults where all categories are considered for each 
unknown word, and the ones labeled “POS-

filtered” report results where only the categories 
that agree with the POS category of the unknown 
word are considered. In the latter case, if the tar-
get word is a noun, only the small categories un-
der major categories A-D are considered; other-
wise, only those under major categories E-L are 
considered. The results show that using POS in-
formation about the unknown word to filter cate-
gories improves performance. Variant 2 per-
forms better when only the best guess is consid-
ered, indicating that it is useful to model the ef-
fect of position on a character’s contribution to 
word meaning in this case. However, it is not 
helpful to be sensitive to character position when 
the best five guesses are considered.  
 

Non-filtered POS-filtered Model 
variant Dev Test Dev Test 

1 0.391 0.398 0.450 0.464 
2 0.471 0.469 0.514 0.517 

Table 2: Results of the baseline model: best guess  
 

Non-filtered POS-filtered Model 
variant Dev Test Dev Test 

1 0.757 0.760 0.813 0.817 
2 0.764 0.762 0.809 0.805 

Table 3: Results of the baseline model: best 5 guesses  

4.3 Results of the Character-Category As-
sociation Model 

In this model, only categories that agree with the 
POS category of the unknown word and that 
share at least one character with the unknown 
word are considered. These filtering steps sig-
nificantly reduce the search space for this model.  

We discussed three parameters of the model in 
Section 2.2, including the statistical measure, the 
sensitivity to character position in computing 
character-category associations, and the weights 
of the associations between categories and char-
acters in different positions. In addition, the 
computation of the character-category associa-
tions can be sensitive or insensitive to the POS 
categories of the words containing the characters. 
In the POS-sensitive way, associations are com-
puted among nouns (words in categories A-D) 
and non-nouns (words in categories E-L) sepa-
rately, whereas in the POS-insensitive way, they 
are computed using all the words.  

Tables 4 and 5 summarize the results of the 
character-category association model in terms of 
the accuracy of its best guess and best five 
guesses respectively. In all cases, the weights 
assigned to word-initial, word-middle, and word-
final characters are 0.49, 0, and 0.51 respectively. 
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In terms of the best guess, the model achieves 
a best accuracy of 58.2%, a 6.5% improvement 
over the baseline result. The results show that χ2 
consistently performs better than mutual infor-
mation, and computing position-sensitive char-
acter-category associations consistently im-
proves performance. However, computing POS-
sensitive associations gives mixed results. 

In terms of the best five guesses, the model 
achieves a best accuracy of 83.8% on the test 
data, a 2.1% improvement over the best baseline 
result. Using χ2 again achieves better results. 
However, in this case, the best results are 
achieved when the character-category associa-
tions are insensitive to both character position 
and the POS categories of words. 

 
Sensitivity Development Test 

POS Position MI χ2 MI χ2 
Yes Yes 0.482 0.586 0.507 0.582 
Yes No 0.440 0.578 0.458 0.573 
No Yes 0.487 0.565 0.511 0.567 
No No 0.457 0.555 0.459 0.559 

Table 4: Results of the character-category association 
model: best guess 

 
Sensitivity Development Test 

POS Position MI χ2 MI χ2 
Yes Yes 0.735 0.805 0.720 0.810 
Yes No 0.743 0.828 0.754 0.821 
No Yes 0.702 0.813 0.718 0.812 
No No 0.735 0.830 0.746 0.838 

Table 5: Results of the character-category association 
model: best 5 guesses 
 

Development Test Word 
Len R P F R P F 

2 0.159 0.796 0.265 0.158 0.772 0.262 
3 0.368 0.838 0.511 0.351 0.830 0.493 
4 0.582 0.852 0.692 0.540 0.900 0.675 

All 0.218 0.816 0.344 0.216 0.803 0.340 
Table 6: Results of the rule-based model: best guess 

4.4 Results of the Rule-Based Model 

Table 6 summarizes the results of the rule-
based model in terms of recall, precision and F-
score. The model returns multiple categories for 
some words, and it is considered to have cor-
rectly classified a word only when it returns a 
single, correct category for the word. Precision 
of the model is computed over all the cases 
where the model returns a single guess, and re-
call is computed over all cases. The model 
achieves an overall precision of 80.3% on the 
test data, much higher than the accuracy of the 
other two knowledge-based models. However, 

recall of the model is only 21.6%. The compara-
ble results on the development and test sets indi-
cate that the encoded rules are general. The 
model generally performs better on longer words 
than on shorter words.  

4.5 Combining the Character-Category 
Association and Rule-Based Models 

Given that the rule-based model achieves a 
higher precision but a lower recall than the char-
acter-category association model, the two mod-
els can be combined to improve the overall per-
formance. In general, if the rule-based model 
returns one or more categories, these categories 
are first ranked among themselves by their asso-
ciations with the unknown word. They are then 
followed by the other categories returned by the 
character-category association model. Tables 7 
and 8 summarize the results of combining the 
two models.  

 
Sensitivity Development Test 

POS Position MI χ2 MI χ2 
Yes Yes 0.561 0.623 0.572 0.616 
Yes No 0.536 0.622 0.542 0.615 
No Yes 0.562 0.610 0.575 0.608 
No No 0.530 0.601 0.532 0.606 

Table 7: Results of combining the character-category 
association and rule-based models: best guess 

 
Sensitivity Development Test 

POS Position MI χ2 MI χ2 
Yes Yes 0.834 0.846 0.845 0.843 
Yes No 0.791 0.860 0.801 0.851 
No Yes 0.760 0.848 0.742 0.845 
No No 0.773 0.859 0.782 0.856 

Table 8: Results of combining the character-category 
association and rule-based models: best 5 guesses 
 

In terms of the best guess, the combined 
model achieves an accuracy of 61.6%, a 3.4% 
improvement over the best result of the charac-
ter-category association model alone. This is 
achieved using χ2 with POS-sensitive and posi-
tion-sensitive computation of character-category 
associations. In terms of the best five guesses, 
the model achieves an accuracy of 85.6%, a 
1.8% improvement over the best result of the 
character-category association model alone. 

To facilitate comparison with previous studies, 
the results of the combined model in terms of its 
best guess in classifying unknown words into 
major and medium categories are summarized in 
Table 9. As χ2 consistently outperforms mutual 
information, results are reported for χ2 only. 
With POS-sensitive and position-sensitive com-
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putation of character-category associations, the 
combined model achieves an accuracy of 83.0% 
and 69.9% for classifying unknown words into 
major and medium categories respectively.  

 
Sensitivity Development Test 

POS Position Major Med Major Med 
Yes Yes 0.840 0.705 0.830 0.699 
Yes No 0.831 0.698 0.828 0.698 
No Yes 0.832 0.692 0.825 0.692 
No No 0.821 0.687 0.821 0.689 

Table 9: Results of the combined model for classify-
ing unknown words into major and medium catego-
ries: best guess 

4.6 Results of the Corpus-Based Model 

The corpus-based model re-ranks the five high-
est ranked categories proposed by the combined 
knowledge-based model. Table 10 enumerates 
the parameters of the model and lists the labels 
used to denote the various settings in Table 11.   
 
Parameter Label Setting Label 
Member 
words 

MW All members words 
Unambiguous members 

all 
un 

Context 
words 

CW All words 
1000 most frequent 

all 
1000 

Window 
size 

WS 100 
6 

100 
6 

Weight 
function 

WF Mutual information 
t-test 

mi 
t 

Table 10: Parameter settings of the corpus-based 
model  

 
Table 11 summarizes the results of 16 runs of 

the model with different parameter settings. The 
best accuracy on the test data is 37.1%, achieved 
in run 5 with the following parameter settings: 
using unambiguous member words for building 
contexts of categories, using all words in the 
corpus for context representation, using a win-
dow size of 100, and using mutual information 
as the weight function. As the combined knowl-
edge-based model gives an accuracy of 85.6% 
for its best five guesses, the expected accuracy 
of a naive model that randomly picks a candidate 
for each word as its best guess is 17.1%. Com-
pared with this baseline, the corpus-based model 
achieves a 13.0% improvement, but it performs 
much worse than the knowledge-based models. 

Table 12 summarizes the accuracy of the top 
three runs of the model on words with different 
frequency in the corpus. Each of the three groups 
consists of 1,000 words that have occurred 1-2, 
3-6, and 7 or more times in the corpus respec-
tively. The model consistently performs better 

on words with higher frequency, suggesting that 
it may benefit from a larger corpus. 

 
Parameter Setting Accuracy Run 

ID MW CW WS WF Dev Test 
1 un 1000 100 mi 0.326 0.303 
2 un 1000 100 t 0.317 0.288 
3 un 1000 6 mi 0.304 0.301 
4 un 1000 6 t 0.299 0.301 
5 un all 100 mi 0.359 0.371 
6 un all 100 t 0.292 0.296 
7 un all 6 mi 0.370 0.365 
8 un all 6 t 0.322 0.297 
9 all 1000 100 mi 0.302 0.294 
10 all 1000 100 t 0.314 0.304 
11 all 1000 6 mi 0.313 0.314 
12 all 1000 6 t 0.308 0.308 
13 all all 100 mi 0.336 0.333 
14 all all 100 t 0.287 0.300 
15 all all 6 mi 0.356 0.356 
16 all all 6 t 0.308 0.308 

Table 11: Results of the corpus-based model 
 

Development Test Run 
ID 1-2 3-6 ≥7 1-2 3-6 ≥7 
5 0.331 0.360 0.385 0.323 0.389 0.402 
7 0.323 0.363 0.423 0.335 0.357 0.402 
15 0.328 0.346 0.395 0.334 0.355 0.379 

Table 12: Results of the corpus-based model on 
words with different frequency 

5 Related Work 

The few previous studies on semantic classifica-
tion of Chinese unknown word have primarily 
adopted knowledge-based models. Chen (2004) 
proposed a model that retrieves the word with 
the greatest association with the target word. 
This model is computationally more expensive 
than our character-category association model, 
as it entails computing associations between 
every character-category, category-character, 
character-character, and word-word pair. He re-
ported an accuracy of 61.6% on bisyllabic V-V 
compounds. However, he included all the test 
words in training the model. If we also include 
the test words in computing character-category 
associations, the computationally cheaper model 
achieves an overall accuracy of 75.6%, with an 
accuracy of 75.1% on verbs.  

Chen and Chen (2000) adopted similar exem-
plar-based models. Chen and Chen used a mor-
phological analyzer to identify the head of the 
target word and the semantic categories of its 
modifier. They then retrieved examples with the 
same head as the target word. Finally, they com-
puted the similarity between two words as the 
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similarity between their modifiers, using the 
concept of information load (IC) of the least 
common ancestor (LCA) of the modifiers’ se-
mantic categories. They reported an accuracy of 
81% for classifying 200 unknown nouns. Given 
the small test set of their study, it is hard to di-
rectly compare their results with ours.  

Tseng used a morphological analyzer in the 
same way, but she also derived the morpho-
syntactic relationship between the morphemes. 
She retrieved examples that share a morpheme 
with the target word in the same position and 
filtered those with a different morpho-syntactic 
relationship. Finally, she computed the similarity 
between two words as the similarity between 
their non-shared morphemes, using a similar 
concept of IC of the LCA of two categories. She 
classified unknown words into the 12 major 
categories only, and reported accuracies 65.8% 
on adjectives, 71.4% on nouns, and 52.8% on 
verbs. These results are not as good as the 83.0% 
overall accuracy our combined knowledge-based 
model achieved for classifying unknown words 
into major categories.  

Chen and Lin (2000) is the only study that 
used contextual information for the same task. 
To generate candidate categories for a word, 
they looked up its translations in a Chinese-
English dictionary and the synsets of the transla-
tions in WordNet, and mapped the synsets to the 
categories in Cilin. They used a corpus-based 
model similar to ours to rank the candidates. 
They reported an accuracy of 34.4%, which is 
close to the 37.1% accuracy of our corpus-based 
model, but lower than the 61.6% accuracy of our 
combined knowledge-based model. In addition, 
they could only classify the unknown words 
listed in the Chinese-English dictionary. 

6 Conclusions 

We presented three knowledge-based models 
and a corpus-based model for classifying Chi-
nese unknown words into fine-grained categories 
in the Chinese thesaurus Cilin, a task important 
for lexical acquisition and NLP applications that 
require semantic annotation. The knowledge-
based models use information about the catego-
ries of the unknown words’ component charac-
ters, while the corpus-based model uses contex-
tual information. By combining the character-
category association and rule-based models, we 
achieved an accuracy of 61.6%. The corpus-
based model did not improve performance. 

Several avenues can be taken for further re-
search. First, additional resources, such as bilin-
gual dictionaries, morphological analyzers, par-
allel corpora, and larger corpora with richer lin-
guistic annotation may prove useful for improv-
ing both the knowledge-based and corpus-based 
models. Second, we only explored one way to 
combine the knowledge-based and corpus-based 
models. Future work may explore alternative 
ways to combine these models to make better 
use of contextual information.  
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Abstract

This paper describes a method for generat-
ing sense-tagged data using Wikipedia as
a source of sense annotations. Through
word sense disambiguation experiments,
we show that the Wikipedia-based sense
annotations are reliable and can be used to
construct accurate sense classifiers.

1 Introduction

Ambiguity is inherent to human language. In partic-
ular, word sense ambiguity is prevalent in all natural
languages, with a large number of the words in any
given language carrying more than one meaning.
For instance, the English nounplantcan meangreen
plant or factory; similarly the French wordfeuille
can meanleafor paper. The correct sense of an am-
biguous word can be selected based on the context
where it occurs, and correspondingly the problem of
word sense disambiguationis defined as the task of
automatically assigning the most appropriate mean-
ing to a polysemous word within a given context.

Among the various knowledge-based (Lesk,
1986; Galley and McKeown, 2003; Navigli and Ve-
lardi, 2005) and data-driven (Yarowsky, 1995; Ng
and Lee, 1996; Pedersen, 2001) word sense dis-
ambiguation methods that have been proposed to
date, supervised systems have been constantly ob-
served as leading to the highest performance. In
these systems, the sense disambiguation problem
is formulated as a supervised learning task, where
each sense-tagged occurrence of a particular word
is transformed into a feature vector which is then

used in an automatic learning process. Despite their
high performance, these supervised systems have an
important drawback: their applicability is limited to
those few words for which sense tagged data is avail-
able, and their accuracy is strongly connected to the
amount of labeled data available at hand.

To address the sense-tagged data bottleneck prob-
lem, different methods have been proposed in the
past, with various degrees of success. This includes
the automatic generation of sense-tagged data using
monosemous relatives (Leacock et al., 1998; Mi-
halcea and Moldovan, 1999; Agirre and Martinez,
2004), automatically bootstrapped disambiguation
patterns (Yarowsky, 1995; Mihalcea, 2002), paral-
lel texts as a way to point out word senses bear-
ing different translations in a second language (Diab
and Resnik, 2002; Ng et al., 2003; Diab, 2004),
and the use of volunteer contributions over the Web
(Chklovski and Mihalcea, 2002).

In this paper, we investigate a new approach for
building sense tagged corpora using Wikipedia as a
source of sense annotations. Starting with the hy-
perlinks available in Wikipedia, we show how we
can generate sense annotated corpora that can be
used for building accurate and robust sense clas-
sifiers. Through word sense disambiguation ex-
periments performed on the Wikipedia-based sense
tagged corpus generated for a subset of the SENSE-
VAL ambiguous words, we show that the Wikipedia
annotations are reliable, and the quality of a sense
tagging classifier built on this data set exceeds by a
large margin the accuracy of an informed baseline
that selects the most frequent word sense by default.

The paper is organized as follows. We first pro-
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vide a brief overview of Wikipedia, and describe the
view of Wikipedia as a sense tagged corpus. We then
show how the hyperlinks defined in this resource
can be used to derive sense annotated corpora, and
we show how a word sense disambiguation system
can be built on this dataset. We present the results
obtained in the word sense disambiguation experi-
ments, and conclude with a discussion of the results.

2 Wikipedia

Wikipedia is a free online encyclopedia, represent-
ing the outcome of a continuous collaborative effort
of a large number of volunteer contributors. Virtu-
ally any Internet user can create or edit a Wikipedia
webpage, and this “freedom of contribution” has a
positive impact on both the quantity (fast-growing
number of articles) and the quality (potential mis-
takes are quickly corrected within the collaborative
environment) of this online resource. Wikipedia edi-
tions are available for more than 200 languages, with
a number of entries varying from a few pages to
more than one million articles per language.1

The basic entry in Wikipedia is anarticle (or
page), which defines and describes an entity or an
event, and consists of a hypertext document with hy-
perlinks to other pages within or outside Wikipedia.
The role of the hyperlinks is to guide the reader to
pages that provide additional information about the
entities or events mentioned in an article.

Each article in Wikipedia is uniquely referenced
by an identifier, which consists of one or more words
separated by spaces or underscores, and occasion-
ally a parenthetical explanation. For example, the
article for bar with the meaning of“counter for
drinks” has the unique identifierbar (counter).2

The hyperlinks within Wikipedia are created us-
ing these unique identifiers, together with anan-
chor textthat represents the surface form of the hy-
perlink. For instance,“Henry Barnard, [[United
States|American]] [[educationalist]], was born in
[[Hartford, Connecticut]]” is an example of a sen-
tence in Wikipedia containing links to the articles
United States, educationalist,and Hartford, Con-

1In the experiments reported in this paper, we use a down-
load from March 2006 of the English Wikipedia, with approxi-
mately 1 million articles, and more than 37 millions hyperlinks.

2The unique identifier is also used to form the article URL,
e.g. http://en.wikipedia.org/wiki/Bar(counter)

necticut. If the surface form and the unique iden-
tifier of an article coincide, then the surface form
can be turned directly into a hyperlink by placing
double brackets around it (e.g.[[educationalist]]).
Alternatively, if the surface form should be hyper-
linked to an article with a different unique identi-
fier, e.g. link the wordAmericanto the article on
United States, then a piped link is used instead, as in
[[United States|American]].

One of the implications of the large number of
contributors editing the Wikipedia articles is the
occasional lack of consistency with respect to the
unique identifier used for a certain entity. For in-
stance, the concept ofcircuit (electric) is also re-
ferred to aselectronic circuit, integrated circuit,
electric circuit, and others. This has led to the so-
calledredirect pages, which consist of a redirection
hyperlink from an alternative name (e.g.integrated
circuit) to the article actually containing the descrip-
tion of the entity (e.g.circuit (electric)).

Finally, another structure that is particularly rel-
evant to the work described in this paper is the
disambiguation page. Disambiguation pages are
specifically created for ambiguous entities, and con-
sist of links to articles defining the different mean-
ings of the entity. The unique identifier for a dis-
ambiguation page typically consists of the paren-
thetical explanation(disambiguation)attached to
the name of the ambiguous entity, as in e.g.cir-
cuit (disambiguation)which is the unique identifier
for the disambiguation page of the entitycircuit.

3 Wikipedia as a Sense Tagged Corpus

A large number of the concepts mentioned in
Wikipedia are explicitly linked to their correspond-
ing article through the use of links or piped links.
Interestingly, these links can be regarded assense
annotationsfor the corresponding concepts, which
is a property particularly valuable for entities that
are ambiguous. In fact, it is precisely this observa-
tion that we rely on in order to generate sense tagged
corpora starting with the Wikipedia annotations.

For example, ambiguous words such as e.g.plant,
bar, or chair are linked to different Wikipedia ar-
ticles depending on their meaning in the context
where they occur. Note that the links aremanually
created by the Wikipedia users, which means that
they are most of the time accurate and referencing
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the correct article. The following represent five ex-
ample sentences for the ambiguous wordbar, with
their corresponding Wikipedia annotations (links):

In 1834, Sumner was admitted to the[[bar
(law)|bar]] at the age of twenty-three, and entered
private practice in Boston.

It is danced in 3/4 time (like most waltzes), with
the couple turning approx. 180 degrees every[[bar
(music)|bar]].

Vehicles of this type may contain expensive au-
dio players, televisions, video players, and[[bar
(counter)|bar]]s, often with refrigerators.

Jenga is a popular beer in the[[bar
(establishment)|bar]]s of Thailand.

This is a disturbance on the water surface of a river
or estuary, often cause by the presence of a[[bar
(landform)|bar]] or dune on the riverbed.

To derive sense annotations for a given ambigu-
ous word, we use the links extracted for all the hy-
perlinked Wikipedia occurrences of the given word,
and map these annotations to word senses. For in-
stance, for thebar example above, we extract five
possible annotations:bar (counter), bar (establish-
ment), bar (landform), bar (law), andbar (music).

Although Wikipedia provides the so-called dis-
ambiguation pages that list the possible meanings of
a given word, we decided to use instead the anno-
tations collected directly from the Wikipedia links.
This decision is motivated by two main reasons.
First, a large number of the occurrences of ambigu-
ous words are not linked to the articles mentioned
by the disambiguation page, but to related concepts.
This can happen when the annotation is performed
using a concept that is similar, but not identical to the
concept defined. For instance, the annotation for the
word bar in the sentence“The blues uses a rhyth-
mic scheme of twelve 4/4 [[measure (music)|bars]]”
is measure (music), which, although correct and di-
rectly related to the meaning ofbar (music), is not
listed in the disambiguation page forbar.

Second, most likely due to the fact that Wikipedia
is still in its incipient phase, there are several in-
consistencies that make it difficult to use the disam-
biguation pages in an automatic system. For exam-
ple, for the wordbar, the Wikipedia page with the

identifierbar is a disambiguation page, whereas for
the wordpaper, the page with the identifierpaper
contains a description of the meaning of paper as
“material made of cellulose,”and a different page
paper (disambiguation)is defined as a disambigua-
tion page. Moreover, in other cases such as e.g. the
entries for the wordorganization, no disambiguation
page is defined; instead, the articles corresponding
to different meanings of this word are connected by
links labeled as “alternative meanings.”

Therefore, rather than using the senses listed in
a disambiguation page as the sense inventory for
a given ambiguous word, we chose instead to col-
lect all the annotations available for that word in
the Wikipedia pages, and then map these labels to
a widely used sense inventory, namely WordNet.3

3.1 Building Sense Tagged Corpora

Starting with a given ambiguous word, we derive a
sense-tagged corpus following three main steps:

First, we extract all the paragraphs in Wikipedia
that contain an occurrence of the ambiguous word
as part of a link or a piped link. We select para-
graphs based on the Wikipedia paragraph segmen-
tation, which typically lists one paragraph per line.4

To focus on the problem of word sense disambigua-
tion, rather than named entity recognition, we ex-
plicitly avoid named entities by considering only
those word occurrences that are spelled with a lower
case. Although this simple heuristic will also elim-
inate examples where the word occurs at the begin-
ning of a sentence (and therefore are spelled with an
upper case), we decided nonetheless to not consider
these examples so as to avoid any possible errors.

Next, we collect all the possible labels for the
given ambiguous word by extracting the leftmost
component of the links. For instance, in the
piped link [[musical notation|bar]] , the labelmusi-
cal notationis extracted. In the case of simple links
(e.g. [[bar]] ), the word itself can also play the role
of a valid label if the page it links to is not deter-
mined as a disambiguation page.

Finally, the labels are manually mapped to their
corresponding WordNet sense, and a sense tagged

3Alternatively, the Wikipedia annotations could also play
the role of a sense inventory, without the mapping to WordNet.
We chose however to perform this mapping for the purpose of
allowing evaluations using a widely used sense inventory.

4The average length of a paragraph is 80 words.
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Word sense Labels in Wikipedia Wikipedia definition WordNet definition
bar (establishment) bar(establishment), nightclub a retail establishment which serves a room or establishment where

gay club, pub alcoholic beverages alcoholic drinks are served
over a counter

bar (counter) bar(counter) the counter from which drinks a counter where you can obtain
are dispensed food or drink

bar (unit) bar(unit) a scientific unit of pressure a unit of pressure equal to a million
dynes per square centimeter

bar (music) bar(music), measuremusic a period of music musical notation for a repeating
musicalnotation pattern of musical beats

bar (law) barassociation, barlaw the community of persons engaged the body of individuals qualified to
law societyof uppercanada in the practice of law practice law in a particular
statebar of california jurisdiction

bar (landform) bar(landform) a type of beach behind which lies a submerged (or partly submerged)
a lagoon ridge in a river or along a shore

bar (metal) barmetal, pole(object) - a rigid piece of metal or wood
bar (sports) gymnasticsunevenbars, - a horizontal rod that serves as a

handlebar support for gymnasts as they
perform exercises

bar (solid) candybar, chocolatebar - a block of solid substance

Table 1: Word senses for the wordbar, based on annotation labels used in Wikipedia

corpus is created. This mapping process is very fast,
as a relatively small number of labels is typically
identified for a given word. For instance, for the
dataset used in the experiments reported in Section
5, an average of 20 labels per word was extracted.

To ensure the correctness of this last step, for
the experiments reported in this paper we used two
human annotators who independently mapped the
Wikipedia labels to their corresponding WordNet
sense. In case of disagreement, a consensus was
reached through adjudication by a third annotator.
In a mapping agreement experiment performed on
the dataset from Section 5, an inter-annotator agree-
ment of 91.1% was observed with a kappa statistics
of κ=87.1, indicating a high level of agreement.

3.2 An Example

As an example, consider the ambiguous wordbar,
with 1,217 examples extracted from Wikipedia
wherebar appeared as the rightmost component of
a piped link or as a word in a simple link. Since
the page with the identifierbar is a disambigua-
tion page, all the examples containing the single
link [[bar]] are removed, as the link does not re-
move the ambiguity. This process leaves us with
1,108 examples, from which 40 different labels are
extracted. These labels are then manually mapped
to nine senses in WordNet. Figure 1 shows the la-
bels extracted from the Wikipedia annotations for
the wordbar, the corresponding WordNet definition,

as well as the Wikipedia definition (when the sense
was defined in the Wikipedia disambiguation page).

4 Word Sense Disambiguation

Provided a set of sense-annotated examples for a
given ambiguous word, the task of a word sense dis-
ambiguation system is to automatically learn a dis-
ambiguation model that can predict the correct sense
for a new, previously unseen occurrence of the word.

We use a word sense disambiguation system that
integrates local and topical features within a ma-
chine learning framework, similar to several of the
top-performing supervised word sense disambigua-
tion systems participating in the recent SENSEVAL

evaluations (http://www.senseval.org).
The disambiguation algorithm starts with a pre-

processing step, where the text is tokenized and an-
notated with part-of-speech tags. Collocations are
identified using a sliding window approach, where
a collocation is defined as a sequence of words that
forms a compound concept defined in WordNet.

Next, local and topical features are extracted from
the context of the ambiguous word. Specifically, we
use the current word and its part-of-speech, a local
context of three words to the left and right of the am-
biguous word, the parts-of-speech of the surround-
ing words, the verb and noun before and after the
ambiguous words, and a global context implemented
through sense-specific keywords determined as a list
of at most five words occurring at least three times
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in the contexts defining a certain word sense.
This feature set is similar to the one used by (Ng

and Lee, 1996), as well as by a number of state-of-
the-art word sense disambiguation systems partici-
pating in the SENSEVAL-2 and SENSEVAL-3 evalu-
ations. The features are integrated in a Naive Bayes
classifier, which was selected mainly for its perfor-
mance in previous work showing that it can lead to
a state-of-the-art disambiguation system given the
features we consider (Lee and Ng, 2002).

5 Experiments and Results

To evaluate the quality of the sense annotations gen-
erated using Wikipedia, we performed a word sense
disambiguation experiment on a subset of the am-
biguous words used during the SENSEVAL-2 and
SENSEVAL-3 evaluations. Since the Wikipedia an-
notations are focused on nouns (associated with the
entities typically defined by Wikipedia), the sense
annotations we generate and the word sense disam-
biguation experiments are also focused on nouns.

Starting with the 49 ambiguous nouns used during
the SENSEVAL-2 (29) and SENSEVAL-3 (20) evalu-
ations, we generated sense tagged corpora follow-
ing the process outlined in Section 3.1. We then re-
moved all those words that have only one Wikipedia
label (e.g. detention, which occurs 58 times, but
appears as a single link[[detention]] in all the oc-
currences), or which have several labels that are all
mapped to the same WordNet sense (e.g.church,
which has 2,198 occurrences with several differ-
ent labels such asRoman church, Christian church,
Catholic church, which are all mapped to the mean-
ing of church, Christian churchas defined in Word-
Net). This resulted in a set of 30 words that have
their Wikipedia annotations mapped to at least two
senses according to the WordNet sense inventory.

Table 2 shows the disambiguation results using
the word sense disambiguation system described in
Section 4, using ten-fold cross-validation. For each
word, the table also shows the number of senses, the
total number of examples, and two baselines: a sim-
ple informed baseline that selects the most frequent
sense by default,5 and a more refined baseline that

5Note that this baseline assumes the availability of a sense
tagged corpus in order to determine the most frequent sense of
a word. The baseline is therefore “informed,” as compared to a
random, “uninformed” sense selection.

baselines word sense
word #s #ex MFS LeskC disambig.
argument 2 114 70.17% 73.63% 89.47%
arm 3 291 61.85% 69.31% 84.87%
atmosphere 3 773 54.33% 56.62% 71.66%
bank 3 1074 97.20% 97.20% 97.20%
bar 10 1108 47.38% 68.09% 83.12%
chair 3 194 67.57% 65.78% 80.92%
channel 5 366 51.09% 52.50% 71.85%
circuit 4 327 85.32% 85.62% 87.15%
degree 7 849 58.77% 73.05% 85.98%
difference 2 24 75.00% 75.00% 75.00%
disc 3 73 52.05% 52.05% 71.23%
dyke 2 76 77.63% 82.00% 89.47%
fatigue 3 123 66.66% 70.00% 93.22%
grip 3 34 44.11% 77.00% 70.58%
image 2 84 69.04% 74.50% 80.28%
material 3 223 95.51% 95.51% 95.51%
mouth 2 409 94.00% 94.00% 95.35%
nature 2 392 98.72% 98.72% 98.21%
paper 5 895 96.98% 96.98% 96.98%
party 3 764 68.06% 68.28% 75.91%
performance 2 271 95.20% 95.20% 95.20%
plan 3 83 77.10% 81.00% 81.92%
post 5 33 54.54% 62.50% 51.51%
restraint 2 9 77.77% 77.77% 77.77%
sense 2 183 95.10% 95.10% 95.10%
shelter 2 17 94.11% 94.11% 94.11%
sort 2 11 81.81% 90.90% 90.90%
source 3 78 55.12% 81.00% 92.30%
spade 3 46 60.86% 81.50% 80.43%
stress 3 565 53.27% 54.28% 86.37%
AVERAGE 3.31 316 72.58% 78.02% 84.65%

Table 2: Word sense disambiguation results, in-
cluding two baselines (MFS = most frequent sense;
LeskC = Lesk-corpus) and the word sense disam-
biguation system. Number of senses (#s) and num-
ber of examples (#ex) are also indicated.

implements the corpus-based version of the Lesk al-
gorithm (Kilgarriff and Rosenzweig, 2000).

6 Discussion

Overall, the Wikipedia-based sense annotations
were found reliable, leading to accurate sense classi-
fiers with an average relative error rate reduction of
44% compared to the most frequent sense baseline,
and 30% compared to the Lesk-corpus baseline.

There were a few exceptions to this general trend.
For instance, for some of the words for which only
a small number of examples could be collected from
Wikipedia, e.g.restraintor shelter, no accuracy im-
provement was observed compared to the most fre-
quent sense baseline. Similarly, several words in the
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Figure 1: Learning curve on the Wikipedia data set.

data set have highly skewed sense distributions, such
as e.g.bank, which has a total number of 1,074 ex-
amples out of which 1,044 examples pertain to the
meaning offinancial institution, or the wordmate-
rial with 213 out of 223 examples annotated with
the meaning ofsubstance.

One aspect that is particularly relevant for any su-
pervised system is the learning rate with respect to
the amount of available data. To determine the learn-
ing curve, we measured the disambiguation accu-
racy under the assumption that only a fraction of the
data were available. We ran ten fold cross-validation
experiments using 10%, 20%, ..., 100% of the data,
and averaged the results over all the words in the
data set. The resulting learning curve is plotted in
Figure 1. Overall, the curve indicates a continuously
growing accuracy with increasingly larger amounts
of data. Although the learning pace slows down after
a certain number of examples (about 50% of the data
currently available), the general trend of the curve
seems to indicate that more data is likely to lead to
increased accuracy. Given that Wikipedia is growing
at a fast pace, the curve suggests that the accuracy of
the word sense classifiers built on this data is likely
to increase for future versions of Wikipedia.

Another aspect we were interested in was the cor-
relation in terms of sense coverage with respect to
other sense annotated data currently available. For
the set of 30 nouns in our data set, we collected
all the word senses that were defined in either the
Wikipedia-based sense-tagged corpus or in the SEN-
SEVAL corpus. We then determined the percentage

covered by each sense with respect to the entire data
set available for a given ambiguous word. For in-
stance, the nounchair appears in Wikipedia with
senses #1 (68.0%), #2 (31.9%), and #4(0.1%), and
in SENSEVAL with senses #1 (87.7%), #2 (6.3%),
and #3 (6.0%). The senses that do not appear are in-
dicated with a 0% coverage. The correlation is then
measured between the relative sense frequencies of
all the words in our dataset, as observed in the two
corpora. Using the Pearson (r) correlation factor, we
found an overall correlation ofr = 0.51 between the
sense distributions in the Wikipedia corpus and the
SENSEVAL corpus, which indicates a medium cor-
relation. This correlation is much lower than the
one observed between the sense distributions in the
training data and in the test data in the SENSEVAL

corpus, which was measured at a highr = 0.95.
This suggests that the sense coverage in Wikipedia
follows a different distribution than in SENSEVAL,
mainly reflecting the difference between the gen-
res of the two corpora: an online collection of en-
cyclopedic pages as available from Wikipedia, ver-
sus the manually balanced British National Cor-
pus used in SENSEVAL. It also suggests that using
the Wikipedia-based sense tagged corpus to disam-
biguate words in the SENSEVAL data or viceversa
would require a change in the distribution of senses
as previously done in (Agirre and Martinez, 2004).

baselines word sense
Dataset #s #ex MFS LeskC disambig.
SENSEVAL 4.60 226 51.53% 58.33% 68.13%
WIKIPEDIA 3.31 316 72.58% 78.02% 84.65%

Table 3: Average number of senses and exam-
ples, most frequent sense and Lesk-corpus baselines,
and word sense disambiguation performance on the
SENSEVAL and WIKIPEDIA datasets.

Table 3 shows the characteristics of the SEN-
SEVAL and the WIKIPEDIA datasets for the nouns
listed in Table 2. The table also shows the most
frequent sense baseline, the Lesk-corpus baseline,
as well as the accuracy figures obtained on each
dataset using the word sense disambiguation system
described in Section 4.6

6As a side note, the accuracy obtained by our system on the
SENSEVAL data is comparable to that of the best participating
systems. Using the output of the best systems: the JHUR sys-
tem on the SENSEVAL-2 words, and the HLTS3 system on the
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Overall the sense distinctions identified in
Wikipedia are fewer and typically coarser than those
found in WordNet. As shown in Table 3, for the
set of ambiguous words listed in Table 2, an aver-
age of 4.6 senses were used in the SENSEVAL an-
notations, as compared to about 3.3 senses per word
found in Wikipedia. This is partly due to a differ-
ent sense coverage and distribution in the Wikipedia
data set (e.g. the meaning ofambiancefor the am-
biguous wordatmospheredoes not appear at all in
the Wikipedia corpus, although it has the highest fre-
quency in the SENSEVAL data), and partly due to the
coarser sense distinctions made in Wikipedia (e.g.
Wikipedia does not make the distinction between the
act of grasping and the actual hold for the noungrip,
and occurrences of both of these meanings are anno-
tated with the labelgrip (handle)).

There are also cases when Wikipedia makes dif-
ferent or finer sense distinctions than WordNet. For
instance, there are several Wikipedia annotations for
imageascopy, but this meaning is not even defined
in WordNet. Similarly, Wikipedia makes the distinc-
tion betweendance performanceandtheatre perfor-
mance, but both these meanings are listed under one
single entry in WordNet (performanceaspublic pre-
sentation). However, since at this stage we are map-
ping the Wikipedia annotations to WordNet, these
differences in sense granularity are diminished.

7 Related Work

In word sense disambiguation, the line of work most
closely related to ours consists of methods trying to
address the sense-tagged data bottleneck problem.

A first set of methods consists of algorithms that
generate sense annotated data using words semanti-
cally related to a given ambiguous word (Leacock et
al., 1998; Mihalcea and Moldovan, 1999; Agirre and
Martinez, 2004). Related non-ambiguous words,
such as monosemous words or phrases from dictio-
nary definitions, are used to automatically collect
examples from the Web. These examples are then
turned into sense-tagged data by replacing the non-
ambiguous words with their ambiguous equivalents.

Another approach proposed in the past is based on
the idea that an ambiguous word tends to have dif-

SENSEVAL-3 words, an average accuracy of 71.31% was mea-
sured (the output of the systems participating in SENSEVAL is
publicly available from http://www.senseval.org).

ferent translations in a second language (Resnik and
Yarowsky, 1999). Starting with a collection of paral-
lel texts, sense annotations were generated either for
one word at a time (Ng et al., 2003; Diab, 2004), or
for all words in unrestricted text (Diab and Resnik,
2002), and in both cases the systems trained on these
data were found to be competitive with other word
sense disambiguation systems.

The lack of sense-tagged corpora can also be cir-
cumvented using bootstrapping algorithms, which
start with a few annotated seeds and iteratively gen-
erate a large set of disambiguation patterns. This
method, initially proposed by (Yarowsky, 1995),
was successfully evaluated in the context of the
SENSEVAL framework (Mihalcea, 2002).

Finally, in an effort related to the Wikipedia col-
lection process, (Chklovski and Mihalcea, 2002)
have implemented the Open Mind Word Expert sys-
tem for collecting sense annotations from volunteer
contributors over the Web. The data generated using
this method was then used by the systems participat-
ing in several of the SENSEVAL-3 tasks.

Notably, the method we propose has several ad-
vantages over these previous methods. First, our
method relies exclusively on monolingual data, thus
avoiding the possible constraints imposed by meth-
ods that require parallel texts, which may be difficult
to find. Second, the Wikipedia-based annotations
follow a natural Zipfian sense distribution, unlike the
equal distributions typically obtained with the meth-
ods that rely on the use of monosemous relatives
or bootstrapping methods. Finally, the grow pace
of Wikipedia is much faster than other more task-
focused and possibly less-engaging activities such
as Open Mind Word Expert, and therefore has the
potential to lead to significantly higher coverage.

With respect to the use of Wikipedia as a re-
source for natural language processing tasks, the
work that is most closely related to ours is per-
haps the name entity disambiguation algorithm pro-
posed in (Bunescu and Pasca, 2006), where an SVM
kernel is trained on the entries found in Wikipedia
for ambiguous named entities. Other language pro-
cessing tasks with recently proposed solutions re-
lying on Wikipedia are co-reference resolution us-
ing Wikipedia-based measures of word similarity
(Strube and Ponzetto, 2006), enhanced text classi-
fication using encyclopedic knowledge (Gabrilovich
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and Markovitch, 2006), and the construction of com-
parable corpora using the multilingual editions of
Wikipedia (Adafre and de Rijke, 2006).

8 Conclusions

In this paper, we described an approach for us-
ing Wikipedia as a source of sense annotations for
word sense disambiguation. Starting with the hy-
perlinks available in Wikipedia, we showed how we
can generate a sense annotated corpus that can be
used to train accurate sense classifiers. Through ex-
periments performed on a subset of the SENSEVAL

words, we showed that the Wikipedia sense annota-
tions can be used to build a word sense disambigua-
tion system leading to a relative error rate reduction
of 30–44% as compared to simpler baselines.

Despite some limitations inherent to this approach
(definitions and annotations in Wikipedia are avail-
able almost exclusively for nouns, word and sense
distributions are sometime skewed, the annotation
labels are occasionally inconsistent), these limi-
tations are overcome by the clear advantage that
comes with the use of Wikipedia: large sense tagged
data for a large number of words at virtually no cost.

We believe that this approach is particularly
promising for two main reasons. First, the size of
Wikipedia is growing at a steady pace, which conse-
quently means that the size of the sense tagged cor-
pora that can be generated based on this resource
is also continuously growing. While techniques for
supervised word sense disambiguation have been re-
peatedly criticized in the past for their limited cover-
age, mainly due to the associated sense-tagged data
bottleneck, Wikipedia seems a promising resource
that could provide the much needed solution for this
problem. Second, Wikipedia editions are available
for many languages (currently about 200), which
means that this method can be used to generate sense
tagged corpora and build accurate word sense clas-
sifiers for a large number of languages.
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Abstract

Graph-based semi-supervised learning has
recently emerged as a promising approach
to data-sparse learning problems in natu-
ral language processing. All graph-based
algorithms rely on a graph that jointly rep-
resents labeled and unlabeled data points.
The problem of how to best construct this
graph remains largely unsolved. In this
paper we introduce a data-driven method
that optimizes the representation of the
initial feature space for graph construc-
tion by means of a supervised classifier.
We apply this technique in the frame-
work of label propagation and evaluate
it on two different classification tasks, a
multi-class lexicon acquisition task and a
word sense disambiguation task. Signifi-
cant improvements are demonstrated over
both label propagation using conventional
graph construction and state-of-the-art su-
pervised classifiers.

1 Introduction

Natural Language Processing (NLP) applications
benefit from the availability of large amounts of an-
notated data. However, such data is often scarce,
particularly for non-mainstream languages. Semi-
supervised learning addresses this problem by com-
bining large amounts of unlabeled data with a small
set of labeled data in order to learn a classifica-
tion function. One class of semi-supervised learn-
ing algorithms that has recently attracted increased

interest is graph-based learning. Graph-based tech-
niques represent labeled and unlabeled data points
as nodes in a graph with weighted edges encoding
the similarity of pairs of samples. Various tech-
niques are then available for transferring class la-
bels from the labeled to the unlabeled data points.
These approaches have shown good performance in
cases where the data is characterized by an underly-
ing manifold structure and samples are judged to be
similar by local similarity measures. However, the
question of how to best construct the graph forming
the basis of the learning procedure is still an under-
investigated research problem. NLP learning tasks
present additional problems since they often rely on
discrete or heterogeneous feature spaces for which
standard similarity measures (such as Euclidean or
cosine distance) are suboptimal.

We propose a two-pass data-driven technique for
graph construction in the framework of label propa-
gation (Zhu, 2005). First, we use a supervised clas-
sifier trained on the labeled subset to transform the
initial feature space (consisting of e.g. lexical, con-
textual, or syntactic features) into a continuous rep-
resentation in the form of soft label predictions. This
representation is then used as a basis for measur-
ing similarity among samples that determines the
structure of the graph used for the second, semi-
supervised learning step. It is important to note that,
rather than simply cascading the supervised and the
semi-supervised learner, we optimize the combina-
tion with respect to the properties required of the
graph. We present several techniques for such op-
timization, including regularization of the first-pass
classifier, biasing by class priors, and linear combi-
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nation of classifier predictions with known features.
The proposed approach is evaluated on a lexicon

learning task using the Wall Street Journal (WSJ)
corpus, and on the SENSEVAL-3 word sense dis-
ambiguation task. In both cases our technique sig-
nificantly outperforms our baseline systems (label
propagation using standard graph construction and
discriminatively trained supervised classifiers).

2 Background

Several graph-based learning techniques have re-
cently been developed and applied to NLP prob-
lems: minimum cuts (Pang and Lee, 2004), random
walks (Mihalcea, 2005; Otterbacher et al., 2005),
graph matching (Haghighi et al., 2005), and label
propagation (Niu et al., 2005). Here we focus on
label propagation as a learning technique.

2.1 Label propagation
The basic label propagation (LP) algorithm (Zhu and
Ghahramani, 2002; Zhu, 2005) has as inputs:
• a labeled set {(x1, y1), (x2, y2), . . . , (xn, yn)},

where xi are samples (feature vectors) and yi ∈
{1, 2, . . . , C} are their corresponding labels;
• an unlabeled set {xn+1, . . . , xN};
• a distance measure d(i, j) i, j ∈ {1, . . . N} de-

fined on the feature space.
The goal is to infer the labels {yn+1, . . . , yN} for
the unlabeled set. The algorithm represents all N

data points as vertices in an undirected graph with
weighted edges. Initially, only the known data ver-
tices are labeled. The edge linking vertices i and j

has weight:

wij = exp

(

−
d(i, j)2

α2

)

(1)

where α is a hyperparameter that needs to be empir-
ically chosen or learned separately. wij indicates the
label affinity of vertices: the larger wij is, the more
likely it is that i and j have the same label. The LP
algorithm constructs a row-normalized N ×N tran-
sition probability matrix P as follows:

Pij = P (i→ j) =
wij

∑N
k=1 wik

(2)

The algorithm probabilistically pushes labels from
the labeled nodes to the unlabeled nodes. To do so, it
defines the n×C hard labels matrix Y and the N×C

soft labels matrix f , whose first n rows are identical
to Y . The hard labels matrix Y is invariant through

the algorithm and is initialized with probability 1 for
the known label and 0 for all other labels:

Yic = δ(yi, C) (3)
where δ is Kronecker’s delta function. The algo-
rithm iterates as follows:

1. f ′ ← P × f

2. f ′[rows 1 to n] ← Y

3. If f ′ ∼= f , stop
4. f ← f ′

5. Repeat from step 1
In each iteration, step 2 fixes the known labels,
which might otherwise be overriden by propagated
labels. The resulting labels for each feature xi,
where i ∈ {n + 1, . . . , N}, are:

li = arg max
j=1,...,C

fij (4)

It is important that the distance measure is locally
accurate, i.e. nodes connected by an edge with a
high weight should have the same label. The global
distance is less relevant since label information will
be propagated from labeled points through the entire
space. This is why LP works well with a local dis-
tance measure that might be unsuitable as a global
distance measure.

Applications of LP include handwriting recogni-
tion (Zhu and Ghahramani, 2002), image classifi-
cation (Balcan et al., 2005) and retrieval (Qin et
al., 2005), and protein classification (Weston et al.,
2003). In NLP, label propagation has been used for
word sense disambiguation (Niu et al., 2005), doc-
ument classification (Zhu, 2005), sentiment analy-
sis (Goldberg and Zhu, 2006), and relation extrac-
tion (Chen et al., 2006).

2.2 Graph construction
One of the main problems in LP, as well as other
graph-based learning techniques, is how to best con-
struct the graph. Currently, graph construction “is
more of an art than science” (Zhu, 2005). Typically,
edge weights are derived from a simple Euclidean
or cosine distance measure, regardless of the nature
of the underlying features. Edges are then estab-
lished either by connecting all nodes, by applying
a single global threshold to the edge weights, or by
connecting each node to its k nearest neighbors ac-
cording to the edge weights. This procedure is often
suboptimal: Euclidean distance relies on a model of
normally distributed i.i.d. random variables; cosine
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distance likewise assumes that the different feature
vector dimensions are uncorrelated. However, many
applications, particularly in NLP, rely on feature
spaces with correlated dimensions. Moreover, fea-
tures may have different ranges and different types
(e.g. continuous, binary, multi-valued), which en-
tails the need for normalization, binning, or scaling.
Finally, common distance measures do not take ad-
vantage of domain knowledge that might be avail-
able.

Some attempts have been made at improving the
standard method of graph construction. For in-
stance, in a face identification task (Balcan et al.,
2005), domain knowledge was used to identify three
different edge sets based on time, color and face
features, associating a different hyperparameter with
each. The resulting graph was then created by super-
posing edge sets. Zhu (Zhu, 2005, Ch. 7) describes
graph construction using separate α hyperparame-
ters for each feature dimension, and presents a data-
driven way (evidence maximization) for learning the
values of the parameters.

3 Data-driven graph construction

Unlike previous work, we propose to optimize the
feature representation used for graph construction
by learning it with a first-pass supervised classi-
fier. Under this approach, similarity of samples is
defined as similarity of the output values produced
by a classifier applied to the original feature repre-
sentation of the samples. This idea bears similar-
ity to classifier cascading (Alpaydin and Kaynak,
1998), where classifiers are trained around a rule-
exceptions paradigm; however, in our case, the clas-
sifiers work together, the first acting as a jointly op-
timized feature mapping function for the second.

1. Train a first-pass supervised classifier that out-
puts soft label predictions Zi for all sam-
ples i ∈ {1, . . . N}, e.g. a posterior prob-
ability distribution over target labels: Zi =
〈pi1, pi2, . . . , piC〉;

2. Apply postprocessing to Zi if needed.
3. Use vectors Zi and an appropriately chosen dis-

tance measure to construct a graph for LP.
4. Perform label propagation over the constructed

graph to find the labeling of the test samples.
The advantages of this procedure are:
• Uniform range and type of features: The out-

put from a first-pass classifier can produce well-
defined features, e.g. posterior probability distribu-
tions. This eliminates the problem of input features
of different ranges and types (e.g. binary vs. multi-
valued, continuous vs. categorical attributes) which
are often used in combination.
• Feature postprocessing: The transformation of
features into a different space also opens up pos-
sibilities for postprocessing (e.g. probability distri-
bution warping) depending on the requirements of
the second-pass learner. In addition, different dis-
tance functions (e.g. those defined on probability
spaces) can be used, which avoids violating assump-
tions made by metrics such as Euclidean and cosine
distance.
• Optimizing class separation: The learned repre-
sentation of labeled training samples might reveal
better clusters in the data than the original represen-
tation: a discriminatively-trained first pass classifier
will attempt to maximize the separation of samples
belonging to different classes. Moreover, the first-
pass classifier may learn a feature transformation
that suppresses noise in the original input space.

Difficulties with the proposed approach might arise
when the first-pass classifier yields confident but
wrong predictions, especially for outlier samples in
the original space. For this reason, the first-pass
classifier and the graph-based learner should not
simply be concatenated without modification, but
the first classifier should be optimized with respect
to the requirements of the second. In our case, the
choice of first-pass classifier and joint optimization
techniques are determined by the particular learning
task and are detailed below.

4 Tasks

4.1 Lexicon acquisition task

Our first task is a part-of-speech (POS) lexicon ac-
quisition task, i.e. the labels to be predicted are the
sets of POS tags associated with each word in a lex-
icon. Note that this is not a tagging task: we are not
attempting to identify the correct POS of each word
in running text. Rather, for each word in the vocab-
ulary, we attempt to infer the set of possible POS
tags. Our choice of this task is motivated by our
long-term goal of applying this technique to lexicon
acquisition for resource-poor languages: POS lexi-

206



cons are one of the most basic language resources,
which enable subsequent training of taggers, chun-
kers, etc. We assume that a small set of words can be
reliably annotated, and that POS-sets for the remain-
ing words can be inferred by semi-supervised learn-
ing. Rather than choosing a genuinely resource-poor
language for this task, we use the English Wall Street
Journal (WSJ) corpus and artificially limit the size
of the labeled set. This is because the WSJ corpus is
widely obtainable and allows easy replication of our
experiments.

We use sections 0-18 of the Wall Street Journal
corpus (N = 44, 492). Words have between 1 and
4 POS tags, with an average of 1.1 per word. The
number of POS tags is 36, and we treat every POS
combination as a unique class, resulting in C = 158
distinct labels. We use three different randomly se-
lected training sets of various sizes: 5000, 10000,
and 15000 words, representing about 11%, 22%, and
34% of the entire data set respectively; the rest of the
data was used for testing. In order to avoid experi-
mental bias, we run all experiments on five differ-
ent randomly chosen labeled subsets and report av-
erages and standard deviations. Due to the random
sampling of the data it is possible that some labels
never occur in the training set or only occur once.
We train our classifiers only on those labels that oc-
cur at least twice, which results in 60-63 classes. La-
bels not present in the training set will therefore not
be hypothesized and are guaranteed to be errors. We
delete samples with unknown labels from our unla-
beled set since their percentage is less than 0.5% on
average.

We use the following features to represent sam-
ples:
• Integer: the three-letter suffix of the word;
• Integer: The four-letter suffix of the word;
• Integer × 4: The indices of the four most fre-

quent words that immediately precede the word
in the WSJ text;
• Boolean: word contains capital letters;
• Boolean: word consists only of capital letters;
• Boolean: word contains digits;
• Boolean: word contains a hyphen;
• Boolean: word contains other special charac-

ters (e.g. “&”).
We have also experimented with shorter suffixes and
with prefixes but those features tended to degrade

performance.

4.2 SENSEVAL-3 word sense disambiguation
task

The second task is word sense disambiguation using
the SENSEVAL-3 corpus (Mihalcea et al., 2004), to
enable a comparison of our method with previously
published results. The goal is to disambiguate the
different senses of each of 57 words given the sen-
tences within which they occur. There are 7860 sam-
ples for training and 3944 for testing. In line with
existing work (Lee and Ng, 2002; Niu et al., 2005),
we use the following features:
• Integer × 7: seven features consisting of the

POS of the previous three words, the POS of
the next three words, and the POS of the word
itself. We used the MXPOST tagger (Ratna-
parkhi, 1996) for POS annotation.
• Integer×〈variable length〉: a bag of all words

in the surrounding context.
• Integer × 15: Local collocations Cij (i, j are

the bounds of the collocation window)—word
combinations from the context of the word to
disambiguate. In addition to the 11 collocations
used in similar work (Lee and Ng, 2002), we
also used C−3,1, C−3,2, C−2,3, C−1,3.

Note that syntactic features, which have been used in
some previous studies on this dataset (Mohammad
and Pedersen, 2004), were not included. We apply a
simple feature selection method: a feature X is se-
lected if the conditional entropy H(Y |X) is above
a fixed threshold (1 bit) in the training set, and if X

also occurs in the test set (note that no label infor-
mation from the test data is used for this purpose).

5 Experiments

For both tasks we compare the performance of a su-
pervised classifier, label propagation using the stan-
dard input features and either Euclidean or cosine
distance, and LP using the output from a first-pass
supervised classifier.

5.1 Lexicon acquisition task

5.1.1 First-pass classifier
For this task, the first-pass classifier is a multi-

layer perceptron (MLP) with the topology shown
in Fig. 1. The input features are mapped to con-
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Figure 1: Architecture of first-pass supervised classifier (MLP)
for lexicon acquisition

.

tinuous values by a discrete-to-continuous mapping
layer M , which is itself learned during the MLP
training process. This layer connects to the hidden
layer h, which in turn is connected to the output
layer o. The entire network is trained via backprop-
agation. The training criterion maximizes the regu-
larized log-likelihood of the training data:

L =
1

n

n
∑

t=1

log P (yt|xt, θ) + R(θ) (5)

The use of an additional continuous mapping layer
is similar to the use of hidden continuous word rep-
resentations in neural language modeling (Bengio et
al., 2000) and yields better results than a standard
3-layer MLP topology.

Problems caused by data scarcity arise when some
of the input features of the unlabeled words have
never been seen in the training set, resulting in un-
trained, randomly-initialized values for those fea-
ture vector components. We address this problem
by creating an approximation layer A that finds the
known input feature vector x′ that is most similar
to x (by measuring the cosine similarity between
the vectors). Then xk is replaced with x′k, resulting
in vector x̂ = 〈x1, . . . , xk−1, x

′
k, xk+1, . . . , xf 〉 that

has no unseen features and is closest to the original
vector.

5.1.2 LP Setup
We use a dense graph approach. The WSJ set

has a total of 44,492 words, therefore the P ma-
trix that the algorithm requires would have 44, 492×
44, 492 ∼= 2× 109 elements. Due to the matrix size,
we avoid the analytical solution of the LP problem,
which requires inverting the P matrix, and choose

the iterative approach described above (Sec. 2.1) in-
stead. Convergence is stopped when the maximum
relative difference between each cell of f and the
corresponding cell of f ′ is less than 1%.

Also for data size reasons, we apply LP in chunks.
While the training set stays in memory, the test
data is loaded in fixed-size chunks, labeled, and dis-
carded. This approach has yielded similar results
for various chunk sizes, suggesting that chunking is
a good approximation of whole-set label propaga-
tion.1 LP in chunks is also amenable to paralleliza-
tion: Our system labels different chunks in parallel.

We trained the α hyperparameter by three-fold
cross-validation on the training data, using a geo-
metric progression with limits 0.1 and 10 and ratio
2. We set fixed upper limits of edges between an
unlabeled node and its labeled neighbors to 15, and
between an unlabeled node and its unlabeled neigh-
bors to 5. The approach of setting different limits
among different kinds of nodes is also used in re-
lated work (Goldberg and Zhu, 2006).

For graph construction we tested: (a) the original
discrete input representation with cosine distance;
(b) the classifier output features (probability distri-
butions) with the Jeffries-Matusita distance.

5.2 Combination optimization

The static parameters of the MLP (learning rate, reg-
ularization rate, and number of hidden units) were
optimized for the LP step by 5-fold cross-validation
on the training data. This process is important be-
cause overspecialization is detrimental to the com-
bined system: an overspecialized first-pass classi-
fier may output very confident but wrong predic-
tions for unseen patterns, thus placing such samples
at large distances from all correctly labeled sam-
ples. A strongly regularized neural network, by con-
trast, will output smoother probability distributions
for unseen patterns. Such outputs also result in a
smoother graph, which in turn helps the LP process.
Thus, we found that a network with only 12 hidden
units and relatively high R(θ) in Eq. 5 (10% of the
weight value) performed best in combination with
LP (at an insignificant cost in accuracy when used

1In fact, experiments have shown that performance tends to
degrade for larger chunk sizes, suggesting that whole-set LP
might be affected by “artifact” clusters that are not related to
the labels.
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as an isolated classifier).

5.2.1 Results
We first conducted an experiment to measure the

smoothness of the underlying graph, S(G), in the
two LP experiments according to the following for-
mula:

S(G) =
∑

yi 6=yj ,(i>n∨j>n)

wij (6)

where yi is the label of sample i. (Lower values are
better as they reflect less affinity between nodes of
different labels.) The value of S(G) was in all cases
significantly better on graphs constructed with our
proposed technique than on graphs constructed in
the standard way (see Table 1). Table 1 also shows
the performance comparison between LP over the
discrete representation and cosine distance (“LP”),
the neural network itself (“NN”), and LP over the
continuous representation (“NN+LP”), on all dif-
ferent subsets and for different training sizes. For
scarce labeled data (5000 samples) the neural net-
work, which uses a strictly supervised training pro-
cedure, is at a clear disadvantage. However, for a
larger training set the network is able to perform
more accurately than the LP learner that uses the
discrete features directly. The third, combined tech-
nique outperforms the first two significantly.2 The
differences are more pronounced for smaller train-
ing set sizes. Interestingly, the LP is able to extract
information from largely erroneous (noisy) distribu-
tions learned by the neural network.

5.3 Word Sense Disambiguation

We compare the performance of an SVM classifier,
an LP learner using the same input features as the
SVM, and an LP learner using the SVM outputs as
input features. To analyze the influence of train-
ing set size on accuracy, we randomly sample sub-
sets of the training data (25%, 50%, and 75%) and
use the remaining training data plus the test data
as unlabeled data, similarly to the procedure fol-
lowed in related work (Niu et al., 2005). The re-
sults are averaged over five different random sam-
plings. The samplings were chosen such that there
was at least one sample for each label in the training
set. SENSEVAL-3 sports multi-labeled samples and

2Significance was tested using a difference of proportions
significance test; the significance level is 0.01 or smaller in all
cases.

samples with the “unknown” label. We eliminate all
samples labeled as unknown and retain only the first
label for the multi-labeled instances.

5.3.1 SVM setup

The use of SVM vs. MLP in this case was justi-
fied by the very small training data set. An MLP has
many parameters and needs a considerable amount
of data for effective training, so for this task with
only on the order of 102 training samples per classi-
fier, an SVM was deemed more appropriate. We use
the SVMlight package to build a set of binary clas-
sifiers in a one-versus-all formulation of the multi-
class classification problem. The features input to
each SVM consist of the discrete features described
above (Sec. 4.2) after feature selection. After train-
ing SVMs for each target label against the union of
all others, we evaluate the SVM approach against the
test set by using the winner-takes-all strategy: the
predicted label corresponds to the SVM that outputs
the largest value.

5.3.2 LP setup

Again we set up two LP systems: one using the
original feature space (after feature selection, which
benefited all of the tested systems) and one using the
SVM outputs. Both use a cosine distance measure.
The α parameter (see Eq. 1) is optimized through
3-fold cross-validation on the training set.

5.4 Combination optimization

Unlike MLPs, SVMs do not compute a smooth out-
put distribution but base the classification decision
on the sign of the output values. In order to smooth
output values with a view towards graph construc-
tion we applied the following techniques:

1. Combining SVM predictions and perfect fea-
ture vectors: After training, the SVM actu-
ally outputs wrong label predictions for a small
number (≈ 5%) of training samples. These out-
puts could simply be replaced with the perfect
SVM predictions (1 for the true class, -1 else-
where) since the labels are known. However,
the second-pass learner might actually bene-
fit from the information contained in the mis-
classifications. We therefore linearly combine
the SVM predictions with the “perfect” feature
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Initial labels Model S(G) avg. Accuracy (%)

Set 1 Set 2 Set 3 Set 4 Set 5 Average

5000 NN − 50.70 59.22 63.77 60.09 54.58 57.67 ± 4.55
LP 451.54 58.37 59.91 60.88 62.01 59.47 60.13 ± 1.24
NN+LP 409.79 58.03 63.91 66.62 65.93 57.76 62.45 ± 3.83

10000 NN − 65.86 60.19 67.52 65.68 65.64 64.98 ± 2.49
LP 381.16 58.27 60.04 60.85 61.99 62.06 60.64 ± 1.40
NN+LP 315.53 69.36 64.73 69.50 70.26 67.71 68.31 ± 1.97

15000 NN − 69.85 66.42 70.88 70.71 72.18 70.01 ± 1.94
LP 299.10 58.51 61.00 60.94 63.53 60.98 60.99 ± 1.59
NN+LP 235.83 70.59 69.45 69.99 71.20 73.45 70.94 ± 1.39

Table 1: Accuracy results of neural classification (NN), LP with discrete features (LP), and combined (NN+LP), over 5 random
samplings of 5000, 10000, and 15000 labeled words in the WSJ lexicon acquisition task. S(G) is the smoothness of the graph

vectors v that contain 1 at the correct label po-
sition and -1 elsewhere:

s′i = γsi + (1− γ)vi (7)
where si, s′i are the i’th input and output feature
vectors and γ a parameter fixed at 0.5.

2. Biasing uninformative distributions: For some
training samples, although the predicted class
label was correct, the outputs of the SVM were
relatively close to one another, i.e. the decision
was borderline. We decided to bias these SVM
outputs in the right direction by using the same
formula as in equation 7.

3. Weighting by class priors: For each training
sample, a corresponding sample with the per-
fect output features was added, thus doubling
the total number of labeled nodes in the graph.
These synthesized nodes are akin to the “don-
gle” nodes (Goldberg and Zhu, 2006). The dif-
ference is that, while dongle nodes are only
linked to one node, our artificial nodes are
treated like any other node and as such can con-
nect to several other nodes. The role of the arti-
ficial nodes is to serve as authorities during the
LP process and to emphasize class priors.

5.4.1 Results
As before, we measured the smoothness of the

graphs in the two label propagation setups and found
that in all cases the smoothness of the graph pro-
duced with our method was better when compared
to the graphs produced using the standard approach,
as shown in Table 3, which also shows accuracy re-
sults for the SVM (“SVM” label), LP over the stan-
dard graph (“LP”), and label propagation over SVM
outputs (“SVM+LP”). The latter system consistently

performs best in all cases, although the most marked
gains occur in the upper range of labeled samples
percentage. The gain of the best data-driven LP over
the knowledge-based LP is significant in the 100%
and 75% cases.

# System Acc. (%)

1 htsa3 (Grozea, 2004) 72.9
2 IRST-kernels (Strapparava et al., 2004) 72.6
3 nusels (Lee et al., 2004) 72.4
4 SENSEVAL-3 contest baseline 55.2

5 Niu et al. (Niu et al., 2005) LP/J-S 70.3
6 Niu et al. LP/cosine 68.4
7 Niu et al. SVM 69.7

Table 2: Accuracy results of other published systems on
SENSEVAL-3. 1-3 use syntactic features; 5-7 are directly com-
parably to our system.

For comparison purposes, Table 2 shows results
of other published systems against the SENSEVAL
corpus. The “htsa3”, “IRST-kernels”, and “nusels”
systems were the winners of the SENSEVAL-3 con-
test and used extra input features (syntactic rela-
tions). The Niu et al. work (Niu et al., 2005) is
most comparable to ours. We attribute the slightly
higher performance of our SVM due to our feature
selection process. The LP/cosine system is a system
similar to our LP system using the discrete features,
and the LP/Jensen-Shannon system is also similar
but uses a distance measure derived from Jensen-
Shannon divergence.

6 Conclusions

We have presented a data-driven graph construction
technique for label propagation that utilizes a first-
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Initial labels Model S(G) avg. Accuracy (%)

Set 1 Set 2 Set 3 Set 4 Set 5 Average

25% SVM − 62.94 62.53 62.69 63.52 62.99 62.93 ± 0.34
LP 44.71 63.27 61.84 63.26 62.96 63.30 62.93 ± 0.56
SVM+LP 39.67 63.39 63.20 63.95 63.68 63.91 63.63 ± 0.29

50% SVM − 67.90 66.75 67.57 67.44 66.79 67.29 ± 0.45
LP 33.17 67.84 66.57 67.35 66.52 66.35 66.93 ± 0.57
SVM+LP 24.19 67.95 67.54 67.93 68.21 68.11 67.95 ± 0.23

75% SVM − 69.54 70.19 68.75 69.80 68.73 69.40 ± 0.58
LP 29.93 68.87 68.65 68.58 68.42 67.19 68.34 ± 0.59
SVM+LP 16.19 69.98 70.05 69.69 70.38 68.94 69.81 ± 0.49

100% SVM − 70.74
LP 21.72 69.69
SVM+LP 13.17 71.72

Table 3: Accuracy results of support vector machine (SVM), label propagation over discrete features (LP), and label propagation
over SVM outputs (SVM+LP), each trained with 25%, 50%, 75% (5 random samplings each), and 100% of the train set. The
improvements of SVM+LP are significant over LP in the 75% and 100% cases. S(G) is the graph smoothness

pass supervised classifier. The outputs from this
classifier (especially when optimized for the second-
pass learner) were shown to serve as a better repre-
sentation for graph-based semi-supervised learning.
Classification results on two learning tasks showed
significantly better performance compared to LP us-
ing standard graph construction and the supervised
classifier alone.
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Abstract

This paper introduces a novel evaluation
framework for question series and em-
ploys it to explore the effectiveness of QA
and IR systems at addressing users’ infor-
mation needs. The framework is based on
the notion of recall curves, which char-
acterize the amount of relevant informa-
tion contained within a fixed-length text
segment. Although it is widely assumed
that QA technology provides more effi-
cient access to information than IR sys-
tems, our experiments show that a simple
IR baseline is quite competitive. These re-
sults help us better understand the role of
NLP technology in QA systems and sug-
gest directions for future research.

1 Introduction

The emergence of question answering (QA) has
been driven to a large extent by its intuitive appeal.
Instead of “hits”, QA technology promises to de-
liver “answers”, obviating the user from the tedious
task of sorting through lists of potentially-relevant
documents. The success of factoid QA systems,
particularly in the NIST-sponsored TREC evalua-
tions (Voorhees, 2003), has reinforced the percep-
tion about the superiority of QA systems over tradi-
tional IR engines.

However, is QA really better than IR? This work
challenges existing assumptions and critically exam-
ines this question, starting with the development of a

novel evaluation framework that better models user
tasks and preferences. The framework is then ap-
plied to compare top TREC QA systems against an
off-the-shelf IR engine. Surprisingly, experiments
show that the IR baseline is quite competitive. These
results help us better understand the added value of
NLP technology in QA systems, and are also useful
in guiding future research.

2 Evolution of QA Evaluation

Although most question answering systems rely on
information retrieval technology, there has always
been the understanding that NLP provides signifi-
cant added value beyond simple IR. Even the earli-
est open-domain factoid QA systems, which can be
traced back to the late nineties (Voorhees and Tice,
1999), demonstrated the importance and impact of
linguistic processing. Today’s top systems deploy
a wide range of advanced NLP technology and can
answer over three quarters of factoid questions in an
open domain (Voorhees, 2003). However, present
QA evaluation methodology does not take into ac-
count two developments, discussed below.

First, despite trends to the contrary in TREC eval-
uations, users don’t actually like or want exact an-
swers. Most question answering systems are de-
signed to pinpoint the exact named entity (person,
date, organization, etc.) that answers a particular
question—and the development of such technology
has been encouraged by the setup of the TREC QA
tracks. However, a study by Lin et al. (2003) shows
that users actually prefer answers embedded within
some sort of context, e.g., the sentence or the para-
graph that the answer was found in. Context pro-
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3. Hale Bopp comet
1. fact When was the comet discovered?
2. fact How often does it approach the earth?
3. list In what countries was the comet visi-

ble on its last return?
4. other
68. Port Arthur Massacre
1. fact Where is Port Arthur?
2. fact When did the massacre occur?
3. fact What was the final death toll of the

massacre?
4. fact Who was the killer?
5. fact What was the killer’s nationality?
6. list What were the names of the victims?
7. list What were the nationalities of the vic-

tims?
8. other

Table 1: Sample question series.

vides a means by which the user can establish the
credibility of system responses and also provides a
vehicle for “serendipitous knowledge discovery”—
finding answers to related questions. As the early
TRECs have found (Voorhees and Tice, 1999), lo-
cating a passage that contains an answer is consider-
ably easier than pinpointing the exact answer. Thus,
real-world user preferences may erode the advantage
that QA has over IR techniques such as passage re-
trieval, e.g., (Zobel et al., 1995; Tellex et al., 2003).

Second, the focus of question answering research
has shifted away from isolated factoid questions to
more complex information needs embedded within
a broader context (e.g., a user scenario). Since
2004, the main task at the TREC QA tracks has
consisted of question series organized around topics
(called “targets”)—which can be people, organiza-
tions, entities, or events (Voorhees, 2004; Voorhees,
2005). Questions in a series inquire about differ-
ent facets of a target, but are themselves either fac-
toid or list questions. In addition, each series con-
tains an explicit “other” question (always the last
one), which can be paraphrased as “Tell me other
interesting things about this target that I don’t know
enough to ask directly.” See Table 1 for examples
of question series. Separately, NIST has been ex-
ploring other types of complex information needs,

for example, the relationship task in TREC 2005
and the ciQA (complex, interactive Question An-
swering) task in TREC 2006 (Dang et al., 2006).
One shared feature of these complex questions is
that they cannot be answered by simple named en-
tities. Answers usually span passages, which makes
the task very similar to the query-focused summa-
rization task in DUC (Dang, 2005). On these tasks,
it is unclear whether QA systems actually outper-
form baseline IR methods. As one bit of evidence,
in TREC 2003, a simple IR-based sentence ranker
outperformed all but the best system on definition
questions, the precursor to current “other” ques-
tions (Voorhees, 2003).

We believe that QA evaluation methodology has
lagged behind these developments and does not ade-
quately characterize the performance of current sys-
tems. In the next section, we present an evaluation
framework that takes into account users’ desire for
context and the structure of more complex QA tasks.
Focusing on question series, we compare the perfor-
mance of top TREC systems to a baseline IR engine
using this evaluation framework.

3 An Evaluation Framework

Question series in TREC represent an attempt at
modeling information-seeking dialogues between a
user and a system (Kato et al., 2004). Primarily
because dialogue systems are difficult to evaluate,
NIST has adopted a setup in which individual ques-
tions are evaluated in isolation—this implicitly mod-
els a user who types in a question, receives an an-
swer, and then moves on to the next question in the
series. Component scores are aggregated using a
weighted average, and no attempt is made to capture
dependencies across different question types.

Simultaneously acknowledging the challenges in
evaluating dialogue systems and recognizing the
similarities between complex QA and query-focused
summarization, we propose an alternative frame-
work for QA evaluation that considers the quality
of system responses as a whole. Instead of gener-
ating individual answers to each question, a system
might alternatively produce a segment of text (i.e., a
summary) that attempts to answer all the questions.
This slightly different conception of QA brings it
into better alignment with recent trends in multi-
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document summarization, which may yield previ-
ously untapped synergies (see Section 7).

To assess the quality of system responses,
we adopt the nugget-based methodology used
previously for many types of complex ques-
tions (Voorhees, 2003), which shares similarities
with the pyramid evaluation scheme used in sum-
marization (Nenkova and Passonneau, 2004). A
nugget can be described as an “atomic fact” that ad-
dresses an aspect of an information need. Instead of
the standard nugget F-score, which hides important
tradeoffs between precision and recall, we propose
to measure nugget recall as a function of response
length. The goal is to quantify the number of rel-
evant facts that a user will have encountered after
reading a particular amount of text. Intuitively, we
wish to model how quickly a hypothetical user could
“learn” about a topic by reading system responses.

Within this framework, we compared existing
TREC QA systems against an IR baseline. Pro-
cessed outputs from the top-ranked, second-ranked,
third-ranked, and median runs in TREC 2004 and
TREC 2005 were compared to a baseline IR run
generated by Lucene, an off-the-shelf open-source
IR engine. Our experiments focused on factoid and
“other” questions; as the details differ for these two
types, we describe each separately and then return to
a unified picture.

4 Factoid Series

Our first set of experiments focuses on the factoid
questions within a series. In what follows, we de-
scribe the data preparation process, the evaluation
methodology, and experimental results.

4.1 Data Preparation

We began by preparing answer responses from the
top-ranked, second-ranked, third-ranked, and me-
dian runs from TREC 2004 and TREC 2005.1 Con-
sider the third-ranked run from TREC 2004 as a run-
ning example; for the two factoid questions in tar-
get 3 (Table 1), the system answers were “July 22,
1995” and “4,200 years” (both correct).

Since Lin et al. (2003) suggest that users prefer
answers situated within some sort of context, we

1In cases where teams submitted multiple runs, we consid-
ered only the best performing of each.

projected these exact answers onto their source sen-
tences. This was accomplished by selecting the first
sentence in the source document (drawn from the
AQUAINT corpus) that contains the answer string.2

In our example, this procedure yielded the following
text segment:

The comet was named after its two observers—two

amateur astronomers in the United States who dis-

covered it on July 22, 1995. Its visit to the solar

system—just once every 4,200 years, will give mil-

lions of people a rare heavenly treat when it reaches

its full brightness next year.

Since projected sentences are simply concate-
nated, the responses often exhibit readability prob-
lems (although by chance this particular response is
relatively coherent). Nevertheless, one might imag-
ine that such output forms the basis for generating
coherent query-focused summaries with sentence-
rewrite techniques, e.g., (Barzilay et al., 1999). In
this work, we set aside problems with fluency since
our evaluation framework is unable to measure this
(desirable) characteristic.

System responses were prepared for four runs
from TREC 2004 and four runs from TREC 2005
in the manner described above. As a baseline, we
employed Lucene to retrieve the top 100 documents
from the AQUAINT corpus using the target as the
query (in our example, “Hale Bopp comet”). From
the result set, we retained all sentences that contain
at least a term from the target. Sentence order within
each document and across the ranked list was pre-
served. Answer responses for this baseline condi-
tion were limited to 10,000 characters. Following
TREC convention, all character counts include only
non-whitespace characters. Finally, since responses
prepared from TREC runs were significantly shorter
than this baseline condition, the baseline Lucene re-
sponse was appended to the end of each TREC run
to fill a quota of 10,000 characters.

4.2 Evaluation Methodology
Our evaluation framework is designed to measure
the amount of useful information contained in a sys-
tem response. For factoid series, this can be quan-

2As a backoff, if the exact answer string is not found in the
text, the sentence with the most terms in common with the an-
swer string is selected.
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Figure 1: Factoid recall curves for runs from TREC 2004 (left) and TREC 2005 (right).

Run 2004 2005
top-ranked run 0.770 0.713
2nd-ranked run 0.643 0.666
3rd-ranked run 0.626 0.326
median run 0.170 0.177

Table 2: Official scores of selected TREC 2004 and
TREC 2005 factoid runs.

tified by recall—the fraction of questions within
a series whose answers could be found within a
given passage. By varying the passage length, we
can characterize systems in terms of recall curves
that represent how quickly a hypothetical user can
“learn” about the target. Below, we describe the im-
plementation of such a metric.

First, we need a method to automatically deter-
mine if an answer string is contained within a seg-
ment of text. For this, regular expression answer
patterns distributed by NIST were employed—they
have become a widely-accepted evaluation tool.

Second, we must determine when a fact is “ac-
quired” by our hypothetical user. Since previous
studies suggest that context is needed to interpret an
answer, we assess system output on a sentence-by-
sentence basis. In our example, the lengths of the
two sentences are 105 and 130 characters, respec-
tively. Thus, for this series, we obtain a recall of 0.5
at 105 characters and 1.0 at 235 characters.

Finally, we must devise a method for aggregating
across different question series to factor out vari-
ations. We accomplish this through interpolation,
much in the same way that precision–recall curves

are plotted in IR experiments. First, all lengths are
interpolated to their nearest larger fifty character in-
crement. In our case, they are 150 and 250. Once
this is accomplished for each question series, we can
directly average across all question series at each
length increment. Plotting these points gives us a
recall-by-length performance curve.

4.3 Results

Results of our evaluation are shown in Figure 1, for
TREC 2004 (left) and TREC 2005 (right). These
plots have a simple interpretation—curves that rise
faster and higher represent “better” systems. The
“knee” in some of the curves indicate approximately
the length of the original system output (recall
that the baseline Lucene run was appended to each
TREC run to produce responses of equal lengths).
For reference, official factoid scores of the same runs
are shown in Table 2.

Results from TREC 2004 are striking: while the
top three systems appear to outperform the baseline
IR run, it is unclear if the median system is better
than Lucene, especially at longer response lengths.
This suggests that if a user wanted to obtain answers
to a series of factoid questions about a topic, using
the median QA system isn’t any more efficient than
simply retrieving a few articles using an IR engine
and reading them. Turning to the 2005 results, the
median system fares better when compared to the
IR baseline, although the separation between the top
and median systems has narrowed.

In the next two sections, we present additional ex-
periments on question series. A detailed analysis is
saved for Section 7.
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Figure 2: POURPRE recall curves for “other” runs from TREC 2004 (left) and TREC 2005 (right).

Run 2004 2005
top-ranked run 0.460 0.248
2nd-ranked run 0.404 0.232
3rd-ranked run 0.367 0.228
median run 0.197 0.152

Table 3: Official scores of selected TREC 2004 and
TREC 2005 “other” runs.

5 “Other” Questions

Our second set of experiments examine the perfor-
mance of TREC systems on “other” questions. Once
again, we selected the top-ranked, second-ranked,
third-ranked, and median runs from TREC 2004 and
TREC 2005. Since system submissions were al-
ready passages, no additional processing was nec-
essary. The IR baseline was exactly the same as the
run used in the previous experiment. Below, we de-
scribe the evaluation methodology and results.

5.1 Evaluation Methodology

The evaluation of “other” questions closely mir-
rors the procedure developed for factoid series. We
employed POURPRE (Lin and Demner-Fushman,
2005), a recently developed method for automati-
cally evaluating answers to complex questions. The
metric relies on n-gram overlap as a surrogate for
manual nugget matching, and has been shown to cor-
relate well with official human judgments. We mod-
ified the POURPRE scoring script to return only the
nugget recall (of vital nuggets only).

Formally, systems’ responses to “other” questions
consist of unordered sets of answer strings. We de-

cided to break each system’s response into individ-
ual answer strings and compute nugget recall on a
string-by-string basis. Since these answer strings
are for the most part sentences, results are compara-
ble to the factoid series experiments. Taking answer
strings as the basic response unit also makes sense
because it respects segment boundaries that are pre-
sumably meaningful to the original systems.

Computing POURPRE recall at different response
lengths yielded an uninterpolated data series for
each topic. Results across topics were aggregated
in the same manner as the factoid series: first by
interpolating to the nearest larger fifty-character in-
crement, and then averaging all topics across each
length increment.3

5.2 Results

Results of our experiment are shown in Figure 2. For
reference, the official nugget F-scores of the TREC
runs are shown in Table 3. Most striking is the ob-
servation that the baseline Lucene run is highly com-
petitive with submitted TREC systems. For TREC
2004, it appears that the IR baseline outperforms all
but the top two systems at higher recall levels. For
TREC 2005, differences between all the analyzed
runs are difficult to distinguish. Although scores
of submitted runs in TREC 2005 were more tightly
clustered, the strong baseline IR performance is sur-
prising. For “other” questions, it doesn’t appear that
QA is better than IR!

We believe that relative differences in QA and IR

3It is worth noting that this protocol treats the answer strings
as if they were ordered—but we do not believe this has an im-
pact on the results or our conclusions.
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Figure 3: POURPRE recall curves for runs from TREC 2004 (left) and TREC 2005 (right), combining both
factoid and “other” questions.

performance between the 2004 and 2005 test sets
can be attributed to the nature of the targets. In
TREC 2005, allowable semantic categories of tar-
gets were expanded to include events such as “Miss
Universe 2000 crowned”, which by their very nature
are narrower in scope. This, combined with many
highly-specific targets, meant that the corpus con-
tained fewer topically-relevant documents for each
target to begin with. As a result, an IR-based sen-
tence extraction approach performs quite well—this
explanation is consistent with the observations of
Lin and Demner-Fushman (2006).

6 Combining Question Types

In the previous two sections, factoid and “other”
questions were examined in isolation, which ignores
their complementary role in supplying information
about a target. To provide a more complete pic-
ture of system performance, we devised a method by
which both question types can be evaluated together.

At the conceptual level, there is little difference
between factoid and “other” questions. The first type
asks for explicit facts, while the second type asks
for facts that the user didn’t know enough to ask
about directly. We can unify the evaluation of both
types by treating regular expression factoid patterns
as if they were (vital) nuggets. Many patterns don’t
contain any special symbols, and read quite like
nugget descriptions already. For others, we man-
ually converted regular expressions into plain text,
e.g., “(auto|car) crash” becomes “auto car crash”.

To validate this method, we first evaluated fac-
toid series using POURPRE, with nugget descrip-

tions prepared from answer patterns in the manner
described above. For both TREC 2004 and TREC
2005, we did not notice any qualitative differences
in the results, suggesting that factoid answers can
indeed be treated like nuggets.

We then proceeded to evaluate both factoid and
“other” questions together using the above proce-
dure. Runs were prepared by appending the 1st
“other” run to the 1st factoid run, the 2nd “other”
run to the 2nd factoid run, etc.4 The Lucene base-
line run remained the same as before.

Plots of POURPRE recall by answer length are
shown in Table 3. These graphs provide a more com-
plete picture of QA performance on question series.
The same trends observed in the two previous exper-
iments are seen here also: it does not appear that the
median run in TREC 2004 performs any better than
the IR baseline. Considering the TREC 2005 runs,
the IR baseline remains surprisingly competitive.

Note that integration of list questions, the third
component of question series, remains a challenge.
Whereas the answer to a factoid question can be nat-
urally viewed as a vital nugget describing the target,
the relative importance of a single answer instance to
a list question cannot be easily quantified. We leave
this issue for future work.

7 Discussion

It can be argued that quantitative evaluation is the
single most important driver for advancing the state

4Note that we’re mixing sections from different runs, so
these do not correspond to any actual TREC submissions.
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of the art in language processing technology today.
As a result, evaluation metrics and methodologies
need to be carefully considered to insure that they
provide proper guidance to researchers. Along these
lines, this paper makes two arguments: that recall
curves better capture aspects of complex QA tasks
than the existing TREC evaluation metrics; and that
this novel evaluation framework allows us to explore
the relationship between QA and IR technology in a
manner not possible before.

7.1 Advantages of Recall Curves

We see several advantages to the evaluation frame-
work introduced here, beyond those already dis-
cussed in Sections 2 and 3.

Previously, QA and IR techniques were not di-
rectly comparable since they returned different re-
sponse units. To make evaluation even more com-
plex, different types of questions (e.g., factoid vs.
“other”) require different metrics—in TREC, these
incomparable values were then aggregated based on
arbitrary weights to produce a final composite score.
By noting similarities between factoid answers and
nuggets, we were able to develop a unified evalu-
ation framework for factoid and “other” questions.
By emphasizing the similarities between complex
QA and summarization, it becomes possible to com-
pare QA and IR technology directly—this work pro-
vides a point of reference much in the same way that
IR-based sentence extraction has served as a starting
point for summarization research, e.g., (Goldstein et
al., 1999).

In addition, characterizing system performance in
terms of recall curves allows researchers to com-
pare the effectiveness of systems under different task
models. Measuring recall at short response lengths
might reflect time-constrained scenarios, e.g., pro-
ducing an action-oriented report with a 30-minute
deadline. Measuring recall at longer response
lengths might correspond to in-depth research, e.g.,
writing a summary article due by the end of the day.
Recall curves are able to capture potential system
tradeoffs that might otherwise be hidden in single-
point metrics.

7.2 Understanding QA and IR

Beyond answering a straightforward question, the
results of our experiments yield insights about the

relationship between QA and IR technology.
Most question answering systems today employ a

two-stage architecture: IR techniques are first used
to select a candidate set of documents (or alter-
natively, passages, sentences, etc.), which is then
analyzed by more sophisticated NLP techniques.
For factoids, analysis usually involves named-entity
recognition using some sort of answer type ontol-
ogy; for “other” questions, analysis typically in-
cludes filtering for definitions based on surface pat-
terns and other features. The evaluation framework
described in this paper is able to isolate the per-
formance contribution of this second NLP stage—
which corresponds to the difference between the
baseline IR and QA recall curves.

For factoid questions, NLP technology provides
a lot of added value: the set of techniques devel-
oped for pinpointing exact answers allows users to
acquire information more quickly than they other-
wise could with an IR system (shown by Figure 1).
The added value of NLP techniques for answering
“other” questions is less clear—in many instances,
those techniques do not appear to be contributing
much (shown by Figure 2). Whereas factoid QA
technology is relatively mature, researchers have
made less progress in developing general techniques
for answering complex questions.

Our experiments also illuminate when exactly QA
works. For short responses, there is little differ-
ence between QA and IR, or between all QA sys-
tems for that matter, since it is difficult to cram
much information into a short response with cur-
rent (extractive) technology. For extremely long re-
sponses, the advantages provided by the best QA
systems are relatively small, since there’s an upper
limit to their accuracy (and researchers have yet to
develop a good backoff strategy). In the middle
range of response lengths is where QA technology
really shines—where a user can much more effec-
tively gather knowledge using a QA system.

7.3 Implications for Future Research
Based on the results presented here, we suggest two
future directions for the field of question answering.

First, we believe there is a need to focus on an-
swer generation. High-precision answer extraction
alone isn’t sufficient to address users’ complex in-
formation needs—information nuggets must be syn-
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thesized and presented for efficient human consump-
tion. The coherence and fluency of system responses
should be factored into the evaluation methodology
as well. In this regard, QA researchers have much
to learn from the summarization community, which
has already grappled with these issues.

Second, more effort is required to developed task-
based QA evaluations. The “goodness” of answers
can only be quantified with respect to a task—
examples range from winning a game show (Clarke
et al., 2001) to intelligence gathering (Small et al.,
2004). It is impossible to assess the real-world
impact of QA technology without considering how
such systems will be used to solve human problems.
Our work takes a small step in this direction.

8 Conclusion

Is QA better than IR? The short answer, somewhat to
our relief, is yes. But this work provides more than
a simple affirmation. We believe that our contribu-
tions are two-fold: a novel framework for evaluating
QA systems that more realistically models user tasks
and preferences, and an exploration of QA and IR
performance within this framework that yields new
insights about these two technologies. We hope that
these results are useful in guiding the development
of future question answering systems.
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Abstract

Information retrieval systems are fre-
quently required to handle long queries.
Simply using all terms in the query or re-
lying on the underlying retrieval model
to appropriately weight terms often leads
to ineffective retrieval. We show that re-
writing the query to a version that com-
prises a small subset of appropriate terms
from the original query greatly improves
effectiveness. Targeting a demonstrated
potential improvement of almost 50% on
somedifficult TREC queries and their as-
sociated collections, we develop a suite of
automatic techniques to re-write queries
and study their characteristics. We show
that the shortcomings of automatic meth-
ods can be ameliorated by somesimple
user interaction, and report results that are
on average 25% better than the baseline.

1 Introduction

Query expansion has long been a focus of infor-
mation retrieval research. Given an arbitrary short
query, the goal was to find and include additional
related and suitably-weighted terms to the original
query to produce a more effective version. In this pa-
per we focus on a complementary problem –query
re-writing. Given a long query we explore whether
there is utility in modifying it to a more concise ver-
sion such that the original information need is still
expressed.

The Y!Q beta1 search engine allows users to se-
lect large portions of text from documents and issue
them as queries. The search engine is designed to
encourage users to submit long queries such as this
example from the web site“I need to know the gas
mileage for my Audi A8 2004 model”. The moti-
vation for encouraging this type of querying is that
longer queries would provide more information in
the form of context (Kraft et al., 2006), and this ad-
ditional information could be leveraged to provide
a better search experience. However, handling such
long queries is a challenge. The use of all the terms
from the user’s input can rapidly narrow down the
set of matching documents, especially if a boolean
retrieval model is adopted. While one would ex-
pect the underlying retrieval model to appropriately
assign weights to different terms in the query and
return only relevant content, it is widely acknowl-
edged that models fail due to a variety of reasons
(Harman and Buckley, 2004), and are not suited to
tackle every possible query.

Recently, there has been great interest in personal-
ized search (Teevan et al., 2005), where the query is
modified based on a user’s profile. The profile usu-
ally consists of documents previously viewed, web
sites recently visited, e-mail correspondence and so
on. Common procedures for using this large amount
of information usually involve creating huge query
vectors with some sort of term-weighting mecha-
nism to favor different portions of the profile.

The queries used in the TREC ad-hoc tracks con-
sist of title, description and narrative sections, of
progressively increasing length. The title, of length

1http://yq.search.yahoo.com/
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ranging from a single term to four terms is consid-
ered a concise query, while the description is consid-
ered a longer version of the title expressing the same
information need. Almost all research on the TREC
ad-hoc retrieval track reports results using only the
title portion as the query, and a combination of the
title and description as a separate query. Most re-
ported results show that the latter is more effective
than the former, though in the case of some hard col-
lections the opposite is true. However, as we shall
show later, there is tremendous scope for improve-
ment. Formulating a shorter query from the descrip-
tion can lead to significant improvements in perfor-
mance.

In the light of the above, we believe there is great
utility in creating query-rewriting mechanisms for
handling long queries. This paper is organized in
the following way. We start with some examples
and explore ways by which we can create concise
high-quality reformulations of long queries in Sec-
tion 2. We describe our baseline system in Section 3
and motivate our investigations with experiments in
Section 4. Since automatic methods have shortfalls,
we present a procedure in Section 5 to involve users
in selecting a good shorter query from a small selec-
tion of alternatives. We report and discuss the results
of this approach in Section 6. Related work is pre-
sented in Section 7. We wrap up with conclusions
and future directions in Section 8.

2 Selecting sub-queries

Consider the following query:
Define Argentine and British international rela-

tions.
When this query was issued to a search engine,

the average precision (AP, Section 3) of the results
was 0.424. When we selected subsets of terms (sub-
queries) from the query, and ran them as distinct
queries, the performance was as shown in Table 1. It
can be observed that there are seven different ways
of re-writing the original query to attain better per-
formance. The best query, also among the shortest,
did not have a natural-language flavor to it. It how-
ever had an effectiveness almost 50% more than the
original query. This immense potential for improve-
ment by query re-writing is the motivation for this
paper.

Query AP
.... ....
international relate 0.000
define international relate 0.000
.... ....
define argentina 0.123
international relate argentina 0.130
define relate argentina 0.141
relate argentina 0.173
define britain international relate argentina 0.424
define britain international argentina 0.469
britain international relate argentina 0.490
define britain relate argentina 0.494
britain international argentina 0.528
define britain argentina 0.546
britain relate argentina 0.563
britain argentina 0.626

Table 1: The results of using all possible subsets (ex-
cluding singletons) of the original query as queries.
The query terms were stemmed and stopped.

Analysis of the terms in the sub-queries and the
relationship of the sub-queries with the original
query revealed a few interesting insights that had po-
tential to be leveraged to aid sub-query selection.

1. Terms in the original query that a human would
consider vital in conveying the type of infor-
mation desired were missing from the best sub-
queries. For example, the best sub-query for
the example wasbritain argentina, omitting
any reference to international relations. This
also reveals a mismatch between the user’s
query and the way terms occurred in the corpus,
and suggests that an approximate query could
at times be a better starting point for search.

2. The sub-query would often containonly terms
that a human would consider vital to the query
while the original query would also (naturally)
contain them, albeit weighted lower with re-
spect to other terms. This is a common prob-
lem (Harman and Buckley, 2004), and the fo-
cus of efforts to isolate the keyconceptterms
in queries (Buckley et al., 2000; Allan et al.,
1996).

3. Good sub-queries were missing many of the
noise terms found in the original query. Ideally
the retrieval model would weight them lower,
but dropping them completely from the query
appeared to be more effective.
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4. Sub-queries a human would consider as an in-
complete expression of information need some-
times performed better than the original query.
Our example illustrates this point.

Given the above empirical observations, we ex-
plored a variety of procedures to refine a long query
into a shorter one that retained the key terms. We ex-
pected the set of terms of a good sub-query to have
the following properties.

A. Minimal Cardinality: Any set that contains
more than the minimum number of terms to retrieve
relevant documents could suffer from concept drift.

B. Coherency: The terms that constitute the sub-
query should be coherent, i.e. they should buttress
each other in representing the information need. If
need be, terms that the user considered important but
led to retrieval of non-relevant documents should be
dropped.

Some of the sub-query selection methods we ex-
plored with these properties in mind are reported be-
low.

2.1 Mutual Information

Let X and Y be two random variables, with joint
distributionP (x, y) and marginal distributionsP (x)
and P (y) respectively. The mutual information is
then defined as:

I(X;Y ) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)

(1)

Intuitively, mutual information measures the infor-
mation aboutX that is shared byY . If X andY are
independent, thenX contains no information about
Y and vice versa and hence their mutual information
is zero. Mutual Information is attractive because it is
not only easy to compute, but also takes into consid-
eration corpus statistics and semantics. The mutual
information between two terms (Church and Hanks,
1989) can be calculated using Equation 2.

I(x, y) = log

n(x,y)
N

n(x)
N

n(y)
N

(2)

n(x, y) is the number of times termsx andy oc-
curred within a term window of 100 terms across the

corpus, whilen(x) andn(y) are the frequencies of
x andy in the collection of sizeN terms.

To tackle the situation where we have an arbi-
trary number of variables (terms) we extend the two-
variable case to the multivariate case. The extension,
called multivariate mutual information (MVMI) can
be generalized from Equation 1 to:

I(X1;X2;X3; ...;XN ) =
N∑

i=1

(−1)i−1
∑

X⊂(X1,X2,X3,...,XN),|X|=k

H(X) (3)

The calculation of multivariate information using
Equation 3 was very cumbersome, and we instead
worked with the approximation (Kern et al., 2003)
given below.

I(X1;X2;X3; ...;XN ) = (4)∑

i,j={1,2,3,...,N ;i6=j}

I(Xi;Xj) (5)

For the case involving multiple terms, we calcu-
lated MVMI as the sum of the pair-wise mutual in-
formation for all terms in the candidate sub-query.
This can be also viewed as the creation of a com-
pletely connected graphG = (V,E), where the ver-
ticesV are the terms and the edgesE are weighted
using the mutual information between the vertices
they connect.

To select a score representative of the quality of
a sub-query we considered several options includ-
ing the sum, average, median and minimum of the
edge weights. We performed experiments on a set
of candidate queries to determine how well each of
these measures tracked AP, and found that the aver-
age worked best. We refer to the sub-query selection
procedure using the average score asAverage.

2.2 Maximum Spanning Tree

It is well-known that an average is easily skewed
by outliers. In other words, the existence of one or
more terms that have low mutual information with
every other term could potentially distort results.
This problem could be further compounded by the
fact that mutual information measured using Equa-
tion 2 could have a negative value. We attempted
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to tackle this problem by considering another mea-
sure that involved creating a maximum spanning tree
(MaxST) over the fully connected graphG, and us-
ing the weight of the identified tree as a measure rep-
resentative of the candidate query’s quality (Rijsber-
gen, 1979). We used Kruskal’s minimum spanning
tree (Cormen et al., 2001) algorithm after negating
the edge weights to obtain a MaxST. We refer to the
sub-query selection procedure using the weight of
the maximum spanning tree asMaxST.

2.3 Named Entities

Named entities (names of persons, places, organiza-
tions, dates, etc.) are known to play an important
anchor role in many information retrieval applica-
tions. In our example from Section 2, sub-queries
without Britain or Argentina will not be effective
even though the mutual information score of the
other two termsinternational and relations might
indicate otherwise. We experimented with another
version of sub-query selection that considered only
sub-queries that retained at least one of the named
entities from the original query. We refer to the vari-
ants that retained named entities asNE Average and
NE MasT.

3 Experimental Setup

We used version 2.3.2 of the Indri search engine, de-
veloped as part of the Lemur2 project. While the
inference network-based retrieval framework of In-
dri permits the use of structured queries, the use
of language modeling techniques provides better es-
timates of probabilities for query evaluation. The
pseudo-relevance feedback mechanism we used is
based on relevance models (Lavrenko and Croft,
2001).

To extract named entities from the queries, we
used BBN Identifinder (Bikel et al., 1999). The
named entities identified were of typePerson, Lo-
cation, Organization, Date, andTime.

We used the TREC Robust 2004 and Robust 2005
(Voorhees, 2006) document collections for our ex-
periments. The 2004 Robust collection contains
around half a million documents from the Finan-
cial Times, the Federal Register, the LA Times, and
FBIS. The Robust 2005 collection is the one-million

2http://www.lemurproject.org

document AQUAINT collection. All the documents
were from English newswire. We chose these col-
lections because they and their associated queries
are known to behard, and hence present a chal-
lenging environment. We stemmed the collections
using the Krovetz stemmer provided as part of In-
dri, and used a manually-created stoplist of twenty
terms (a, an, and, are, at, as, be, for, in, is, it, of, on,
or, that, the, to, was, withandwhat). To determine
the best query selection procedure, we analyzed 163
queries from the Robust 2004 track, and used 30 and
50 queries from the 2004 and 2005 Robust tracks re-
spectively for evaluation and user studies.

For all systems, we report mean average preci-
sion (MAP) and geometric mean average precision
(GMAP). MAP is the most widely used measure in
Information Retrieval. While precision is the frac-
tion of the retrieved documents that are relevant, av-
erage precision (AP) is a single value obtained by
averaging the precision values at each new relevant
document observed. MAP is the arithmetic mean of
the APs of a set of queries. Similarly, GMAP is the
geometric mean of the APs of a set of queries. The
GMAP measure is more indicative of performance
across an entire set of queries. MAP can be skewed
by the presence of a few well-performing queries,
and hence is not as good a measure as GMAP from
the perspective of measure comprehensive perfor-
mance.

4 Experiments

We first ran two baseline experiments to record the
quality of the available long query and the shorter
version. As mentioned in Section 1, we used the
description and title sections of each TREC query
as surrogates for the long and short versions re-
spectively of a query. The results are presented in
the first two rows, Baseline and Pseudo-relevance
Feedback (PRF), of Table 2. Measured in terms of
MAP and GMAP (Section3), using just the title re-
sults in better performance than using the descrip-
tion. This clearly indicates the existence of terms in
the description that while elaborating an information
need hurt retrieval performance. The result of using
pseudo-relevance feedback (PRF) on both the title
and description show moderate gains - a known fact
about this particular collection and associated train-
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MAP GMAP
Long Query Baseline 0.243 0.136
(Description) PRF 0.270 0.124
Short Query Baseline 0.249 0.154

(Title) PRF 0.269 0.148
Best sub-query Baseline 0.342 0.270
(Combination) PRF 0.343 0.241

Table 2: Results across 163 training queries on the
Robust 2004 collection. Using the best sub-query
results in almost 50% improvement over the baseline

ing queries.
To show the potential and utility of query re-

writing, we first present results that show the upper
bound on performance that can obtained by doing
so. We ran retrieval experiments with every combi-
nation of query terms. For a query of lengthn, there
are 2n combinations. We limited our experiments
to queries of lengthn ≤ 12. Selecting the perfor-
mance obtained by the best sub-query of each query
revealed an upper bound in performance almost 50%
better than the baseline (Table 2).

To evaluate the automatic sub-query selection
procedures developed in Section 2, we performed
retrieval experiments using the sub-queries selected
using them. The results, which are presented in Ta-
ble 3, show that the automatic sub-query selection
process was a failure. The results of automatic se-
lection were worse than even the baseline, and there
was no significant difference between using any of
the different sub-query selection procedures.

The failure of the automatic techniques could be
attributed to the fact that we were working with the
assumption that term co-occurrence could be used
to model a user’s information need. To see if there
was any general utility in using the procedures to
select sub-queries, we selected the best-performing
sub-query from the top 10 ranked by each selection
procedure (Table 4). While the effectiveness in each
case as measured by MAP is not close to the best
possible MAP, 0.342, they are all significantly better
than the baseline of 0.243.

5 Interacting with the user

The final results we presented in the last section
hinted at a potential for user interaction. We envi-

MAP GMAP
Baseline 0.243 0.136
Average 0.172 0.025
MaxST 0.172 0.025
NE Average 0.170 0.023
NE MaxST 0.182 0.029

Table 3: Score of the highest rank sub-query by var-
ious measures.

MAP GMAP
Baseline 0.243 0.136
AverageTop10 0.296 0.167
MaxSTTop10 0.293 0.150
NE AverageTop10 0.278 0.156
NE MaxSTTop10 0.286 0.159

Table 4: Score of the best sub-query in the top 10
ranked by various measures

sioned providing the user with a list of the top 10
sub-query candidates using a good ranking proce-
dure, and asking her to select the sub-query she felt
was most appropriate. This additional round of hu-
man intervention could potentially compensate for
the inability of the ranking measures to select the
best sub-query automatically.

5.1 User interface design

We displayed the description (thelong query) and
narrative portion of each TREC query in the inter-
face. The narrative was provided to help the partic-
ipant understand what information the user who is-
sued the query was interested in. The title was kept
hidden to avoid influencing the participant’s choice
of the best sub-query. A list of candidate sub-queries
was displayed along with links that could be clicked
on to display a short section of text in a designated
area. The intention was to provide an example of
what would potentially be retrieved with a high rank
if the candidate sub-query were used. The partici-
pant used this information to make two decisions -
the perceived quality of each sub-query, and the best
sub-query from the list. A facility to indicate that
none of the candidates were good was also included.
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Percentage of candidates
better than baseline

Average 28.5%
MaxST 35.5%
NE Average 31.1%
NE MaxST 36.6%

Table 5: Number of candidates from top 10 that ex-
ceeded the baseline

5.2 User interface content issues

The two key issues we faced while determining the
content of the user interface were:

A. Deciding which sub-query selection procedure
to use to get the top 10 candidate sub-queries:To
determine this in the absence of any significant dif-
ference in performance due to the top-ranked can-
didate selected by each procedure, we looked at the
number of candidates each procedure brought into
the top 10 that were better than the baseline query,
as measured by MAP. This was guided by the belief
that greater the number of better candidates in the
top 10, the higher the probability that the user would
select a better sub-query. Table 5 shows how each of
the selection procedures compared. The NEMaxST
ranking procedure had the most number of better
sub-queries in the top 10, and hence was chosen.

B. Displaying context:Simply displaying a list
of 10 candidates without any supportive information
would make the task of the user difficult. This was in
contrast to query expansion techniques (Anick and
Tipirneni, 1999) where displaying a list of terms suf-
ficed as the task of the user was to disambiguate
or expand a short query. An experiment was per-
formed in which a single user worked with a set of
30 queries from Robust 2004, and an accompanying
set of 10 candidate sub-queries each, twice - once
with passages providing context and one with snip-
pets providing context. The top-ranked passage was
generated by modifying the candidate query into
one that retrieved passages of fixed length instead
of documents. Snippets, like those seen along with
links to top-ranked documents in the results from
almost all popular search engines, were generated
after a document-level query was used to query the
collection. The order in which the two contexts were
presented to the user was randomized to prevent the

MAP GMAP
Snippet as Context 0.348 0.170
Passage as Context0.296 0.151

Table 6: Results showing the MAP over 19 of 30
queries that the user provided selections for using
each context type.

user from assuming a quality order. We see that pre-
senting the snippet led to better MAP that presenting
the passage (Table 6). The reason for this could be
that the top-ranking passage we displayed was from
a document ranked lower by the document-focussed
version of the query. Since we finally measure MAP
only with respect to document ranking, and the snip-
pet was generated from the top-ranked document,
we hypothesize that this led to the snippet being a
better context to display.

6 User Evaluation

We conducted an exploratory study with five par-
ticipants - four of them were graduate students in
computer science while the fifth had a background
in the social sciences and was reasonably proficient
in the use of computers and internet search engines.
The participants worked with 30 queries from Ro-
bust 2004, and 50 from Robust 20053. The baseline
values reported are automatic runs with thedescrip-
tion as the query.

Table 7 shows that all five participants4 were
able to choose sub-queries that led to an improve-
ment in performance over the baseline (TRECtitle
query only). This improvement is not only on MAP
but also on GMAP, indicating that user interaction
helped improve a wide spectrum of queries. Most
notable were the improvements in P@5 and P@10.
This attested to the fact that the interaction tech-
nique we explored was precision-enhancing. An-
other interesting result, from# sub-queries selected
was that participants were able to decide in a large
number of cases that re-writing was either not useful
for a query, or that none of the options presented to
them were better. Showing context appears to have
helped.

3Participant 4 looked that only 34 of the 50 queries presented
4Thep value for testing statistical significance of MAP im-

provement for Participant 5 was 0.053 - the result very narrowly
missed being statistically significant.
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# Queries # sub-queries % sub-queries MAP GMAP P@5 p@10
selected better

Baseline 0.203 0.159 0. 476 0.507
1 50 26 80.7% With Interaction 0.249 0.199 0.615 0.580

Upper Bound 0.336 0.282 0.784 0.719

Baseline 0.224 0.156 0.484 0.526
2 50 19 78.9% With Interaction 0.277 0.209 0.652 0.621

Upper Bound 0.359 0.293 0.810 0.742

Baseline 0.217 0.126 0.452 0.432
3 80 53 73.5% With Interaction 0.276 0.166 0.573 0.501

Upper Bound 0.354 0.263 0.762 0.654

Baseline 0.192 0.142 0.462 0.525
4 50(34) 19 68.7% With Interaction 0.255 0.175 0.612 0.600

Upper Bound 0.344 0.310 0.862 0.800

Baseline 0.206 0.111 0.433 0.410
5 80 65 61.5% With Interaction 0.231 0.115 0.486 0.429

Upper Bound 0.341 0.245 0.738 0.640

Table 7:# Queriesrefers to the number of queries that were presented to the participant while# sub-queries
selectedrefers to the number of queries for which the participant chose a sub-query. All scores including
upper bounds were calculated only considering the queries for which the participant selected a sub-query.
An entry inbold means that the improvement in MAP is statistically significant. Statistical significance was
measured using a paired t-test, withα set to 0.05.

7 Related Work

Our interest in finding a concise sub-query that ef-
fectively captures the information need is reminis-
cent of previous work in (Buckley et al., 2000).
However, the focus was more on balancing the ef-
fect of query expansion techniques such that differ-
entconceptsin the query were equally benefited.

Mutual information has been used previously in
(Church and Hanks, 1989) to identify collocations of
terms for identifying semantic relationships in text.
Experiments were confined to bigrams. The use of
MaST over a graph of mutual information values
to incorporate the most significant dependencies be-
tween terms was first noted in (Rijsbergen, 1979).
Extensions can be found in a different field - image
processing (Kern et al., 2003) - where multivariate
mutual information is frequently used.

Work done by (White et al., 2005) provided a ba-
sis for our decision to show context for sub-query se-
lection. The useful result that top-ranked sentences
could be used to guide users towards relevant mate-
rial helped us design an user interface that the par-

ticipants found very convenient to use.

A related problem addressed by (Cronen-
Townsend et al., 2002) was determining query qual-
ity. This is known to be a very hard problem, and
various efforts (Carmel et al., 2006; Vinay et al.,
2006) have been made towards formalizing and un-
derstanding it.

Previous work (Shapiro and Taksa, 2003) in the
web environment attempted to convert a user’s natu-
ral language query into one suited for use with web
search engines. However, the focus was on merg-
ing the results from using different sub-queries, and
not selection of a single sub-query. Our approach
of re-writing queries could be compared to query re-
formulation, wherein a user follows up a query with
successive reformulations of the original. In the web
environment, studies have shown that most users
still enter only one or two queries, and conduct lim-
ited query reformulation (Spink et al., 2002). We hy-
pothesize that the techniques we have developed will
be well-suited for search engines like Ask Jeeves
where 50% of the queries are in question format
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(Spink and Ozmultu, 2002). More experimentation
in the Web domain is required to substantiate this.

8 Conclusions

Our results clearly show that shorter reformulations
of long queries can greatly impact performance. We
believe that our technique has great potential to be
used in an adaptive information retrieval environ-
ment, where the user starts off with a more general
information need and a looser notion of relevance.
The initial query can then be made longer to express
a most focused information need.

As part of future work, we plan to conduct a more
elaborate study with more interaction strategies in-
cluded. Better techniques to select effective sub-
queries are also in the pipeline. Since we used mu-
tual information as the basis for most of our sub-
query selection procedures, we could not consider
sub-queries that comprised of a single term. We plan
to address this issue too in future work.
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Abstract

Currently there are several approaches to
machine translation (MT) based on differ-
ent paradigms; e.g., phrasal, hierarchical
and syntax-based. These three approaches
yield similar translation accuracy despite
using fairly different levels of linguistic
knowledge. The availability of such a
variety of systems has led to a growing
interest toward finding better translations
by combining outputs from multiple sys-
tems. This paper describes three differ-
ent approaches to MT system combina-
tion. These combination methods oper-
ate on sentence, phrase and word level
exploiting information from � -best lists,
system scores and target-to-source phrase
alignments. The word-level combination
provides the most robust gains but the
best results on the development test sets
(NIST MT05 and the newsgroup portion
of GALE 2006 dry-run) were achieved by
combining all three methods.

1 Introduction

In recent years, machine translation systems based
on new paradigms have emerged. These systems
employ more than just the surface-level information
used by the state-of-the-art phrase-based translation
systems. For example, hierarchical (Chiang, 2005)
and syntax-based (Galley et al., 2006) systems have
recently improved in both accuracy and scalability.

Combined with the latest advances in phrase-based
translation systems, it has become more attractive
to take advantage of the various outputs in forming
consensus translations (Frederking and Nirenburg,
1994; Bangalore et al., 2001; Jayaraman and Lavie,
2005; Matusov et al., 2006).

System combination has been successfully ap-
plied in state-of-the-art speech recognition evalua-
tion systems for several years (Fiscus, 1997). Even
though the underlying modeling techniques are sim-
ilar, many systems produce very different outputs
with approximately the same accuracy. One of the
most successful approaches is consensus network
decoding (Mangu et al., 2000) which assumes that
the confidence of a word in a certain position is
based on the sum of confidences from each system
output having the word in that position. This re-
quires aligning the system outputs to form a con-
sensus network and – during decoding – simply
finding the highest scoring path through this net-
work. The alignment of speech recognition outputs
is fairly straightforward due to the strict constraint in
word order. However, machine translation outputs
do not have this constraint as the word order may be
different between the source and target languages.
MT systems employ various re-ordering (distortion)
models to take this into account.

Three MT system combination methods are pre-
sented in this paper. They operate on the sentence,
phrase and word level. The sentence-level combi-
nation is based on selecting the best hypothesis out
of the merged N-best lists. This method does not
generate new hypotheses – unlike the phrase and
word-level methods. The phrase-level combination
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is based on extracting sentence-specific phrase trans-
lation tables from system outputs with alignments
to source and running a phrasal decoder with this
new translation table. This approach is similar to
the multi-engine MT framework proposed in (Fred-
erking and Nirenburg, 1994) which is not capable of
re-ordering. The word-level combination is based
on consensus network decoding. Translation edit
rate (TER) (Snover et al., 2006) is used to align
the hypotheses and minimum Bayes risk decoding
under TER (Sim et al., 2007) is used to select the
alignment hypothesis. All combination methods use
weights which may be tuned using Powell’s method
(Brent, 1973) on � -best lists. Both sentence and
phrase-level combination methods can generate � -
best lists which may also be used as new system out-
puts in the word-level combination.

Experiments on combining six machine transla-
tion system outputs were performed. Three sys-
tems were phrasal, two hierarchical and one syntax-
based. The systems were evaluated on NIST MT05
and the newsgroup portion of the GALE 2006 dry-
run sets. The outputs were evaluated on both TER
and BLEU. As the target evaluation metric in the
GALE program was human-mediated TER (HTER)
(Snover et al., 2006), it was found important to im-
prove both of these automatic metrics.

This paper is organized as follows. Section 2
describes the evaluation metrics and a generic dis-
criminative optimization technique used in tuning of
the various system combination weights. Sentence,
phrase and word-level system combination methods
are presented in Sections 3, 4 and 5. Experimental
results on Arabic and Chinese to English newswire
and newsgroup test data are presented in Section 6.

2 Evaluation Metrics and Discriminative
Tuning

The official metric of the 2006 DARPA GALE
evaluation was human-mediated translation edit rate
(HTER). HTER is computed as the minimum trans-
lation edit rate (TER) between a system output and
a targeted reference which preserves the meaning
and fluency of the sentence (Snover et al., 2006).
The targeted reference is generated by human post-
editors who make edits to a reference translation so
as to minimize the TER between the reference and

the MT output without changing the meaning of the
reference. Computing the HTER is very time con-
suming due to the human post-editing. It is desir-
able to have an automatic evaluation metric that cor-
relates well with the HTER to allow fast evaluation
of the MT systems during development. Correla-
tions of different evaluation metrics have been stud-
ied (Snover et al., 2006) but according to various
internal HTER experiments it is not clear whether
TER or BLEU correlates better. Therefore it is prob-
ably safest to try and not degrade either.

The TER of a translation � is computed as

������� �	�
������ �����������������! #"$�%�!&#')(
� � * +-,.,0/

(1)
where �$� is the total number of words in the ref-
erence translation � � . In the case of multiple ref-
erences, the edits are counted against all references,

� � is the average number of words in the reference
translations and the final TER is computed using the
minimum number of edits. The NIST BLEU-4 is a
variant of BLEU (Papineni et al., 2002) and is com-
puted as132 ��45� �	�
���67�

�98!:<; +=?>@ACBED �GF.HJI A � �	�
���6�KML � �	�
���6 (2)

where
I A � �N�
���6 is the precision of O -grams in

the hypothesis � given the reference � � andL � �N�
���6QP +
is a brevity penalty. The O -gram

counts from multiple references are accumulated in
estimating the precisions.

All system combination methods presented in this
paper may be tuned to directly optimize either one
of these automatic evaluation metrics. The tuning
uses � -best lists of hypotheses with various fea-
ture scores. The feature scores may be combined
with tunable weights forming an arbitrary scoring
function. As the derivatives of this function are not
usually available, Brent’s modification of Powell’s
method (Brent, 1973) may be used to find weights
that optimize the appropriate evaluation metric in
the re-scored � -best list. The optimization starts
at a random initial point in the

I
-dimensional pa-

rameter space, first searching through an initial set
of basis vectors. As searching repeatedly through
the set of basis vectors is inefficient, the direction of
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the vectors is gradually moved toward a larger posi-
tive change in the evaluation metric. To improve the
chances of finding a global optimum, the algorithm
is repeated with varying initial values. The modified
Powell’s method has been previously used in opti-
mizing the weights of a standard feature-based MT
decoder in (Och, 2003) where a more efficient algo-
rithm for log-linear models was proposed. However,
this is specific to log-linear models and cannot be
easily extended for more complicated functions.

3 Sentence-Level Combination

The first combination method is based on re-ranking
a merged � -best list. A confidence score from each
system is assigned to each unique hypothesis in the
merged list. The confidence scores for each hypoth-
esis are used to produce a single score which, com-
bined with a 5-gram language model score, deter-
mines a new ranking of the hypotheses.

3.1 Hypothesis Confidence Estimation

Generalized linear models (GLMs) have been ap-
plied for confidence estimation in speech recogni-
tion (Siu and Gish, 1999). The logit model, which
models the log odds of an event as a linear function
of the features, can be used in confidence estima-
tion. The confidence ����� for a system � generating a
hypothesis � may be modeled as

� F.H � ���+�� � ��� �
	@

 BED � � 
� ��� 
 (3)

where each system has � weights � � 
 , and � ��� 
 is
the � th feature for system � and hypothesis � . The
features used in this work were:

1. Rank in the system’s � -best list;

2. Sentence posterior with system-specific total
score scaling factors;

3. System’s total score;

4. Number of words in the hypothesis;

5. System-specific bias.

If the system � did not generate the hypothesis � , the
confidence is set to zero. To prevent overflow in ex-
ponentiating the summation in Equation 3, the fea-
tures have to be scaled. In the experiments, feature

scaling factors were estimated from the tuning data
to limit the feature values between � , � +�� . The same
scaling factors have to be applied to the features ob-
tained from the test data.

The total confidence score of hypothesis � is ob-
tained from the system confidences � ��� as

� � ��� ���
���

��� +
���
���@
� BED � ���

� L�� � 8� � ��� �"!
+

� �
���@
� BED � ���

(4)
where � � is the number of systems generating the
hypothesis � (i.e., the number of non-zero � ��� for � )
and � � is the number of systems. The weights �
through

!
are constrained to sum to one; i.e., there

are three free parameters. These weights can balance
the total confidence between the number of systems
generating the hypothesis (votes), and the sum, max-
imum and average of the system confidences.

3.2 Sentence Posterior Estimation

The second feature in the GLM is the sentence pos-
terior estimated from the � -best list. A sentence
posterior may simply be estimated from an � -best
list by scaling the system scores for all hypotheses to
sum to one. When combining several systems based
on different translation paradigms and feature sets,
the system scores may not be comparable. The to-
tal scores may be scaled to obtain more consistent
sentence posteriors. The scaled posterior estimated
from an � -best list may be written as

�#��� � �98M: ;%$ �&�'��� � � F.H ;
�@
( BED

�98M: � $ �)� � ( �K#K (5)

where
$ � is the scaling factor for system � and � ��� is

the log-score system � assigns to hypothesis � . The
scaling factors may be tuned to optimize the evalua-
tion metric in the same fashion as the logit model
weights in Section 3.1. Equation 4 may be used
to assign total posteriors for each unique hypothesis
and the weights may be tuned using Powell’s method
on � -best lists as described in Section 2.

3.3 Hypothesis Re-ranking

The hypothesis confidence may be log-linearly com-
bined with a 5-gram language model (LM) score to
yield the final score as follows

� � � � F.H � � �+* �-,/. �� �1032 � (6)
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where
2 � is the number of words in hypothesis � .

The number of words is commonly used in LM re-
scoring to balance the LM scores between hypothe-
ses of different lengths. The number of free pa-
rameters in the sentence-level combination method
is given by � � � � � � � �

where � � is the num-
ber of systems and � is the number of features; i.e.,

� � system score scaling factors (
$ � ), three free inter-

polation weights (Equation 4) for the scaling factor
estimation, � � � GLM weights ( � � 
 ), three free in-
terpolation weights (Equation 4) for the hypothesis
confidence estimation and two free LM re-scoring
weights (Equation 6). All parameters may be tuned
using Powell’s method on � -best lists as described
in Section 2.

The tuning of the sentence-level combination
method may be summarized as follows:

1. Merge individual � -best lists to form a large
� -best list with unique hypotheses;

2. Estimate total score scaling factors as described
in Section 3.2;

3. Collect GLM feature scores for each unique hy-
pothesis;

4. Estimate GLM feature scaling factors as de-
scribed in Section 3.1;

5. Scale the GLM features;

6. Estimate GLM weights, combination weights
and LM re-scoring weights as described above;

7. Re-rank the merged � -best list using the new
weights.

Testing the sentence-level combination has the same
steps as the tuning apart from all estimation steps;
i.e., steps 1, 3, 5 and 7.

4 Phrase-Level Combination

The phrase-level combination is based on extracting
a new phrase translation table from each system’s
target-to-source phrase alignments and re-decoding
the source sentence using this new translation table
and a language model. In this work, the target-to-
source phrase alignments were available from the

individual systems. If the alignments are not avail-
able, they can be automatically generated; e.g., us-
ing GIZA++ (Och and Ney, 2003). The phrase trans-
lation table is generated for each source sentence us-
ing confidence scores derived from sentence poste-
riors with system-specific total score scaling factors
and similarity scores based on the agreement among
the phrases from all systems.

4.1 Phrase Confidence Estimation

Each phrase has an initial confidence based on the
sentence posterior � ��� estimated from an � -best list
in the same fashion as in Section 3.2. The confi-
dence of the phrase table entry is increased if several
systems agree on the target words. The agreement is
measured by four levels of similarity:

1. Same source interval, same target words, and
same original distortion;

2. Same source interval, same target words, with
different original distortion;

3. Overlapping source intervals with the same tar-
get words;

4. Overlapping target words.
� � 
�� represents the similarity of a given phrase �
to all the hypotheses in the system � at the similar-
ity level � . Basically, if there is a similar phrase in a
given hypothesis � in the system � to the phrase � ,
the similarity score

� � 
�� is increased by � ��� . Note
that each phrase in one hypothesis is similar to an-
other hypothesis at only one similarity level, so one
hypothesis can contribute to

� � 
�� at only one simi-
larity level. The final confidence of the phrase table
entry is defined as

� � � � F.H ; � @ ��� 
 � ��	 

� � 
��

��� +

 ��� 
�� ��������B�� � ��	 


@
��� 
�� ��������B��

� ��	 
 � � 
��
� L�� � 8� @


 � ��	 

� � 
�� K (7)

where � � are system weights and 	 
 are similarity
score weights. The parameters � through L interpo-
late between the sum, average and maximum of the
similarity scores. These interpolation weights and
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the system weights � � are constrained to sum to one.
The number of tunable combination weights, in ad-
dition to normal decoder weights, is � � � � 
 � +
where � � is the number of systems and � 
 is the
number of similarity levels; i.e., � � ��+

free system
weights, � 
 similarity score weights and two free in-
terpolation weights.

4.2 Phrase-Based Decoding

The phrasal decoder used in the phrase-level com-
bination is based on standard beam search (Koehn,
2004). The decoder features are: a trigram lan-
guage model score, number of target phrases, num-
ber of target words, phrase distortion, phrase dis-
tortion computed over the original translations and
phrase translation confidences estimated in Section
4.1. The total score for a hypothesis is computed as
a log-linear combination of these features. The fea-
ture weights and combination weights (system and
similarity) may be tuned using Powell’s method on

� -best lists as described in Section 2.
The phrase-level combination tuning can be sum-

marized as follows:

1. Estimate sentence posteriors given the total
score scaling factors;

2. Collect all � unique phrase table entries from
each hypothesis accumulating the similarity
scores

� � 
�� ;

3. Combine the similarity scores to form phrase
confidences according to Equation 7;

4. Decode the source sentences using the current
weights to generate an � -best list;

5. Estimate new decoder and combination
weights as described above.

Testing the phrase-level combination is performed
by following steps 1 through 4.

5 Word-Level Combination

The third combination method is based on confusion
network decoding. In confusion network decoding,
the words in all hypotheses are aligned against each
other to form a graph with word alternatives (in-
cluding nulls) for each alignment position. Each
aligned word is assigned a score relative to the votes

or word confidence scores (Fiscus, 1997; Mangu et
al., 2000) derived from the hypotheses. The decod-
ing is carried out by picking the words with the high-
est scores along the graph. In speech recognition,
this results in minimum expected word error rate
(WER) hypothesis (Mangu et al., 2000) or equiva-
lently minimum Bayes risk (MBR) under WER with
uniform target sentence posterior distribution (Sim
et al., 2007).

In machine translation, aligning hypotheses is
more complicated compared to speech recognition
since the target words do not necessarily appear in
the same order. So far, confusion networks have
been applied in MT system combination using three
different alignment procedures: WER (Bangalore
et al., 2001), GIZA++ alignments (Matusov et al.,
2006) and TER (Sim et al., 2007). WER align-
ments do not allow shifts, GIZA++ alignments re-
quire careful training and are not always reliable.
TER alignments do not guarantee that similar but
lexically different words are aligned correctly but
TER does not require training new models and al-
lows shifts (Snover et al., 2006). This work extends
the approach proposed in (Sim et al., 2007).

5.1 Confusion Network Generation

Due to the varying word order in the MT hypotheses,
the decision of confusion network skeleton is essen-
tial. The skeleton determines the general word order
of the combined hypothesis. One option would be to
use the output from the system with the best perfor-
mance on some development set. However, it was
found that this approach did not always yield bet-
ter combination output compared to the best single
system on all evaluation metrics. Instead of using a
single system output as the skeleton, the hypothesis
that best agrees with the other hypotheses on aver-
age may be used. In this paper, the minimum av-
erage TER score of one hypothesis against all other
hypotheses was used as follows

��� � ��� H ��� ��
� �@
� BED

������� � � �
� �  (8)

This may be viewed as the MBR hypothesis under
TER given uniform target sentence posterior distri-
bution (Sim et al., 2007). It is also possible to com-
pute the MBR hypothesis under BLEU.
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Finding the MBR hypothesis requires computing
the TER against all hypotheses to be aligned. It
was found that aligning more than one hypothesis
( � � +-,

) from each system to the skeleton im-
proves the combination outputs. However, only the
rank-1 hypotheses were considered as skeletons due
to the complexity of the TER alignment. The con-
fidence score assigned to each word was chosen to
be
+��!� + ����� O��  where the

��� O�� was based on the
rank of the aligned hypothesis in the system’s � -
best. This was found to yield better scores than sim-
ple votes.

5.2 Tunable System Weights

The word-level combination method described so
far does not require any tuning. To allow a variety
of outputs with different degrees of confidence to be
combined, system weights may be used. A confu-
sion network may be represented as a standard word
lattice with all paths traveling via all nodes. The
links in this lattice represent the alternative words
(including nulls) at the corresponding position in the
string. Confusion network decoding may be viewed
as finding the highest scoring path through this lat-
tice with summing all word scores along the path.
The standard lattice decoding algorithms may also
be used to generate � -best lists from the confu-
sion network. The simplest way to introduce sys-
tem weights is to accumulate system-specific scores
along the paths and combine these scores linearly
with the weights. The system weights may be tuned
using Powell’s method on � -best lists as described
in Section 2.

The word-level combination tuning can be sum-
marized as follows:

1. Extract 10-best lists from the MT outputs;

2. Align each 10-best against each rank-1 hypoth-
esis using TER;

3. Choose the skeleton (Equation 8);

4. Generate a confusion network lattice with the
current system weights;

5. Generate � -best list hypothesis and score files
from the lattice;

6. Estimate system weights as described above;

Arabic
Newswire Newsgroups

TER BLEU TER BLEU

system A 42.98 49.58 59.73 20.36
system B 43.79 47.06 61.55 18.08
system C 43.92 47.87 60.81 18.08
system D 40.75 52.09 59.25 20.28
system E 42.19 50.86 59.85 19.73
system F 44.30 50.15 61.74 20.61
phrcomb 40.45 53.70 59.90 21.49
sentcomb 41.56 52.18 60.21 19.77

no weights 6 39.33 53.66 58.15 20.61
TER 6 39.41 54.37 58.21 20.85
TER 8 39.43 54.40 57.96 21.44

Table 1: Mixed-case TER and BLEU scores on
Arabic NIST MT05 (newswire) and the newsgroups
portion of the GALE 2006 dry-run data.

7. Re-rank the � -best list using the new weights.

Testing the word-level combination has the same
steps as the tuning apart from steps 6 and 7.

6 Experiments

Six systems trained on all data available for GALE
2006 evaluation were used in the experiments to
demonstrate the performance of all three system
combination methods on Arabic and Chinese to En-
glish MT tasks. Three systems were phrase-based
(A, C and E), two hierarchical (B and D) and one
syntax-based (F). The phrase-based systems used
different sets of features and re-ordering approaches.
The hierarchical systems used different rule sets. All
systems were tuned on NIST MT02 evaluation sets
with four references. Systems A and B were tuned
to minimize TER, the other systems were tuned to
maximize BLEU.

As discussed in Section 2, the system combina-
tion tuning metric was chosen so that gains were ob-
served in both TER and BLEU on development test
sets. NIST MT05 comprising only newswire data
(1056 Arabic and 1082 Chinese sentences) with four
reference translations and the newsgroup portion of
the GALE 2006 dry-run (203 Arabic and 126 Chi-
nese sentences) with one reference translation were
used as the test sets. It was found that minimiz-
ing TER on Arabic also resulted in higher BLEU
scores compared to the best single system. However,
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Chinese
Newswire Newsgroups

TER BLEU TER BLEU

system A 56.57 29.63 68.61 13.20
system B 56.30 29.62 69.87 12.33
system C 59.48 31.32 69.37 13.91
system D 58.32 33.77 67.61 16.86
system E 58.46 32.40 69.08 15.08
system F 56.79 35.30 68.08 16.31
phrcomb 56.50 35.33 68.48 15.88
sentcomb 56.71 36.24 69.50 16.11

no weights 6 53.80 36.17 66.87 15.90
BLEU 6 54.34 36.44 66.50 16.44
BLEU 8 54.86 36.90 66.45 17.32

Table 2: Mixed-case TER and BLEU scores on Chi-
nese NIST MT05 (newswire) and the newsgroups
portion of the GALE 2006 dry-run data.

minimizing TER on Chinese resulted in significantly
lower BLEU. So, TER was used in tuning the com-
bination weights on Arabic and BLEU on Chinese.

The sentence and phrase-level combination
weights were tuned on NIST MT03 evaluation sets.
On the tuning sets, both methods yield about 0.5%-
1.0% gain in TER and BLEU. The mixed-case TER
and BLEU scores on both test sets are shown in Ta-
ble 1 for Arabic and Table 2 for Chinese (phrcomb
represents phrase and sentcomb sentence-level
combination). The phrase-level combination seems
to outperform the sentence-level combination in
terms of both metrics on Arabic although gains over
the best single system are modest, if any. On Chi-
nese, the sentence-level combination yields higher
BLEU scores than the phrase-level combination.
The combination BLEU scores on the newsgroup
data are not higher than the best system, though.

The word-level combination was evaluated in
three settings. First, simple confusion network de-
coding with six systems without system weights
was performed (no weights 6 in the tables).
Second, system weights were trained for combin-
ing six systems (TER/BLEU 6 in the tables). Fi-
nally, all six system outputs as well as the sen-
tence and phrase-level combination outputs were
combined with system weights (TER/BLEU 8 in
the tables). The 6-way combination weights were
tuned on merged NIST MT03 and MT04 evaluation

sets and the 8-way combination weights were tuned
only on NIST MT04 since the sentence and phrase-
level combination methods were already tuned on
NIST MT03. The word-level combination yields
about 2.0%-3.0% gain in TER and 2.0%-4.0% gain
in BLEU on the tuning sets. The test set results show
that the simple confusion network decoding with-
out system weights yields very good scores, mostly
better than either sentence or phrase-level combina-
tion. The system weights seem to yield even higher
BLEU scores but not always lower TER scores on
both languages. Despite slightly hurting the TER
score on Arabic, the TER 8 combination result was
considered the best due to the highest BLEU and sig-
nificantly lower TER compared to any single sys-
tem. Similarly, the BLEU 8 was considered the
best combination result on Chinese. Internal HTER
experiments showed that BLEU 8 yielded lower
scores after post-editing even though no weights
6 had lower automatic TER score.

7 Conclusions

Three methods for machine translation system com-
bination were presented in this paper. The sentence-
level combination was based on re-ranking a merged

� -best list using generalized linear models with fea-
tures derived from each system’s output. The com-
bination yields slight gains on the tuning set. How-
ever, the gains were very small, if any, on the test
sets. The re-ranked � -best lists were used success-
fully in the word-level combination method as new
system outputs. Various other features may be ex-
plored in this framework although the tuning may
be limited by the chosen optimization method in the
higher dimensional parameter space.

The phrase-level combination was based on de-
riving a new phrase translation table from the align-
ments to source provided in all system outputs. The
phrase translation scores were based on the level of
agreement between the system outputs and sentence
posterior estimates. A standard phrasal decoder with
the new phrase table was used to produce the fi-
nal combination output. The handling of the align-
ments from non-phrasal decoders may not be opti-
mal, though. The phrase-level combination yields
fairly good gains on the tuning sets. However, the
performance does not seem to generalize to the test
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sets used in this work. As usual, the phrasal decoder
can generate � -best lists which were used success-
fully in the word-level combination method as new
system outputs.

The word-level combination method based on
consensus network decoding seems to be very ro-
bust and yield good gains over the best single sys-
tem even without any tunable weights. The decision
of the skeleton is crucial. Minimum Bayes Risk de-
coding under translation edit rate was used to select
the skeleton. Compared to the best possible skeleton
decision – according to an oracle experiment – fur-
ther gains might be obtained by using better decision
approach. Also, the alignment may be improved by
taking the target-to-source alignments into account
and allowing synonyms to align. The confusion net-
work decoding at the word level does not necessarily
retain coherent phrases as no language model con-
straints are taken into account. LM re-scoring might
alleviate this problem.

This paper has provided evidence that outputs
from six very different MT systems, tuned for two
different evaluation metrics, may be combined to
yield better outputs in terms of different evaluation
metrics. The focus of the future work will be to ad-
dress the individual issues in the combination meth-
ods mentioned above. It would also be interesting to
investigate how much different systems contribute to
the overall gain achieved via system combination.
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Abstract

Standard pairwise coreference resolution
systems are subject to errors resulting
from their performing anaphora identifi-
cation as an implicit part of coreference
resolution. In this paper, we propose
an integer linear programming (ILP) for-
mulation for coreference resolution which
models anaphoricity and coreference as a
joint task, such that each local model in-
forms the other for the final assignments.
This joint ILP formulation providesf -
score improvements of 3.7-5.3% over a
base coreference classifier on the ACE
datasets.

1 Introduction

The task of coreference resolution involves impos-
ing a partition on a set of entity mentions in a docu-
ment, where each partition corresponds to some en-
tity in an underlying discourse model. Most work
treats coreference resolution as a binary classifica-
tion task in which each decision is made in a pair-
wise fashion, independently of the others (McCarthy
and Lehnert, 1995; Soon et al., 2001; Ng and Cardie,
2002b; Morton, 2000; Kehler et al., 2004).

There are two major drawbacks with most sys-
tems that make pairwise coreference decisions. The
first is that identification of anaphora is doneimplic-
itly as part of the coreference resolution. Two com-
mon types of errors with these systems are cases
where: (i) the system mistakenly identifies an an-
tecedent for non-anaphoric mentions, and (ii) the

system does not try to resolve an actual anaphoric
mention. To reduce such errors, Ng and Cardie
(2002a) and Ng (2004) use ananaphoricityclassi-
fier –which has the sole task of saying whether or
not any antecedents should be identified for each
mention– as a filter for their coreference system.
They achieve higher performance by doing so; how-
ever, their setup uses the two classifiers in a cascade.
This requires careful determination of an anaphoric-
ity threshold in order to not remove too many men-
tions from consideration (Ng, 2004). This sensi-
tivity is unsurprising, given that the tasks are co-
dependent.

The second problem is that most coreference sys-
tems make each decision independently of previous
ones in a greedy fashion (McCallum and Wellner,
2004). Clearly, the determination of membership of
a particular mention into a partition should be condi-
tioned on how well it matches the entity as a whole.
Since independence between decisions is an unwar-
ranted assumption for the task, models that consider
a more global context are likely to be more appropri-
ate. Recent work has examined such models; Luo et
al. (2004) using Bell trees, and McCallum and Well-
ner (2004) using conditional random fields, and Ng
(2005) using rerankers.

In this paper, we propose to recast the task of
coreference resolution as an optimization problem,
namely an integer linear programming (ILP) prob-
lem. This framework has several properties that
make it highly suitable for addressing the two afore-
mentioned problems. The first is that it can uti-
lize existing classifiers; ILP performs global infer-
ence based on their output rather than formulating a
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new inference procedure for solving the basic task.
Second, the ILP approach supports inference over
multiple classifiers, without having to fiddle with
special parameterization. Third, it is much more
efficient than conditional random fields, especially
when long-distance features are utilized (Roth and
Yih, 2005). Finally, it is straightforward to create
categorical global constraints with ILP; this is done
in a declarative manner using inequalities on the as-
signments to indicator variables.

This paper focuses on the first problem, and
proposes to model anaphoricity determination and
coreference resolution as a joint task, wherein the
decisions made by each locally trained model are
mutually constrained. The presentation of the ILP
model proceeds in two steps. In the first, interme-
diary step, we simply use ILP to find a global as-
signment based on decisions made by the corefer-
ence classifier alone. The resulting assignment is
one that maximally agrees with the decisions of the
classifier, that is, whereall and only the links pre-
dicted to be coreferential are used for constructing
the chains. This is in contrast with the usual clus-
tering algorithms, in which auniqueantecedent is
typically picked for each anaphor (e.g., the most
probable or the most recent). The second step pro-
vides the joint formulation: the coreference classi-
fier is now combined with an anaphoricity classifier
and constraints are added to ensure that the ultimate
coreference and anaphoricity decisions are mutually
consistent. Both of these formulations achieve sig-
nificant performance gains over the base classifier.
Specifically, the joint model achievesf -score im-
provements of 3.7-5.3% on three datasets.

We begin by presenting the basic coreference
classifier and anaphoricity classifier and their per-
formance, including an upperbound that shows the
limitation of using them in a cascade. We then give
the details of our ILP formulations and evaluate their
performance with respect to each other and the base
classifier.

2 Base models: coreference classifier

The classification approach tackles coreference
in two steps by: (i) estimating the probability,
PC(COREF|〈i, j〉), of having a coreferential out-
come given a pair of mentions〈i, j〉, and (ii) apply-

ing a selection algorithm that will single out a unique
candidate out of the subset of candidatesi for which
the probabilityPC(COREF|〈i, j〉) reaches a particu-
lar value (typically .5).

We use a maximum entropy model for the coref-
erence classifier. Such models are well-suited for
coreference, because they are able to handle many
different, potentially overlapping learning features
without making independence assumptions. Previ-
ous work on coreference using maximum entropy
includes (Kehler, 1997; Morton, 1999; Morton,
2000). The model is defined in a standard fashion
as follows:

PC(COREF|〈i, j〉) =
exp(

n∑
k=1

λkfk(〈i, j〉, COREF))

Z(〈i, j〉)
(1)

Z(〈i, j〉) is a normalization factor over both out-
comes (COREF and ¬COREF). Model parameters
are estimated using maximum entropy (Berger et al.,
1996). Specifically, we estimate parameters with
the limited memory variable metric algorithm imple-
mented in the Toolkit for Advanced Discriminative
Modeling1 (Malouf, 2002). We use a Gaussian prior
with a variance of 1000 — no attempt was made to
optimize this value.

Training instances for the coreference classifier
are constructed based on pairs of mentions of the
form 〈i, j〉, wherej and i are the descriptions for
an anaphor and one of its candidate antecedents, re-
spectively. Each such pair is assigned either a label
COREF(i.e. a positive instance) or a label¬COREF

(i.e. a negative instance) depending on whether or
not the two mentions corefer. In generating the train-
ing data, we followed the method of (Soon et al.,
2001) creating for each anaphor: (i) apositive in-
stancefor the pair〈i, j〉 wherei is the closest an-
tecedent forj, and (ii) anegative instancefor each
pair 〈i, k〉 wherek intervenes betweeni andj.

Once trained, the classifier is used to create a set
of coreferential links for each test document; these
links in turn define a partition over the entire set of
mentions. In the system of Soon et. al. (2001) sys-
tem, this is done by pairing each mentionj with each
preceding mentioni. Each test instance〈i, j〉 thus

1Available fromtadm.sf.net .
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formed is then evaluated by the classifier, which re-
turns a probability representing the likelihood that
these two mentions are coreferential. Soon et. al.
(2001) use “Closest-First” selection: that is, the pro-
cess terminates as soon as an antecedent (i.e., a test
instance with probability> .5) is found or the be-
ginning of the text is reached. Another option is to
pick the antecedent with the best overall probability
(Ng and Cardie, 2002b).

Our features for the coreference classifier fall into
three main categories: (i) features of the anaphor, (ii)
features of antecedent mention, and (iii) relational
features (i.e., features that describe properties which
hold between the two mentions, e.g. distance). This
feature set is similar (though not equivalent) to that
used by Ng and Cardie (2002a). We omit details
here for the sake of brevity — the ILP systems we
employ here could be equally well applied to many
different base classifiers using many different fea-
ture sets.

3 Base models: anaphoricity classifier

As mentioned in the introduction, coreference clas-
sifiers such as that presented in section 2 suf-
fer from errors in which (a) they assign an an-
tecedent to a non-anaphor mention or (b) they as-
sign no antecedents to an anaphoric mention. Ng
and Cardie (2002a) suggest overcoming such fail-
ings by augmenting their coreference classifier with
an anaphoricity classifier which acts as a filter dur-
ing model usage. Only the mentions that are deemed
anaphoric are considered for coreference resolu-
tion. Interestingly, they find a degredation in per-
formance. In particular, they obtain significant im-
provements in precision, but with larger losses in
recall (especially for proper names and common
nouns). To counteract this, they addad hoccon-
straints based on string matching and extended men-
tion matching which force certain mentions to be
resolved as anaphors regardless of the anaphoric-
ity classifier. This allows them to improve overall
f -scores by 1-3%. Ng (2004) obtainsf -score im-
provements of 2.8-4.5% by tuning the anaphoricity
threshold on held-out data.

The task for the anaphoricity determination com-
ponent is the following: one wants to decide for each
mentioni in a document whetheri is anaphoric or

not. That is, this task can be performed using a sim-
ple binary classifier with two outcomes:ANAPH and
¬ANAPH. The classifier estimates the conditional
probabilitiesP (ANAPH|i) and predictsANAPH for i
whenP (ANAPH|i) > .5.

We use the following model for our anaphoricity
classifier:

PA(ANAPH|i) =
exp(

n∑
k=1

λkfk(i, ANAPH))

Z(i)
(2)

This model is trained in the same manner as the
coreference classifier, also with a Gaussian prior
with a variance of 1000.

The features used for the anaphoricity classifier
are quite simple. They include information regard-
ing (1) the mention itself, such as the number of
words and whether it is a pronoun, and (2) properties
of the potential antecedent set, such as the number of
preceding mentions and whether there is a previous
mention with a matching string.

4 Base model results

This section provides the performance of the pair-
wise coreference classifier, both when used alone
(COREF-PAIRWISE) and when used in a cascade
where the anaphoricity classifier acts as a filter on
which mentions should be resolved (AC-CASCADE).
In both systems, antecedents are determined in the
manner described in section 2.

To demonstrate the inherent limitations of cas-
cading, we also give results for an oracle sys-
tem,ORACLE-LINK , which assumesperfect linkage.
That is, it always picks the correct antecedent for
an anaphor. Its only errors are due to being un-
able to resolve mentions which were marked as non-
anaphoric (by the imperfect anaphoricity classifier)
when in fact they were anaphoric.

We evaluate these systems on the datasets from
the ACE corpus (Phase 2). This corpus is di-
vided into three parts, each corresponding to a dif-
ferent genre: newspaper texts (NPAPER), newswire
texts (NWIRE), and broadcasted news transcripts
(BNEWS). Each of these is split into atrain
part and adevtest part. Progress during the de-
velopment phase was determined by using cross-
validation on only the training set for theNPAPER
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREF-PAIRWISE 54.4 77.4 63.9 58.1 80.7 67.6 53.8 78.2 63.8
AC-CASCADE 51.1 79.7 62.3 53.7 79.0 63.9 53.0 81.8 64.3
ORACLE-LINK 69.4 100 82.0 71.2 100 83.1 66.7 100 80.0

Table 1: Recall (R), precision (P), andf -score (F) on the three ACE datasets for the basic coreference system
(COREF-PAIRWISE), the anaphoricity-coreference cascade system (AC-CASCADE), and the oracle which
performs perfect linkage (ORACLE-LINK ). The first two systems make strictly local pairwise coreference
decisions.

section. No human-annotated linguistic information
is used in the input. The corpus text was prepro-
cessed with the OpenNLP Toolkit2 (i.e., a sentence
detector, a tokenizer, a POS tagger, and a Named
Entity Recognizer).

In our experiments, we consider only thetrue
ACE mentions. This is because our focus is on eval-
uating pairwise local approaches versus the global
ILP approach rather than on building a full coref-
erence resolution system. It is worth noting that
previous work tends to be vague in both these re-
spects: details on mention filtering or providing
performance figures for markable identification are
rarely given.

Following common practice, results are given in
terms of recall and precision according to the stan-
dard model-theoretic metric (Vilain et al., 1995).
This method operates by comparing the equivalence
classes defined by the resolutions produced by the
system with the gold standard classes: these are the
two “models”. Roughly, the scores are obtained by
determining the minimal perturbations brought to
one model in order to map it onto the other model.
Recall is computed by trying to map the predicted
chains onto the true chains, while precision is com-
puted the other way around. We test significant dif-
ferences with pairedt-tests (p < .05).

The anaphoricity classifier has an average accu-
racy of 80.2% on the three ACE datasets (using a
threshold of.5). This score is slightly lower than
the scores reported by Ng and Cardie (2002a) for
another data set (MUC).

Table 1 summarizes the results, in terms of recall
(R), precision (P), andf -score (F) on the three ACE
data sets. As can be seen, theAC-CASCADE system

2Available fromopennlp.sf.net .

generally provides slightly better precision at the ex-
pense of recall than theCOREF-PAIRWISE system,
but the performance varies across the three datasets.
The source of this variance is likely due to the fact
that we applied a uniform anaphoricity threshold
of .5 across all datasets; Ng (2004) optimizes this
threshold for each of the datasets: .3 forBNEWS

and NWIRE and .35 forNPAPER. This variance re-
inforces our argument for determining anaphoricity
and coreference jointly.

The limitations of the cascade approach are also
shown by the oracle results. Even if we had a sys-
tem that can pick the correct antecedents for all truly
anaphoric mentions, it would have a maximum re-
call of roughly 70% for the different datasets.

5 Integer programming formulations

The results in the previous section demonstrate the
limitations of a cascading approach for determin-
ing anaphoricity and coreference with separate mod-
els. The other thing to note is that the results in
general provide a lot of room for improvement —
this is true for other state-of-the-art systems as well.
The integer programming formulation we provide
here has qualities which address both of these is-
sues. In particular, we define two objective func-
tions for coreference resolution to be optimized with
ILP. The first uses only information from the coref-
erence classifier (COREF-ILP) and the second inte-
grates both anaphoricity and coreference in a joint
formulation (JOINT-ILP). Our problem formulation
and use of ILP are based on both (Roth and Yih,
2004) and (Barzilay and Lapata, 2006).

For solving the ILP problem, we uselp solve,
an open-source linear programming solver which
implements the simplex and the Branch-and-Bound
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methods.3 In practice, each test document is pro-
cessed to define a distinct ILP problem that is then
submitted to the solver.

5.1 COREF-ILP : coreference-only formulation

Barzilay and Lapata (2006) use ILP for the problem
of aggregation in natural language generation: clus-
tering sets of propositions together to create more
concise texts. They cast it as a set partitioning prob-
lem. This is very much like coreference, where
each partition corresponds to an entity in a discourse
model.

COREF-ILP uses an objective function that is
based ononly the coreference classifier and the
probabilities it produces. Given that the classifier
produces probabilitiespC = PC(COREF|i, j), the
assignment cost of commiting to a coreference link
is cC〈i,j〉 = −log(pC). A complement assignment

costcC〈i,j〉 = −log(1−pC) is associated with choos-
ing not to establish a link. In what follows,M de-
notes the set of mentions in the document, andP the
set of possible coreference links over these mentions
(i.e.,P = {〈i, j〉|〈i, j〉 ∈ M ×M andi < j}). Fi-
nally, we use indicator variablesx〈i,j〉 that are set to
1 if mentionsi andj are coreferent, and0 otherwise.
The objective function takes the following form:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1− x〈i,j〉) (3)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P (4)

This is essentially identical to Barzilay and Lapata’s
objective function, except that we consider only
pairs in which thei precedes thej (due to the struc-
ture of the problem). Also, we minimize rather than
maximize due to the fact we transform the model
probabilities with−log (like Roth and Yih (2004)).

This preliminary objective function merely guar-
antees that ILP will find a global assignment that
maximally agrees with the decisions made by the
coreference classifier. Concretely, this amounts to
taking all (and only) those links for which the classi-
fier returns a probability above.5. This formulation
does not yet take advantage of information from a
classifier that specializes in anaphoricity; this is the
subject of the next section.

3Available fromhttp://lpsolve.sourceforge.net/ .

5.2 JOINT -ILP : joint anaphoricity-coreference
formulation

Roth and Yih (2004) use ILP to deal with the joint
inference problem of named entity and relation iden-
tification. This requires labeling a set of named enti-
ties in a text with labels such aspersonand loca-
tion, and identifying relations between them such
asspouseof andwork for. In theory, each of these
tasks would likely benefit from utilizing the infor-
mation produced by the other, but if done as a cas-
cade will be subject to propogation of errors. Roth
and Yih thus set this up as problem in which each
task is performed separately; their output is used to
assign costs associated with indicator variables in an
objective function, which is then minimized subject
to constraints that relate the two kinds of outputs.
These constraints express qualities of what a global
assignment of values for these tasks must respect,
such as the fact that the arguments to thespouseof
relation must be entities withpersonlabels. Impor-
tantly, the ILP objective function encodes not only
the best label produced by each classifier for each
decision; it utilizes the probabilities (or scores) as-
signed to each label and attempts to find a global
optimum (subject to the constraints).

The parallels to our anaphoricity/coreference sce-
nario are straightforward. The anaphoricity problem
is like the problem of identifying the type of entity
(where the labels are nowANAPH and¬ANAPH),
and the coreference problem is like that of determin-
ing the relations between mentions (where the labels
are nowCOREFor¬COREF).

Based on these parallels, theJOINT-ILP system
brings the two decisions of anaphoricity and corefer-
ence together by including both in a single objective
function and including constraints that ensure the
consistencyof a solution for both tasks. LetcAj and
cAj be defined analogously to the coreference clas-
sifier costs forpA = PA(ANAPH|j), the probability
the anaphoricity classifier assigns to a mentionj be-
ing anaphoric. Also, we have indicator variablesyj
that are set to 1 if mentionj is anaphoric and 0 oth-
erwise. The objective function takes the following
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form:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1−x〈i,j〉)

+
∑
j∈M

cAj · yj + cAj · (1−yj) (5)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P (6)

yj ∈ {0, 1} ∀j ∈M (7)

The structure of this objective function is very sim-
ilar to Roth and Yih’s, except that we do not uti-
lize constraint costs in the objective function itself.
Roth and Yih use these to make certain combina-
tions impossible (like alocationbeing an argument
to a spouseof relation); we enforce such effects in
the constraint equations instead.

The joint objective function (5) does not constrain
the assignment of thex〈i,j〉 andyj variables to be
consistent with one another. To enforce consistency,
we add further constraints. In what follows,Mj is
the set of all mentions preceding mentionj in the
document.
Resolve only anaphors: if a pair of mentions〈i, j〉
is coreferent (x〈i,j〉=1), then mentionj must be
anaphoric (yj=1).

x〈i,j〉 ≤ yj ∀〈i, j〉 ∈ P (8)

Resolve anaphors: if a mention is anaphoric
(yj=1), it mustbe coreferent with at least one an-
tecedent.

yj ≤
∑
i∈Mj

x〈i,j〉 ∀j ∈M (9)

Do not resolve non-anaphors: if a mention is non-
anaphoric (yj=0), it should have no antecedents.

yj ≥
1
|Mj |

∑
i∈Mj

x〈i,j〉 ∀j ∈M (10)

These constraints thus directly relate the two
tasks. By formulating the problem this way, the de-
cisions of the anaphoricity classifier are not taken
on faith as they were withAC-CASCADE. Instead,
we optimize over consideration of both possibilities
in the objective function (relative to the probability
output by the classifier) while ensuring that the final
assignments respect the signifance of what it is to be
anaphoric or non-anaphoric.

6 Joint Results

Table 2 summarizes the results for these different
systems. Both ILP systems are significantly better
than the baseline systemCOREF-PAIRWISE. Despite
having lower precision thanCOREF-PAIRWISE, the
COREF-ILP system obtains very large gains in recall
to end up with overallf -score gains of 4.3%, 4.2%,
and 3.0% acrossBNEWS, NPAPER, andNWIRE, re-
spectively. The fundamental reason for the increase
in recall and drop in precision is thatCOREF-ILP can
posit multiple antecedents for each mention. This
is an extra degree of freedom that allowsCOREF-
ILP to cast a wider net, with a consequent risk of
capturing incorrect antecedents. Precision is not
completely degraded because the optimization per-
formed by ILP utilizes the pairwise probabilities of
mention pairs as weights in the objective function
to make its assignments. Thus, highly improbable
links are still heavily penalized and are not chosen
as coreferential.

The JOINT-ILP system demonstrates the benefit
ILP’s ability to support joint task formulations. It
produces significantly betterf -scores by regaining
some of the ground on precision lost byCOREF-
ILP. The most likely source of the improved pre-
cision of JOINT-ILP is that weights corresponding
to the anaphoricity probabilities and constraints (8)
and (10) reduce the number of occurrences of non-
anaphors being assigned antecedents. There are also
improvements in recall overCOREF-ILP for NPAPER

andNWIRE. A possible source of this difference is
constraint (9), which ensures that mentions which
are considered anaphoric must have at least one an-
tecedent.

Compared toCOREF-PAIRWISE, JOINT-ILP dra-
matically improves recall with relatively small
losses in precision, providing overallf -score gains
of 5.3%, 4.9%, and 3.7% on the three datasets.

7 Related Work

As was just demonstrated, ILP provides a principled
way to model dependencies between anaphoricity
decisions and coreference decisions. In a simi-
lar manner, this framework could also be used to
capture dependencies among coreference decisions
themselves. This option —which we will leave for
future work— would make such an approach akin to
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREF-PAIRWISE 54.4 77.4 63.9 58.1 80.7 67.6 53.8 78.2 63.8
COREF-ILP 62.2 75.5 68.2 67.1 77.3 71.8 60.1 74.8 66.8
JOINT-ILP 62.1 78.0 69.2 68.0 77.6 72.5 60.8 75.8 67.5

Table 2: Recall (R), precision (P), andf -score (F) on the three ACE datasets for the basic coreference system
(COREF-PAIRWISE), the coreference only ILP system (COREF-ILP), and the joint anaphoricity-coreference
ILP system (JOINT-ILP). All f -score differences are significant (p < .05).

a number of recent global approaches.

Luo et al. (2004) use Bell trees to represent the
search space of the coreference resolution problem
(where each leaf is possible partition). The prob-
lem is thus recast as that of finding the “best” path
through the tree. Given the rapidly growing size of
Bell trees, Luo et al. resort to a beam search al-
gorithm and various pruning strategies, potentially
resulting in picking a non-optimal solution. The re-
sults provided by Luo et al. are difficult to compare
with ours, since they use a different evaluation met-
ric.

Another global approach to coreference is the
application of Conditional Random Fields (CRFs)
(McCallum and Wellner, 2004). Although both are
global approaches, CRFs and ILP have important
differences. ILP uses separate local classifiers which
are learned without knowledge of the output con-
straints and are then integrated into a larger infer-
ence task. CRFs estimate a global model that di-
rectly uses the constraints of the domain. This in-
volves heavy computations which cause CRFs to
generally be slow and inefficient (even using dy-
namic programming). Again, the results presented
in McCallum and Wellner (2004) are hard to com-
pare with our own results. They only consider
proper names, and they only tackled the task of
identifying the correct antecedent only for mentions
which have a true antecedent.

A third global approach is offered by Ng (2005),
who proposes a global reranking over partitions gen-
erated by different coreference systems. This ap-
proach proceeds by first generating 54 candidate
partitions, which are each generated by a differ-
ent system. These different coreference systems
are obtained as combinations over three different
learners (C4.5, Ripper, and Maxent), three sam-

pling methods, two feature sets (Soon et al., 2001;
Ng and Cardie, 2002b), and three clustering al-
gorithms (Best-First, Closest-First, and aggressive-
merge). The features used by the reranker are of
two types: (i) partition-basedfeatures which are
here simple functions of the local features, and (ii)
method-basedfeatures which simply identify the
coreference system used for generating the given
partition. Although this approach leads to significant
gains on the both the MUC and the ACE datasets,
it has some weaknesses. Most importantly, the dif-
ferent systems employed for generating the different
partitions are all instances of the local classification
approach, and they all use very similar features. This
renders them likely to make the same types of errors.

The ILP approach could in fact be integrated with
these other approaches, potentially realizing the ad-
vantages of multiple global systems, with ILP con-
ducting their interactions.

8 Conclusions

We have provided two ILP formulations for resolv-
ing coreference and demonstrated their superiority
to a pairwise classifier that makes its coreference as-
signments greedily.

In particular, we have also shown that ILP pro-
vides a natural means to express the use of both
anaphoricity classification and coreference classifi-
cation in a single system, and that doing so provides
even further performance improvements, specifi-
cally f -score improvements of 5.3%, 4.9%, and
3.7% over the base coreference classifier on the ACE
datasets.

With ILP, it is not necessary to carefully control
the anaphoricity threshold. This is in stark contrast
to systems which use the anaphoricity classifier as a
filter for the coreference classifier in a cascade setup.
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The ILP objective function incorporates the proba-
bilities produced by both classifiers as weights on
variables that indicate the ILP assignments for those
tasks. The indicator variables associated with those
assignments allow several constraints between the
tasks to be straightforwardly stated to ensure consis-
tency to the assignments. We thus achieve large im-
provements with a simple formulation and no fuss.
ILP solutions are also obtained very quickly for the
objective functions and constraints we use.

In future work, we will explore the use of global
constraints, similar to those used by (Barzilay and
Lapata, 2006) to improve both precision and recall.
For example, we expect transitivity constraints over
coreference pairs, as well as constraints on the en-
tire partition (e.g., the number of entities in the doc-
ument), to help considerably. We will also consider
linguistic constraints (e.g., restrictions on pronouns)
in order to improve precision.
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Abstract

We describe Castanet, an algorithm for auto-
matically generating hierarchical faceted meta-
data from textual descriptions of items, to be in-
corporated into browsing and navigation inter-
faces for large information collections. From
an existing lexical database (such as WordNet),
Castanet carves out a structure that reflects
the contents of the target information collec-
tion; moderate manual modifications improve
the outcome. The algorithm is simple yet ef-
fective: a study conducted with 34 information
architects finds that Castanet achieves higher
quality results than other automated category
creation algorithms, and 85% of the study par-
ticipants said they would like to use the system
for their work.

1 Introduction

It is becoming widely accepted that the standard search
interface, consisting of a query box and a list of retrieved
items, is inadequate for navigation and exploration in
large information collections such as online catalogs, dig-
ital libraries, and museum image collections. Instead,
user interfaces which organize and group retrieval results
have been shown to be helpful for and preferred by users
over the straight results-list model when engaged in ex-
ploratory tasks (Yee et al., 2003; Pratt et al., 1999; Kaki,
2005). In particular, a representation known as hierarchi-
cal faceted metadata is gaining great traction within the
information architecture and enterprise search communi-
ties (Yee et al., 2003; Weinberger, 2005).

A considerable impediment to the wider adoption of
collection navigation via metadata in general, and hierar-
chical faceted metadata in particular, is the need to cre-
ate the metadata hierarchies and assign the appropriate
category labels to the information items. Usually, meta-
data category structures are manually created by infor-
mation architects (Rosenfeld and Morville, 2002). While

manually created metadata is considered of high qual-
ity, it is costly in terms of time and effort to produce,
which makes it difficult to scale and keep up with the vast
amounts of new content being produced.

In this paper, we describe Castanet, an algorithm that
makes considerable progress in automating faceted meta-
data creation. Castanet creates domain-specific overlays
on top of a large general-purpose lexical database, pro-
ducing surprisingly good results in a matter of minutes
for a wide range of subject matter.

In the next section we elaborate on the notion of hier-
archical faceted metadata and show how it can be used in
interfaces for navigation of information collections. Sec-
tion 3 describes other algorithms for inducing category
structure from textual descriptions. Section 4 describes
the Castanet algorithm, Section 5 describes the results of
an evaluation with information architects, and Section 6
draws conclusions and discusses future work.

2 Hierarchical Faceted Metadata

A hierarchical faceted metadata system (HFC) creates a
set of category hierarchies, each of which corresponds to
a different facet (dimension or type). The main applica-
tion of hierarchical faceted metadata is in user interfaces
for browsing and navigating collections of like items.

In the case of a recipe collection, for example, facets
may consist of dish type (salad, appetizer), ingredients
such as fruits (apricot, apple), vegetables (broccoli, cab-
bage), meat (beef, fish), preparation method (fry, bake,
etc.), calorie count, and so on. Decomposing the descrip-
tion into independent categories allows users to move
through large information spaces in a flexible manner.
The category metadata guides the user toward possible
choices, and organizes the results of keyword searches,
allowing users to both refine and expand the current
query, while maintaining a consistent representation of
the collection’s structure. This use of metadata should be
integrated with free-text search, allowing the user to fol-
low links, then add search terms, then follow more links,
without interrupting the interaction flow.
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Usability studies have shown that, when incorpo-
rated into a properly-designed user interface, hierarchical
faceted metadata provides a flexible, intuitive way to ex-
plore a large collection of items that enhances feelings of
discovery without inducing a feeling of being lost (Yee et
al., 2003).

Note that the HFC representation is intermediate in
complexity between that of a monolithic hierarchy and
a full-blown ontology. HFC does not capture relations
and inferences that are essential for some applications.
For example, faceted metadata can express that an image
contains a hat and a man and a tree, and perhaps a wear-
ing activity, but does not indicate who is wearing what.
This relative simplicity of representation suggests that au-
tomatically inferring facet hierarchies may be easier than
the full ontology inference problem.

3 Related Work

There is a large literature on document classification and
automated text categorization (Sebastiani, 2002). How-
ever, that work assumes that the categories of interest
are already known, and tries to assign documents to cate-
gories. In contrast, in this paper we focus on the problem
of determining the categories of interest.

Another thread of work is on finding synonymous
terms and word associations, as well as automatic acqui-
sition of IS-A (or genus-head) relations from dictionary
definitions and free text (Hearst, 1992; Caraballo, 1999).
That work focuses on finding the right position for a word
within a lexicon, rather than building up comprehensible
and coherent faceted hierarchies.

A major class of solutions for creating subject hier-
archies uses data clustering. The Scatter/Gather sys-
tem (Cutting et al., 1992) uses a greedy global agglomer-
ative clustering algorithm where an initial set of

�
clusters

is recursively re-clustered until only documents remain.
Hofmann (1999) proposes the probabilistic latent seman-
tic analysis algorithm (pLSA), a probabilistic version of
clustering that uses latent semantic analysis for grouping
words and annealed EM for model fitting.

The greatest advantage of clustering is that it is fully
automatable and can be easily applied to any text col-
lection. Clustering can also reveal interesting and po-
tentially unexpected or new trends in a group of docu-
ments. The disadvantages of clustering include their lack
of predictability, their conflation of many dimensions si-
multaneously, the difficulty of labeling the groups, and
the counter-intuitiveness of cluster sub-hierarchies (Pratt
et al., 1999).

Blei et al. (2003) developed the LDA (Latent Dirichlet
Allocation) method, a generative probabilistic model of
discrete data, which creates a hierarchical probabilistic
model of documents. It attempts to analyze a text cor-
pus and extract the topics that combined to form its doc-

uments. The output of the algorithm was evaluated in
terms of perplexity reduction but not in terms of under-
standability of the topics produced.

Sanderson and Croft (1999) propose a method called
subsumption for building a hierarchy for a set of doc-
uments retrieved for a query. For two terms x and y,
x is said to subsume y if the following conditions hold:������� �
	����������������� ��	����

. In other words, x subsumes
y and is a parent of y, if the documents which contain y,
are a subset of the documents which contain x. To evalu-
ate the algorithm the authors asked 8 participants to look
at parent-child pairs and state whether or not they were
“interesting”. Participants found 67% to be interesting as
compared to 51% for randomly chosen pairs of words.
Of those interesting pairs, 72% were found to display a
“type-of” relationship.

Nevill-Manning et.al (1999), Anick et.al (1999) and
Vossen (2001) build hierarchies based on substring inclu-
sion. For example, the category full text indexing and
retrieval is the child of indexing and retrieval which in
turn is the child of index. While these string inclusion ap-
proaches expose some structure of the dataset, they can
only create subcategories which are substrings of the par-
ent category, which is very restrictive.

Another class of solutions make use of existing lex-
ical hierarchies to build category hierarchies, as we do
in this paper. For example, Navigli and Velardi (2003)
use WordNet (Fellbaum, 1998) to build a complex ontol-
ogy consisting of a wide range of relation types (demon-
strated on a travel agent domain), as opposed to a set of
human-readable hierarchical facets. They develop a com-
plex algorithm for choosing among WordNet senses; it
requires building a rich semantic network using Word-
Net glosses, meronyms, holonyms, and other lexical rela-
tions, and using the semantically annotated SemCor col-
lection. The semantic nets are intersected and the correct
sense is chosen based on a score assigned to each inter-
section. Mihalcea and Moldovan (2001) describe a so-
phisticated method for simplifying WordNet in general,
rather than tailoring it to a specific collection.

4 Method

The main idea behind the Castanet algorithm1 is to carve
out a structure from the hypernym (IS-A) relations within
the WordNet (Fellbaum, 1998) lexical database. The pri-
mary unit of representation in WordNet is the synset,
which is a set of words that are considered synonyms for a
particular concept. Each synset is linked to other synsets
via several types of lexical and semantic relations; we
only use hypernymy (IS-A relations) in this algorithm.

1A simpler, un-evaluated version of this algorithm was pre-
sented previously in a short paper (Stoica and Hearst, 2004).
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4.1 Algorithm Overview

The Castanet algorithm assumes that there is text associ-
ated with each item in the collection, or at least with a
representative subset of the items. The textual descrip-
tions are used both to build the facet hierarchies and to
assign items (documents, images, citations, etc.) to the
facets. The text does not need to be particularly coher-
ent for the algorithm to work; we have applied it to frag-
mented image annotations and short journal titles, but if
the text is impoverished, the information items will not be
labeled as thoroughly as desirable and additional manual
annotation may be needed.

The algorithm has five major steps:

1. Select target terms from textual descriptions of in-
formation items.

2. Build the Core Tree:

� For each term, if the term is unambiguous (see
below), add its synset’s IS-A path to the Core
Tree.

� Increment the counts for each node in the
synset’s path with the number of documents in
which the target term appears.

3. Augment the Core Tree with the remaining terms’
paths:

� For each candidate IS-A path for the ambigu-
ous term, choose the path for which there is the
most document representation in the Core Tree.

4. Compress the augmented tree.

5. Remove top-level categories, yielding a set of facet
hierarchies.

We describe each step in more detail below.

4.2 Select Target Terms

Castanet selects only a subset of terms, called target
terms, that are intended to best reflect the topics in the
documents. Similarly to Sanderson and Croft (1999), we
use the term distribution – defined as the number of item
descriptions containing the term – as the selection crite-
rion. The algorithm retains those terms that have a distri-
bution larger than a threshold and eliminates terms on a
stop list. One and two-word consecutive noun phrases are
eligible to be considered as terms. Terms that can be ad-
jectives or verbs as well as nouns are optionally deleted.

4.3 Build the Core Tree

The Core Tree acts as the “backbone” for the final cate-
gory structure. It is built by using paths derived from un-
ambiguous terms, with the goal of biasing the final struc-
ture towards the appropriate senses of words.
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Figure 1: Merging hypernym paths.

4.3.1 Disambiguate using Wordnet Domains
A term is considered unambiguous if it meets at least

one of two conditions:

(1) The term has only one sense within WordNet, or
(2) (Optional) The term matches one of the pre-selected

WordNet domains (see below).

From our experiments, about half of the eligible terms
have only one sense within WordNet. For the rest of
terms, we disambiguate between multiple senses as fol-
lows.

WordNet provides a cross-categorization mechanism
known as domains, whereby some synsets are assigned
general category labels. However, only a small subset of
the nouns in WordNet have domains assigned to them.
For example, for a medicine collection, we found that
only 4% of the terms have domains medicine or biology
associated with them. For this reason, we use an addi-
tional resource called Wordnet Domains (Magnini, 2000),
which assigns domains to WordNet synsets. In this re-
source, every noun synset in WordNet has been semi-
automatically annotated with one of about 200 Dewey
Decimal Classification labels. Examples include history,
literature, plastic arts, zoology, etc.

In Castanet, Wordnet Domains are used as follows.
First, the system counts how many times each domain
is represented by target terms, building a list of the most
well-represented domains for the collection. Then, in a
manual intervention step, the information architect se-
lects the subset of the well-represented domains which
are meaningful for the collection in question.

For example, for a collection of biomedical journal ti-
tles, Surgery should be selected as a domain, whereas
for an art history image collection, Architecture might be
chosen. When processing the word lancet, the choice of
domain distinguishes between the hyponym path entity

� object � artifact � instrumentality � device � in-
strument � medical instrument � surgical instrument
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Figure 2: Compressing the tree.

� lancet and entity � object � artifact � structure,
construction � arch � pointed arch � Gothic arch �

lancet arch, lancet � lancet.
In some cases, more than one domain may be rele-

vant for a given term and for a given collection. For
example, the term brain is annotated with two domains,
Anatomy and Psychology, which are both relevant do-
mains for a biomedical journal collection. Currently
for these cases the algorithm breaks the tie by choosing
the sense with the lowest WordNet sense number (corre-
sponding to the most common sense), which in this case
selects the Anatomy sense. However, we see this forced
choice as a limitation, and in future work we plan to ex-
plore how to allow a term to have more than one occur-
rence in the metadata hierarchies.

4.3.2 Add Paths to Core Tree

To build the Core Tree, the algorithm marches down
the list of unambiguous terms and for each term looks
up its synset and its hypernym path in WordNet. (If a
term does not have representation in WordNet, then it is
not included in the category structure.) To add a path to
the Core Tree, its path is merged with those paths that
have already been placed in the tree. Figure 1(a-b) shows
the hypernym paths for the synsets corresponding to the
terms sundae and ambrosia. Note that they have several
hypernym path nodes in common: (entity), (substance,
matter), (food, nutrient), (nutriment), (course), (dessert,
sweet, afters). Those shared paths are merged by the al-
gorithm; the results, along with the paths for parfait and
sherbert are shown in Figure 1(c).

In addition to augmenting the nodes in the tree, adding
in a new term increases a count associated with each node
on its path; this count corresponds to how many docu-
ments the term occurs in. Thus the more common a term,
the more weight it places on the path it falls within.

4.4 Augment the Core Tree / Disambiguate Terms

The Core Tree contains only a subset of terms in the col-
lection (those that have only one path or whose sense can
be selected with WordNet Domains). The next step is to
add in the paths for the remaining target terms which are
ambiguous according to WordNet.

The Core Tree is built with a bias towards paths that are
most likely to be appropriate for the collection as a whole.
When confronted with a term that has multiple possible

Figure 3: Two path choices for an ambiguous term.

IS-A paths corresponding to multiple senses, the system
favors the more common path over other alternatives.

Assume that we want to add the term date to the Core
Tree for a collection of recipes, and that currently there
are two paths corresponding to two of its senses in the
Core Tree (see Figure 3). To decide which of the two
paths to merge date into, the algorithm looks at the num-
ber of items assigned to the deepest node that is held in
common between the existing Core Tree and each candi-
date path for the ambiguous term. The path for the calen-
dar day sense has fewer than 20 documents assigned to
it (corresponding to terms like Valentine’s Day), whereas
the path for the edible fruit sense has more than 700 doc-
uments assigned. Thus date is added to the fruit sense
path. (The counts for the ambiguous terms’ document
hits are not incorporated into the new tree.)

Also, to eliminate unlikely senses, each candidate
sense’s hypernym path is required to share at least

���

of its nodes with nodes already in the Core Tree, where
the user sets

�
(usually between 40 and 60%). Thus the

romantic appointment sense of date would not be consid-
ered as most of its hypernym path is not in the Core Tree.
If no path passes the threshold, then the first sense’s hy-
pernym path (according to WordNet’s sense ordering) is
placed in the tree.

4.5 Compress the Tree

The tree that is obtained in the previous step usually is
very deep, which is undesirable from a user interface per-
spective. Castanet uses two rules for compressing the
tree:

1. Starting from the leaves, recursively eliminate a par-
ent that has fewer than k children, unless the par-
ent is the root or has an item count larger than
0.1 � (maximum term distribution).

2. Eliminate a child whose name appears within the
parent’s name, unless the child contains a WordNet
domain name.
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Figure 4: Eliminating top levels.

For example, consider the tree in Figure 1(c) and as-
sume that

�����
, which means eliminate parents that have

fewer than two children.
Starting from the leaves, by applying Rule 2, nodes (ice

cream sundae), (sherbet, sorbet), (course), (nutriment),
(food, nutrient), (substance, matter) and (entity) are elim-
inated since they have only one child. Figure 2(a) shows
the resulting tree. Next, by applying Rule 3, the node
frozen dessert is eliminated, since it contains the word
dessert which also appears in the name of its parent. The
final tree is presented in Figure 2(b). Note that this is a
rather aggressive compression strategy, and the algorithm
can be adjusted to allow more hierarchy to be retained.

4.6 Prune Top Level Categories / Create Facets

The final step is to create a set of facet sub-hierarchies.
The goal is to create a moderate set of facets, each of
which has moderate depth and breadth at each level, in
order to enhance the navigability of the categories. Prun-
ing the top levels can be automated, but a manual editing
pass over the outcome will produce the best results.

To eliminate the top levels in an automated fashion, for
each of the nine tree roots in the WordNet noun database,
manually cut the top � levels (where � ��� for the recipes
collection). Then, for each of the resulting trees, recur-
sively test if its root has more than � �	� children. If it
does, then the tree is considered a facet; otherwise, the
current root is deleted and the algorithm tests to see if
each new root has � children. Those subtrees that do not
meet the criterion are omitted from the final set of facets.

Consider the tree in Figure 4(a). In this case, the cate-
gories of interest are (flavorer) and (kitchen utensil) along
with their children. However, to reach any of these cate-
gories, the user has to descend six levels, each of which
has very little information. Figure 4(b) shows the re-
sulting facets, which (subjectively) are at an informative

level of description for an information architecture. (In
this illustration, � ��� .)

Often the internal nodes of WordNet paths do not have
the most felicitous names, e.g., edible fruit instead of
fruit. Although we did not edit these names for the us-
ability study, it is advisable to do so.

5 Evaluation

The intended users of the Castanet algorithm are infor-
mation architects and others who need to build structures
for information collections. A successful algorithm must
be perceived by information architects as making their
job easier. If the proposed category system appears to re-
quire a lot of work to modify, then IAs are likely to reject
it. Thus, to evaluate Castanet’s output, we recruited in-
formation architects and asked them to compare it to one
other state-of-the-art approach as well as a baseline. The
participants were asked to assess the qualities of each cat-
egory system and to express how likely they would be to
use each in their work.

5.1 Study Design

The study compared the output of four algorithms: (a)
Baseline (frequent words and two-word phrases), (b)
Castanet, (c) LDA (Blei et al., 2003)2 and (d) Subsump-
tion (Sanderson and Croft, 1999). The algorithms were
applied to a dataset of

��
 �   
recipes from Southwest-

cooking.com. Participants were recruited via email and
were required to have experience building information ar-
chitectures and to be at least familiar with recipe websites
(to show their interest in the domain).

Currently there are no standard tools used by informa-
tion architects for building category systems from free
text. Based on our own experience, we assumed a strong
baseline would be a list of the most frequent words and
two-word phrases (stopwords removed); the study results
confirmed this assumption. The challenge for an auto-
mated system is to be preferred to the baseline.

The study design was within-participants, where each
participant evaluated Castanet, a Baseline approach, and
either Subsumption (N=16) or LDA (N=18).3 Order of
showing Castanet and the alternative algorithm was coun-
terbalanced across participants in each condition.

Because the algorithms produce a large number of
hierarchical categories, the output was shown to the

2Using code by Blei from www.cs.princeton.edu/˜blei/lda-c/
3Pilot studies found that participants became very frustrated

when asked to compare LDA against Subsumption, since nei-
ther tested well, so we dropped this condition. We did not
consider asking any participant to evaluate all three systems,
to avoid fatigue. To avoid biasing participants towards any ap-
proach, the target algorithms were given the neutral names of
Pine, Birch, and Oak. Castanet was run without Domains for a
fairer comparison. Top level pruning was done automatically as
described, but with a few manual adjustments.
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Cas. Bas. LDA Cas. Bas. Sub.
Def. Yes 4 2 0 2 2 0
Yes 10 10 0 13 11 6
No 2 2 2 1 3 2
Def. No 2 4 16 0 0 8

Table 1: Responses to the question “Would you be likely
to use this algorithm in your work?” comparing Castanet
to the Baseline and LDA (N=18), and comparing Cas-
tanet to the Baseline and Subsumption (N=16).

Cas. (34) LDA (18) Sub. (16)
Meaningful 2.9 1.2 1.8
Systematic 2.8 1.4 1.8
Import. Concepts 2.8 1.3 1.9

Table 2: Average responses to questions about the quality
of the category systems. N shown in parentheses. As-
sessed on a four point scale where higher is better.

participants using the open source Flamenco collection
browser4 (see Figure 5). Clicking on a link shows sub-
categories as well as items that have been assigned that
category. For example, clicking on the Penne subcategory
beneath Pasta in the Castanet condition shows 5 recipes
that contain the word penne as well as the other categories
that have been assigned to these recipes. Since LDA does
not create names for its output groups, they were assigned
the generic names Category 1, 2, etc. Assignment of cat-
egories to items was done on a strict word-match basis;
participants were not asked to assess the item assignment
aspect of the interface.

At the start of the study, participants answered ques-
tions about their experience designing information archi-
tectures. They were then asked to look at a partial list of
recipes and think briefly about what their goals would be
in building a website for navigating the collection.

Next they viewed an ordered list of frequent terms
drawn automatically from the collection (Baseline condi-
tion). After this, they viewed the output of one of the two
target category systems. For each algorithm, participants
were asked questions about the top-level categories, such
as Would you add any categories? (possible responses:
(a) No, None, (b) Yes, one or two, (c) Yes, a few, and
(d) Yes, many). They were then asked to examine two
specific top level categories in depth (e.g., For category
Bread, would you remove any subcategories?). At the
end of each assessment, they were asked to comment on
general aspects of the category system as a whole (dis-
cussed below). After having seen both category systems,
participants were asked to state how likely they would be
to use the algorithm (e.g., Would you use Oak? Would you

4Available at flamenco.berkeley.edu

use Birch? Would you use the frequent words list?) An-
swer types were (a) No, definitely not, (b) Probably not,
(c) Yes, I might want to use this system in some cases,
and (d) Yes, I would definitely use this system.

5.2 Results

Table 1 shows the responses to the final question about
how likely the participants are to use the results of each
algorithm for their work. Both Castanet and the Baseline
fare well, with Castanet doing somewhat better. 85% of
the Castanet evaluators said yes or definitely yes to us-
ing it, compared to 74% for the Baseline. Only one par-
ticipant said “no” to Castanet but “yes” to the Baseline,
suggesting that both kinds of information are useful for
information architects.

The comparison algorithms did poorly. Subsumption
received 38% answering “yes” or “definitely yes” to the
question about likelihood of use. LDA was rejected by
all participants. A t-test (after converting responses to a
1-4 scale) shows that Castanet obtains significantly better
scores than LDA ( � = 7.88 � 2.75) and Subsumption ( �
= 4.50 � 2.75), for � = 0.005. The differences between
Castanet and the Baseline are not significant.

Table 2 shows the average responses to the questions
(i) Overall, these are categories meaningful; (ii) Overall,
these categories describe the collection in a systematic
way; (iii) These categories capture the important con-
cepts.) They were scored as 1= Strongly disagree, 2
= Disagree Somewhat, 3 = Agree Somewhat, and 4 =
Strongly agree. Castanet’s score was about 35% higher
than Subsumption’s, and about 50% higher than LDA’s.

Participants were asked to scrutinize the top-level cate-
gories and assess whether they would add categories, re-
move some, merge or rename some. The ratings were
again converted to a four point scale (no changes = 4,
change one or two = 3, change a few = 2, change many =
1). Table 3 shows the results. Castanet scores as well as
or better than the others on all measures except Rename;
Subsumption scores slightly higher on this measure, and
does well on Split as well, but very poorly on Remove,
reflecting the fact that it produces well-named categories
at the top level, but too many at too fine a granularity.

Participants were also asked to examine two subcate-
gories in detail. Table 4 shows results averaged across
the two subcategories for number of categories to add,
remove, promote, move, and how well the subcategories
matched their expectations. Castanet performs especially
well on this last measure (2.5 versus 1.5 and 1.7). Partic-
ipants generally did not suggest moves or promotions.

Thus on all measures, we see Castanet outperforming
the other state-of-the-art algorithms. Note that we did not
explicitly evaluate the “facetedness” of the category sys-
tems, as we thought this would be too difficult for the
participants to do. We feel the questions about the coher-
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Cas. (34). LDA (18) Sub. (16)
Add 2.8 2.6 2.0
Remove 2.3 2.4 1.9
Rename 2.7 2.7 3.3
Merge 2.7 2.5 2.4
Split 3.8 3.3 3.8

Table 3: Assessing top-level categories.

Cas. (34). LDA (18) Sub. (16)
Add 2.8 2.8 2.4
Remove 3.4 2.2 2.5
Promote 3.7 3.4 3.8
Move 3.8 3.3 3.6
Matched Exp. 2.5 1.5 1.7

Table 4: Assessing second-level categories.

ence, systematicity, and coverage of the category systems
captured this to some degree.

6 Conclusions and Future Work

We have presented an algorithm called Castanet that cre-
ates hierarchical faceted metadata using WordNet and
Wordnet Domains. A questionnaire revealed that 85%
information architects thought it was likely to be use-
ful, compared to 0% for LDA and 38% for Subsumption.
Although not discussed here, we have successfully ap-
plied the algorithm to other domains including biomedi-
cal journal titles and art history image descriptions, and
to another lexical hierarchy, MeSH.5

Although quite useful “out of the box,” the algorithm
could benefit by several improvements and additions.
The processing of the terms should recognize spelling
variations (such as aging vs. ageing) and morphological
variations. Verbs and adjectives are often quite impor-
tant for a collection (e.g., stir-fry for cooking) and should
be included, but with caution. Some terms should be al-
lowed to occur with more than one sense if this is re-
quired by the dataset (and some in more than one facet
even with the same sense, as seen in the brain example).
Currently if a term is in a document it is assumed to use
the sense assigned in the facet hierarchies; this is often in-
correct, and so terms should be disambiguated within the
text before automatic category assignment is done. And
finally, WordNet is not exhaustive and some mechanism
is needed to improve coverage for unknown terms.

Acknowledgements Thanks to Lou Rosenfeld and Rashmi
Sinha for their help finding participants, and to all the partic-
ipants themselves. This work was funded in part by NSF DBI-
0317510 and in part by the Summer Undergraduate Program in
Engineering Research at Berkeley (SUPERB).

5MEdical Subject Headings, http://www.nlm.nih.gov/mesh/
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Figure 5: Partial view of categories obtained by (a) Castanet, (b) LDA and (c) Subsumption on the Recipes collection,
displayed in the Flamenco interface.
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Abstract

In unsupervised learning, where no train-
ing takes place, one simply hopes that
the unsupervised learner will work well
on any unlabeled test collection. How-
ever, when the variability in the data is
large, such hope may be unrealistic; a
tuningof the unsupervised algorithm may
then be necessary in order to perform well
on new test collections. In this paper,
we show how to perform such a tuning
in the context of unsupervised document
clustering, by (i) introducing a degree of
freedom,α, into two leading information-
theoretic clustering algorithms, through
the use of generalized mutual informa-
tion quantities; and (ii) selecting the value
of α based on clusterings of similar, but
superviseddocument collections (cross-
instance tuning). One option is to perform
a tuning that directly minimizes the error
on the supervised data sets; another option
is to use “strapping” (Eisner and Karakos,
2005), which builds a classifier that learns
to distinguish good from bad clusterings,
and then selects theα with the best pre-
dicted clustering on the test set. Experi-
ments from the “20 Newsgroups” corpus
show that, although both techniques im-
prove the performance of the baseline al-
gorithms, “strapping” is clearly a better
choice for cross-instance tuning.

∗This work was partially supported by the DARPA GALE
program (Contract No

¯
HR0011-06-2-0001) and by the JHU

WSE/APL Partnership Fund.

1 Introduction

The problem of combining labeled and unlabeled
examples in a learning task(semi-supervised learn-
ing) has been studied in the literature under various
guises. A variety of algorithms (e.g., bootstrapping
(Yarowsky, 1995), co-training (Blum and Mitchell,
1998), alternating structure optimization (Ando and
Zhang, 2005), etc.) have been developed in order to
improve the performance of supervised algorithms,
by automatically extracting knowledge from lots of
unlabeledexamples. Of special interest is the work
of Ando and Zhang (2005), where the goal is to build
many supervised auxiliary tasks from the unsuper-
vised data, by creating artificial labels; this proce-
dure helps learn a transformation of the input space
that captures the relatedness of the auxiliary prob-
lems to the task at hand. In essence, Ando and Zhang
(2005) transform the semi-supervised learning prob-
lem to amulti-task learningproblem; in multi-task
learning, a (usually large) set ofsupervisedtasks is
available for training, and the goal is to build mod-
els which cansimultaneouslydo well on all of them
(Caruana, 1997; Ben-David and Schuller, 2003; Ev-
geniou and Pontil, 2004).

Little work, however, has been devoted to study
the situation where lots of labeled examples, of one
kind, are used to build a model which is tested on
unlabeled data of a “different” kind. This problem,
which is the topic of this paper, cannot be cast as a
multi-task learning problem (since there are labeled
examples of only one kind), neither can be cast as a
semi-supervised problem (since there are no training
labels for the test task). Note that we are interested
in the case where the hidden test labels may have
no semantic relationship with the training labels; in
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some cases, there may not even be any informa-
tion about the test labels—what they represent, how
many they are, or at what granularity they describe
the data. This situation can arise in the case of un-
supervised clustering of documents from a large and
diverse corpus: it may not be known in what way the
resulting clusters split the corpus (is it in terms of
topic? genre? style? authorship? a combination of
the above?), unless one inspects each resulting clus-
ter to determine its “meaning.”

At this point, we would like to differentiate be-
tween two concepts: a targettask refers to a class
of problems that have a common, high-level de-
scription (e.g., the text document clustering task, the
speech recognition task, etc.). On the other hand,
a taskinstancerefers to a particular example from
the class. For instance, if the task is“document
clustering,” a task instance could be“clustering of
a set of scientific documents into particular fields”;
or, if the task is“parsing,” a task instance could be
“parsing of English sentences from the Wall Street
Journal corpus”. For the purposes of this paper, we
further assume that there are task instances which
are unrelated, in the sense that that there are no
common labels between them. For example, if the
task is“clustering from the 20 Newsgroups corpus,”
then“clustering of the computer-related documents
into PC-related and Mac-related”and “clustering
of the politics-related documents into Middle-East-
related and non-Middle-East-related”are two dis-
tinct, unrelated instances. In more mathematical
terms, if task instancesT1, T2 take sets of observa-
tionsX1,X2 as input, and try to predict labels from
setsS1, S2, respectively, then they are called unre-
lated ifX1 ∩X2 = ∅ andS1 ∩ S2 = ∅.

The focus of this paper is to study the problem
of cross-instance tuningof unsupervised algorithms:
how one can tune an algorithm, which is used to
solve a particular task instance, using knowledge
from an unrelated task instance. To the best of our
knowledge, this cross-instance learning problem has
only been tackled in (Eisner and Karakos, 2005),
whose “strapping” procedure learns a meta-classifier
for distinguishing good from bad clusterings.

In this paper, we introduce a scalar parameterα
(a new degree of freedom) into two basic unsuper-
vised clustering algorithms. We can tuneα to max-
imize unsupervised clustering performance ondif-

ferent task instances where the correct clustering is
known. The hope is that tuning the parameter learns
something about the task in general, which trans-
fers from the supervised task instances to the un-
supervised one. Alternatively, we can tune a meta-
classifier so as to select good values ofα on the su-
pervised task instances, and then use the same meta-
classifier to select a good (possibly different) value
of α in the unsupervised case.

The paper is organized as follows: Section 2 gives
a background on text categorization, and briefly de-
scribes the algorithms that we use in our experi-
ments. Section 3 describes our parameterization of
the clustering algorithms using Jensen-Rényi diver-
gence and Csiszár’s mutual information. Experi-
mental results from the “20 Newsgroups” data set
are shown in Section 4, along with two techniques
for cross-instance learning: (i) “strapping,” which, at
test time, picks a parameter based on various “good-
ness” cues that were learned from the labeled data
set, and (ii) learning the parameter from a supervised
data set which is chosen to statistically match the test
set. Finally, concluding remarks appear in Section 5.

2 Document Categorization

Document categorization is the task of deciding
whether a piece of text belongs to any of a set of
prespecified categories. It is a generic text process-
ing task useful in indexing documents for later re-
trieval, as a stage in natural language processing
systems, for content analysis, and in many other
roles (Lewis and Hayes, 1994). Here, we deal
with the unsupervised version of document cate-
gorization, in which we are interested in cluster-
ing together documents which (hopefully) belong to
the same topic, without having any training exam-
ples.1 Supervisedinformation-theoretic clustering
approaches (Torkkola, 2002; Dhillon et al., 2003)
have been shown to be very effective, even with a
small amount of labeled data, whileunsupervised
methods (which are of particular interest to us) have
been shown to be competitive, matching the classifi-
cation accuracy of supervised methods.

Our focus in this paper is on document catego-
rization algorithms which use information-theoretic

1By this, we mean that training examples having the same
category labels as the test examples are not available.
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criteria, since there are natural ways of generalizing
these criteria through the introduction of tunable pa-
rameters. We use two such algorithms in our exper-
iments, the sequential Information Bottleneck (sIB)
and Iterative Denoising Trees (IDTs); details about
these algorithms appear below.

A note on mathematical notation: We assume
that we have a collectionA = {X(1), . . . , X(N)}
ofN documents. Each documentX(i) is essentially
a “bag of words”, and induces an empirical distri-
bution P̂X(i) on the vocabularyX . Given a sub-
set (cluster)C of documents, the conditional dis-
tribution onX , given the cluster, is just the cen-
troid: P̂X|C = 1

|C|
∑

X(i)∈C P̂X(i). If a subcollec-
tionS ⊂ A of documents is partitioned into clusters
C1, . . . , Cm, and each documentX(i) ∈ S is as-
signed to a clusterCZ(i), whereZ(i) ∈ {1, . . . ,m}
is the cluster index, then the mutual information be-
tween words and corresponding clusters is given by

I(X;Z|S) =
∑

z∈{1,...,m}

P (z|S)D(P̂X|Cz‖P̂X|S),

whereP (z|S) , |Cz|/|S| is the “prior” distribution
on the clusters andD(·‖·) is the Kullback-Leibler
divergence (Cover and Thomas, 1991).

2.1 The Information Bottleneck Method

The Information Bottleneck (IB) method (Tishby et
al., 1999; Slonim and Tishby, 2000; Slonim et al.,
2002) is one popular approach to unsupervised cat-
egorization. The goal of the IB (with “hard” clus-
tering) is to find clusters such that the mutual in-
formationI(X;Z) between words and clusters is as
large as possible, under a constraint on the number
of clusters. The procedure for finding the maximiz-
ing clustering in (Slonim and Tishby, 2000) is ag-
glomerative clustering, while in (Slonim et al., 2002)
it is based on many random clusterings, combined
with a sequential update algorithm, similar toK-
means. The update algorithm re-assigns each data
point (document)d to its most “similar” clusterC,
in order tominimizeI(X;Z|C ∪ {d}), i.e.,

δD(P̂X|{d}‖P̂X|{d}∪C)+(1−δ)D(P̂X|C‖P̂X|{d}∪C),

whereδ = 1
|C|+1 . This latter procedure is called

thesequential Information Bottleneck(sIB) method,
and is considered the state-of-the-art in unsuper-
vised document categorization.

2.2 Iterative Denoising Trees

Decision trees are a powerful technique for equiva-
lence classification, accomplished through a recur-
sive successive refinement (Jelinek, 1997). In the
context of unsupervised classification, the goal of
decision trees is to cluster empirical distributions
(bags of words) into a given number of classes, with
each class corresponding to a leaf in the tree. They
are built top-down (as opposed to the bottom-up
construction in IB) using maximization of mutual
information between words and clustersI(X;Z|t)
to drive the splitting of each nodet; the hope is that
each leaf will contain data points which belong to
only one latent category.

Iterative Denoising Trees (also called Integrated
Sensing and Processing Decision Trees) were intro-
duced in (Priebe et al., 2004a), as an extension of
regular decision trees. Their main feature is that
they transformthe data at each node, before split-
ting, by projecting into a low-dimensional space.
This transformation corresponds to feature extrac-
tion; different features are suppressed (or ampli-
fied) by each transformation, depending on what
data points fall into each node (corpus-dependent-
feature-extractionproperty (Priebe et al., 2004b)).
Thus, dimensionality reduction and clustering are
chosen so that theyjointly optimize the local objec-
tive.

In (Karakos et al., 2005), IDTs were used for an
unsupervised hyperspectral image segmentation ap-
plication. The objective at each nodet was to maxi-
mize the mutual information between spectral com-
ponents and clusters given the pixels at nodet, com-
puted from theprojectedempirical distributions. At
each step of the tree-growing procedure, the node
which yielded the highest increase in the average,
per-node mutual information, was selected for split-
ting (until a desired number of leaves was reached).
In (Karakos et al., 2007b), the mutual information
objective was replaced with a parameterized form of
mutual information, namely the Jensen-Rényi diver-
gence (Hero et al., 2001; Hamza and Krim, 2003), of
which more details are provided in the next section.

3 Parameterizing Unsupervised Clustering

As mentioned above, the algorithms considered in
this paper (sIB and IDTs) are unsupervised, in the
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sense that they can be applied to test data with-
out any need for tuning. Our procedure of adapt-
ing them, based on some supervision on a different
task instance, is by introducing a parameter into the
unsupervised algorithm. At least for simple cross-
instance tuning, this parameter represents the infor-
mation which is passed between the supervised and
the unsupervised instances.

The parameterizations that we focused on have
to do with the information-theoreticobjectivesin
the two unsupervised algorithms. Specifically, fol-
lowing (Karakos et al., 2007b), we replace the mu-
tual information quantities in IDTs as well as sIB
with the parameterizedmutual information mea-
sures mentioned above. These two quantities pro-
vide estimates of the dependence between the ran-
dom quantities in their arguments, just as the usual
mutual information does, but also have a scalar pa-
rameterα ∈ (0, 1] that controls the sensitivity of the
computed dependence on the details of the joint dis-
tribution ofX andZ. As a result, the effect of data
sparseness on estimation of the joint distribution can
be mitigated when computing these measures.

3.1 Jensen-Ŕenyi Divergence

The Jensen-Ŕenyi divergence was used in (Hero et
al., 2001; Hamza and Krim, 2003) as a measure of
similarity for image classification and retrieval. For
two discrete random variablesX,Z with distribu-
tionsPX , PZ and conditionalPX|Z , it is defined as

Iα(X;Z) = Hα(PX)−
∑
z

PZ(z)Hα(PX|Z(·|z)),

(1)
whereHα(·) is the Ŕenyi entropy, given by

Hα(P ) =
1

1− α
log

(∑
x∈X

P (x)α
)
, α 6= 1. (2)

If α ∈ (0, 1), Hα is a concave function, and hence
Iα(X;Z) is non-negative (and it is equal to zero if
and only ifX andZ are independent). In the limit
asα → 1, Hα(·) approaches the Shannon entropy
(not an obvious fact), soIα(·) reduces to the regular
mutual information. Similarly, we define

Iα(X;Z|W ) =
∑
w

PW (w)Iα(X;Z|W = w),

whereIα(X;Z|W = w) is computed via (1) using
the conditional distribution ofX andZ givenW .

Except in trivial cases,Hα(·) is strictly larger
thanH(·) when0 < α < 1; this means that the ef-
fects of extreme sparsity (few words per document,
or too few occurrences of non-frequent words) on
the estimation of entropy and mutual information
can be dampened with an appropriate choice ofα.
This happens because extreme sparsity in the data
yields empirical distributions which lie at, or close
to, the boundary of the probability simplex. The
entropy of such distributions is usually underesti-
mated, compared to the smooth distributions which
generate the data. Rényi’s entropy is larger than
Shannon’s entropy, especially in those regions close
to the boundary, and can thus provide an estimate
which is closer to the true entropy.

3.2 Csisźar’s Mutual Information

Csisźar defined the mutual information of orderα as

ICα (X;Z) = min
Q

∑
z

PZ(z)Dα(PX|Z(·|z)‖Q(·)),

(3)
whereDα(·‖·) is the Ŕenyi divergence (Csiszár,
1995). It was shown thatICα (X;Z) retains most
of the properties ofI(X;Z)—it is a non-negative,
continuous, and concave function ofPX , it is con-
vex inPX|Z for α < 1, and converges toI(X;Z) as
α→ 1.

Notably, ICα (X;Z) ≤ I(X;Z) for 0 < α < 1;
this means, as above, thatα regulates the overesti-
mation of mutual information that may result from
data sparseness.

There is no analytic form for the minimizer of the
right-hand-side of (3) (Csiszár, 1995), but it may be
computed via an alternating minimization algorithm
(Karakos et al., 2007a).

4 Experimental Methods and Results

We demonstrate the feasibility of cross-instance tun-
ing with experiments on unsupervised document cat-
egorization from the 20 Newsgroups corpus (Lang,
1995); this corpus consists of roughly 20,000 news
articles, evenly divided among 20 Usenet groups.

Random samples of 500 articles each were chosen
by (Slonim et al., 2002) to create multiple test col-
lections: 250 each from 2 arbitrarily chosen Usenet
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groups for theBinary test collection, 100 articles
each from 5 groups for theMulti5 test collection,
and 50 each from 10 groups for theMulti10 test col-
lection. Three independent test collections of each
kind (Binary, Multi5 andMulti10) were created, for
a total of 9 collections. The sIB method was used to
separately cluster each collection, given the correct
number of clusters.

A comparison of sIB and IDTs on thesame9 test
collections was reported in (Karakos et al., 2007b;
Karakos et al., 2007a). Matlab code from (Slonim,
2003) was used for the sIB experiments, while the
parameterized mutual information measures of Sec-
tion 3 were used for the IDTs. A comparison was
also made with the EM-based Gaussian mixtures
clustering toolmclust (Fraley and Raftery, 1999),
and with a simpleK-means algorithm. Since the
two latter techniques gave uniformly worse cluster-
ings than those of sIB and IDTs, we omit them from
the following discussion.

To show that our methods work beyond the 9 par-
ticular 500-document collections described above,
in this paper we instead use fivedifferentrandomly
sampled test collections for each of theBinary,
Multi5 andMulti10 cases, making for a total of 15
new test collections in this paper. For diversity, we
ensure that none of the five test collections (in each
case) contain any documents used in the three col-
lections of (Slonim et al., 2002) (for the same case).

We pre-process the documents of each test col-
lection using the procedure2 mentioned in (Karakos
et al., 2007b). The 15 test collections are then
converted to feature matrices—term-document fre-
quency matrices for sIB, and discounted tf/idf ma-
trices (according to the Okapi formula (Gatford et
al., 1995)) for IDTs—with each row of a matrix rep-
resenting one document in that test collection.

2Excluding the subject line, the header of each abstract is
removed. Stop-words such asa, the, is,etc. are removed, and
stemming is performed (e.g., common suffixes such as -ing, -
er, -ed, etc., are removed). Also, all numbers are collapsed
to one symbol, and non-alphanumeric sequences are converted
to whitespace. Moreover, as suggested in (Yang and Pedersen,
1997) as an effective method for reducing the dimensionality of
the feature space (number of distinct words), all words which
occur fewer thant times in the corpus are removed. For the
sIB experiments, we uset = 2 (as was done in (Slonim et al.,
2002)), while for the IDT experiments we uset = 3; these
choices result in the best performance for each method, respec-
tively, on another dataset.

4.1 Selectingα with “Strapping”

In order to pick the value of the parameterα for
each of the sIB and IDT test experiments, we use
“strapping” (Eisner and Karakos, 2005), which, as
we mentioned earlier, is a technique for training a
meta-classifier that chooses among possible cluster-
ings. The training is based on unrelated instances of
the same clustering task. The final choice of cluster-
ing is still unsupervised, since no labels (or ground
truth, in general) for the instance of interest are used.

Here, our collection of possible clusterings for
each test collection is generated by varying theα pa-
rameter. Strapping does not care, however, how the
collection was generated. (In the original strapping
paper, for example, Eisner and Karakos (2005) gen-
erated their collection by bootstrapping word-sense
classifiers from 200 different seeds.)

Here is how we choose a particular unsupervised
α-clustering to output for a given test collection:

• We cluster the test collection (e.g., the first Multi5
collection) with various values ofα, namelyα =
0.1, 0.2, . . . , 1.0.

• We compute a feature vector from each of the
clusterings. Note that the features are computed
from only the clusterings and the data points,
since no labels are available.

• Based on the feature vectors, we predict the
“goodness” of each clustering, and return the
“best” one.

How do we predict the “goodness” of a cluster-
ing? By first learning to distinguish good cluster-
ings from bad ones, by using unrelated instances of
the task on which we know the true labels:

• We cluster some unrelated datasets with various
values ofα, just as we will do in the test condi-
tion.

• We evaluate each of the resulting clusterings us-
ing the true labels on its dataset.3

• We train a “meta-classifier” that predicts the true
rank (or accuracy) of each clustering based on the
feature vector of the clustering.
3To evaluate a clustering, one only really needs the true la-

bels on asampleof the dataset, although in our experiments we
did have true labels on the entire dataset.
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Specifically, for each task (Binary, Multi5, and
Multi10) and each clustering method (sIB and IDT),
a meta-classifier is learned thus:

• We obtain 10 clusterings (α = 0.1, 0.2, . . . , 1.0)
for each of 5 unrelated task instances (datasets
whose construction is described below).

• For each of these 50 clusterings, we compute the
following 14 features: (i) One minus the aver-
age cosine of the angle (in tf/idf space) between
each example and the centroid of the cluster to
which it belongs. (ii) The average Rényi diver-
gence, computed for parameters1.0, 0.5, 0.1, be-
tween the empirical distribution of each example
and the centroid of the cluster to which it belongs.
(iii) We create 10 more features, one perα. For
theα used in this clustering, the feature value is
equal toe−0.1r̄, wherer̄ is the average rank of the
clustering (i.e., the average of the 4 ranks result-
ing from sorting all 10 clusterings (per training
example) according to one of the 4 features in (i)
and (ii)). For all otherα’s, the feature is set to
zero. Thus, onlyα’s which yield relatively good
rankings can have non-zero features in the model.

• We normalize each group of 10 feature vectors,
translating and scaling each of the 14 dimensions
to make it range from 0 to 1. (We will do the same
at test time.)

• We train ranking SVMs (Joachims, 2002), with
a Gaussian kernel, to learn how to rank these 50
clusterings given their respective normalized fea-
ture vectors. The values ofc, γ (which control
regularization and the Gaussian kernel) were op-
timized through leave-one-out cross validation in
order to maximize the average accuracy of the
top-ranked clustering, over the 5 training sets.
Once a local maximum of the average accuracy
was obtained, further tuning ofc, γ to maximize
the Spearman rank correlation between the pre-
dicted and true ranks was performed.

A model trained in this way knows something
about the task, and may work well for many new,
unseen instances of the task. However, we pre-
sume that it will work best on a given test instance
if trained on similar instances. The ideal would be
to match the test collection in every aspect: (i) the

number of training labels should be equal to the
number of desired clusters of the test collection; (ii)
the training clusters should be topically similar to
the desired test clusters.

In our scenario, we enjoy the luxury of plenty
of labeled data that can be used to create similar
instances. Thus, given a test collectionA to be
clustered intoL clusters, we create similar train-
ing sets by identifying theL training newsgroups
whose centroids in tf/idf space (using the Okapi for-
mula mentioned earlier) have the smallest angle to
the centroid ofA.4 (Of course, we exclude news-
groups that appear inA.) We then form a supervised
500-document training setA′ by randomly choosing
500/L documents from each of theseL newsgroups;
we do this 5 times to obtain 5 supervised training
sets.

Table 1 shows averaged classification errors re-
sulting from strapping (“str” rows) for the Jensen-
Rényi divergence and Csiszár’s mutual information,
used within IDTs and sIB, respectively. (We also
tried the reverse, using Jensen-Rényi in sIB and
Csisźar’s in IDTs, but the results were uniformly
worse in the former case and no better in the latter
case.) The “MI” rows show the classification errors
of the untuned algorithms (α = 1), which, in almost
all cases, are worse than the tuned ones.

4.2 Tuningα on Statistically Similar Examples

We now show that strapping outperforms a simpler
and more obvious method for cross-instance tun-
ing. To cluster a test collectionA, we could simply
tune the clustering algorithm by choosing theα that
works best on a related task instance.

We again take care to construct a training instance
A′ that is closely related to the test instanceA. In
fact, we take even greater care this time. GivenA,

4For each of the Binary collections, the closest training
newsgroups in our experiments weretalk.politics.guns,
talk.religion.misc; for each of the Multi5 collections
the closest newsgroups weresci.electronics, rec.autos,
sci.med, talk.politics.misc, talk.religion.misc, and for
the Multi10 collections they were talk.politics.misc,
rec.motorcycles, talk.religion.misc, comp.graphics,
comp.sys.ibm.pc.hardware, rec.sport.baseball, comp.os.ms-
windows.misc, comp.windows.x, soc.religion.christian,
talk.politics.mideast. Note that each of the Binary test
collections happens to be closest to thesame two training
newsgroups; a similar behavior was observed for the Multi5
and Multi10 newsgroups.
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PPPPPPPPPMethod
Set

Binary Multi5 Multi10
ID

T
s MI 11.3% 9.9% 42.2%

Iα (str) 10.4% 9.2% 39.0%
Iα (rls) 10.1% 10.4% 42.7%

sI
B

MI 12.0% 6.8% 38.5%
ICα (str) 11.2% 6.9% 35.8%
ICα (rls) 11.1% 7.4% 37.4%

Table 1: Average classification errors for IDTs and
sIB, using strapping (“str” rows) and regularized
least squares (“rls” rows) to pickα in Jensen-Ŕenyi
divergence and Csiszár’s mutual information. Rows
“MI” show the errors resulting from theuntunedal-
gorithms, which use the regular mutual information
objective (α = 1). Results which are better than the
corresponding “MI” results are shown inbold.

we identify the same set ofL closest newsgroups as
described above. This time, however, we carefully
select|A|/L documents from each newsgroup rather
than randomly choosing500/L of them. Specifi-
cally, for each test example (document)X ∈ A, we
add a similar training exampleX ′ intoA′, chosen as
follows:

We associate each test exampleX to the most
similar of theL training newsgroups, under a con-
straint that only|A|/L training examples may be as-
sociated to each newsgroup. To do this, we iterate
through all pairs(X,G) whereX is a test example
andG is a training newsgroup, in increasing order
by the angle betweenX andG. If X is not yet asso-
ciated andG is not yet “full,” then we associateX
withG, and chooseX ′ to be the document inGwith
the smallest angle toX.

We clusterA′ 10 times, forα = 0.1, . . . , 1.0,
and we collect supervised error resultsE(α), α ∈
{0.1, . . . , 1.0}. Now, instead of using the single best
α∗ = argminα E(α) to clusterA (which may re-
sult in overfitting) we use regularized least-squares
(RLS) (Hastie et al., 2001), where we try to approx-
imate theprobability that anα is the best. The esti-
mated probabilities are given by

p̂ = K(λI + K)−1p,

whereI is the unit matrix,p is the training prob-
ability of the bestα (i.e., it is 1 at the position of

α∗ and zero elsewhere), andK is the kernel matrix,
whereK(i, j) = exp(−(E(αi) − E(αj))2/σ2) is
the value of the kernel which expresses the “sim-
ilarity” between two clusterings of the same train-
ing dataset, in terms of their errors. The parame-
tersσ, γ are set to0.5, 0.1, respectively, after per-
forming a (local) maximization of the Spearman cor-
relation between training accuracies and predicted
probabilitiesp̂, for all 15 training instances. Af-
ter performing a linear normalization of̂p to make
it a probability vector, the average predicted value
of α, i.e., α̂ =

∑10
i=1 p̂i αi, (rounded-off to one of

{0.1, . . . , 1.0}) is used to clusterA.
Table 1 shows the average classification error re-

sults using RLS (“rls” rows). We can see that, on
average over the 15 test instances, the error rate of
the tuned IDTs and sIB algorithms is lower than that
of the untuned algorithms, so cross-instance tuning
was effective. On the other hand, the errors are
generally higher than that of the strapping method,
which examines the results of using differentα val-
ues onA.

5 Concluding Remarks

We have considered the problem of cross-instance
tuning of two unsupervised document clustering al-
gorithms, through the introduction of a degree of
freedom into their mutual information objective.
This degree of freedom is tuned usinglabeleddoc-
ument collections (which are unrelated to the test
collections); we explored two approaches for per-
forming the tuning: (i) through a judicious sampling
of training data, to match the marginal statistics of
the test data, and (ii) via “strapping”, which trains a
meta-classifier to distinguish between good and bad
clusterings. Our unsupervised categorization exper-
iments from the “20 Newsgroups” corpus indicate
that, although both approaches improve the base-
line algorithms, “strapping” is clearly a better choice
for knowledge transfer between unrelated task in-
stances.
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Abstract
We propose a new framework for supervised ma-
chine learning. Our goal is to learn from smaller
amounts of supervised training data, by collecting a
richer kind of training data: annotations with “ra-
tionales.” When annotating an example, the hu-
man teacher will also highlight evidence support-
ing this annotation—thereby teaching the machine
learner why the example belongs to the category. We
provide some rationale-annotated data and present a
learning method that exploits the rationales during
training to boost performance significantly on a sam-
ple task, namely sentiment classification of movie
reviews. We hypothesize that in some situations,
providing rationales is a more fruitful use of an an-
notator’s time than annotating more examples.

1 Introduction

Annotation cost is a bottleneck for many natural lan-
guage processing applications. While supervised
machine learning systems are effective, it is labor-
intensive and expensive to construct the many train-
ing examples needed. Previous research has ex-
plored active or semi-supervised learning as possible
ways to lessen this burden.

We propose a new way of breaking this annotation
bottleneck. Annotators currently indicate what the
correct answers are on training data. We propose
that they should also indicate why, at least by coarse
hints. We suggest new machine learning approaches
that can benefit from this “why” information.

For example, an annotator who is categorizing
phrases or documents might also be asked to high-
light a few substrings that significantly influenced
her judgment. We call such clues “rationales.” They
need not correspond to machine learning features.

∗This work was supported by the JHU WSE/APL Partner-
ship Fund; National Science Foundation grant No. 0347822 to
the second author; and an APL Hafstad Fellowship to the third.

In some circumstances, rationales should not be
too expensive or time-consuming to collect. As long
as the annotator is spending the time to study exam-
ple xi and classify it, it may not require much extra
effort for her to mark reasons for her classification.

2 Using Rationales to Aid Learning

We will not rely exclusively on the rationales, but
use them only as an added source of information.
The idea is to help direct the learning algorithm’s
attention—helping it tease apart signal from noise.

Machine learning algorithms face a well-known
“credit assignment” problem. Given a complex da-
tum xi and the desired response yi, many features of
xi could be responsible for the choice of yi. The
learning algorithm must tease out which features
were actually responsible. This requires a lot of
training data, and often a lot of computation as well.

Our rationales offer a shortcut to solving this
“credit assignment” problem, by providing the
learning algorithm with hints as to which features
of xi were relevant. Rationales should help guide
the learning algorithm toward the correct classifica-
tion function, by pushing it toward a function that
correctly pays attention to each example’s relevant
features. This should help the algorithm learn from
less data and avoid getting trapped in local maxima.1

In this paper, we demonstrate the “annotator ra-
tionales” technique on a text categorization problem
previously studied by others.

1To understand the local maximum issue, consider the hard
problem of training a standard 3-layer feed-forward neural net-
work. If the activations of the “hidden” layer’s features (nodes)
were observed at training time, then the network would de-
compose into a pair of independent 2-layer perceptrons. This
turns an NP-hard problem with local maxima (Blum and Rivest,
1992) to a polytime-solvable convex problem. Although ratio-
nales might only provide indirect evidence of the hidden layer,
this would still modify the objective function (see section 8) in
a way that tended to make the correct weights easier to discover.
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3 Discriminative Approach

One popular approach for text categorization is to
use a discriminative model such as a Support Vec-
tor Machine (SVM) (e.g. (Joachims, 1998; Dumais,
1998)). We propose that SVM training can in gen-
eral incorporate annotator rationales as follows.

From the rationale annotations on a positive ex-
ample −→xi , we will construct one or more “not-quite-
as-positive” contrast examples −→vij . In our text cat-
egorization experiments below, each contrast docu-
ment −→vij was obtained by starting with the original
and “masking out” one or all of the several rationale
substrings that the annotator had highlighted (rij).
The intuition is that the correct model should be less
sure of a positive classification on the contrast exam-
ple −→vij than on the original example ~xi, because −→vij

lacks evidence that the annotator found significant.
We can translate this intuition into additional con-

straints on the correct model, i.e., on the weight vec-
tor ~w. In addition to the usual SVM constraint on
positive examples that ~w · −→xi ≥ 1, we also want (for
each j) that ~w · ~xi − ~w · −→vij ≥ µ, where µ ≥ 0 con-
trols the size of the desired margin between original
and contrast examples.

An ordinary soft-margin SVM chooses ~w and ~ξ to
minimize

1
2
‖~w‖2 + C(

∑
i

ξi) (1)

subject to the constraints

(∀i) ~w · −→xi · yi ≥ 1− ξi (2)

(∀i) ξi ≥ 0 (3)

where −→xi is a training example, yi ∈ {−1,+1} is
its desired classification, and ξi is a slack variable
that allows training example −→xi to miss satisfying
the margin constraint if necessary. The parameter
C > 0 controls the cost of taking such slack, and
should generally be lower for noisier or less linearly
separable datasets. We add the contrast constraints

(∀i, j) ~w · (−→xi −−→vij) · yi ≥ µ(1− ξij), (4)

where −→vij is one of the contrast examples con-
structed from example −→xi , and ξij ≥ 0 is an asso-
ciated slack variable. Just as these extra constraints
have their own margin µ, their slack variables have

their own cost, so the objective function (1) becomes

1
2
‖~w‖2 + C(

∑
i

ξi) + Ccontrast(
∑
i,j

ξij) (5)

The parameter Ccontrast ≥ 0 determines the impor-
tance of satisfying the contrast constraints. It should
generally be less than C if the contrasts are noisier
than the training examples.2

In practice, it is possible to solve this optimization
using a standard soft-margin SVM learner. Dividing
equation (4) through by µ, it becomes

(∀i, j) ~w · −→xij · yi ≥ 1− ξij , (6)

where −→xij
def=

−→xi−−→vij

µ . Since equation (6) takes
the same form as equation (2), we simply add the
pairs (−→xij , yi) to the training set as pseudoexam-
ples, weighted by Ccontrast rather than C so that the
learner will use the objective function (5).

There is one subtlety. To allow a biased hyper-
plane, we use the usual trick of prepending a 1 el-
ement to each training example. Thus we require
~w · (1,−→xi) ≥ 1 − ξi (which makes w0 play the
role of a bias term). This means, however, that we
must prepend a 0 element to each pseudoexample:
~w · (1,~xi)−(1,−→vij)

µ = ~w · (0,−→xij) ≥ 1− ξij .
In our experiments, we optimize µ, C, and

Ccontrast on held-out data (see section 5.2).

4 Rationale Annotation for Movie Reviews

In order to demonstrate that annotator rationales
help machine learning, we needed annotated data
that included rationales for the annotations.

We chose a dataset that would be enjoyable to re-
annotate: the movie review dataset of (Pang et al.,
2002; Pang and Lee, 2004).3 The dataset consists
of 1000 positive and 1000 negative movie reviews
obtained from the Internet Movie Database (IMDb)
review archive, all written before 2002 by a total of
312 authors, with a cap of 20 reviews per author per

2Taking Ccontrast to be constant means that all rationales
are equally valuable. One might instead choose, for example,
to reduce Ccontrast for examples xi that have many rationales,
to prevent xi’s contrast examples vij from together dominating
the optimization. However, in this paper we assume that an xi

with more rationales really does provide more evidence about
the true classifier ~w.

3Polarity dataset version 2.0.
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category. Pang and Lee have divided the 2000 docu-
ments into 10 folds, each consisting of 100 positive
reviews and 100 negative reviews.

The dataset is arguably artificial in that it keeps
only reviews where the reviewer provided a rather
high or rather low numerical rating, allowing Pang
and Lee to designate the review as positive or neg-
ative. Nonetheless, most reviews contain a difficult
mix of praise, criticism, and factual description. In
fact, it is possible for a mostly critical review to give
a positive overall recommendation, or vice versa.

4.1 Annotation procedure

Rationale annotators were given guidelines4 that
read, in part:

Each review was intended to give either a positive or a neg-
ative overall recommendation. You will be asked to justify why
a review is positive or negative. To justify why a review is posi-
tive, highlight the most important words and phrases that would
tell someone to see the movie. To justify why a review is nega-
tive, highlight words and phrases that would tell someone not to
see the movie. These words and phrases are called rationales.

You can highlight the rationales as you notice them, which
should result in several rationales per review. Do your best to
mark enough rationales to provide convincing support for the
class of interest.

You do not need to go out of your way to mark everything.
You are probably doing too much work if you find yourself go-
ing back to a paragraph to look for even more rationales in it.
Furthermore, it is perfectly acceptable to skim through sections
that you feel would not contain many rationales, such as a re-
viewer’s plot summary, even if that might cause you to miss a
rationale here and there.

The last two paragraphs were intended to provide
some guidance on how many rationales to annotate.
Even so, as section 4.2 shows, some annotators were
considerably more thorough (and slower).

Annotators were also shown the following exam-
ples5 of positive rationales:

• you will enjoy the hell out of American Pie.

• fortunately, they managed to do it in an interesting and
funny way.

• he is one of the most exciting martial artists on the big
screen, continuing to perform his own stunts and daz-
zling audiences with his flashy kicks and punches.

• the romance was enchanting.

and the following examples5 of negative rationales:
4Available at http://cs.jhu.edu/∼ozaidan/rationales.
5For our controlled study of annotation time (section 4.2),

different examples were given with full document context.

Figure 1: Histograms of rationale counts per document (A0’s
annotations). The overall mean of 8.55 is close to that of the
four annotators in Table 1. The median and mode are 8 and 7.

• A woman in peril. A confrontation. An explosion. The
end. Yawn. Yawn. Yawn.

• when a film makes watching Eddie Murphy a tedious ex-
perience, you know something is terribly wrong.

• the movie is so badly put together that even the most
casual viewer may notice the miserable pacing and stray
plot threads.

• don’t go see this movie

The annotation involves boldfacing the rationale
phrases using an HTML editor. Note that a fancier
annotation tool would be necessary for a task like
named entity tagging, where an annotator must mark
many named entities in a single document. At any
given moment, such a tool should allow the annota-
tor to highlight, view, and edit only the several ra-
tionales for the “current” annotated entity (the one
most recently annotated or re-selected).

One of the authors (A0) annotated folds 0–8 of
the movie review set (1,800 documents) with ra-
tionales that supported the gold-standard classifica-
tions. This training/development set was used for
all of the learning experiments in sections 5–6. A
histogram of rationale counts is shown in Figure 1.
As mentioned in section 3, the rationale annotations
were just textual substrings. The annotator did not
require knowledge of the classifier features. Thus,
our rationale dataset is a new resource4 that could
also be used to study exploitation of rationales un-
der feature sets or learning methods other than those
considered here (see section 8).

4.2 Inter-annotator agreement
To study the annotation process, we randomly se-
lected 150 documents from the dataset. The doc-

262



Rationales % rationales also % rationales also % rationales also % rationales also % rationales also
per document annotated by A1 annotated by A2 annotated by AX annotated by AY ann. by anyone else

A1 5.02 (100) 69.6 63.0 80.1 91.4
A2 10.14 42.3 (100) 50.2 67.8 80.9
AX 6.52 49.0 68.0 (100) 79.9 90.9
AY 11.36 39.7 56.2 49.3 (100) 75.5

Table 1: Average number of rationales and inter-annotator agreement for Tasks 2 and 3. A rationale by Ai (“I think this is a great
movie!”) is considered to have been annotated also by Aj if at least one of Aj’s rationales overlaps it (“I think this is a great
movie!”). In computing pairwise agreement on rationales, we ignored documents where Ai and Aj disagreed on the class. Notice
that the most thorough annotator AY caught most rationales marked by the others (exhibiting high “recall”), and that most rationales
enjoyed some degree of consensus, especially those marked by the least thorough annotator A1 (exhibiting high “precision”).

uments were split into three groups, each consisting
of 50 documents (25 positive and 25 negative). Each
subset was used for one of three tasks:6

• Task 1: Given the document, annotate only the
class (positive/negative).

• Task 2: Given the document and its class, an-
notate some rationales for that class.

• Task 3: Given the document, annotate both the
class and some rationales for it.

We carried out a pilot study (annotators AX and
AY: two of the authors) and a later, more controlled
study (annotators A1 and A2: paid students). The
latter was conducted in a more controlled environ-
ment where both annotators used the same annota-
tion tool and annotation setup as each other. Their
guidelines were also more detailed (see section 4.1).
In addition, the documents for the different tasks
were interleaved to avoid any practice effect.

The annotators’ classification accuracies in Tasks
1 and 3 (against Pang & Lee’s labels) ranged from
92%–97%, with 4-way agreement on the class for
89% of the documents, and pairwise agreement also
ranging from 92%–97%. Table 1 shows how many
rationales the annotators provided and how well
their rationales agreed.

Interestingly, in Task 3, four of AX’s ratio-
nales for a positive class were also partially
highlighted by AY as support for AY’s (incorrect)
negative classifications, such as:

6Each task also had a “warmup” set of 10 documents to be
annotated before that tasks’s 50 documents. Documents for
Tasks 2 and 3 would automatically open in an HTML editor
while Task 1 documents opened in an HTML viewer with no
editing option. The annotators recorded their classifications for
Tasks 1 and 3 on a spreadsheet.

min./KB A1 time A2 time AX time AY time
Task 1 0.252 0.112 0.150 0.422
Task 2 0.396 0.537 0.242 0.626
Task 3 0.399 0.505 0.288 1.01
min./doc. A1 time A2 time AX time AY time
Task 1 1.04 0.460 0.612 1.73
min./rat. A1 time A2 time AX time AY time
Task 2 0.340 0.239 0.179 0.298
Task 3 0.333 0.198 0.166 0.302

Table 2: Average annotation rates on each task.

• Even with its numerous flaws, the movie all comes to-
gether, if only for those who . . .

• “Beloved” acts like an incredibly difficult chamber
drama paired with a ghost story.

4.3 Annotation time
Average annotation times are in Table 2. As hoped,
rationales did not take too much extra time for most
annotators to provide. For each annotator except
A2, providing rationales only took roughly twice the
time (Task 3 vs. Task 1), even though it meant mark-
ing an average of 5–11 rationales in addition to the
class.

Why this low overhead? Because marking the
class already required the Task 1 annotator to read
the document and find some rationales, even if s/he
did not mark them. The only extra work in Task 3
is in making them explicit. This synergy between
class annotation and rationale annotation is demon-
strated by the fact that doing both at once (Task 3)
was faster than doing them separately (Tasks 1+2).

We remark that this task—binary classification on
full documents—seems to be almost a worst-case
scenario for the annotation of rationales. At a purely
mechanical level, it was rather heroic of A0 to at-
tach 8–9 new rationale phrases rij to every bit yi

of ordinary annotation. Imagine by contrast a more
local task of identifying entities or relations. Each
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lower-level annotation yi will tend to have fewer ra-
tionales rij , while yi itself will be more complex and
hence more difficult to mark. Thus, we expect that
the overhead of collecting rationales will be less in
many scenarios than the factor of 2 we measured.

Annotation overhead could be further reduced.
For a multi-class problem like relation detection, one
could ask the annotator to provide rationales only for
the rarer classes. This small amount of extra time
where the data is sparsest would provide extra guid-
ance where it was most needed. Another possibility
is passive collection of rationales via eye tracking.

5 Experimental Procedures

5.1 Feature extraction

Although this dataset seems to demand discourse-
level features that contextualize bits of praise and
criticism, we exactly follow Pang et al. (2002) and
Pang and Lee (2004) in merely using binary uni-
gram features, corresponding to the 17,744 un-
stemmed word or punctuation types with count ≥ 4
in the full 2000-document corpus. Thus, each docu-
ment is reduced to a 0-1 vector with 17,744 dimen-
sions, which is then normalized to unit length.7

We used the method of section 3 to place addi-
tional constraints on a linear classifier. Given a train-
ing document, we create several contrast documents,
each by deleting exactly one rationale substring
from the training document. Converting documents
to feature vectors, we obtained an original exam-
ple −→xi and several contrast examples −→vi1,

−→vi2, . . ..8

Again, our training method required each original
document to be classified more confidently (by a
margin µ) than its contrast documents.

If we were using more than unigram features, then
simply deleting a rationale substring would not al-
ways be the best way to create a contrast document,
as the resulting ungrammatical sentences might
cause deep feature extraction to behave strangely
(e.g., parse errors during preprocessing). The goal in
creating the contrast document is merely to suppress

7The vectors are normalized before prepending the 1 corre-
sponding to the bias term feature (mentioned in section 3).

8The contrast examples were not normalized to precisely
unit length, but instead were normalized by the same factor used
to normalize −→xi . This conveniently ensured that the pseudoex-
amples −→xij

def
=

~xi−−→vij

µ
were sparse vectors, with 0 coordinates

for all words not in the jth rationale.

features (n-grams, parts of speech, syntactic depen-
dencies . . . ) that depend in part on material in one
or more rationales. This could be done directly by
modifying the feature extractors, or if one prefers to
use existing feature extractors, by “masking” rather
than deleting the rationale substring—e.g., replacing
each of its word tokens with a special MASK token
that is treated as an out-of-vocabulary word.

5.2 Training and testing procedures
We transformed this problem to an SVM problem
(see section 3) and applied SVMlight for training and
testing, using the default linear kernel. We used only
A0’s rationales and the true classifications.

Fold 9 was reserved as a test set. All accuracy
results reported in the paper are the result of testing
on fold 9, after training on subsets of folds 0–8.

Our learning curves show accuracy after training
on T < 9 folds (i.e., 200T documents), for various
T . To reduce the noise in these results, the accuracy
we report for training on T folds is actually the aver-
age of 9 different experiments with different (albeit
overlapping) training sets that cover folds 0–8:

1
9

8∑
i=0

acc(F9 | θ∗, Fi+1 ∪ . . . ∪ Fi+T ) (7)

where Fj denotes the fold numbered j mod 9, and
acc(Z | θ, Y ) means classification accuracy on the
set Z after training on Y with hyperparameters θ.

To evaluate whether two different training meth-
ods A and B gave significantly different average-
accuracy values, we used a paired permutation test
(generalizing a sign test). The test assumes in-
dependence among the 200 test examples but not
among the 9 overlapping training sets. For each
of the 200 test examples in fold 9, we measured
(ai, bi), where ai (respectively bi) is the number
of the 9 training sets under which A (respectively
B) classified the example correctly. The p value
is the probability that the absolute difference be-
tween the average-accuracy values would reach or
exceed the observed absolute difference, namely
| 1
200

∑200
i=1

ai−bi
9 |, if each (ai, bi) had an independent

1/2 chance of being replaced with (bi, ai), as per the
null hypothesis that A and B are indistinguishable.

For any given value of T and any given train-
ing method, we chose hyperparameters θ∗ =
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Figure 2: Classification accuracy under five different experi-
mental setups (S1–S5). At each training size, the 5 accura-
cies are pairwise significantly different (paired permutation test,
p < 0.02; see section 5.2), except for {S3,S4} or {S4,S5} at
some sizes.

(C, µ,Ccontrast) to maximize the following cross-
validation performance:9

θ∗ = argmax
θ

8∑
i=0

acc(Fi | θ, Fi+1 ∪ . . . ∪ Fi+T )

(8)
We used a simple alternating optimization procedure
that begins at θ0 = (1.0, 1.0, 1.0) and cycles repeat-
edly through the three dimensions, optimizing along
each dimension by a local grid search with resolu-
tion 0.1.10 Of course, when training without ratio-
nales, we did not have to optimize µ or Ccontrast.

6 Experimental Results

6.1 The value of rationales
The top curve (S1) in Figure 2 shows that perfor-
mance does increase when we introduce rationales
for the training examples as contrast examples (sec-
tion 3). S1 is significantly higher than the baseline
curve (S2) immediately below it, which trains an or-
dinary SVM classifier without using rationales. At
the largest training set size, rationales raise the accu-
racy from 88.5% to 92.2%, a 32% error reduction.

9One might obtain better performance (across all methods
being compared) by choosing a separate θ∗ for each of the 9
training sets. However, to simulate real limited-data training
conditions, one should then find the θ∗ for each {i, ..., j} us-
ing a separate cross-validation within {i, ..., j} only; this would
slow down the experiments considerably.

10For optimizing along the C dimension, one could use the
efficient method of Beineke et al. (2004), but not in SVMlight.

The lower three curves (S3–S5) show that learn-
ing is separately helped by the rationale and the
non-rationale portions of the documents. S3–S5
are degraded versions of the baseline S2: they are
ordinary SVM classifiers that perform significantly
worse than S2 (p < 0.001).

Removing the rationale phrases from the train-
ing documents (S3) made the test documents much
harder to discriminate (compared to S2). This sug-
gests that annotator A0’s rationales often covered
most of the usable evidence for the true class.

However, the pieces to solving the classification
puzzle cannot be found solely in the short rationale
phrases. Removing all non-rationale text from the
training documents (S5) was even worse than re-
moving the rationales (S3). In other words, we can-
not hope to do well simply by training on just the
rationales (S5), although that approach is improved
somewhat in S4 by treating each rationale (similarly
to S1) as a separate SVM training example.

This presents some insight into why our method
gives the best performance. The classifier in S1
is able to extract subtle patterns from the corpus,
like S2, S3, or any other standard machine learn-
ing method, but it is also able to learn from a human
annotator’s decision-making strategy.

6.2 Using fewer rationales
In practice, one might annotate rationales for only
some training documents—either when annotating a
new corpus or when adding rationales post hoc to
an existing corpus. Thus, a range of options can be
found between curves S2 and S1 of Figure 2.

Figure 3 explores this space, showing how far the
learning curve S2 moves upward if one has time to
annotate rationales for a fixed number of documents
R. The key useful discovery is that much of the ben-
efit can actually be obtained with relatively few ra-
tionales. For example, with 800 training documents,
annotating (0%, 50%, 100%) of them with rationales
gives accuracies of (86.9%, 89.2%, 89.3%). With
the maximum of 1600 training documents, annotat-
ing (0%, 50%, 100%) with rationales gives (88.5%,
91.7%, 92.2%).

To make this point more broadly, we find that the
R = 200 curve is significantly above the R = 0
curve (p < 0.05) at all T ≤ 1200. By contrast, the
R = 800, R = 1000, . . . R = 1600 points at each T
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Figure 3: Classification accuracy for T ∈ {200, 400, ..., 1600}
training documents (x-axis) when only R ∈ {0, 200, ..., T} of
them are annotated with rationales (different curves). The R =
0 curve above corresponds to the baseline S2 from Figure 2.
S1’s points are found above as the leftmost points on the other
curves, where R = T .

value are all-pairs statistically indistinguishable.
The figure also suggests that rationales and docu-

ments may be somewhat orthogonal in their benefit.
When one has many documents and few rationales,
there is no longer much benefit in adding more doc-
uments (the curve is flattening out), but adding more
rationales seems to provide a fresh benefit: ratio-
nales have not yet reached their point of diminishing
returns. (While this fresh benefit was often statisti-
cally significant, and greater than the benefit from
more documents, our experiments did not establish
that it was significantly greater.)

The above experiments keep all of A0’s rationales
on a fraction of training documents. We also exper-
imented with keeping a fraction of A0’s rationales
(chosen randomly with randomized rounding) on all
training documents. This yielded no noteworthy or
statistically significant differences from Figure 3.

These latter experiments simulate a “lazy annota-
tor” who is less assiduous than A0. Such annotators
may be common in the real world. We also suspect
that they will be more desirable. First, they should
be able to add more rationales per hour than the A0-
style annotator from Figure 3: some rationales are
simply more noticeable than others, and a lazy anno-
tator will quickly find the most noticeable ones with-
out wasting time tracking down the rest. Second, the
“most noticeable” rationales that they mark may be
the most effective ones for learning, although our

random simulation of laziness could not test that.

7 Related Work

Our rationales resemble “side information” in ma-
chine learning—supplementary information about
the target function that is available at training time.
Side information is sometimes encoded as “virtual
examples” like our contrast examples or pseudoex-
amples. However, past work generates these by
automatically transforming the training examples
in ways that are expected to preserve or alter the
classification (Abu-Mostafa, 1995). In another for-
mulation, virtual examples are automatically gener-
ated but must be manually annotated (Kuusela and
Ocone, 2004). Our approach differs because a hu-
man helps to generate the virtual examples. Enforc-
ing a margin between ordinary examples and con-
trast examples also appears new.

Other researchers have considered how to reduce
annotation effort. In active learning, the annotator
classifies only documents where the system so far is
less confident (Lewis and Gale, 1994), or in an in-
formation extraction setting, incrementally corrects
details of the system’s less confident entity segmen-
tations and labelings (Culotta and McCallum, 2005).

Raghavan et al. (2005) asked annotators to iden-
tify globally “relevant” features. In contrast, our ap-
proach does not force the annotator to evaluate the
importance of features individually, nor in a global
context outside any specific document, nor even to
know the learner’s feature space. Annotators only
mark text that supports their classification decision.
Our methods then consider the combined effect of
this text on the feature vector, which may include
complex features not known to the annotator.

8 Future Work: Generative models

Our SVM contrast method (section 3) is not the only
possible way to use rationales. We would like to ex-
plicitly model rationale annotation as a noisy pro-
cess that reflects, imperfectly and incompletely, the
annotator’s internal decision procedure.

A natural approach would start with log-linear
models in place of SVMs. We can define a proba-
bilistic classifier

pθ(y | x) def=
1

Z(x)
exp

k∑
h=1

θhfh(x, y) (9)
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where ~f(·) extracts a feature vector from a classified
document.

A standard training method would be to choose θ
to maximize the conditional likelihood of the train-
ing classifications:

argmax
~θ

n∏
i=1

pθ(yi | xi) (10)

When a rationale ri is also available for each
(xi, yi), we propose to maximize a likelihood that
tries to predict these rationale data as well:

argmax
~θ

n∏
i=1

pθ(yi | xi) · pθ′(ri | xi, yi, θ) (11)

Notice that a given guess of θ might make equa-
tion (10) large, yet accord badly with the annotator’s
rationales. In that case, the second term of equa-
tion (11) will exert pressure on θ to change to some-
thing that conforms more closely to the rationales.
If the annotator is correct, such a θ will generalize
better beyond the training data.

In equation (11), pθ′ models the stochastic process
of rationale annotation. What is an annotator actu-
ally doing when she annotates rationales? In par-
ticular, how do her rationales derive from the true
value of θ and thereby tell us about θ? Building a
good model pθ′ of rationale annotation will require
some exploratory data analysis. Roughly, we expect
that if θhfh(xi, y) is much higher for y = yi than
for other values of y, then the annotator’s ri is corre-
spondingly more likely to indicate in some way that
feature fh strongly influenced annotation yi. How-
ever, we must also model the annotator’s limited pa-
tience (she may not annotate all important features),
sloppiness (she may indicate only indirectly that fh

is important), and bias (tendency to annotate some
kinds of features at the expense of others).

One advantage of this generative approach is that
it eliminates the need for contrast examples. Con-
sider a non-textual example in which an annotator
highlights the line crossing in a digital image of the
digit “8” to mark the rationale that distinguishes it
from “0.” In this case it is not clear how to mask out
that highlighted rationale to create a contrast exam-
ple in which relevant features would not fire.11

11One cannot simply flip those highlighted pixels to white

9 Conclusions

We have proposed a quite simple approach to im-
proving machine learning by exploiting the clever-
ness of annotators, asking them to provide enriched
annotations for training. We developed and tested
a particular discriminative method that can use “an-
notator rationales”—even on a fraction of the train-
ing set—to significantly improve sentiment classifi-
cation of movie reviews.

We found fairly good annotator agreement on the
rationales themselves. Most annotators provided
several rationales per classification without taking
too much extra time, even in our text classification
scenario, where the rationales greatly outweigh the
classifications in number and complexity. Greater
speed might be possible through an improved user
interface or passive feedback (e.g., eye tracking).

In principle, many machine learning methods
might be modified to exploit rationale data. While
our experiments in this paper used a discriminative
SVM, we plan to explore generative approaches.
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Abstract

Reinforcement learning gives a way to
learn under what circumstances to per-
form which actions. However, this ap-
proach lacks a formal framework for spec-
ifying hand-crafted restrictions, for speci-
fying the effects of the system actions, or
for specifying the user simulation. The in-
formation state approach, in contrast, al-
lows system and user behavior to be spec-
ified as update rules, with preconditions
and effects. This approach can be used
to specify complex dialogue behavior in
a systematic way. We propose combining
these two approaches, thus allowing a for-
mal specification of the dialogue behavior,
and allowing hand-crafted preconditions,
with remaining ones determined via rein-
forcement learning so as to minimize dia-
logue cost.

1 Introduction

Two different approaches have become popular for
building spoken dialogue systems. The first is the
symbolic reasoning approach. Speech actions are
defined in a formal logic, in terms of the situations
in which they can be applied, and what effect they
will have on the speaker’s and the listener’s mental
state (Cohen and Perrault, 1979; Allen and Perrault,
1980). One of these approaches is theinformation
state(IS) approach (Larsson and Traum, 2000). The
knowledge of the agent is formalized as the state.
The IS state is updated by way ofupdate rules,
which havepreconditionsandeffects. The precondi-
tions specify what must be true of the state in order

∗The author wishes to thank Fan Yang and Michael En-
glish for helpful conversations. Funding from the National
Science Foundation under grant IIS-0326496 is gratefully ac-
knowledged.

to apply the rule. The effects specify how the state
changes as a result of applying the rule. At a mini-
mum, two sets of update rules are used: one set,un-
derstanding rules, specify the effect of an utterance
on the agent’s state and a second set,action rules,
specify which speech action can be performed next.
For example, a precondition for asking a question is
that the agent does not know the answer to the ques-
tion. An effect of an answer to a question is that the
hearer now knows the answer. One problem with
this approach is that although necessary precondi-
tions for speech actions are easy to code, there are
typically many speech actions that can be applied at
any point in a dialogue. Determining which one is
the optimal one is a daunting task for the dialogue
designer.

The second approach for building spoken dia-
logue systems is to usereinforcement learning(RL)
to automatically determine what action to perform
in each different dialogue state so as to minimize
some cost function (e.g. Walker, 2000; Levin et al.,
2000). The problem with this approach, however, is
that it lacks the framework of IS to specify the man-
ner in which the internal state is updated. Further-
more, sometimes no preconditions are even speci-
fied for the actions, even though they are obvious
to the dialogue designer. Thus RL needs to search
over a much larger search space, even over dialogue
strategies that do not make any sense. This not only
substantially slows down the learning procedure, but
also increases the chance of being caught in a locally
optimal solution, rather than the global optimal. Fur-
thermore, this large search space will limit the com-
plexity of the domains to which RL can be applied.

In this paper, we propose combining IS and RL.
IS update rules are formulated for both the system
and the simulated user, thus allowing RL to use a
rich formalism for specifying complex dialogue pro-
cessing. The preconditions on the action rules of
the system, however, only need to specify the neces-
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sary preconditions that are obvious to the dialogue
designer. Thus, preconditions on the system’s ac-
tions might not uniquely identify a single action that
should be performed in a given state. Instead, RL
is used to determine which of the applicable actions
minimizes a dialogue cost function.

In the rest of the paper, we first present an exam-
ple domain. Section 3 gives an overview of apply-
ing RL to dialogue strategy and Section 4 gives an
overview of IS. Section 5 demonstrates that IS can
be used for simulating a dialogue between the sys-
tem and a user. Section 6 demonstrates how IS can
be used with RL. Section 7 gives results on using
hand-crafted preconditions specified in the IS update
rules to simplify learning dialogue strategies with
RL. Section 8 gives concluding comments.

2 Flight Information Application

To illustrate our proposed approach, we use the
flight information domain, similar to that of Levin
et al. (2000). The goal of the system is to display
a short list of flights that meets the user’s require-
ments. The user is assumed to have a flight in mind,
in terms of its destination, origin, airline, departure
time, and number of stops. The user might be flexi-
ble on some of the parameters. It is assumed that the
user will not change his or her mind depending on
what flights are found.

In this paper, we are focusing on dialogue man-
agement issues, and so we use a semantic represen-
tation for both the input and output of the system.
The system can ask the user the value of parame-
ter p with ‘askconstraintp’, and the user will an-
swer with ‘constrainp v’, wherev is the user’s pre-

system askconstraint from
user constrain from miami
system askconstraint to
user constrain to sacramento
system askconstraint departure
user constrain departure 6pm
system dbquery miami sacremento - 6pm
system askconstraint airline
user constrain airline united
system dbquery miami sacremento united ...
system askrelax departure
user relax departure yes
system dbquery miami sacremento united ...
system output {918 11671 13288}
system finish

Figure 1: Sample dialogue

ferred value of the parameter.1 The system can ask
whether the user is flexible on the values for parame-
terp with ‘askrelaxp’, and the user will answer with
‘relax p a’, wherea is either ‘yes’ or ‘no’. The sys-
tem can do a database query, ‘dbquery’, to determine
whether any flights match the current parameters. If
no flights exactly match, ‘dbquery’ will check if any
flights match according to the relaxed restrictions,
by ignoring parameters that the system knows the
user is flexible on. The system can display the found
flights with ‘output’. It can also quit at any time. A
sample dialogue is given in Fig. 1.

3 Reinforcement Learning (RL)

Given a set of system actions, a set of states, and a
cost function that measures the quality of a dialogue,
RL searches for an optimal dialogue policy (Sutton
and Barto, 1998; Levin et al., 2000).

Cost Function: The cost function assesses how
good a dialogue is: the lower the cost, the better the
dialogue. RL uses the cost function to provide feed-
back in its search for an optimal strategy. The cost
function is specified by the dialogue designer, and
can take into account any number of factors, typi-
cally including dialogue length and solution quality.

System Actions: RL takes as input a finite number
of actions, and for each state, learns which action is
best to perform. The dialogue designer decides what
the actions will be, both in terms of how much to
combine into a single action, and how specific each
action should be.

State Variables: RL learns what system action to
perform in each state. The RL states are defined in
terms of a set of state variables: different values for
the variables define the different states that can exist.
The state variables need to include all information
that the dialogue designer thinks will be relevant in
determining what action to perform next. Any infor-
mation that is thought to be irrelevant is excluded in
order to keep the search space small.

Transitions: RL treats a dialogue as a succession
of states, with actions causing a transition from one
state to the next. The transition thus encompasses
the effect of the system making the speech act,

1In contrast to Levin, over-answering by the user is not al-
lowed. The system also does not have a general greeting, to
which the user can answer with any of the flight parameters.
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the user’s response to the system’s speech act, and
the system’s understanding of the user’s response.
Hence, the transition incorporates auser simulation.
In applying RL to dialogue policies, the transition
from a state-action pair to the next state is usually
modeled as a probability distribution, and is not fur-
ther decomposed (e.g. Levin et al., 2000).
Policy Exploration: RL searches the space of po-
lices by determiningQ for each state-action pairs-
a, which is the minimal cost to get to the final state
from states starting with actiona. From theQ val-
ues, a policy can be determined: for each states,
choose the actiona that has the maximumQ value.

Q is determined in an iterative fashion. The cur-
rent estimates forQ for each state-action are used to
determine the current dialogue policy. The policy,
in conjunction with the transition probabilities, are
used to produce a dialogue run, which is a sequence
of state-action pairs, each pair having an associated
cost to get to the next state-action pair. Thus, for a
dialogue run, the cost from each state-action pair to
the final state can be determined. These costs are
used to revise theQ estimates.

To produce a dialogue run, theǫ-greedy method
is often used. In this approach, with probabilityǫ,
an action other than the action specified by the cur-
rent policy is chosen. This helps ensure that new
estimates are obtained for all state-action pairs, not
just ones in the current policy. Typically, a number
of dialogue runs, anepoch, are made before theQ
values and dialogue policy are updated. With each
successive epoch, a better dialogue policy is used,
and thus theQ estimates will approach their true val-
ues, which in turn, ensures that the dialogue policy
is approaching the optimal one.

3.1 Flight Information Task in RL

To illustrate how RL learns a dialogue policy, we use
the flight information task from Section 2.
Actions: The system actions were given in Section
2. The queries for the destination, origin, airline, de-
parture time, number of stops are each viewed as dif-
ferent actions so that RL can reason about the indi-
vidual parameters. There are also 5 separate queries
for checking whether each parameter can be relaxed.
There is also a database query to determine which
flights match the current parameters. This is in-
cluded as an RL action, even though it is not to the

user, so that RL can decide when it should be per-
formed. There is also an output and a finish action.
State Variables: We use the following variables
for the RL state. The variable ‘fromP’ indicates
whether the origin has been given by the user and
the variable ‘fromR’ indicates whether the user has
been asked if the origin can be relaxed, and if so,
what the answer is. Similar variables are used for the
other parameters. The variable ‘dbqueried’ indicates
whether the database has been queried. The variable
‘current’ indicates whether no new parameters have
been given or relaxed since the last database query.
The variable ‘NData’ indicates the number of items
that were last returned from the database quantized
into 5 groups: none, 1-5, 6-12, 13-30, more than 30).
The variable ‘outputP’ indicates whether any flights
have been given to the user. Note that the actual val-
ues of the parameters are not included in the state.
This helps limit the size of the search space, but pre-
cludes the values of the parameters from being used
in deciding what action to perform next.
Cost Function: Our cost function is the sum of
four components. Each speech action has a cost of
1. A database query has a cost of 2 plus 0.01 for each
flight found. Displaying flights to the user costs 0 for
5 or fewer flights, 8 for 12 or fewer flights, 16 for 30
or fewer flights, and 25 for 30 or more flights. The
last cost is the solution cost. This cost takes into ac-
count whether the user’s preferred flight is even in
the database, and if so, whether it was shown to the
user. The solution cost is zero if appropriate infor-
mation is given to the user, and 90 points otherwise.

3.2 Related Work in RL

In the work of Levin, Pieraccini, and Eckert (2000),
RL was used to choose between all actions. Actions
that resulted in infelicitous speech act sequences
were allowed, such as asking the value of a parame-
ter that is already known, asking if a parameter can
be relaxed when the value of the parameter is not
even known, or displaying values when a database
query has not yet been performed.

In other work, RL has been used to choose among
a subset of the actions in certain states (Walker,
2000; Singh et al., 2002; Scheffler and Young, 2002;
English and Heeman, 2005). However, no for-
mal framework is given to specify which actions to
choose from.
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Furthermore, none of the approaches used a for-
mal specification for updating the RL variables after
a speech action, nor for expressing the user simula-
tion. As RL is applied to more complex tasks, with
more complex speech actions, this will lead to diffi-
culty in encoding the correct behavior.

Georgila, Henderson, and Lemon (2005) advo-
cated the use of IS to specify the dialogue context
for learning user simulations needed in RL. How-
ever, they did not combine hand-crafted with learned
preconditions, and it is unclear whether they used IS
to update the dialogue context,

4 Information State (IS)

IS has been concerned with capturing how to up-
date the state of a dialogue system in order to build
advanced dialogue systems (Larsson and Traum,
2000). For example, it has been used to build sys-
tems that allow for both system and user initiative,
over answering, confirmations, and grounding (e.g.
(Bohlin et al., 1999; Matheson et al., 2000)). It uses
a set of state variables, whose values are manipu-
lated by update rules, run by a control strategy.

State Variables: The state variables specify the
knowledge of the system at any point in the dia-
logue. This is similar to the RL variables, except that
they must contain everything that is needed to com-
pletely specify the action that the system should per-
form, rather than just enough information to choose
between competing actions. A number of stan-
dard variables are typically used to interface to other
modules in the system. The variable ‘lastMove’ has
the semantic representation of what was last said, ei-
ther by the user or the system and ‘lastSpeaker’ in-
dicates who spoke the last utterance. Both are read-
only. The variable ‘nextMove’ is set by the action
rules to the semantic representation of the next move
and ‘keepTurn’ is set to indicate whether the current
speaker will keep the turn to make another utterance.

Update Rules: Update rules have preconditions
and effects. The preconditions specify what must
be true of the state in order to apply the rule. The ef-
fects specify how the state should be updated. In this
paper, we will use two types of rules. Understand-
ing rules will be used to update the state to take into
account what was just said, by both the user and the
system. Action rules determine what the system will

say next and whether it will keep the turn.
Control Strategy: The control strategy specifies
how the update rules should be processed. In our ex-
ample, the control strategy specifies that the under-
standing rules are processed first, and then the action
rules if the system has the turn. The control strategy
also specifies which rules should be applied: (a) just
the first applicable rule, (b) all applicable rules, or
(c) randomly choose one of the applicable rules.

Although there is a toolkit available for building
IS systems (Larsson and Traum, 2000), we built a
simple version in Tcl. Update rules are written using
Tcl code, which allows for simple interpretation of
the rules. The state is saved as Tcl variables, and
thus allows strings, numbers, booleans, and lists.

4.1 Flight Information Example in IS

We now express the flight information system with
the IS approach. This allows for a precise formaliza-
tion of the actions, both the conditions under which
they should be performed and their effects.

The IS state variables are similar to the RL ones
given in Section 3. Instead of the variable ‘fromP’,
it includes the variable ‘from’, which has the actual
value of the parameter if known, and ‘’ otherwise.
The same is true for the destination, airline, depar-
ture time, and number of stops. Instead of the RL
variable ‘NData’ and ‘outputP, ‘results’ holds the
actual database and ‘output’ holds the actual flights
displayed to the user.

Figure 2 displays the system’s understanding
rules, which are used to update the state variables
after an utterance is said. Although it is common
practice in IS to use understanding rules even for
one’s own utterances, the example application is
simple enough to do without this. Understanding
rules are thus only used for understanding the user’s
utterances: giving a parameter value or specifying
whether a parameter can be relaxed. As can be seen,
any time the user specifies a new parameter or re-
laxes a parameter, ‘current’ is set to false.

Figure 3 gives the action rules for the system.
Rules for querying the destination, departure, and
number of stops are not shown; neither are the rules
for querying whether the destination, origin, airline,
and number of stops can be relaxed. The effects of
the rules show how the state is updated if the rule
is applied. For most of the rules, this is simply to
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set ‘nextMove’ and ‘keepTurn’ appropriately. The
‘dbquery’ action is more complicated: it runs the
database query and updates ‘results’. It then updates
the variables ‘queriedDB’, and ‘current’ appropri-
ately. Note that the actions ‘dbquery’ and ‘output’
specify that the system wants to keep the turn.

The preconditions of the update rules specify the
exact conditions under which the rule can be ap-
plied. The preconditions on the understanding rules
are straightforward, and simply check the user’s re-
sponse. The preconditions on the action rules are
more complex. We divide the preconditions into the
4 groups given below, both to simplify the discus-
sion of the preconditions, and because we use these
groupings in Section 7.

Speech Acts: Some of the preconditions cap-
ture the conditions under which the action can be
performed felicitously (Cohen and Perrault, 1979;
Allen and Perrault, 1980). Only ask the value of
a parameter if you do not know its value. Only ask
if a parameter can be relaxed if you know the value
of the parameter. Only output the data if it is still
current and more than one flight was found. These
preconditions are labeled as ‘sa’ in Fig. 3.

Application Restrictions: These preconditions
enforce the specification of the application. For
our application, the system should only output data
once: once data is output, the system should end
the conversation. These preconditions are labeled
as ‘app’ in Fig. 3.

Partial Strategy: These preconditions add addi-
tion constraints that seem reasonable: ask the ‘to’,
‘from’, and ‘departure’ parameters first; never relax
the ‘to’ and ‘from’; and only ask whether ‘airline’
and ‘stops’ can be relaxed if the database has been

Understand Answer to Constrain Question
Pre: [lindex $lastMove 0] == “constrain”
Eff: set [lindex LastMove 1] [lindex LastMove 2]

set current 0
Understand Yes Answer to Relax
Pre: [lindex lastMove 0] == “relax”

[lindex lastMove 2] == “yes”
Eff: set [lindex lastMove 1]R yes

set current 0
Understand No Answer to Relax
Pre: [lindex lastMove 0] == “relax”

[lindex lastMove 2] == “no”
Eff: set [lindex lastMove 1]R no

Figure 2: Understanding Rules for System

queried. Furthermore, the system may only output
data if (a) the number of flights is between 1 and
5, or (b) the number of flights is greater than 5 and
‘airline’ and ‘stops’ have both been asked. These
preconditions are labeled as ‘ps’ in Fig. 3.

Baseline: The last group of preconditions (to-
gether with the previous preconditions) uniquely
identify a single action to perform in each state, and

Ask Origin of Flight
Pre: $from == ‘’ sa

$output == ‘’ app
Eff: set nextMove “askconstraint from”

set keepTurn false
Ask Airline of Flight
Pre: $airline == ‘’ sa

$output == ‘’ app
$departure != ‘’ ps
$queriedDB == true base
$current == true base
[llength $results]> 5 base

Eff: set nextMove “askconstraint to”
set keepTurn false

Ask Whether Departure Time can be Relaxed
Pre: $departure != ‘’ sa

$departureR == ‘’ sa
$output != ‘’ app
$queriedDB == true base
$current == true base
$results =={} base

Eff: set nextMove ‘askrelax from’
set keepTurn false

Query the Database
Pre: $current == false sa

$output == ‘’ app
$departure != ‘’ ps

Eff: set results [DBQuery $from $to $airline ...]
set queriedDB true
set current true
set nextMove dbquery
set keepTurn true

Output Results to User
Pre: $current == true sa

$results !={} sa
$output == ‘’ app
[llength $results]< 6 || ([llength $results]> 5 ps

&& $airline != “” && $stops != “”)
Eff: set nextMove “output $results”

set output $results
Finish
Pre: $output != ‘” app
Eff: set nextMove finish
Quit
Pre: $output == ‘’ app

$current == true app
$results =={} app
$airline != ‘’ || $airlineR != ‘’ base
$stops != ‘’ || $stopsR != ‘’ base

Eff: set nextMove finish

Figure 3: Action Rules for System
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thus completely specifies a strategy. These are la-
beled as ‘base’ in Fig. 3. The strategy that we give
is based on the optimal strategy found by Levin et
al. (2000). After the system asks the values for the
‘from’, ‘to’, and ‘departure’ variables, it then per-
forms a database query. If there are between 1 and 5
flights found, they are displayed to the user. If there
are more than 5, the system asks the value of ‘air-
line’ if unknown, otherwise, ‘number of stops’. If
there are 0 items, it tries to relax one of ‘departure’,
‘airline’, and ‘stops’, in that order (but not ‘from’
or ‘to’). Any time new information is gained, such
as a parameter value or a parameter is relaxed, the
database is requeried, and the process repeats.

5 Implementing the Simulated User

Normally, with IS, the system is run against an ac-
tual user, and so no state variables nor update rules
are coded for the user. To allow the combination of
IS with RL, we need to produce dialogues between
the system and a simulated user. As the IS approach
is very general, we will use it for implementing the
simulated user as well. In this way, we can code the
user simulation with a well-defined formalism, thus
allowing complex user behaviors. Hence, two sepa-
rate IS instantiations will be used: one for the system
and one for the user. The system’s rules will update
the system’s state variables, and the user’s rules will
update the user’s state variables; but the two instan-
tiations will be in lock-step with each other.

We built a simulator that runs the system’s rules
against the user’s. The simulator (a) runs the under-
standing rules for the system and the user on the last
utterance; then (b) checks who has the turn, and runs
that agent’s action rules; and then (c) updates ‘lastS-
peaker’ and ‘lastMove’. It repeats these three steps
until the ‘finish’ speech act is seen.

5.1 Flight Information Task

The user has the variables ‘from’, ‘to’, ‘departure’,
‘airline’, and ‘stops’, which hold the user’s ideal
flight, and are set before the dialogue begins. The
variables ‘fromR’, ‘toR’, ‘departureR’, ‘airlineR’,
and ‘stopsR’ are also used, and are also set before
the dialogue begins. No other variables are used.

For the flight application, separate update rules
are used for the user. There are two types of queries

Answer Constrain Question
Pre: [lindex $lastMove 0] == “askconstraint”
Eff: set nextMove “constraint [lindex $lastmove 1]

[set [lindex $lastmove 1]]”
set haveTurn 0

Answer Relax Question
Pre: [lindex $lastMove 0] == “askrelax”
Eff: set nextMove “relax [lindex $lastmove 1]

[set [lindex $lastMove 1]R]”
set haveTurn 0

Figure 4: Action Rules for User

to which the user needs to react, namely, ‘askcon-
traint’ and ‘askrelax’. This domain is simple enough
that we do not need separate understanding and ac-
tion rules, and so we encompass all reasoning in the
action rules, shown in Fig. 4. The first rule is for
answering system queries about the value of a pa-
rameter. The second is for answering queries about
whether a parameter can be relaxed.

6 Combining IS and RL

RL gives a way to learn the best action to perform in
any given state. However, RL lacks a formal frame-
work for specifying (a) the effects of the system’s
actions, (b) hand-crafted preconditions of the sys-
tem’s actions, and (c) the simulated user. Hence, we
combine RL and IS to rectify these deficits. IS up-
date rules are formulated for both the system and the
simulated user, as done in Section 5.1. The precon-
ditions on the system’s action rules, however, only
need to specify a subset of the preconditions, ones
that are obvious the dialogue designer. The rest of
the preconditions will be determined by RL, so as to
minimize a cost function. To combine these two ap-
proaches, we need to (a) resolve how the IS and RL
state transitions relate to each other; (b) resolve how
the IS state relates to the RL state; and (c) specify
how utterance costs can be specified in the general
framework of IS.

Transitions: When using IS for both the system
and user simulation, the state transitions for each
are happening in lock-step (Section 5.1). In com-
bining RL and IS, the RL transitions happen at a
courser granularity than the IS transitions, and group
together everything that happens between two suc-
cessive system actions. Thus, the RL states are those
IS states just before a system action.
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State Variables: For the system, we add all of the
RL variables to the IS variables, and remove any du-
plicates. The RL variables are thus a subset of the IS
variables. Some of the variables might be simplifica-
tions of other variables. For our flight example, we
have the exact values of the origin, destination, air-
line, departure time, and number of stops, as well as
a simplification of each that only indicates whether
the parameter has been given or not.

Rather than have the system’s IS rules update
all of the variables, we allow variables to be de-
clared as eitherprimitiveor derived.2 Only primitive
variables are updated by the effects of the update
rules. The derived variables are re-computed from
the primitive ones each time an update rule is ap-
plied. For our flight example, the variables ‘fromP’,
‘toP’, ‘airlineP’, ‘departureP’, ‘stopsP’, ‘outputP’,
and ‘NData’ are derived variables, and these are up-
dated via a procedure.

As the RL variables are a subset of the IS vari-
ables, the RL states are coarser than the IS states.
We do not allow hand-crafted preconditions in the
system’s action rules to distinguish at the finer gran-
ularity. If they did, we would have an action that is
only applicable in part of an RL state, and not the
rest of it. However, RL needs to find a single action
that will work for the entire RL state, and so that
action should not be considered. To prevent such
problems, the hand-crafted preconditions can only
test the values of the RL variables, and not the full
set of IS variables. Hence, we rewrote the precon-
ditions in the action rules of Fig. 3 to use the RL
variables. This restriction does not apply to the sys-
tem’s understanding rules, nor to the user rules, as
those are not subject to RL.

Cost Function: RL needs to track the costs in-
curred in the dialogue. Rather than leaving this to
be specified in an ad-hoc way, we include state vari-
ables to track the components of the cost. This way,
each update rule can set them to reflect the cost of
the rule. Just as with other interface variables (e.g.
‘keepTurn’), these are write-only. For our flight ex-
ample, the output action computes the cost of dis-
playing flights to the user, and the database query ac-
tion computes the cost of doing the database lookup.

2This same distinction is sometimes used in the planning
literature (Poole et al., 1998).

7 Evaluation

To show the usefulness of starting RL with some of
the preconditions hand-crafted, we applied RL using
four different sets of action schemes. The first set,
‘none’, includes no preconditions on any of the sys-
tem’s actions. The second through fourth sets cor-
respond to the precondition distinctions in Fig. 3, of
‘speech act’, ‘application’ and ‘partial strategy’.

For each set of action schemas, we trained 30 di-
alogue policies using an epoch size of 100. Each di-
alogue was run with theǫ-greedy method, withǫ set
at 0.15. After certain epochs, we ran the learned pol-
icy 2500 times strictly according to the policy. We
found that policies did not always converge. Hence,
we trained the policies for each set of preconditions
for enough epochs so that the average cost no longer
improved. More work is needed to investigate this
issue.

The results of the simulations are given in Table
1. The first row reports the average dialogue cost
that the 30 learned policies achieved. We see that all
four conditions achieved an average cost less than
the baseline strategy of Fig. 3, which was 17.17. The
best result was achieved by the ‘application’ precon-
ditions. This is probably because ‘partial’ included
some constraints that were not optimal, while the
search strategy was not adequate to deal with the
large search space in ‘speech acts’ and ‘none’.

The more important result is in the second row
of Table 1. The more constrained precondition sets
result in significantly fewer states being explored,
ranging from 275 for the ‘partial’ preconditions, up
to 18,206 for no preconditions. In terms of number
of potential policies explored (computed as the prod-
uct of the number of actions explored in each state),
this ranges from1058 to 107931. As can be seen, by
placing restrictions on the system actions, the space
that needs to be explored is substantially reduced.

The restriction in the size of the search space af-
fects how quickly RL takes to find a good solution.
Figure 5 shows how the average cost for each set of

None SA App. Partial
Dialogue Cost 16.65 16.95 15.24 15.68
States Explored 18206 5261 4080 275
Policies (log10) 7931 2008 1380 58.7

Table 1: Comparison of Preconditions
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Figure 5: Average dialogue cost versus epochs

preconditions improved with the number of epochs.
As can be seen, by including more preconditions
in the action definitions, RL is able to find a good
solution more quickly. For the ‘partial’ precondi-
tions, after 10 epochs, RL achieves a cost less than
17.0. For the ‘application’ setting, this does not hap-
pen until 40 epochs. For ‘speech act’, it takes 1000
epochs, and for ‘none’, it takes 3700 epochs. So,
adding hand-crafted preconditions allows RL to con-
verge more quickly.

8 Conclusion

In this paper, we demonstrated how RL and IS can
be combined. From the RL standpoint, this allows
the rich formalism of IS update rules to be used for
formalizing the effects of the system’s speech ac-
tions, and for formalizing the user simulation, thus
enabling RL to be applied to domains that require
complex dialogue processing. Second, use of IS al-
lows obvious preconditions to be easily formulated,
thus allowing RL to search a much smaller space of
policies, which enables it to converge more quickly
to the optimal policy. This should also enable RL to
be applied to complex domains with large numbers
of states and actions.

From the standpoint of IS, use of RL means that
not all preconditions need be hand-crafted. Pre-
conditions that capture how one action might be
more beneficial than another can be difficult to deter-
mine for dialogue designers. For example, knowing
whether to first ask the number of stops or the air-
line, depends on the characteristics of the flights in
the database, and on users’ relative flexibility with
these two parameters. The same problems occur
for knowing under which situations to requery the

database or ask for another parameter. RL solves
this issue as it can explore the space of different poli-
cies to arrive at one that minimizes a dialogue cost
function.
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Abstract

Past approaches for using reinforcement
learning to derive dialog control policies
have assumed that there was enough col-
lected data to derive a reliable policy. In
this paper we present a methodology for
numerically constructing confidence inter-
vals for the expected cumulative reward
for a learned policy. These intervals are
used to (1) better assess the reliability
of the expected cumulative reward, and
(2) perform a refined comparison between
policies derived from different Markov
Decision Processes (MDP) models. We
applied this methodology to a prior ex-
periment where the goal was to select the
best features to include in the MDP state-
space. Our results show that while some
of the policies developed in the prior work
exhibited very large confidence intervals,
the policy developed from the best feature
set had a much smaller confidence interval
and thus showed very high reliability.

1 Introduction

NLP researchers frequently have to deal with issues
of data sparsity. Whether the task is machine transla-
tion or named-entity recognition, the amount of data
one has to train or test with can greatly impact the re-
liability and robustness of one’s models, results and
conclusions.

One research area that is particularly sensitive to
the data sparsity issue is machine learning, specifi-

cally in using Reinforcement Learning (RL) to learn
the optimal action for a dialogue system to make
given any user state. Typically this involves learn-
ing from previously collected data or interacting in
real-time with real users or user simulators. One of
the biggest advantages to this machine learning ap-
proach is that it can be used to generate optimal poli-
cies for every possible state. However, this method
requires a thorough exploration of the state-space to
make reliable conclusions on what the best actions
are. States that are infrequently visited in the train-
ing set could be assigned sub-optimal actions, and
therefore the resulting dialogue manager may not
provide the best interaction for the user.

In this work, we present an approach for esti-
mating the reliability of a policy derived from col-
lected training data. The key idea is to take into ac-
count the uncertainty in the model parameters (MDP
transition probabilities), and use that information to
numerically construct a confidence interval for the
expected cumulative reward for the learned policy.
This confidence interval approach allows us to: (1)
better assess the reliability of the expected cumula-
tive reward for a given policy, and (2) perform a re-
fined comparison between policies derived from dif-
ferent MDP models.

We apply the proposed approach to our previous
work (Tetreault and Litman, 2006) in using RL to
improve a spoken dialogue tutoring system. In that
work, a dataset of 100 dialogues was used to de-
velop a methodology for selecting which user state
features should be included in the MDP state-space.
But are 100 dialogues enough to generate reliable
policies? In this paper we apply our confidence in-
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terval approach to the same dataset in an effort to in-
vestigate how reliable our previous conclusions are,
given the amount of available training data.

In the following section, we discuss the prior
work and its data sparsity issue. In section 3, we
describe in detail our confidence interval methodol-
ogy. In section 4, we show how this methodology
works by applying it to the prior work. In sections 5
and 6, we present our conclusions and future work.

2 Previous Work

Past research into using RL to improve spoken di-
alogue systems has commonly used Markov Deci-
sion Processes (MDP’s) (Sutton and Barto, 1998)
to model a dialogue (such as (Levin and Pieraccini,
1997) and (Singh et al., 1999)).

A MDP is defined by a set of states {si}i=1..n,
a set of actions {ak}k=1..p, and a set of transition
probabilities which reflect the dynamics of the en-
vironment {p(si|sj, ak)}

k=1..p
i,j=1..n: if the model is at

time t in state sj and takes action ak, then it will
transition to state si with probability p(si|sj , ak).
Additionally, an expected reward r(si, sj , ak) is de-
fined for each transition. Once these model parame-
ters are known, a simple dynamic programming ap-
proach can be used to learn the optimal control pol-
icy π∗, i.e. the set of actions the model should take
at each state, to maximize its expected cumulative
reward.

The dialog control problem can be naturally cast
in this formalism: the states {si}i=1..n in the MDP
correspond to the dialog states (or an abstraction
thereof), the actions {ak}k=1..p correspond to the
particular actions the dialog manager might take,
and the rewards r(si, sj , ak) are defined to reflect
a particular dialog performance metric. Once the
MDP structure has been defined, the model param-
eters {p(si|sj, ak)}

k=1..p
i,j=1..n are estimated from a cor-

pus of dialogs (either real or simulated), and, based
on them, the policy which maximizes the expected
cumulative reward is computed.

While most work in this area has focused on de-
veloping the best policy (such as (Walker, 2000),
(Henderson et al., 2005)), there has been relatively
little work done with respect to selecting the best
features to include in the MDP state-space. For in-
stance, Singh et al. (1999) showed that dialogue

length was a useful state feature and Frampton and
Lemon (2005) showed that the user’s last dialogue
act was also useful. In our previous work, we com-
pare the worth of several features. In addition, Paek
and Chickering’s (2005) work showed how a state-
space can be reduced by only selecting features that
are relevant to maximizing the reward function.

The motivation for this line of research is that if
one can properly select the most informative fea-
tures, one develops better policies, and thus a bet-
ter dialogue system. In the following sections we
summarize our past data, approach, results, and is-
sue with policy reliability.

2.1 MDP Structure

For this study, we used an annotated corpus of
human-computer spoken dialogue tutoring sessions.
The fixed-policy corpus contains data collected from
20 students interacting with the system for five prob-
lems (for a total of 100 dialogues of roughly 50 turns
each). The corpus was annotated with 5 state fea-
tures (Table 1). It should be noted that two of the
features, Certainty and Frustration, were manually
annotated while the other three were done automat-
ically. All features are binary except for Certainty
which has three values.

State Values
Correctness Student is correct or incorrect

in the current turn
Certainty Student is certain, neutral

or uncertain in the current turn
Concept Repetition A particular concept is either new

or repeated
Frustration Student is frustrated or not

in the current turn
Percent Correct Student answers over 66% of

questions correctly in dialogue
so far, or less

Table 1: State Features in Tutoring Corpus

For the action set {ak}k=1..p, we looked at what
type of question the system could ask the student
given the previous state. There are a total of four
possible actions: ask a short answer question (one
that requires a simple one word response), a com-
plex answer question (one that requires a longer,
deeper response), ask both a simple and complex
question in the same turn, or do not ask a question
at all (give a hint). The reward function r was the
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learning gain of each student based on a pair of tests
before and after the entire session of 5 dialogues.
The 20 students were split into two groups (high
and low learners) based on their learning gain, so
10 students and their respective five dialogues were
given a positive reward of +100, while the remain-
der were assigned a negative reward of -100. The
rewards were assigned in the final dialogue state, a
common approach when applying RL in spoken di-
alogue systems.

2.2 Approach and Results

To investigate the usefulness of different features,
we took the following approach. We started with
two baseline MDPs. The first model (Baseline 1)
used only the Correctness feature in the state-space.
The second model (Baseline 2) included both the
Correctness and Certainty features. Next we con-
structed 3 new models by adding each of the remain-
ing three features (Frustration, Percent Correct and
Concept Repetition) to the Baseline 2 model.

We defined three metrics to compare the policies
derived from these MDPs: (1) Diff’s: the number of
states whose policy differs from the Baseline 2 pol-
icy, (2) Percent Policy change (P.C.): the weighted
amount of change between the two policies (100%
indicates total change), and (3) Expected Cumula-
tive Reward (or ECR) which is the average reward
one would expect in that MDP when in the state-
space.

The intuition is that if a new feature were rele-
vant, the corresponding model would lead to a dif-
ferent policy and a better expected cumulative re-
ward (when compared to the baseline models). Con-
versely, if the features were not useful, one would
expect that the new policies would look similar
(specifically, the Diff’s count and % Policy Change
would be low) or produce similar expected cumula-
tive rewards to the original baseline policy.

The results of this analysis are shown in Table 2 1

The Diff’s and Policy Change metrics are undefined
for the two baselines since we only use these two
metrics to compare the other three features to Base-

1Please note that to due to refinements in code, there is a
slight difference between the ECR’s reported in this work and
the ECR’s reported in the previous work, for the three features
added to Baseline 2. These changes did not alter the rankings
of these models, or the conclusions of the previous work.

line 2. All three metrics show that the best feature
to add to the Baseline 2 model is Concept Repetition
since it results in the most change over the Baseline
2 policy, and also the expected reward is the highest
as well. For the remainder of this paper, when we
refer to Concept Repetition, Frustration, or Percent
Correctness, we are referring to the model that in-
cludes that feature as well as the Baseline 2 features
Correctness and Certainty.

State Feature # Diff’s % P.C. ECR
Baseline 1 N/A N/A 6.15
Baseline 2 N/A N/A 31.92
B2 + Concept Repetition 10 80.2% 42.56
B2 + Frustration 8 66.4% 32.99
B2 + Percent Correctness 4 44.3% 28.50

Table 2: Feature Comparison Results

2.3 Problem with Reliability

However, the approach discussed above assumes
that given the size of the data set, the ECR and poli-
cies are reliable. If the MDP model were very frag-
ile, that is the policy and expected cumulative reward
were very sensitive to the quality of the transition
probability estimates, then the metrics could reveal
quite different rankings. Previously, we used a qual-
itative approach of tracking how the worth of each
state (V-value) changed over time. The V-values
indicate how much reward one would expect from
starting in that state to get to a final state. We hy-
pothesized that if the V-values stabilized as data in-
creased, then the learned policy would be more reli-
able.

So is this V-value methodology adequate for as-
sessing if there is enough data to determine a sta-
ble policy, and also for assessing if one model is
better than another? Since our approach for state-
space selection is based on comparing a new pol-
icy with a baseline policy, having a stable policy is
extremely important since instability could lead to
different conclusions. For example, in one compar-
ison, a new policy could differ with the baseline in
8 out of 10 states. But if the MDP were unstable,
adding just a little more data could result in a differ-
ence of only 4 out of 10 states. Is there an approach
that can categorize whether given a certain data size,
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that the expected cumulative reward (and thus the
policy) is reliable? In the next section we present a
new methodology for numerically constructing con-
fidence intervals for these value function estimates.
Then, in the following section, we reevaluate our
prior work with this methodology and discuss the
results.

3 Confidence Interval Methodology

3.1 Policy Evaluation with Confidence
Intervals

The starting point for the proposed methodology
is the observation that for each state sj and ac-
tion ak in the MDP, the set of transition probabili-
ties {p(si|sj, ak)}i=1..n are modeled as multinomial
distributions that are estimated from the transition
counts in the training data:

p̂(si|sj, ak) =
c(si, sj, ak)

∑n
i=1 c(si, sj , ak)

(1)

where n is the number of states in the model, and
c(si, sj , ak) is the number of times the system was
in state sj , took action ak, and transitioned to state
si in the training data.

It is important to note that these parameters are
just estimates. The reliability of these estimates
clearly depends on the amount of training data, more
specifically on the transition counts c(si, sj, ak). For
instance, consider a model with 3 states and 2 ac-
tions. Say the model was in state s1 and took action
a1 ten times. Out of these, three times the model
transitioned back to state s1, two times it transi-
tioned to state s2, and five times to state s3. Then
we have:

p̂(si|s1, a1) = 〈0.3; 0.2; 0.5〉 = 〈
3

10
;

2

10
;

5

10
〉 (2)

Additionally, let’s say the same model was in state
s2 and took action a2 1000 times. Following that ac-
tion, it transitioned 300 times to state s1, 200 times
to state s2, and 500 times to state s3.

p̂(si|s2, a2) = 〈0.3; 0.2; 0.5〉 = 〈
300

1000
;

200

1000
;

500

1000
〉 (3)

While both sets of transition parameters have the
same value, the second set of estimates is more reli-
able. The central idea of the proposed approach is to
model this uncertainty in the system parameters, and

use it to numerically construct confidence intervals
for the value of the optimal policy.

Formally, each set of transition probabilities
{p(si|sj , ak)}i=1..n is modeled as a multinomial dis-
tribution, estimated from data2. The uncertainty of
multinomial estimates are commonly modeled by
means of a Dirichlet distribution. The Dirichlet dis-
tribution is characterized by a set of parameters α1,
α2, ..., αn, which in this case correspond to the
counts {c(si, sj , ak)}i=1..n. For any given j, the
likelihood of the set of multinomial transition pa-
rameters {p(si|sj, ak)}i=1..n is then given by:

P ({p(si|sj , ak)}i=1..n|D) =

= 1
Z(D)

∏n
i=1 p(si|sj , ak)

αi−1 (4)

where Z(D) =

∏
n

i=1
Γ(αi)

Γ(
∑

n

i=1
αi)

and αi = c(si, sj , ak).
Note that the maximum likelihood estimates for the
formula above correspond to the frequency count
formula we have already described:

p̂ML(si|sj, ak) =
αi

∑n
i=1 αi

=
c(si, sj, ak)

∑n
i=1 c(si, sj , ak)

(5)
To capture the uncertainty in the model parame-

ters, we therefore simply need to store the counts
of the observed transitions c(si, sj , ak). Based on
this model of uncertainty, we can numerically con-
struct a confidence interval for the value of the opti-
mal policy π∗. Instead of computing the value of the
policy based on the maximum likelihood transition
estimates T̂ML = {p̂ML(si|sj , ak)}

k=1..p
i,j=1..n, we gen-

erate a large number of transition matrices T̂1, T̂1,
... T̂m by sampling from the Dirichlet distributions
corresponding to the counts observed in the train-
ing data (in the experiments reported in this paper,
we used m = 1000). We then compute the value
of the optimal policy π∗ in each of these models
{Vπ∗(T̂i)}i=1..m. Finally, we numerically construct
the 95% confidence interval for the value function
based on the resulting value estimates: the bounds
for the confidence interval are set at the lowest and
highest 2.5 percentile of the resulting distribution of
the values for the optimal policy {Vπ∗(T̂i)}i=1..m.

The algorithm is outlined below:
2By p we will denote the true model parameters; by p̂ we

will denote data-driven estimates for these parameters
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1. compute transition counts from the training set:

C = {c(si, sj, ak)}
k=1..p
i,j=1..n (6)

2. compute maximum likelihood estimates for
transition probability matrix:

T̂ML = {p̂ML(si|sj , ak)}
k=1..p
i,j=1..n (7)

3. use dynamic programming to compute the op-
timal policy π∗ for model T̂ML

4. sample m transition matrices {T̂k}k=1..m, us-
ing the Dirichlet distribution for each row:

{p̂i(si|sj, ak)}i=1..n =

= Dir({c(si, sj , ak)}i=1..n) (8)

5. evaluate the optimal policy π∗ in each of these
m models, and obtain Vπ∗(T̂i)

6. numerically build the 95% confidence interval
for Vπ∗ from these estimates.

To summarize, the central idea is to take into ac-
count the reliability of the transition probability esti-
mates and construct a confidence interval for the ex-
pected cumulative reward for the learned policy. In
the standard approach, we would compute an esti-
mate for the expected cumulative reward, by simply
using the transition probabilities derived from the
training set. Note that these transition probabilities
are simply estimates which are more or less accu-
rate, depending on how much data is available. The
proposed methodology does not fully trust these es-
timates, and asks the question: given that the real
world (i.e. real transition probabilities) might actu-
ally be a bit different than we think it is, how well
can we expect the learned policy to perform? Note
that the confidence interval we construct, and there-
fore the conclusions we draw, are with respect to the
policy learned from the current estimates, i.e. from
the current training set. If more data becomes avail-
able, a different optimal policy might emerge, about
which we cannot say much.

3.2 Related Work

Given the stochastic nature of the models, confi-
dence intervals are often used to estimate the reli-
ability of results in machine learning experiments,

e.g. (Rivals and Personnaz, 2002), (Schapire, 2002)
and (Dumais et al., 1998). In this work we use a
confidence interval methodology in the context of
MDPs. The idea of modeling the uncertainty of
the transition probability estimates using Dirichlet
models also appears in (Jaulmes et al., 2005). In
that work, the authors used the uncertainty in model
parameters to develop active learning strategies for
partially observable MDPs, a topic not previously
addressed in the literature. In our work we rely on
the same model of uncertainty for the transition ma-
trix, but use it to derive confidence intervals for the
expected cumulative reward for the learned optimal
policy, in an effort to assess the reliability of this
policy.

4 Results

Our previous results indicated that Concept Repe-
tition was the best feature to add to the Baseline 2
state-space model, but also that Percent Correctness
and Frustration (when added to Baseline 2) offered
an improvement over the Baseline MDP’s. How-
ever, these conclusions were based on a very quali-
tative approach for determining if a policy is reliable
or not. In the following subsection, we apply our ap-
proach of confidence intervals to empirically deter-
mine if given this data set of 100 dialogues, whether
the estimates of the ECR are reliable, and whether
the original rankings and conclusions hold up under
this refined analysis. In subsection 4.2, we provide
a methodology for pinpointing when one model is
better than another.

4.1 Quantitative Analysis of ECR Reliability

For our first investigation, we look at the confidence
intervals of each MDP’s ECR over the entire data set
of 20 students (later in this section we show plots for
the confidence intervals as data increases). Table 3
shows the upper and lower bounds for the ECR orig-
inally reported in Table 2. The first column shows
the original, estimated ECR of the MDP and the last
column is the width of the bound (the difference be-
tween the upper and lower bound).

So what conclusions can we make about the reli-
ability of the ECR, and hence of the learned policies
for the different MDP’s, given this amount of train-
ing data? The confidence interval for the ECR for
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State Feature ECR Lower Bound Upper Bound Width
Baseline 1 6.15 0.21 23.73 23.52
Baseline 2 (B2) 31.92 -5.31 60.48 65.79
B2 + Concept Repetition 42.56 28.37 59.29 30.92
B2 + Frustration 32.99 -4.12 61.30 65.42
B2 + Percent Correctness 28.50 -5.89 57.82 63.71

Table 3: Confidence Intervals with complete dataset

the Baseline 1 model ranges from 0.21 to 23.73. Re-
call that the final states are capped at +100 and -100,
and are thus the maximum and minimum bounds
that one can see in this experiment. These bounds
tell us that, if we take into account the uncertainty
in the model estimates (given the small training set
size), with probability 0.95 the actual true ECR for
this policy will be greater than 0.21 and smaller than
23.73. The width of this confidence interval is 23.52.

For the Baseline 2 model, the bounds are much
wider: from -5.31 to 60.48, for a total width of
65.79. While the ECR estimate is 31.92 (which
is seemingly larger than 6.15 for the Baseline 1
model), the wide confidence interval tells us that this
estimate is not very reliable. It is possible that the
policy derived from this model with this amount of
data could perform poorly, and even get a negative
reward. From the dialogue system designer’s stand-
point, a model like this is best avoided.

Of the remaining three models – Concept Repeti-
tion, Frustration, and Percent Correctness, the first
one exhibits a tighter confidence interval, indicat-
ing that the estimated expected cumulative reward
(42.56) is fairly reliable: with 95% probability of
being between 28.37 and 59.29. The ECR for the
other two models (Frustration and Percent Correct-
ness) again shows a wide confidence interval once
we take into account the uncertainty in the model
parameters.

These results shed more light on the shortcom-
ings of the ECR metric used to evaluate the models
in prior work. This estimate does not take into ac-
count the uncertainty of the model parameters. For
example, a model can have an optimal policy with
a very high ECR value, but have very wide confi-
dence bounds reaching even into negative rewards.
On the other hand, another model can have a rela-
tively lower ECR but if its bounds are tighter (and
the lower bound is not negative), one can know that

that policy is less affected by poor parameter esti-
mates stemming from data sparsity issues. Using the
confidence intervals associated with the ECR gives a
much more refined, quantitative estimate of the reli-
ability of the reward, and hence of the policy derived
from that data.

An extension of this result is that confidence in-
tervals can also allow us to make refined judgments
about the comparative utility of different features,
the original motivation of our prior study. Basi-
cally, a model (M1) is better than another (M2) if
M1’s lower bound is greater than the upper bound of
M2. That is, one knows that 95% of the time, the
worst case situation of M1 (the lower bound) will
always yield a higher reward than the best case of
M2. In our data, this happens only once, with Con-
cept Repetition being empirically better than Base-
line 1, since the lower bound of Concept Repetition
is 28.37 and the upper bound of Baseline 1 is 23.73.
Given this situation, Concept Repetition is a useful
feature which, when included in the model, leads to
a better policy than simply using Correctness. We
cannot draw any conclusions about the other fea-
tures, since their bounds are generally quite wide.
Given this amount of training data, we cannot say
whether Percent Correctness and Frustration are bet-
ter features than the Baseline MDP’s. Although their
ECR’s are higher, there is too much uncertainty to
definitely conclude they are better.

4.2 Pinpointing Model Cross-over

The previous analysis focused on a quantitative
method of (1) determining the reliability of the MDP
ECR estimate and policy, as well as (2) assessing
whether one model is better than another. In this
section, we present an extension to the second con-
tribution by answering the question: given that one
model is more reliable than another, is it possible
to determine at which point one model’s estimates
become more reliable than another model’s? In our

281



0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100
Baseline 1

# of students

E
C

R

 

 

Confidence Bounds

Calculated ECR

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100
Baseline 2 +Concept Repetition

# of students

E
C

R

 

 

Confidence Bounds

Calculated ECR

Figure 1: Confidence Interval Plots

case, we want to know at what point Concept Rep-
etition becomes more reliable than Baseline 1. To
do this, we investigate how the confidence interval
changes as the amount of training data increases in-
stead of looking at the reliability estimate at only one
particular data size.

We incrementally increase the amount of train-
ing data (adding the data from one new student at a
time), and calculate the corresponding optimal pol-
icy and confidence interval for the expected cumula-
tive reward for that policy. Figure 1 shows the con-
fidence interval plots as data is added to the MDP
for the Baseline 1 and Concept Repetition MDP’s.
For reference, Baseline 2, Percent Correctness and
Frustration plots did not exhibit the same converg-
ing behavior as these two, which is not surprising
given how wide the final bounds are. For each plot,
the bold lines represent the upper and lower bounds,
and the dotted line represents the calculated ECR.

Analyzing the two MDP’s, we find that the confi-
dence intervals for Baseline 1 and Concept Repeti-
tion converge as more data is added, which is an ex-
pected trend. One useful result from observing the
change in confidence intervals is that one can de-
termine the point in one which one model becomes
empirically better than another. Superimposing the
upper and lower bounds (Figure 2) reveals that after
we include the data from the first 13 students, the
lower bound of Concept Repetition crosses over the
upper bound of Baseline 1.

Observing this behavior is especially useful for
performing model switching. In automatic model
switching, a dialogue manager runs in real time and

as it collects data, it can switch from using a sim-
ple dialogue model to a complex model. Confidence
intervals can be used to determine when to switch
from one model to the next by checking if a complex
model’s bounds cross over the bounds of the current
model. Basically, the dialogue manager switches
when it can be sure that the more complex model’s
ECR is not only higher, but statistically significantly
so.
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Figure 2: Baseline 1 and Concept Repetition Bounds

5 Conclusions

Past work in using MDP’s to improve spoken dia-
logue systems have usually glossed over the issue of
whether or not there was enough training data to de-
velop reliable policies. In this work, we present a
numerical method for building confidence intervals
for the expected cumulative reward for a learned pol-
icy. The proposed approach allows one to (1) better
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assess the reliability of the expected cumulative re-
ward for a given policy, and (2) perform a refined
comparison between policies derived from different
MDP models.

We applied this methodology to a prior experi-
ment where the objective was to select the best fea-
tures to include in the MDP state-space. Our results
show that policies constructed from the Baseline 1
and Concept Repetition models are more reliable,
given the amount of data available for training. The
Concept Repetition model (which is composed of
the Concept Repetition, Certainty and Correctness
features) was especially useful, as it led to a policy
that outperformed the Baseline 1 model, even when
we take into account the uncertainty in the model
estimates caused by data sparsity. In contrast, for
the Baseline 2, Percent Correctness, and Frustration
models, the estimates for the expected cumulative
reward are much less reliable, and no conclusion can
be reliably drawn about the usefulness of these fea-
tures. In addition, we showed that our confidence
interval approach has applications in another MDP
problem: model switching.

6 Future Work

As an extension of this work, we are currently inves-
tigating in more detail what makes some MDP’s reli-
able or unreliable for a certain data size (such as the
case where Baseline 2 does not converge but a more
complicated model does, such as Concept Repeti-
tion). Our initial findings indicate that, as more data
becomes available the bounds tighten for most pa-
rameters in the transition matrix. However, for some
of the parameters the bounds can remain wide, and
that is enough to keep the confidence interval for the
expected cumulative reward from converging.
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Abstract

Motivated by psycholinguistic findings,
we are currently investigating the role of
eye gaze in spoken language understand-
ing for multimodal conversational sys-
tems. Our assumption is that, during hu-
man machine conversation, a user’s eye
gaze on the graphical display indicates
salient entities on which the user’s atten-
tion is focused. The specific domain infor-
mation about the salient entities is likely
to be the content of communication and
therefore can be used to constrain speech
hypotheses and help language understand-
ing. Based on this assumption, this paper
describes an exploratory study that incor-
porates eye gaze in salience modeling for
spoken language processing. Our empiri-
cal results show that eye gaze has a poten-
tial in improving automated language pro-
cessing. Eye gaze is subconscious and in-
voluntary during human machine conver-
sation. Our work motivates more in-depth
investigation on eye gaze in attention pre-
diction and its implication in automated
language processing.

1 Introduction

Psycholinguistic experiments have shown that eye
gaze is tightly linked to human language process-
ing. Eye gaze is one of the reliable indicators of
what a person is “thinking about” (Henderson and
Ferreira, 2004). The direction of gaze carries infor-
mation about the focus of the users attention (Just
and Carpenter, 1976). The perceived visual context
influences spoken word recognition and mediates
syntactic processing (Tanenhaus et al., 1995; Roy

and Mukherjee, 2005). In addition, directly before
speaking a word, the eyes move to the mentioned
object (Griffin and Bock, 2000).

Motivated by these psycholinguistic findings, we
are currently investigating the role of eye gaze in
spoken language understanding during human ma-
chine conversation. Through multimodal interfaces,
a user can look at a graphic display and converse
with the system at the same time. Our assumption
is that, during human machine conversation, a user’s
eye gaze on the graphical display can indicate salient
entities on which the user’s attention is focused. The
specific domain information about the salient enti-
ties is likely linked to the content of communication
and therefore can be used to constrain speech hy-
potheses and influence language understanding.

Based on this assumption, we carried out an ex-
ploration study where eye gaze information is in-
corporated in a salience model to tailor a language
model for spoken language processing. Our prelim-
inary results show that eye gaze can be useful in im-
proving spoken language processing and the effect
of eye gaze varies among different users. Because
eye gaze is subconscious and involuntary in human
machine conversation, our work also motivates sys-
tematic investigations on how eye gaze contributes
to attention prediction and its implications in auto-
mated language processing.

2 Related Work

Eye gaze has been mainly used in human machine
interaction as a pointing mechanism in direct manip-
ulation interfaces (Jacob, 1990; Jacob, 1995; Zhai
et al., 1999), as a facilitator in computer supported
human human communication (Velichkovsky, 1995;
Vertegaal, 1999); or as an additional modality dur-
ing speech or multimodal communication (Starker
and Bolt, 1990; Campana et al., 2001; Kaur et al.,
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2003; Qvarfordt and Zhai, 2005). This last area of
investigation is more related to our work.

In the context of speech and multimodal commu-
nication, studies have shown that speech and eye
gaze integration patterns can be modeled reliably for
users. For example, by studying patterns of eye gaze
and speech in the phrase “move it there”, researchers
found that the gaze fixation closest to the intended
object begins, with high probability, before the be-
ginning of the word “move” (Kaur et al., 2003). Re-
cent work has also shown that eye gaze has a poten-
tial to improve reference resolution in a spoken dia-
log system (Campana et al., 2001). Furthermore, eye
gaze also plays an important role in managing dia-
log in conversational systems (Qvarfordt and Zhai,
2005).

Salience modeling has been used in both natural
language and multimodal language processing. Lin-
guistic salience describes entities with their accessi-
bility in a hearer’s memory and their implications in
language production and interpretation. Linguistic
salience modeling has been used for language in-
terpretations such as reference resolution (Huls et
al., 1995; Eisenstein and Christoudias, 2004). Vi-
sual salience measures how much attention an en-
tity attracts from a user based on its visual proper-
ties. Visual salience can tailor users’ referring ex-
pressions and thus can be used for multimodal refer-
ence resolution (Kehler, 2000). Our recent work has
also investigated salience modeling based on deic-
tic gestures to improve spoken language understand-
ing (Chai and Qu, 2005; Qu and Chai, 2006).

3 Data Collection

We conducted user studies to collect speech and eye
gaze data. In the experiments, a static 3D bedroom
scene was shown to the user. The system verbally
asked a user a list of questions one at a time about
the bedroom and the user answered the questions by
speaking to the system. Fig.1 shows the 14 questions
in the experiments. The user’s speech was recorded
through an open microphone and the user’s eye gaze
was captured by an Eye Link II eye tracker. From 7
users’ experiments, we collected 554 utterances with
a vocabulary of 489 words. Each utterance was tran-
scribed and annotated with entities that were being
talked about in the utterance.

1 Describe this room.
2 What do you like/dislike about the arrangement?
3 Describe anything in the room that seems strange to

you.
4 Is there a bed in this room?
5 How big is the bed?
6 Describe the area around the bed.
7 Would you make any changes to the area around the

bed?
8 Describe the left wall.
9 How many paintings are there in this room?
10 Which is your favorite painting?
11 Which is your least favorite painting?
12 What is your favorite piece of furniture in the room?
13 What is your least favorite piece of furniture in the

room?
14 How would you change this piece of furniture to make

it better?

Figure 1: Questions for users in experiments

The collected raw gaze data consists of the screen
coordinates of each gaze point sampled at 4 ms.
As shown in Fig.2a, this raw data is not very use-
ful for identifying fixated entities. The raw gaze
data are processed to eliminate invalid and saccadic
gaze points, leaving only pertinent eye fixations.
Invalid gaze points occur when users look off the
screen. Saccadic gaze points occur during ballis-
tic eye movements between fixations. Vision stud-
ies have shown that no visual processing occurs dur-
ing saccades (i.e., saccadic suppression). It is well
known that eyes do not stay still, but rather make
small, frequent jerky movements. In order to best
determine fixation locations, nearby gaze points are
averaged together to identify fixations. The pro-
cessed eye gaze fixations can be seen in Fig.2b.

Fig.3 shows an excerpt of the collected speech
and gaze fixation with fixated entities. In the speech
stream, each word starts at a particular timestamp. In
the gaze stream, each gaze fixation f has a starting
timestamp tf and a duration Tf . Gaze fixations can
have different durations. An entity e on the graphi-
cal display is fixated by gaze fixation f if the area of
e contains the fixation point of f . One gaze fixation
can fall on multiple entities or no entity.

4 Salience Driven Language Modeling

Our goal is to use the domain specific information
about the salient entities on a graphical display, as
indicated by the user’s eye gaze, to help recognition
of the user’s utterances. In particular, we incorporate
this salient domain information in speech recogni-
tion via salience driven language modeling.
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(a) Raw gaze points (b) Processed gaze fixations

Figure 2: Gaze fixations on a scene
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[11]

This room has a chandelier

2572 2872 3170 3528 3736

( [19] – bed_8; [17] – lamp_2; [22] – door_1; [10] – bedroom; [11] – chandelier_1 )

speech stream

gaze stream

(ms)

(ms)

[fixated entity]

f: gaze fixation

Figure 3: An excerpt of speech and gaze stream data

We first briefly introduce speech recognition. The
task of speech recognition is to, given an observed
spoken utterance O, find the word sequence W ∗

such that W ∗ = arg max
W

p(O|W )p(W ), where

p(O|W ) is the acoustic model and p(W ) is the
language model. The acoustic model provides the
probability of observing the acoustic features given
hypothesized word sequences while the language
model provides the probability of a word sequence.
The language model is represented as:

p(W ) = p(wn
1 ) =

n∏
k=1

p(wk|wk−1
1 ) (1)

Using first-order Markov assumption, the above lan-
guage model can be approximated by a bigram
model:

p(wn
1 ) =

n∏
k=1

p(wk|wk−1) (2)

In the following sections, we first introduce the
salience modeling based on eye gaze, then present
how the gaze-based salience models can be used to
tailor language models.

4.1 Gaze-based Salience Modeling
We first define a gaze fixation set F t0+T

t0 (e), which
contains all gaze fixations that fall on entity e within
a time window t0 ∼ (t0 + T ):

F t0+T
t0 (e) = {f |f falls on e within t0 ∼ (t0 + T )}

We model gaze-based salience in two ways.

4.1.1 Gaze Salience Model 1
Salience model 1 is based on the assumption that

when an entity has more gaze fixations on it than
other entities, this entity is more likely attended by
the user and thus has higher salience:

pt0,T (e) =
#elements in F t0+T

t0 (e)∑
e(#elements in F t0+T

t0 (e))
(3)

Here, pt0,T (e) tells how likely it is that the user is
focusing on entity e within time period t0 ∼ (t0+T )
based on how many gaze fixations are on e among
all gaze fixations that fall on entities within t0 ∼
(t0 + T ).

4.1.2 Gaze Salience Model 2
Salience model 2 is based on the assumption that

when an entity has longer gaze fixations on it than
other entities, this entity is more likely attended by
the user and thus has higher salience:

pt0,T (e) =
Dt0+T

t0 (e)∑
e Dt0+T

t0 (e)
(4)

where
Dt0+T

t0 (e) =
∑

f∈F
t0+T
t0

(e)

Tf (5)

Here, pt0,T (e) tells how likely it is that the user is
focusing on entity e within time period t0 ∼ (t0 + t)
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based on how long e has been fixated by gaze fixa-
tions among the overall time length of all gaze fixa-
tions that fall on entities within t0 ∼ (t0 + T ).

4.2 Salience Driven N-gram Model

Salience models can be incorporated in different lan-
guage models, such as bigram models, class-based
bigram models, and probabilistic context free gram-
mar. Among these language models, the salience
driven bigram model based on deictic gesture has
been shown to achieve best performance on speech
recognition (Qu and Chai, 2006). In our initial in-
vestigation of gaze-based salience, we incorporate
the gaze-based salience in a bigram model.

The salience driven bigram probability is given
by:

ps(wi|wi−1) = (1− λ)p(wi|wi−1) +
λ

∑
e p(wi|wi−1, e)pt0,T (e) (6)

where pt0,T (e) is the salience distribution as mod-
eled in equations (3) and (4). In applying the
salience driven bigram model for speech recogni-
tion, we set t0 as the starting timestamp of the ut-
terance and T as the duration of the utterance. The
priming weight λ decides how much the original
bigram probability will be tailored by the salient
entities indicated by eye gaze. Currently, we set
λ = 0.67 empirically. We also tried learning the
priming weight with an EM algorithm. However,
we found out that the learned priming weight per-
formed worse than the empirical one in our exper-
iments. This is probably due to insufficient devel-
opment data. Bigram probabilities p(wi|wi−1) were
estimated by the maximum likelihood estimation us-
ing Katz’s backoff method (Katz, 1987) with a fre-
quency cutoff of 1. The same method was used to es-
timate p(wi|wi−1, e) from the users’ utterance tran-
scripts with entity annotation of e.

5 Application of Salience Driven LMs

The salience driven language models can be inte-
grated into speech processing in two stages: an early
stage before a word lattice (n-best list) is generated
(Fig.4a), or in a late stage where the word lattice
(n-best list) is post-processed (Fig.4b).

For the early stage integration, the gaze-based
salience driven language model is used together with

word lattice

(n-best list)speech

eye gaze

Speech Decoder

Language 

Model

Acoustic 

Model

(a) Early stage integration

word lattice

(n-best list) n-best list

eye gaze

Rescorer
speech

Speech Decoder

Language 

Model

Acoustic 

Model

Language 

Model

(b) Late stage integration

Figure 4: Integration of gaze-based salience driven
language model in speech processing

the acoustic model to generate the word lattice, typ-
ically by Viterbi search.

For the late stage integration, the gaze-based
salience driven language model is used to rescore the
word lattice generated by a speech recognizer with
a basic language model not involving salience mod-
eling. A* search can be applied to find the n-best
paths in the word lattice.

6 Evaluation

The evaluations were conducted on data collected
from user studies (Sec. 3). We evaluated the gaze-
based salience driven bigram models when applied
for speech recognition at early and late stages.

6.1 Evaluation Results
Users’ speech was first segmented, then recognized
by the CMU Sphinx-4 speech recognizer using dif-
ferent language models. Evaluation was done by
a 14-fold cross validation. We compare the per-
formances of the early and late applications of two
gaze-based salience driven language models:
• S-Bigram1 – salience driven language model

based on salience modeling 1 (Sec. 4.1.1)

• S-Bigram2 – salience driven language model
based on salience modeling 2 (Sec. 4.1.2)

Table 1 and Table 2 show the results of early and
late application of the salience driven language mod-
els based on eye gaze. We can see that all word error
rates (WERs) are high. In the experiments, users
were instructed to only answer systems questions
one by one. There was no flow of a real conversa-
tion. In this setting, users were more free to express
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themselves than in the situation where users believed
they were conversing with a machine. Thus, we ob-
serve much longer sentences that often contain dis-
fluencies. Here is one example:

System: “How big is the bed?”

User: “I would to have to offer a guess that the bed,

if I look the chair that’s beside it [pause] in a rel-

ative angle to the bed, it’s probably six feet long,

possibly, or shorter, slightly shorter.”

The high WER was mainly caused by the com-
plexity and disfluencies of users’ speech. Poor
speech recording quality is another reason for the
bad recognition performance. It was found that
the trigram model performed worse than the bigram
model in the experiment. This is probably due to the
sparseness of trigrams in the corpus. The amount of
data available is too small considering the vocabu-
lary size.

Language Model Lattice-WER WER
Bigram 0.613 0.707
Trigram 0.643 0.719

S-Bigram 1 0.605 0.690
S-Bigram 2 0.604 0.689

Table 1: WER of early application of LMs

Language Model Lattice-WER WER
S-Bigram 1 0.643 0.709
S-Bigram 2 0.643 0.710

Table 2: WER of late application of LMs

The S-Bigram1 and S-Bigram2 achieved similar
results in both early application (Table 1) and late
application (Table 2). In early application, the S-
Bigram1 model performed better than the trigram
model (t = 5.24, p < 0.001, one-tailed) and the
bigram model (t = 3.31, p < 0.001, one-tailed).
The S-Bigram2 model also performed better than the
trigram model (t = 5.15, p < 0.001, one-tailed)
and the bigram model (t = 3.33, p < 0.001, one-
tailed) in early application. In late application, the
S-Bigram1 model performed better than the trigram
model (t = 2.11, p < 0.02, one-tailed), so did
the S-Bigram2 model (t = 1.99, p < 0.025, one-
tailed). However, compared to the bigram model,
the S-Bigram1 model did not change the recogni-
tion performance significantly (t = 0.38, N.S., two-

tailed) in late application, neither did the S-Bigram2
model (t = 0.50, N.S., two-tailed).

We also compare performances of the salience
driven language models for individual users. In early
application (Fig.5a), both the S-Bigram1 and the S-
Bigram2 model performed better than the baselines
of the bigram and trigram models for all users except
user 2 and user 7. T-tests have shown that these are
significant improvements. For user 2, the S-Bigram1
model achieved the same WER as the bigram model.
For user 7, neither of the salience driven language
models improved recognition compared to the bi-
gram model. In late application (Fig.5b), only for
user 3 and user 4, both salience driven language
models performed better than the baselines of the bi-
gram and trigram models. These improvements have
also been confirmed by t-tests as significant.

1 2 3 4 5 6 7
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0.6

0.7

0.8

0.9

1

User ID

W
E

R

bigram trigram s−bigram1 s−bigram2

(a) WER of early application
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bigram trigram s−bigram1 s−bigram2

(b) WER of Late application

Figure 5: WERs of LMs for individual users

Comparing early and late application of the
salience driven language models, it is observed that
early application performed better than late applica-
tion for all users except user 3 and user 4. T-tests
have confirmed that these differences are significant.
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It is interesting to see that the effect of gaze-based
salience modeling is different among users. For
two users (i.e., user 3 and user 4), the gaze-based
salience driven language models consistently out-
performed the bigram and trigram models in both
early application and late application. However, for
some other users (e.g., user 7), this is not the case. In
fact, the gaze-based salience driven language mod-
els performed worse than the bigram model. This
observation indicates that during language produc-
tion, a user’s eye gaze is voluntary and unconscious.
This is different from deictic gesture, which is more
intentionally delivered by a user. Therefore, incor-
porating this “unconscious” mode of modality in
salience modeling requires more in-depth research
on the role of eye gaze in attention prediction during
multimodal human computer interaction.

6.2 Discussion

Gaze-based salience driven language models are
built on the assumption that when a user is fixat-
ing on an entity, the user is saying something re-
lated to the entity. With this assumption, gaze-based
salience driven language models have the potential
to improve speech recognition by biasing the speech
decoder to favor the words that are consistent with
the entity indicated by the user’s eye gaze, especially
when the user’s utterance contains words describing
unique characteristics of the entity. These particular
characteristics could be the entity’s name or physical
properties (e.g., color, material, size).

Utterance: “a tree growing from the floor”

Gaze salience:
p(bedroom) = 0.2414 p(plant willow) = 0.2414
p(chair soft) = 0.2414 p(door 1) = 0.1378
p(bed 8) = 0.1378

Bigram n-best list:
sheet growing from a four
sheet growing from a for
sheet growing from a floor
. . .

S-Bigram2 n-best list:
a tree growing from the floor
a tree growing from the for
a tree growing from the floor a
. . .

Figure 6: N-best lists of utterance “a tree growing
from the floor”

Fig.6 shows an example where the S-Bigram2

model in early application improved recognition of
the utterance “a tree growing from the floor”. In
this example, the user’s gaze fixations accompany-
ing the utterance resulted in a list of candidate enti-
ties with fixating probabilities (cf. Eqn. (4)), among
which entities bedroom and plant willow were as-
signed higher probabilities. Two n-best lists, the Bi-
gram n-best list and the S-Bigram2 n-best list, were
generated by the speech recognizer when the bigram
model and the S-Bigram2 model were applied sep-
arately. The speech recognizer did not get the cor-
rect recognition when the bigram model was used,
but got the correct result when the S-Bigram2 model
was used.

Fig.7a and 7b show the word lattices of the ut-
terance generated by the speech recognizer using
the bigram model and the S-Bigram2 model respec-
tively. The n-best lists in Fig.6 were generated from
those word lattices. In the word lattices, each path
going from the start node <s> to the end node </s>
forms a recognition hypothesis. The bigram proba-
bilities along the edges are in the logarithm of base
10. In the bigram case, the path “<s> a tree” has a
higher language score (summation of bigram prob-
abilities along the path) than “<s> sheet”, and “a
floor” has a higher language score than “a full”.
However, these correct paths “<s> a tree” and “a
floor” (not exactly correct, but better than “a full”)
do not appear in the best hypothesis in the result-
ing n-best list. This is because the system tries to
find an overall best hypothesis by considering both
language and acoustic score. Because of the noisy
speech, the incorrect hypotheses may happen to have
higher acoustic confidence than the correct ones. Af-
ter tailoring the bigram model with gaze salience,
the salient entity plant willow significantly increases
the probability of “a tree” (from -1.3594 to -0.9913)
and “tree growing” (from -3.1009 to -1.1887), while
it decreases the probability of “sheet growing” (from
-3.0962 to -3.4534). This probability change is made
by the entity conditional probability p(wi|wi−1, e)
in tailoring of bigram by salience (cf. Eqn. (6)).
Probability p(wi|wi−1, e), trained from the anno-
tated utterances, reflects what words are more likely
to be spoken by a user while talking about an entity
e. The increased probabilities of “a tree” and “tree
growing” show that word “tree” appears more likely
than “sheet” when the user is talking about entity
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Figure 7: Word lattices of utterance “a tree growing from the floor”

“plant willow. This is in accordance with our com-
mon sense. Likewise, the salient entity bedroom, of
which floor is a component, makes the probability of
the correct hypothesis “the floor” much higher than
other hypotheses (“the for” and “the forest”). These
enlarged language score differences make the cor-
rect hypotheses “a tree” and “the floor” win out in
the searching procedure despite the noisy speech.

Utterance: “I like the picture with like a forest in it”

Gaze salience:
p(bedroom) = 0.5960 p(chandelier 1) = 0.4040

Bigram n-best list:
and i eight that picture rid like got five
and i eight that picture rid identifiable
and i eight that picture rid like got forest
. . .

S-Bigram2 n-best list:
and i that bedroom it like upside
and i that bedroom it like a five
and i that bedroom it like a forest
. . .

Figure 8: N-best lists of utterance “I like the picture
with like a forest in it”

Unlike the active input mode of deictic gesture,
eye gaze is a passive input mode. The salience in-
formation indicated by eye gaze is not as reliable
as the one indicated by deictic gesture. When the
salient entities indicated by eye gaze are not the
true entities the user is referring to, the salience
driven language model can worsen speech recogni-
tion. Fig.8 shows an example where the S-Bigram2
model in early application worsened the recogni-
tion of a user’s utterance “I like the picture with like
a forest in it” because of wrong salience informa-
tion. In this example, the user was talking about a
picture entity picture bamboo. However, this entity
was not salient, only entities bedroom and chande-
lier 1 were salient. As a result, the recognition with
the S-Bigram2 model becomes worse than the base-
line. The correct word “picture” is missing and the
wrong word “bedroom” appears in the result.

The failure to identify the actual referred entity
picture bamboo as salient in the above example can
also be caused by the visual properties of entities.
Smaller entities on the screen are harder to be fix-
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ated by eye gaze than larger entities. To address this
issue, more reliable salience modeling that takes into
account the visual features is needed.

7 Conclusion

This paper presents an empirical exploration of in-
corporating eye gaze in spoken language processing
via salience driven language modeling. Our prelim-
inary results have shown the potential of eye gaze in
improving spoken language processing. Neverthe-
less, this exploratory study is only the first step in
our investigation. Many interesting research ques-
tions remain. During human machine conversation,
how is eye gaze aligned with speech production?
How reliable is eye gaze for attention prediction?
Are there any other factors such as interface design
and visual properties that will affect eye gaze behav-
ior and therefore attention prediction? The answers
to these questions will affect how eye gaze should be
appropriately modeled and used for language pro-
cessing.

Eye-tracking systems are no longer bulky, sta-
tionary systems that prevent natural human ma-
chine communication. Recently developed dis-
play mounted gaze-tracking systems (e.g., Tobii) are
completely non-intrusive, can tolerate head motion,
and provide high tracking quality. These features
have been demonstrated in several successful appli-
cations (Duchowski, 2002). Integrating eye tracking
with conversational interfaces is no longer beyond
reach. We believe it is time to conduct systematic
investigations and fully explore the additional chan-
nel provided by eye gaze in improving robustness of
human machine conversation.
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Abstract

We propose a method for extracting se-
mantic orientations of phrases (pairs of an
adjective and a noun): positive, negative,
or neutral. Given an adjective, the seman-
tic orientation classification of phrases can
be reduced to the classification of words.
We construct a lexical network by con-
necting similar/related words. In the net-
work, each node has one of the three ori-
entation values and the neighboring nodes
tend to have the same value. We adopt
the Potts model for the probability model
of the lexical network. For each adjec-
tive, we estimate the states of the nodes,
which indicate the semantic orientations
of the adjective-noun pairs. Unlike ex-
isting methods for phrase classification,
the proposed method can classify phrases
consisting of unseen words. We also pro-
pose to use unlabeled data for a seed set of
probability computation. Empirical evalu-
ation shows the effectiveness of the pro-
posed method.

1 Introduction

Technology for affect analysis of texts has recently
gained attention in both academic and industrial ar-
eas. It can be applied to, for example, a survey of
new products or a questionnaire analysis. Automatic
sentiment analysis enables a fast and comprehensive
investigation.

The most fundamental step for sentiment analy-
sis is to acquire the semantic orientations of words:
positive or negative (desirable or undesirable). For
example, the word “beautiful” is positive, while the
word “dirty” is negative. Many researchers have de-
veloped several methods for this purpose and ob-
tained good results. One of the next problems to be
solved is to acquire semantic orientations of phrases,
or multi-term expressions, such as “high+risk” and
“light+laptop-computer”. Indeed the semantic ori-
entations of phrases depend on context just as the se-
mantic orientations of words do, but we would like
to obtain the orientations of phrases as basic units
for sentiment analysis. We believe that we can use
the obtained basic orientations of phrases for affect
analysis of higher linguistic units such as sentences
and documents.

A computational model for the semantic orienta-
tions of phrases has been proposed by Takamura et
al. (2006). However, their method cannot deal with
the words that did not appear in the training data.
The purpose of this paper is to propose a method for
extracting semantic orientations of phrases, which is
applicable also to expressions consisting of unseen
words. In our method, we regard this task as the
noun classification problem for each adjective; the
nouns that become respectively positive (negative,
or neutral) when combined with a given adjective
are distinguished from the other nouns. We create
a lexical network with words being nodes, by con-
necting two words if one of the two appears in the
gloss of the other. In the network, each node has one
of the three orientation values and the neighboring
nodes expectedly tend to have the same value. For

292



example, the gloss of “cost” is “a sacrifice, loss, or
penalty” and these words (cost, sacrifice, loss, and
penalty) have the same orientation. To capture this
tendency of the network, we adopt the Potts model
for the probability distribution of the lexical net-
work. For each adjective, we estimate the states of
the nodes, which indicate the semantic orientations
of the adjective-noun pairs. Information from seed
words is diffused to unseen nouns on the network.

We also propose a method for enlarging the seed
set by using the output of an existing method for the
seed words of the probability computation.

Empirical evaluation shows that our method
works well both for seen and unseen nouns, and that
the enlarged seed set significantly improves the clas-
sification performance of the proposed model.

2 Related Work

The semantic orientation classification of words has
been pursued by several researchers. Some of
them used corpora (Hatzivassiloglou and McKeown,
1997; Turney and Littman, 2003), while others used
dictionaries (Kobayashi et al., 2001; Kamps et al.,
2004; Takamura et al., 2005; Esuli and Sebastiani,
2005).

Turney (2002) applied an internet-based tech-
nique to the semantic orientation classification of
phrases, which had originally been developed for
word sentiment classification. In their method, the
number of hits returned by a search-engine, with a
query consisting of a phrase and a seed word (e.g.,
“phraseNEAR good”) is used to determine the ori-
entation. Baron and Hirst (2004) extracted colloca-
tions with Xtract (Smadja, 1993) and classified the
collocations using the orientations of the words in
the neighboring sentences. Their method is similar
to Turney’s in the sense that cooccurrence with seed
words is used. In addition to individual seed words,
Kanayama and Nasukawa (2006) used more compli-
cated syntactic patterns that were manually created.
The four methods above are based on context infor-
mation. In contrast, our method exploits the internal
structure of the semantic orientations of phrases.

Wilson et al. (2005) worked on phrase-level se-
mantic orientations. They introduced a polarity
shifter. They manually created the list of polarity
shifters. Inui (2004) also proposed a similar idea.

Takamura et al. (2006) proposed to use based on
latent variable models for sentiment classification of
noun-adjective pairs. Their model consists of vari-
ables respectively representing nouns, adjectives, se-
mantic orientations, and latent clusters, as well as
the edges between the nodes. The words that are
similar in terms of semantic orientations, such as
“risk” and “mortality” (i.e., the positive orientation
emerges when they are “low”), make a cluster in
their model, which can be an automated version of
Inui’s or Wilson et al.’s idea above. However, their
method cannot do anything for the words that did not
appear in the labeled training data. In this paper, we
call their method the latent variable method (LVM).

3 Potts Model

If a variable can have more than two values and
there is no ordering relation between the values,
the network comprised of such variables is called
Potts model (Wu, 1982). In this section, we ex-
plain the simplified mathematical model of Potts
model, which is used for our task in Section 4.
The Potts system has been used as a mathematical
model in several applications such as image restora-
tion (Tanaka and Morita, 1996) and rumor transmis-
sion (Liu et al., 2001).

3.1 Introduction to the Potts Model

Suppose a network consisting of nodes and weighted
edges is given. States of nodes are represented byc.
The weight betweeni andj is represented bywij .

Let H(c) denote an energy function, which indi-
cates a state of the whole network:

H(c) = −β
∑

ij

wijδ(ci, cj)+α
∑

i∈L

−δ(ci, ai), (1)

whereβ is a constant calledthe inverse-temperature,
L is the set of the indices for the observed variables,
ai is the state of each observed variable indexed byi,
andα is a positive constant representing a weight on
labeled data. Functionδ returns1 if two arguments
are equal to each other,0 otherwise. The state is
penalized ifci (i ∈ L) is different fromai. Using
H(c), the probability distribution of the network is
represented asP (c) = exp{−H(c)}/Z, whereZ is
a normalization factor.

However, it is computationally difficult to exactly
estimate the state of this network. We resort to a
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mean-field approximation method that is described
by Nishimori (2001). In the method,P (c) is re-
placed by factorized functionρ(c) =

∏
i ρi(ci).

Then we can obtain the function with the smallest
value of the variational free energy:

F (c) =
∑

c
P (c)H(c)−

∑

c
−P (c) log P (c)

= −α
∑

i

∑

ci

ρi(ci)δ(ci, ai)

−β
∑

ij

∑

ci,cj

ρi(ci)ρj(cj)wijδ(ci, cj)

−
∑

i

∑

ci

−ρi(ci) log ρi(ci). (2)

By minimizing F (c) under the condition that∀i,∑
ci

ρi(ci) = 1, we obtain the following fixed point
equation fori ∈ L:

ρi(c) =
exp(αδ(c, ai) + β

∑
j
wijρj(c))∑

n
exp(αδ(n, ai) + β

∑
j
wijρj(n))

. (3)

The fixed point equation fori /∈ L can be obtained
by removingαδ(c, ai) from above.

This fixed point equation is solved by an itera-
tive computation. In the actual implementation, we
representρi with a linear combination of the dis-
crete Tchebycheff polynomials (Tanaka and Morita,
1996). Details on the Potts model and its computa-
tion can be found in the literature (Nishimori, 2001).

After the computation, we obtain the function∏
i ρi(ci). When the number of classes is 2, the Potts

model in this formulation is equivalent to the mean-
field Ising model (Nishimori, 2001).

3.2 Relation to Other Models

This Potts model with the mean-field approximation
has relation to several other models.

As is often discussed (Mackay, 2003), the min-
imization of the variational free energy (Equa-
tion (2)) is equivalent to the obtaining the factorized
model that is most similar to the maximum likeli-
hood model in terms of the Kullback-Leibler diver-
gence.

The second term of Equation (2) is the entropy
of the factorized function. Hence the optimization
problem to be solved here is a kind of the maxi-
mum entropy model with a penalty term, which cor-
responds to the first term of Equation (2).

We can find a similarity also to the PageRank al-
gorithm (Brin and Page, 1998), which has been ap-
plied also to natural language processing tasks (Mi-
halcea, 2004; Mihalcea, 2005). In the PageRank al-
gorithm, the pagerank scoreri is updated as

ri = (1− d) + d
∑

j

wijrj , (4)

whered is a constant (0 ≤ d ≤ 1). This update
equation consists of the first term corresponding to
random jump from an arbitrary node and the sec-
ond term corresponding to the random walk from the
neighboring node.

Let us derive the first order Taylor expansion of
Equation (3). We use the equation fori /∈ L and
denote the denominator byZβ , for simplicity. Since
expx ≈ 1 + x, we obtain

ρi(c) =
exp(β

∑
j
wijρj(c))

Zβ

≈
1 + β

∑
j
wijρj(c)

Zβ

=
1

Zβ
+

β

Zβ

∑

j

wijρj(c). (5)

Equation (5) clearly has a quite similar form as
Equation (4). Thus, the PageRank algorithm can be
regarded as an approximation of our model. Let us
clarify the difference between the two algorithms.
The PageRank is designed for two-class classifica-
tion, while the Potts model can be used for an arbi-
trary number of classes. In this sense, the PageRank
is an approximated Ising model. The PageRank is
applicable to asymmetric graphs, while the theory
used in this paper is based on symmetric graphs.

4 Potts Model for Phrasal Semantic
Orientations

In this section, we explain our classification method,
which is applicable also to the pairs consisting of an
adjective and an unseen noun.

4.1 Construction of Lexical Networks

We construct a lexical network, which Takamura et
al. (2005) call the gloss network, by linking two
words if one word appears in the gloss of the other
word. Each link belongs to one of two groups:
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the same-orientation linksSL and the different-
orientation linksDL.

If a negation word (e.g., nai, for Japanese) follows
a word in the gloss of the other word, the link is a
different-orientation link. Otherwise the links is a
same-orientation link1.

We next set weightsW = (wij) to links :

wij =





1√
d(i)d(j)

(lij ∈ SL)

− 1√
d(i)d(j)

(lij ∈ DL)

0 otherwise

, (6)

wherelij denotes the link between wordi and word
j, and d(i) denotes the degree of wordi, which
means the number of words linked with wordi. Two
words without connections are regarded as being
connected by a link of weight 0.

4.2 Classification of Phrases

Takamura et al. (2005) used the Ising model to ex-
tract semantic orientations of words (not phrases).
We extend their idea and use the Potts model to ex-
tract semantic orientations of phrasal expressions.

Given an adjective, the decision remaining to be
made in classification of phrasal expressions con-
cerns nouns. We therefore estimate the state of the
nodes on the lexical network for each adjective. The
nouns paring with the given adjective in the train-
ing data are regarded as seed words, which we call
seen words, while the words that did not appear in
the training data are referred to as unseen words.

We use the mean-field method to estimate the
state of the system. If the probabilityρi(c) of a vari-
able being positive (negative, neutral) is the highest
of the three classes, then the word corresponding to
the variable is classified as a positive (negative, neu-
tral) word.

We explain the reason why we use the Potts model
instead of the Ising model. While only two classes
(i.e., positive and negative) can be modeled by the
Ising model, three classes (i.e., positive, negative
and neutral) can be modelled by the Potts model.
For the semantic orientations of words, all the words
are sorted in the order of the average orientation
value, equivalently the probability of the word be-
ing positive. Therefore, even if the neutral class is

1For English data, a negation shouldprecedea word, in or-
der for the corresponding link to be a different-orientation link.

not explicitly incorporated, we can manually deter-
mine two thresholds that define respectively the pos-
itive/neutral and negative/neutral boundaries. For
the semantic orientations of phrasal expressions,
however, it is impractical to manually determine
the thresholds for each of the numerous adjectives.
Therefore, we have to incorporate the neutral class
using the Potts model.

For some adjectives, the semantic orientation is
constant regardless of the nouns. We need not use
the Potts model for those unambiguous adjectives.
We thus propose the following two-step classifica-
tion procedure for a given noun-adjective pair<
n, a >.

1. if the semantic orientation of all the instances
with a in L is c, then classify< n, a > into c.

2. otherwise, use the Potts model.

We can also construct a probability model for
each noun to deal with unseen adjectives. However,
we focus on the unseen nouns in this paper, because
our dataset has many more nouns than adjectives.

4.3 Hyper-parameter Prediction

The performance of the proposed method largely de-
pends on the value of hyper-parameterβ. In order to
make the method more practical, we propose a cri-
terion for determining its value.

Takamura et al. (2005) proposed two kinds of cri-
teria. One of the two criteria is an approximated
leave-one-out error rate and can be used only when a
large labeled dataset is available. The other is a no-
tion from statistical physics, that is,magnetization:

m =
∑

i

x̄i/N. (7)

At a high temperature, variables are randomly ori-
ented (paramagnetic phase, m ≈ 0). At a low
temperature, most of the variables have the same
direction (ferromagnetic phase, m 6= 0). It is
known that at some intermediate temperature, ferro-
magnetic phase suddenly changes to paramagnetic
phase. This phenomenon is calledphase transition.
Slightly before the phase transition, variables are lo-
cally polarized; strongly connected nodes have the
same polarity, but not in a global way. Intuitively,
the state of the lexical network is locally polarized.
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Therefore, they calculate values ofm with several
different values ofβ and select the value just before
the phase transition.

Since we cannot expect a large labeled dataset
to be available for each adjective, we use not
the approximated leave-one-out error rate, but the
magnetization-like criterion. However, the magne-
tization above is defined for the Ising model. We
therefore consider that the phase transition has oc-
curred, if a certain classc begins to be favored all
over the system. In practice, when the maximum of
the spatial averages of the approximated probabil-
ities maxc

∑
i ρi(c)/N exceeds a threshold during

increasingβ, we consider that the phase transition
has occurred. We select the value ofβ slightly be-
fore the phase transition.

4.4 Enlarging Seed Word Set

We usually have only a few seed words for a given
adjective. Enlarging the set of seed words will in-
crease the classification performance. Therefore, we
automatically classify unlabeled pairs by means of
an existing method and use the classified instances
as seeds.

As an existing classifier, we use LVM. Their
model can classify instances that consist of a seen
noun and a seen adjective, but are unseen as a pair.
Although we could classify and use all the nouns
that appeared in the training data (with an adjective
which is different from the given one), we do not
adopt such an alternative, because it will incorporate
even non-collocating pairs such as “green+idea” into
seeds, resulting in possible degradation of classifi-
cation performance. Therefore, we sample unseen
pairs consisting of a seen noun and a seen adjective
from a corpus, classify the pairs with the latent vari-
able model, and add them to the seed set. The en-
larged seed set consists of pairs used in newspaper
articles and does not include non-collocating pairs.

5 Experiments

5.1 Dataset

We extracted pairs of a noun (subject) and an ad-
jective (predicate), from Mainichi newspaper arti-
cles (1995) written in Japanese, and annotated the
pairs with semantic orientation tags : positive, neu-
tral or negative. We thus obtained the labeled dataset

consisting of 12066 pair instances (7416 different
pairs). The dataset contains 4459 negative instances,
4252 neutral instances, and 3355 positive instances.
The number of distinct nouns is 4770 and the num-
ber of distinct adjectives is 384. To check the inter-
annotator agreement between two annotators, we
calculatedκ statistics, which was 0.6402. This value
is allowable, but not quite high. However, positive-
negative disagreement is observed for only 0.7% of
the data. In other words, this statistics means that
the task of extracting neutral examples, which has
hardly been explored, is intrinsically difficult.

We should note that the judgment in annotation
depends on which perspective the annotator takes;
“high+salary” is positive from employee’s perspec-
tive, but negative from employer’s perspective. The
annotators are supposed to take a perspective subjec-
tively. Our attempt is to imitate annotator’s decision.
To construct a classifier that matches the decision of
the average person, we also have to address how to
create an average corpus. We do not pursue this is-
sue because it is out of the scope of the paper.

As unlabeled data, we extracted approximately
65,000 pairs for each iteration of the 10-fold cross-
validation, from the same news source.

The average number of seed nouns for each am-
biguous adjective was respectively 104 in the la-
beled seed set and 264 in the labeled+unlabeled seed
set. Please note that these figures are counted for
only ambiguous adjectives. Usually ambiguous ad-
jectives are more frequent than unambiguous adjec-
tives.

5.2 Experimental Settings

We employ 10-fold cross-validation to obtain the
averaged classification accuracy. We split the data
such that there is no overlapping pair (i.e., any pair
in the training data does not appear in the test data).

Hyperparameterα was set to 1000, which is very
large since we regard the labels in the seed set is
reliable. For the seed words added by the classifier,
lowerα can be better. Determining a good value for
α is regarded as future work.

Hyperparameterβ is automatically selected from

2Although Kanayama and Nasukawa (2006) thatκ for their
dataset similar to ours was0.83, this value cannot be directly
compared with our value because their dataset includes both in-
dividual words and pairs of words.
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{0.1, 0.2,· · ·, 2.5} for each adjective and each fold
of the cross-validation using the prediction method
described in Section 4.3.

5.3 Results

The results of the classification experiments are
summarized in Table 1.

The proposed method succeeded in classifying,
with approximately 65% in accuracy, those phrases
consisting of an ambiguous adjective and an unseen
noun, which could not be classified with existing
computational models such as LVM.

Incorporation of unlabeled data improves accu-
racy by 15.5 points for pairs consisting of a seen
noun and an ambiguous adjective, and by 3.5 points
for pairs consisting of an unseen noun and an am-
biguous adjective, approximately. The reason why
the former obtained high increase is that pairs with
an ambiguous adjective3 are usually frequent and
likely to be found in the added unlabeled dataset.

If we regard this classification task as binary clas-
sification problems where we are to classify in-
stances into one class or not, we obtain three accu-
racies: 90.76% for positive, 81.75% for neutral, and
86.85% for negative. This results suggests the iden-
tification of neutral instances is relatively difficult.

Next we compare the proposed method with
LVM. The latent variable method is applicable only
to instance pairs consisting of an adjective and a
seen noun. Therefore, we computed the accuracy
for 6586 instances using the latent variable method
and obtained 80.76 %. The corresponding accuracy
by our method was 80.93%. This comparison shows
that our method is better than or at least comparable
to the latent variable method. However, we have to
note that this accuracy of the proposed method was
computed using the unlabeled data classified by the
latent variable method.

5.4 Discussion

There are still 3320 (=12066-8746) word pairs
which could not be classified, because there are no
entries for those words in the dictionary. However,
the main cause of this problem is word segmenta-

3Seen nouns are observed in both the training and the test
datasets because they are frequent. Ambiguous adjectives are
often-used adjectives such as “large”, “small”, “high”, and
“low”.

tion, since many compound nouns and exceedingly-
subdivided morphemes are not in dictionaries. An
appropriate mapping from the words found in cor-
pus to entries of a dictionary will solve this problem.
We found a number of proper nouns, many of which
are not in the dictionary. By estimating a class of a
proper noun and finding the words that matches the
class in the dictionary, we can predict the semantic
orientations of the proper noun based on the orienta-
tions of the found words.

In order to see the overall tendency of errors, we
calculated the confusion matrices both for pairs of
an ambiguous adjective and a seen noun, and for
pairs of an ambiguous adjective and an unseen noun
(Table 2). The proposed method works quite well for
positive/negative classification, though it finds still
some difficulty in correctly classifying neutral in-
stances even after enhanced with the unlabeled data.

In order to qualitatively evaluate the method,
we list several word pairs below. These word
pairs are classified by the Potts model with the la-
beled+unlabeled seed set. All nouns are unseen;
they did not appear in the original training dataset.
Please note again that the actual data is Japanese.

positive instances
noun adjective
cost low
basic price low
loss little
intelligence high
educational background high
contagion not-happening
version new
cafe many
salary high
commission low

negative instances
noun adjective
damage heavy
chance little
terrorist many
trouble many
variation little
capacity small
salary low
disaster many
disappointment big
knowledge little

For example, although both “salary” and “com-
mission” are kinds of money, our method captures
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Table 1: Classification accuracies (%) for various seed sets and test datasets. ‘Labeled’ seed set corresponds
to the set of manually labeled pairs. ‘Labeled+unlabeled’ seed set corresponds to the union of ‘labeled’ seed
set and the set of pairs labeled by LVM. ‘Seen nouns’ for test are the nouns that appeared in the training
data, while ‘unseen nouns’ are the nouns that did not appear in the training dataset’. Please note that seen
pairs are excluded from the test data. ‘Unambiguous’ adjectives corresponds to the pairs with an adjective
which has a unique orientation in the original training dataset, while ‘ambiguous’ adjectives corresponds to
the pairs with an adjective which has more than one orientation in the original training dataset.

seed\test seen nouns unseen nouns total
labeled 68.24 73.70 69.59

(4494/6586) (1592/2160) (6086/8746)
unambiguous ambiguous unambiguous ambiguous

98.15 61.65 94.85 61.85
(1166/1188) (3328/5398) (736/776) (856/1384)

labeled+unlabeled 80.93 75.88 79.68
(5330/6586) (1639/2160) (6969/8746)

unambiguous ambiguous unambiguous ambiguous
98.15 77.14 94.85 65.25

(1166/1188) (4164/5398) (736/776) (903/1384)

Table 2: Confusion matrices of classification result with labeled+unlabeled seed set

Potts model
seen nouns unseen nouns

positive neutral negative sum positive neutral negative sum
positive 964 254 60 1278 126 84 30 240

Gold standard neutral 198 1656 286 2140 60 427 104 591
negative 39 397 1544 1980 46 157 350 553

sum 1201 2307 1890 5398 232 668 484 1384

the difference between them; “high salary” is posi-
tive, while “low (cheap) commission” is also posi-
tive.

6 Conclusion

We proposed a method for extracting semantic ori-
entations of phrases (pairs of an adjective and a
noun). For each adjective, we constructed a Potts
system, which is actually a lexical network extracted
from glosses in a dictionary. We empirically showed
that the proposed method works well in terms of
classification accuracy.

Future work includes the following:

• We assumed that each word has a semantic ori-
entation. However, word senses and subjectiv-

ity have strong interaction (Wiebe and Mihal-
cea, 2006).

• The value ofα must be properly set, because
lowerα can be better for the seed words added
by the classifier,

• To address word-segmentation problem dis-
cussed in Section 5.3, we can utilize the fact
that the heads of compound nouns often inherit
the property determining the semantic orienta-
tion when combined with an adjective.

• The semantic orientations of pairs consisting of
a proper noun will be estimated from the named
entity classes of the proper nouns such as per-
son name and organization.
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Abstract

We address the problem of analyzing mul-
tiple related opinions in a text. For in-
stance, in a restaurant review such opin-
ions may include food, ambience and ser-
vice. We formulate this task as a multiple
aspect ranking problem, where the goal is
to produce a set of numerical scores, one
for each aspect. We present an algorithm
that jointly learns ranking models for in-
dividual aspects by modeling the depen-
dencies between assigned ranks. This al-
gorithm guides the prediction of individ-
ual rankers by analyzing meta-relations
between opinions, such as agreement and
contrast. We prove that our agreement-
based joint model is more expressive than
individual ranking models. Our empirical
results further confirm the strength of the
model: the algorithm provides significant
improvement over both individual rankers
and a state-of-the-art joint ranking model.

1 Introduction

Previous work on sentiment categorization makes an
implicit assumption that a single score can express
the polarity of an opinion text (Pang et al., 2002;
Turney, 2002; Yu and Hatzivassiloglou, 2003).
However, multiple opinions on related matters are
often intertwined throughout a text. For example,
a restaurant review may express judgment on food
quality as well as the service and ambience of the

restaurant. Rather than lumping these aspects into a
single score, we would like to capture each aspect of
the writer’s opinion separately, thereby providing a
more fine-grained view of opinions in the review.

To this end, we aim to predict a set of numeric
ranks that reflects the user’s satisfaction for each as-
pect. In the example above, we would assign a nu-
meric rank from 1-5 for each of: food quality, ser-
vice, and ambience.

A straightforward approach to this task would be
to rank1 the text independently for each aspect, us-
ing standard ranking techniques such as regression
or classification. However, this approach fails to ex-
ploit meaningful dependencies between users’ judg-
ments across different aspects. Knowledge of these
dependencies can be crucial in predicting accurate
ranks, as a user’s opinions on one aspect can influ-
ence his or her opinions on others.

The algorithm presented in this paper models
the dependencies between different labels via the
agreement relation. The agreement relation captures
whether the user equally likes all aspects of the item
or whether he or she expresses different degrees of
satisfaction. Since this relation can often be deter-
mined automatically for a given text (Marcu and
Echihabi, 2002), we can readily use it to improve
rank prediction.

The Good Grief model consists of a ranking
model for each aspect as well as an agreement model
which predicts whether or not all rank aspects are

1In this paper, ranking refers to the task of assigning an inte-
ger from 1 to k to each instance. This task is sometimes referred
to as “ordinal regression” (Crammer and Singer, 2001) and “rat-
ing prediction” (Pang and Lee, 2005).
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equal. The Good Grief decoding algorithm pre-
dicts a set of ranks – one for each aspect – which
maximally satisfy the preferences of the individual
rankers and the agreement model. For example, if
the agreement model predicts consensus but the in-
dividual rankers select ranks 〈5, 5, 4〉, then the de-
coder decides whether to trust the the third ranker,
or alter its prediction and output 〈5, 5, 5〉 to be con-
sistent with the agreement prediction. To obtain a
model well-suited for this decoding, we also develop
a joint training method that conjoins the training of
multiple aspect models.

We demonstrate that the agreement-based joint
model is more expressive than individual ranking
models. That is, every training set that can be per-
fectly ranked by individual ranking models for each
aspect can also be perfectly ranked with our joint
model. In addition, we give a simple example of a
training set which cannot be perfectly ranked with-
out agreement-based joint inference. Our experi-
mental results further confirm the strength of the
Good Grief model. Our model significantly outper-
forms individual ranking models as well as a state-
of-the-art joint ranking model.

2 Related Work

Sentiment Classification Traditionally, categoriza-
tion of opinion texts has been cast as a binary classi-
fication task (Pang et al., 2002; Turney, 2002; Yu and
Hatzivassiloglou, 2003; Dave et al., 2003). More
recent work (Pang and Lee, 2005; Goldberg and
Zhu, 2006) has expanded this analysis to the rank-
ing framework where the goal is to assess review
polarity on a multi-point scale. While this approach
provides a richer representation of a single opinion,
it still operates on the assumption of one opinion per
text. Our work generalizes this setting to the prob-
lem of analyzing multiple opinions – or multiple as-
pects of an opinion. Since multiple opinions in a sin-
gle text are related, it is insufficient to treat them as
separate single-aspect ranking tasks. This motivates
our exploration of a new method for joint multiple
aspect ranking.

Ranking The ranking, or ordinal regression,
problem has been extensivly studied in the Machine
Learning and Information Retrieval communities. In
this section we focus on two online ranking methods

which form the basis of our approach. The first is
a model proposed by Crammer and Singer (2001).
The task is to predict a rank y ∈ {1, ..., k} for ev-
ery input x ∈ Rn. Their model stores a weight
vector w ∈ Rn and a vector of increasing bound-
aries b0 = −∞ ≤ b1 ≤ ... ≤ bk−1 ≤ bk = ∞
which divide the real line into k segments, one for
each possible rank. The model first scores each input
with the weight vector: score(x) = w · x. Finally,
the model locates score(x) on the real line and re-
turns the appropriate rank as indicated by the bound-
aries. Formally, the model returns the rank r such
that br−1 ≤ score(x) < br. The model is trained
with the Perceptron Ranking algorithm (or “PRank
algorithm”), which reacts to incorrect predictions on
the training set by updating the weight and boundary
vectors. The PRanking model and algorithm were
tested on the EachMovie dataset with a separate
ranking model learned for each user in the database.

An extension of this model is provided by Basil-
ico and Hofmann (2004) in the context of collabora-
tive filtering. Instead of training a separate model for
each user, Basilico and Hofmann train a joint rank-
ing model which shares a set of boundaries across all
users. In addition to these shared boundaries, user-
specific weight vectors are stored. To compute the
score for input x and user i, the weight vectors for
all users are employed:

scorei(x) = w[i] ·x +
∑

j

sim(i, j)(w[j] ·x) (1)

where 0 ≤ sim(i, j) ≤ 1 is the cosine similarity be-
tween users i and j, computed on the entire training
set. Once the score has been computed, the predic-
tion rule follows that of the PRanking model. The
model is trained using the PRank algorithm, with the
exception of the new definition for the scoring func-
tion.2 While this model shares information between
the different ranking problems, it fails to explicitly
model relations between the rank predictions. In
contrast, our algorithm uses an agreement model to
learn such relations and inform joint predictions.

2In the notation of Basilico and Hofmann (2004), this def-
inition of scorei(x) corresponds to the kernel K = (Kid

U +
Kco
U )⊕Kat

X .
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3 The Algorithm

The goal of our algorithm is to find a rank assign-
ment that is consistent with predictions of individ-
ual rankers and the agreement model. To this end,
we develop the Good Grief decoding procedure that
minimizes the dissatisfaction (grief ) of individual
components with a joint prediction. In this section,
we formally define the grief of each component, and
a mechanism for its minimization. We then describe
our method for joint training of individual rankers
that takes into account the Good Grief decoding pro-
cedure.

3.1 Problem Formulation

In an m-aspect ranking problem, we are given
a training sequence of instance-label pairs
(x1,y1), ..., (xt,yt), .... Each instance xt is a
feature vector in Rn and the label yt is a vector of
m ranks in Ym, where Y = {1, .., k} is the set of
possible ranks. The ith component of yt is the rank
for the ith aspect, and will be denoted by y[i]t. The
goal is to learn a mapping from instances to rank
sets, H : X → Ym, which minimizes the distance
between predicted ranks and true ranks.

3.2 The Model

Our m-aspect ranking model containsm+1 compo-
nents: (〈w[1],b[1]〉, ..., 〈w[m],b[m]〉,a). The first
m components are individual ranking models, one
for each aspect, and the final component is the agree-
ment model. For each aspect i ∈ 1...m, w[i] ∈ Rn
is a vector of weights on the input features, and
b[i] ∈ Rk−1 is a vector of boundaries which divide
the real line into k intervals, corresponding to the
k possible ranks. The default prediction of the as-
pect ranking model simply uses the ranking rule of
the PRank algorithm. This rule predicts the rank r
such that b[i]r−1 ≤ scorei(x) < b[i]r.3 The value
scorei(x) can be defined simply as the dot product
w[i]·x, or it can take into account the weight vectors
for other aspects weighted by a measure of inter-
aspect similarity. We adopt the definition given in
equation 1, replacing the user-specific weight vec-
tors with our aspect-specific weight vectors.

3More precisely (taking into account the possibility of ties):
ŷ[i] = minr∈{1,..,k}{r : scorei(x)− b[i]r < 0}

The agreement model is a vector of weights a ∈
Rn. A value of a · x > 0 predicts that the ranks of
all m aspects are equal, and a value of a · x ≤ 0
indicates disagreement. The absolute value |a · x|
indicates the confidence in the agreement prediction.

The goal of the decoding procedure is to predict a
joint rank for the m aspects which satisfies the in-
dividual ranking models as well as the agreement
model. For a given input x, the individual model
for aspect i predicts a default rank ŷ[i] based on its
feature weight and boundary vectors 〈w[i],b[i]〉. In
addition, the agreement model makes a prediction
regarding rank consensus based on a · x. However,
the default aspect predictions ŷ[1] . . . ŷ[m] may not
accord with the agreement model. For example, if
a ·x > 0, but ŷ[i] 6= ŷ[j] for some i, j ∈ 1...m, then
the agreement model predicts complete consensus,
whereas the individual aspect models do not.

We therefore adopt a joint prediction criterion
which simultaneously takes into account all model
components – individual aspect models as well as
the agreement model. For each possible predic-
tion r = (r[1], ..., r[m]) this criterion assesses the
level of grief associated with the ith-aspect ranking
model, gi(x, r[i]). Similarly, we compute the grief
of the agreement model with the joint prediction,
ga(x, r) (both gi and ga are defined formally below).
The decoder then predicts the m ranks which mini-
mize the overall grief:

H(x) = arg min
r∈Ym

[
ga(x, r) +

m∑

i=1

gi(x, r[i])

]

(2)
If the default rank predictions for the aspect models,
ŷ = (ŷ[1], ..., ŷ[m]), are in accord with the agree-
ment model (both indicating consensus or both in-
dicating contrast), then the grief of all model com-
ponents will be zero, and we simply output ŷ. On
the other hand, if ŷ indicates disagreement but the
agreement model predicts consensus, then we have
the option of predicting ŷ and bearing the grief of
the agreement model. Alternatively, we can predict
some consensus y′ (i.e. with y′[i] = y′[j], ∀i, j) and
bear the grief of the component ranking models. The
decoder H chooses the option with lowest overall
grief.4

4This decoding criterion assumes that the griefs of the com-
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Now we formally define the measures of grief
used in this criterion.

Aspect Model Grief We define the grief of the ith-
aspect ranking model with respect to a rank r to be
the smallest magnitude correction term which places
the input’s score into the rth segment of the real line:

gi(x, r) = min |c|
s.t.

b[i]r−1 ≤ scorei(x) + c < b[i]r

Agreement Model Grief Similarly, we define the
grief of the agreement model with respect to a joint
rank r = (r[1], . . . , r[m]) as the smallest correction
needed to bring the agreement score into accord with
the agreement relation between the individual ranks
r[1], . . . , r[m]:

ga(x, r) = min |c|
s.t.

a · x + c > 0 ∧ ∀i, j ∈ 1...m : r[i] = r[j]

∨
a · x + c ≤ 0 ∧ ∃i, j ∈ 1...m : r[i] 6= r[j]

3.3 Training

Ranking models Pseudo-code for Good Grief train-
ing is shown in Figure 1. This training algorithm
is based on PRanking (Crammer and Singer, 2001),
an online perceptron algorithm. The training is per-
formed by iteratively ranking each training input x
and updating the model. If the predicted rank ŷ is
equal to the true rank y, the weight and boundaries
vectors remain unchanged. On the other hand, if
ŷ 6= y, then the weights and boundaries are updated
to improve the prediction for x (step 4.c in Figure 1).
See (Crammer and Singer, 2001) for explanation
and analysis of this update rule.

Our algorithm departs from PRanking by con-
joining the updates for the m ranking models. We
achieve this by using Good Grief decoding at each
step throughout training. Our decoder H(x) (from
equation 2) uses all the aspect component models

ponent models are comparable. In practice, we take an uncali-
brated agreement model a′ and reweight it with a tuning param-
eter: a = αa′. The value of α is estimated using the develop-
ment set. We assume that the griefs of the ranking models are
comparable since they are jointly trained.

as well as the (previously trained) agreement model
to determine the predicted rank for each aspect. In
concrete terms, for every training instance x, we pre-
dict the ranks of all aspects simultaneously (step 2 in
Figure 1). Then, for each aspect we make a separate
update based on this joint prediction (step 4 in Fig-
ure 1), instead of using the individual models’ pre-
dictions.

Agreement model The agreement model a is as-
sumed to have been previously trained on the same
training data. An instance is labeled with a positive
label if all the ranks associated with this instance are
equal. The rest of the instances are labeled as nega-
tive. This model can use any standard training algo-
rithm for binary classification such as Perceptron or
SVM optimization.

3.4 Feature Representation

Ranking Models Following previous work on senti-
ment classification (Pang et al., 2002), we represent
each review as a vector of lexical features. More
specifically, we extract all unigrams and bigrams,
discarding those that appear fewer than three times.
This process yields about 30,000 features.

Agreement Model The agreement model also op-
erates over lexicalized features. The effectiveness
of these features for recognition of discourse rela-
tions has been previously shown by Marcu and Echi-
habi (2002). In addition to unigrams and bigrams,
we also introduce a feature that measures the maxi-
mum contrastive distance between pairs of words in
a review. For example, the presence of “delicious”
and “dirty” indicate high contrast, whereas the pair
“expensive” and “slow” indicate low contrast. The
contrastive distance for a pair of words is computed
by considering the difference in relative weight as-
signed to the words in individually trained PRanking
models.

4 Analysis

In this section, we prove that our model is able to
perfectly rank a strict superset of the training cor-
pora perfectly rankable by m ranking models indi-
vidually. We first show that if the independent rank-
ing models can individually rank a training set per-
fectly, then our model can do so as well. Next, we
show that our model is more expressive by providing
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Input : (x1,y1), ..., (xT ,yT ), Agreement model a, Decoder defintion H(x) (from equation 2).
Initialize : Set w[i]1 = 0, b[i]11, ..., b[i]

1
k−1 = 0, b[i]1k =∞, ∀i ∈ 1...m.

Loop : For t = 1, 2, ..., T :
1. Get a new instance xt ∈ Rn.
2. Predict ŷt = H(x; wt,bt,a) (Equation 2).
3. Get a new label yt.
4. For aspect i = 1, ...,m:

If ŷ[i]t 6= y[i]t update model (otherwise set w[i]t+1 = w[i]t, b[i]t+1
r = b[i]tr, ∀r):

4.a For r = 1, ..., k − 1 : If y[i]t ≤ r then y[i]tr = −1
else y[i]tr = 1.

4.b For r = 1, ..., k − 1 : If (ŷ[i]t − r)y[i]tr ≤ 0 then τ [i]tr = y[i]tr
else τ [i]tr = 0.

4.c Update w[i]t+1 ← w[i]t + (
∑

r τ [i]tr)x
t.

For r = 1, ..., k − 1 update : b[i]t+1
r ← b[i]tr − τ [i]tr.

Output : H(x; wT+1,bT+1,a).

Figure 1: Good Grief Training. The algorithm is based on PRanking training algorithm. Our algorithm
differs in the joint computation of all aspect predictions ŷt based on the Good Grief Criterion (step 2) and
the calculation of updates for each aspect based on the joint prediction (step 4).

a simple illustrative example of a training set which
can only be perfectly ranked with the inclusion of an
agreement model.

First we introduce some notation. For each train-
ing instance (xt,yt), each aspect i ∈ 1...m, and
each rank r ∈ 1...k, define an auxiliary variable
y[i]tr with y[i]tr = −1 if y[i]t ≤ r and y[i]tr = 1
if y[i]t > r. In words, y[i]tr indicates whether the
true rank y[i]t is to the right or left of a potential
rank r.

Now suppose that a training set
(x1,y1), ..., (xT ,yT ) is perfectly rankable for
each aspect independently. That is, for each
aspect i ∈ 1...m, there exists some ideal model
v[i]∗ = (w[i]∗, b[i]∗) such that the signed dis-
tance from the prediction to the rth boundary:
w[i]∗ · xt − b[i]∗r has the same sign as the auxil-
iary variable y[i]tr. In other words, the minimum
margin over all training instances and ranks,
γ = minr,t{(w[i]∗ ·xt− b[i]∗r)y[i]tr}, is no less than
zero.

Now for the tth training instance, define an agree-
ment auxiliary variable at, where at = 1 when all
aspects agree in rank and at = −1 when at least
two aspects disagree in rank. First consider the case
where the agreement model a perfectly classifies all
training instances: (a · xt)at > 0, ∀t. It is clear

that Good Grief decoding with the ideal joint model
(〈w[1]∗,b[1]∗〉, ..., 〈w[m]∗,b[m]∗〉,a) will produce
the same output as the component ranking models
run separately (since the grief will always be zero for
the default rank predictions). Now consider the case
where the training data is not linearly separable with
regard to agreement classification. Define the mar-
gin of the worst case error to be β = maxt{|(a·xt)| :
(a·xt)at < 0}. If β < γ, then again Good Grief de-
coding will always produce the default results (since
the grief of the agreement model will be at most β in
cases of error, whereas the grief of the ranking mod-
els for any deviation from their default predictions
will be at least γ). On the other hand, if β ≥ γ, then
the agreement model errors could potentially disrupt
the perfect ranking. However, we need only rescale
w∗ := w∗(βγ + ε) and b∗ := b∗(βγ + ε) to ensure that
the grief of the ranking models will always exceed
the grief of the agreement model in cases where the
latter is in error. Thus whenever independent rank-
ing models can perfectly rank a training set, a joint
ranking model with Good Grief decoding can do so
as well.

Now we give a simple example of a training set
which can only be perfectly ranked with the addi-
tion of an agreement model. Consider a training set
of four instances with two rank aspects:
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〈x1,y1〉 = 〈(1, 0, 1), (2, 1)〉
〈x2,y2〉 = 〈(1, 0, 0), (2, 2)〉
〈x3,y3〉 = 〈(0, 1, 1), (1, 2)〉
〈x4,y4〉 = 〈(0, 1, 0), (1, 1)〉

We can interpret these inputs as feature vectors cor-
responding to the presence of “good”, “bad”, and
“but not” in the following four sentences:

The food was good, but not the ambience.
The food was good, and so was the ambience.
The food was bad, but not the ambience.
The food was bad, and so was the ambience.

We can further interpret the first rank aspect as the
quality of food, and the second as the quality of the
ambience, both on a scale of 1-2.

A simple ranking model which only considers the
words “good” and “bad” perfectly ranks the food as-
pect. However, it is easy to see that no single model
perfectly ranks the ambience aspect. Consider any
model 〈w,b = (b)〉. Note that w · x1 < b and
w · x2 ≥ b together imply that w3 < 0, whereas
w · x3 ≥ b and w · x4 < b together imply that
w3 > 0. Thus independent ranking models cannot
perfectly rank this corpus.

The addition of an agreement model, however,
can easily yield a perfect ranking. With a =
(0, 0,−5) (which predicts contrast with the presence
of the words “but not”) and a ranking model for the
ambience aspect such as w = (1,−1, 0),b = (0),
the Good Grief decoder will produce a perfect rank.

5 Experimental Set-Up

We evaluate our multi-aspect ranking algorithm on a
corpus5 of restaurant reviews available on the web-
site http://www.we8there.com. Reviews
from this website have been previously used in other
sentiment analysis tasks (Higashinaka et al., 2006).
Each review is accompanied by a set of five ranks,
each on a scale of 1-5, covering food, ambience, ser-
vice, value, and overall experience. These ranks are
provided by consumers who wrote original reviews.
Our corpus does not contain incomplete data points
since all the reviews available on this website con-
tain both a review text and the values for all the five
aspects.

Training and Testing Division Our corpus con-

5Data and code used in this paper are available at
http://people.csail.mit.edu/bsnyder/naacl07

tains 4,488 reviews, averaging 115 words. We ran-
domly select 3,488 reviews for training, 500 for de-
velopment and 500 for testing.

Parameter Tuning We used the development set
to determine optimal numbers of training iterations
for our model and for the baseline models. Also,
given an initial uncalibrated agreement model a′, we
define our agreement model to be a = αa′ for an
appropriate scaling factor α. We tune the value of α
on the development set.

Corpus Statistics Our training corpus contains
528 among 55 = 3025 possible rank sets. The most
frequent rank set 〈5, 5, 5, 5, 5〉 accounts for 30.5%
of the training set. However, no other rank set com-
prises more than 5% of the data. To cover 90% of
occurrences in the training set, 227 rank sets are re-
quired. Therefore, treating a rank tuple as a single
label is not a viable option for this task. We also
find that reviews with full agreement across rank as-
pects are quite common in our corpus, accounting
for 38% of the training data. Thus an agreement-
based approach is natural and relevant.

A rank of 5 is the most common rank for all as-
pects and thus a prediction of all 5’s gives a MAJOR-
ITY baseline and a natural indication of task diffi-
culty.

Evaluation Measures We evaluate our algorithm
and the baseline using ranking loss (Crammer and
Singer, 2001; Basilico and Hofmann, 2004). Rank-
ing loss measures the average distance between
the true rank and the predicted rank. Formally,
given N test instances (x1,y1), ..., (xN ,yN ) of an
m-aspect ranking problem and the corresponding
predictions ŷ1, ..., ŷN , ranking loss is defined as∑

t,i
|y[i]t−ŷ[i]t|

mN . Lower values of this measure cor-
respond to a better performance of the algorithm.

6 Results

Comparison with Baselines Table 1 shows the per-
formance of the Good Grief training algorithm GG
TRAIN+DECODE along with various baselines, in-
cluding the simple MAJORITY baseline mentioned
in section 5. The first competitive baseline, PRANK,
learns a separate ranker for each aspect using the
PRank algorithm. The second competitive baseline,
SIM, shares the weight vectors across aspects using
a similarity measure (Basilico and Hofmann, 2004).
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Food Service Value Atmosphere Experience Total
MAJORITY 0.848 1.056 1.030 1.044 1.028 1.001
PRANK 0.606 0.676 0.700 0.776 0.618 0.675
SIM 0.562 0.648 0.706 0.798 0.600 0.663
GG DECODE 0.544 0.648 0.704 0.798 0.584 0.656
GG TRAIN+DECODE 0.534 0.622 0.644 0.774 0.584 0.632
GG ORACLE 0.510 0.578 0.674 0.694 0.518 0.595

Table 1: Ranking loss on the test set for variants of Good Grief and various baselines.

Figure 2: Rank loss for our algorithm and baselines
as a function of training round.

Both of these methods are described in detail in Sec-
tion 2. In addition, we consider two variants of our
algorithm: GG DECODE employs the PRank train-
ing algorithm to independently train all component
ranking models and only applies Good Grief decod-
ing at test time. GG ORACLE uses Good Grief train-
ing and decoding but in both cases is given perfect
knowledge of whether or not the true ranks all agree
(instead of using the trained agreement model).

Our model achieves a rank error of 0.632, com-
pared to 0.675 for PRANK and 0.663 for SIM. Both
of these differences are statistically significant at
p < 0.002 by a Fisher Sign Test. The gain in perfor-
mance is observed across all five aspects. Our model
also yields significant improvement (p < 0.05) over
the decoding-only variant GG DECODE, confirm-
ing the importance of joint training. As shown in
Figure 2, our model demonstrates consistent im-
provement over the baselines across all the training
rounds.

Model Analysis We separately analyze our per-

Consensus Non-consensus
PRANK 0.414 0.864
GG TRAIN+DECODE 0.324 0.854
GG ORACLE 0.281 0.830

Table 2: Ranking loss for our model and PRANK

computed separately on cases of actual consensus
and actual disagreement.

formance on the 210 test instances where all the
target ranks agree and the remaining 290 instances
where there is some contrast. As Table 2 shows, we
outperform the PRANK baseline in both cases. How-
ever on the consensus instances we achieve a relative
reduction in error of 21.8% compared to only a 1.1%
reduction for the other set. In cases of consensus,
the agreement model can guide the ranking models
by reducing the decision space to five rank sets. In
cases of disagreement, however, our model does not
provide sufficient constraints as the vast majority of
ranking sets remain viable. This explains the perfor-
mance of GG ORACLE, the variant of our algorithm
with perfect knowledge of agreement/disagreement
facts. As shown in Table 1, GG ORACLE yields sub-
stantial improvement over our algorithm, but most
of this gain comes from consensus instances (see Ta-
ble 2).

We also examine the impact of the agreement
model accuracy on our algorithm. The agreement
model, when considered on its own, achieves clas-
sification accuracy of 67% on the test set, compared
to a majority baseline of 58%. However, those in-
stances with high confidence |a · x| exhibit substan-
tially higher classification accuracy. Figure 3 shows
the performance of the agreement model as a func-
tion of the confidence value. The 10% of the data
with highest confidence values can be classified by
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Figure 3: Accuracy of the agreement model on sub-
sets of test instances with highest confidence |a · x|.

the agreement model with 90% accuracy, and the
third of the data with highest confidence can be clas-
sified at 80% accuracy.

This property explains why the agreement model
helps in joint ranking even though its overall accu-
racy may seem low. Under the Good Grief criterion,
the agreement model’s prediction will only be en-
forced when its grief outweighs that of the ranking
models. Thus in cases where the prediction confi-
dence (|a·x|) is relatively low,6 the agreement model
will essentially be ignored.

7 Conclusion and Future Work

We considered the problem of analyzing multiple re-
lated aspects of user reviews. The algorithm pre-
sented jointly learns ranking models for individual
aspects by modeling the dependencies between as-
signed ranks. The strength of our algorithm lies
in its ability to guide the prediction of individual
rankers using rhetorical relations between aspects
such as agreement and contrast. Our method yields
significant empirical improvements over individual
rankers as well as a state-of-the-art joint ranking
model.

Our current model employs a single rhetorical re-
lation – agreement vs. contrast – to model depen-
dencies between different opinions. As our analy-

6What counts as “relatively low” will depend on both the
value of the tuning parameter α and the confidence of the com-
ponent ranking models for a particular input x.

sis shows, this relation does not provide sufficient
constraints for non-consensus instances. An avenue
for future research is to consider the impact of addi-
tional rhetorical relations between aspects. We also
plan to theoretically analyze the convergence prop-
erties of this and other joint perceptron algorithms.
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Abstract

Sentiment analysis seeks to characterize
opinionated or evaluative aspects of nat-
ural language text. We suggest here that
appraisal expression extraction should be
viewed as a fundamental task in sentiment
analysis. An appraisal expression is a tex-
tual unit expressing an evaluative stance
towards some target. The task is to find
and characterize the evaluative attributes
of such elements. This paper describes a
system for effectively extracting and dis-
ambiguating adjectival appraisal expres-
sions in English outputting a generic rep-
resentation in terms of their evaluative
function in the text. Data mining on ap-
praisal expressions gives meaningful and
non-obvious insights.

1 Introduction

Sentiment analysis, which seeks to analyze opin-
ion in natural language text, has grown in interest
in recent years. Sentiment analysis includes a vari-
ety of different problems, including: sentiment clas-
sification techniques to classify reviews as positive
or negative, based on bag of words (Pang et al.,
2002) or positive and negative words (Turney, 2002;
Mullen and Collier, 2004); classifying sentences in
a document as either subjective or objective (Riloff
and Wiebe, 2003; Pang and Lee, 2004); identifying
or classifying appraisal targets (Nigam and Hurst,
2004); identifying the source of an opinion in a text
(Choi et al., 2005), whether the author is expressing
the opinion, or whether he is attributing the opinion
to someone else; and developing interactive and vi-
sual opinion mining methods (Gamon et al., 2005;

Popescu and Etzioni, 2005). Much of this work has
utilized the fundamental concept of ‘semantic orien-
tation’, (Turney, 2002); however, sentiment analysis
still lacks a ‘unified field theory’.

We propose in this paper that a fundamental task
underlying many of these formulations is the extrac-
tion and analysis of appraisal expressions, defined
as those structured textual units which express an
evaluation of some object. An appraisal expression
has three main components: an attitude (which takes
an evaluative stance about an object), a target (the
object of the stance), and a source (the person tak-
ing the stance) which may be implied.

The idea of appraisal extraction is a generaliza-
tion of problem formulations developed in earlier
works. Mullen and Collier’s (2004) notion of classi-
fying appraisal terms using a multidimensional set
of attributes is closely tied to the definition of an
appraisal expression, which is classified along sev-
eral dimensions. In previous work (Whitelaw et
al., 2005), we presented a related technique of find-
ing opinion phrases, using a multidimensional set
of attributes and modeling the semantics of mod-
ifiers in these phrases. The use of multiple text
classifiers by Wiebe and colleagues (Wilson et al.,
2005; Wiebe et al., 2004) for various kinds of senti-
ment classification can also be viewed as a sentence-
level technique for analyzing appraisal expressions.
Nigam and Hurst’s (2004) work on detecting opin-
ions about a certain topic presages our notion of
connecting attitudes to targets, while Popescu and
Etzioni’s (2005) opinion mining technique also fits
well into our framework.

In this paper we describe a system for extracting
adjectival appraisal expressions, based on a hand-
built lexicon, a combination of heuristic shallow
parsing and dependency parsing, and expectation-
maximization word sense disambiguation. Each ex-
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tracted appraisal expression is represented as a set of
feature values in terms of its evaluative function in
the text. We have applied this system to two domains
of texts: product reviews, and movie reviews. Man-
ual evaluation of the extraction shows our system to
work well, as well as giving some directions for im-
provement. We also show how straightforward data
mining can give users very useful information about
public opinion.

2 Appraisal Expressions

We define an appraisal expression to be an elemen-
tary linguistic unit that conveys an attitude of some
kind towards some target. An appraisal expression
is defined to comprise a source, an attitude, and a
target, each represented by various attributes. For
example, in ‘I found the movie quite monotonous’,
the speaker (the Source) expresses a negative Atti-
tude (‘quite monotonous’) towards ‘the movie’ (the
Target). Note that attitudes come in different types;
for example, ‘monotonous’ describes an inherent
quality of the Target, while ‘loathed’ would describe
the emotional reaction of the Source.

Attitude may be expressed through nouns, verbs,
adjectives and metaphors. Extracting all of this in-
formation accurately for all of these types of ap-
praisal expressions is a very difficult problem. We
therefore restrict ourselves for now to adjectival ap-
praisal expressions that are each contained in a sin-
gle sentence. Additionally, we focus here only on
extracting and analyzing the attitude and the target,
but not the source. Even with these restrictions, we
obtain interesting results (Sec. 7).

2.1 Appraisal attributes

Our method is grounded in Appraisal Theory, devel-
oped by Martin and White (2005), which analyzes
the way opinion is expressed. Following Martin and
White, we define:
Attitude type is type of appraisal being

expressed—one of affect, appreciation, or
judgment (Figure 1). Affect refers to an
emotional state (e.g., ‘happy’, ‘angry’), and
is the most explicitly subjective type of ap-
praisal. The other two types express evaluation
of external entities, differentiating between
intrinsic appreciation of object properties (e.g.,
‘slender’, ‘ugly’) and social judgment (e.g.,
‘heroic’, ‘idiotic’).

Orientation is whether the attitude is positive

Attitude Type
Appreciation

Composition
Balance: consistent, discordant, ...
Complexity: elaborate, convoluted, ...

Reaction
Impact: amazing, compelling, dull, ...
Quality: beautiful, elegant, hideous, ...

Valuation: innovative, profound, inferior, ...
Affect: happy, joyful, furious, ...
Judgment

Social Esteem
Capacity: clever, competent, immature, ...
Tenacity: brave, hard-working, foolhardy, ...
Normality: famous, lucky, obscure, ...

Social Sanction
Propriety: generous, virtuous, corrupt, ...
Veracity: honest, sincere, sneaky, ...

Figure 1: The Attitude Type taxonomy, with exam-
ples of adjectives from the lexicon.

(‘good’) or negative (‘bad’).
Force describes the intensity of the appraisal. Force

is largely expressed via modifiers such as
‘very’ (increased force), or ‘slightly’ (de-
creased force), but may also be expressed lex-
ically, for example ‘greatest’ vs. ‘great’ vs.
‘good’.

Polarity of an appraisal is marked if it is scoped in
a polarity marker (such as ‘not’), or unmarked
otherwise. Other attributes of appraisal are af-
fected by negation; e.g., ‘not good’ also has the
opposite orientation from ‘good’.

Target type is a domain-dependent semantic type
for the target. This attribute takes on values
from a domain-dependent taxonomy, represent-
ing important (and easily extractable) distinc-
tions between targets in the domain.

2.2 Target taxonomies
Two domain-dependent target type taxonomies are
shown in Figure 2. In both, the primary distinction
is between a direct naming of a kind of “Thing” or a
deictic/pronominal reference (e.g., “those” or “it”),
since the system does not currently rely on corefer-
ence resolution. References are further divided into
references to the writer/reader (‘interactants’) and to
other people or objects.

The Thing subtrees for the two domains dif-
fer somewhat. In the movie domain, Things such
as ‘this movie’, ‘Nicholas Cage’, or ‘cinematogra-
phy’, are classified into six main categories: movies
(the one being reviewed, or another one), people
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Movie Target Type
Movie Thing

Any Movie
This Movie
Other Movie

Movie Person
Real Person. . .
Character

Movie Aspect. . .
Company
Marketing

Reference
Interactant

First Person
Second Person

Other
Third Person
Deictic

Product Target Type
Product Thing

Any Product
This Product
Other Product

Product Part
Integral
Replaceable

Experience
Company
Marketing
Support

Reference
Interactant

First Person
Second Person

Other
Third Person
Deictic

Figure 2: Target taxonomies for movie and product
reviews.

(whether characters, or real people involved in mak-
ing the film), aspects of the movie itself (its plot,
special effects, etc.), the companies involved in mak-
ing it, or aspects of marketing the movie (such
as trailers). For target Things in product reviews,
we replace ‘Movie Person’ and ‘Movie Aspect’ by
‘Product Part’ with two subcategories: ‘Integral’, for
parts of the product itself (e.g., wheels or lenses),
and ‘Replaceable’, for parts or supplies meant to
be periodically replaced (e.g., batteries or ink car-
tridges). The categories of ‘Support’, for references
to aspects of customer support, and ‘Experience’ for
things associated with the experience of using the
product (such as ‘pictures’ or ‘resolution’, were also
added.

3 Appraisal Extraction

In our system, appraisal extraction runs in several in-
dependent stages. First, the appraisal extractor finds
appraisal expressions by finding the chunks of text
that express attitudes and targets. Then, it links each
attitude group found to a target in the text. Finally, it
uses a probabilistic model to determine which atti-
tude type should be assigned when attitude chunks
were ambiguous.

3.1 Chunking
The chunker is based on our earlier work (Whitelaw
et al., 2005), which finds attitude groups and tar-
gets using a hand-built lexicon (Sec. 4). This lexi-

con contains head adjectives (which specify values
for the attributes attitude type, force, polarity, and
orientation), and appraisal modifiers (which specify
transformations to the four attributes). Some head
adjectives are ambiguous, having multiple entries in
the lexicon with different attribute values. In all
cases, different entries for a given word have dif-
ferent attitude types. If the head adjective is am-
biguous, multiple groups are created, to be disam-
biguated later. See our previous work (Whitelaw et
al., 2005) for a discussion of the technique.

Target groups are found by matching phrases in
the lexicon with corresponding phrases in the text
and assigning the target type listed in the lexicon.

3.2 Linking

After finding attitude groups and candidate targets,
the system links each attitude to a target. Each
sentence is parsed to a dependency representation,
and a ranked list of linkage specifications is used
to look for paths in the dependency tree connecting
some word in the source to some word in the target.
Such linkage specifications are hand-constructed,
and manually assigned priorities, so that when two
linkage specifications match, only the highest prior-
ity specification is used. For example, the two high-
est priority linkage specifications are:

1. target
nsubj−−−→ x

dobj←−− y
amod←−−− attitude

2. attitude amod−−−→ target

The first specification selects the subject of a sen-
tence where the appraisal modifies a noun in the
predicate, for example ‘The Matrix’ in ‘The Matrix
is a good movie’. The second selects the noun mod-
ified by an adjective group, for example ‘movie’ in
‘The Matrix is a good movie’.

If no linkage is found connecting an attitude to a
candidate target, the system goes through the link-
age specifications again, trying to find any word in
the sentence connected to the appraisal group by a
known linkage. The selected word is assigned the
generic category of movie thing or product thing (de-
pending on the domain of the text). If no linkage is
found at all, the system assigns the default category
movie thing or product thing, assuming that there is
an appraised thing that couldn’t be found using the
given linkage specifications.
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3.3 Disambiguation

After linkages are made, this information is used to
disambiguate multiple senses that may be present
in a given appraisal expression. Most cases are
unambiguous, but in some cases two, or occasion-
ally even three, senses are possible. We bootstrap
from the unambiguous cases, using a probabilistic
model, to resolve the ambiguities. The attitude
type places some grammatical/semantic constraints
on the clause. Two key constraints are the syntactic
relation with the target (which can differentiate af-
fect from the other types of appraisal), and whether
the target type has consciousness (which helps dif-
ferentiate judgment and affect from appreciation).
To capture these constraints, we model the proba-
bility of a given attitude type being correct, given
the target type and the linkage specification used to
connect the attitude to the target, as follows.

The correct attitude type of an appraisal expres-
sion is modeled by a random variable A, the set of
all attitude types in the system is denoted by A, and
a specific attitude type is denoted by a. As described
above, other attributes besides attitude type may
also vary between word senses, but attitude type
always changes between word senses, so when the
system assigns a probability to an attitude type, it
is assigning that probability to the whole word sense.

We denote the linkage type used in a given ap-
praisal expression by L, the set of all possible link-
ages asL, and a specific linkage type by l. Note that
the first attempt with a linkage specification (to find
a chunked target) is considered to be different from
the second attempt with the same linkage specifica-
tion (which attempts to find any word). Failure to
find an applicable linkage rule is considered as yet
another ‘linkage’ for the probability model. Since
our system uses 29 different linkage specifications,
there are a total of 59 different possible linkages
types.

The target type of a given appraisal expression is
denoted by T , the set of all target types by T , and a
specific target type by t. We consider an expression
to have a given target type T = t only if that is its
specific target type; if its target type is a descendant
of t, then its target type is not t in the model. E
denotes the set of all extracted appraisal expressions.
The term exp denotes a specific expression.

Our goal is to estimate, for each appraisal expres-
sion exp in the corpus, the probability of its attitude
type being a, given the expression’s target type t

and linkage type l

P (A = a|exp) = P (A = a|T = t, L = l)

To do this, we define a model M of this probability,
and then estimate the maximum likelihood model
using Expectation-Maximization.

We model PM (A = a|T = t, L = l) by first
applying Bayes’ theorem:

PM (A = a|T = t, L = l) =

PM (T = t, L = l|A = a)PM (A = a)
PM (T = t, L = l)

Assuming conditional independence of target type
and linkage, this becomes:

PM (T = t|A = a)PM (L = l|A = a)PM (A = a)
PM (T = t)PM (L = l)

M ’s parameters thus represent the conditional and
marginal probabilities on this right-hand-side.

Given a set of (possibly ambiguous) appraisal ex-
pressions E identified by chunking and linkage de-
tection, we seek the maximum likelihood model

M∗ = arg max
M

∏
exp∈E

∏
a∈A

M(A = a|exp)

M∗ will be our best estimate of P , given the pro-
cessed data in a given corpus. The system esti-
mates M∗ using an implementation of Expectation-
Maximization over the entire corpus. The highest-
probability attitude type (hence sense) according to
M is then chosen for each appraisal expression.

4 The Lexicon

As noted above, attitude groups were identified via a
domain-independent lexicon of appraisal adjectives,
adverbs, and adverb modifiers. 1 For the movie
domain, appraised things were identified based on
a manually constructed lexicon containing generic
movie words, as well as automatically constructed
lexicons of proper names specific to each movie be-
ing reviewed. For each product type considered, we
manually constructed a lexicon containing generic
product words; we did not find it necessary to con-
struct product-specific lexicons.

1All of the lexicons used in the paper can be
found at http://lingcog.iit.edu/arc/
appraisal lexicon 2007a.tar.gz
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For adjectival attitudes, we used the lexicon
developed we developed in our previous work
(Whitelaw et al., 2005) on appraisal. We reviewed
the entire lexicon to determine its accuracy and
made numerous improvements.

Generic target lexicons were constructed by start-
ing with a small sample of the kind of reviews
that the lexicon would apply to. We examined
these manually to find generic words referring to ap-
praised things to serve as seed terms for the lexicon
and used WordNet (Miller, 1995) to suggest addi-
tional terms to add to the lexicon.

Since movie reviews often refer to the specific
contents of the movie under review by proper names
(of actors, the director, etc.), we also automatically
constructed a specific target lexicon for each movie
in the corpus, based on lists of actors, characters,
writers, directors, and companies listed for the film
at imdb.com. Each such specific lexicon was only
used for processing reviews of the movie it was gen-
erated for, so the system had no specific knowledge
of terms related to other movies during processing.

5 Corpora

We evaluated our appraisal extraction system on two
corpora. The first is the standard publicly available
collection of movie reviews constructed by Pang and
Lee (2004). This standard testbed consists of 1000
positive and 1000 negative reviews, taken from the
IMDb movie review archives2. Reviews with ‘neu-
tral’ scores (such as three stars out of five) were re-
moved by Pang and Lee, giving a data set with only
clearly positive and negative reviews. The average
document length in this corpus is 764 words, and
1107 different movies are reviewed.

The second corpus is a collection of user prod-
uct reviews taken from epinions.com supplied
in 2004 for research purposes by Amir Ashkenazi
of Shopping.Com. The base collection contains re-
views for three types of products: baby strollers, dig-
ital cameras, and printers. Each review has a numer-
ical rating (1–5); based on this, we labeled positive
and negative reviews in the same way as Pang and
Lee did for the movie reviews corpus. The prod-
ucts corpus has 15162 documents, averaging 442
words long. This comprises 11769 positive docu-
ments, 1420 neutral documents, and 1973 negative
documents. There are 905 reviews of strollers, 5778

2See http://www.cs.cornell.edu/people/pabo
/movie-review-data/

reviews of ink-jet printers and 8479 reviews of digi-
tal cameras, covering 516 individual products.

Each document in each corpus was preprocessed
into individual sentences, lower-cased, and tok-
enized. We used an implementation of Brill’s (1992)
part-of-speech tagger to find adjectives and modi-
fiers; for parsing, we used the Stanford dependency
parser (Klein and Manning, 2003).

6 Evaluating Extraction

We performed two manual evaluations on the sys-
tem. The first was to evaluate the overall accuracy
of the entire system. The second was to specifi-
cally evaluate the accuracy of the probabilistic dis-
ambiguator.

6.1 Evaluating Accuracy

We evaluated randomly selected appraisal expres-
sions for extraction accuracy on a number of binary
measures. This manual evaluation was performed
by the first author.We evaluated interrater reliability
between this rater and another author on 200 ran-
domly selected appraisal expressions (100 on each
corpus). The first rater rated an additional 120 ex-
pressions (60 for each corpus), and combined these
with his ratings for interrater reliability to compute
system accuracy, for a total of 320 expressions (160
for each corpus). The (binary) rating criteria were as
follows. Relating to the appraisal group:
APP Does the expression express appraisal at all?
ARM If so, does the appraisal group have all rele-

vant modifiers?
HEM Does the appraisal group include extra mod-

ifiers? (Results are shown negated, so that
higher numbers are better.)

Relating to the target:
HT If there is appraisal, is there an identifiable tar-

get (even if the system missed it)?
FT If there is appraisal, did the system identify

some target? (Determined automatically.)
RT If so, is it the correct one?
Relating to the expression’s attribute values (if it ex-
presses appraisal):
Att Is the attitude type assigned correct?
Ori Is the orientation assigned correct?
Pol Is the polarity assigned correct?
Tar Is the target type assigned correct?
Pre Is the target type the most precise value in the

taxonomy for this target?
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Table 1: System accuracy at evaluated tasks. 95%
confidence one-proportion z-intervals are reported.

Measure Movies Products Combined
APP 86% ± 3% 81% ± 3% 83% ± 2%
ARM 94% ± 2% 95% ± 2% 95% ± 1%
¬ HEM 99% ± 1% 100% 99.6% ± 0.4%
HT 91% ± 2% 97% ± 2% 94% ± 1%
FT 96% ± 2% 94% ± 2% 95% ± 1%
RT 77% ± 4% 73% ± 4% 75% ± 3%
Att 78% ± 4% 80% ± 4% 79% ± 2%
Ori 95% ± 2% 95% ± 2% 94% ± 1%
Pol 97% ± 1% 96% ± 2% 97% ± 1%
Tar 84% ± 3% 86% ± 3% 85% ± 2%
Pre 70% ± 4% 77% ± 4% 73% ± 3%

Table 2: Interrater reliability of manual evaluation.
95% confidence intervals are reported.

Measure Movies Products Combined
APP 71% ± 9% 87% ± 7% 79% ± 6%
ARM 95% ± 5% 91% ± 6% 93% ± 4%
¬ HEM 98% ± 3% 100% 99% ± 1%
HT 97% ± 4% 99% ± 3% 98% ± 3%
FT N/A N/A N/A
RT 94% ± 6% 97% ± 4% 96% ± 4%
Att 79% ± 10% 86% ± 8% 83% ± 6%
Ori 93% ± 6% 94% ± 5% 93% ± 4%
Pol 96% ± 4% 94% ± 5% 95% ± 4%
Tar 94% ± 6% 90% ± 7% 91% ± 5%
Pre 86% ± 10% 90% ± 8% 88% ± 6%

Results are given in Table 1, and interrater relia-
bility is given in Table 2. In nearly all cases agree-
ment percentages are above 80%, indicating good
inter-rater consensus. Regarding precision, we note
that most aspects of extraction seem to work quite
well. The area of most concern in the system is
precision of target classification. This may be im-
proved with further development of the target lex-
icons to classify more terms to specific leaves in
the target type hierarchy. The other area of con-
cern is the APP test, which encountered difficulties
when a word could be used as appraisal in some
contexts, but not in others, particularly when an ap-
praisal word appeared as a nominal classifier.

6.2 Evaluating Disambiguation
The second experiment evaluated the accuracy of
EM in disambiguating the attitude type of appraisal
expressions. We evaluated the same number of ex-
pressions as used for the overall accuracy experi-
ment (100 used for interrater reliability and accu-
racy, plus 60 used only for accuracy on each corpus),
each having two or more word senses, presenting all
of the attitude types possible for each appraisal ex-
pression, as well as a ‘none of the above’ and a ‘not

appraisal’ option, asking the rater to select which
one applied to the selected expression in context.

Baseline disambiguator accuracy, if the computer
were to simply pick randomly from the choices
specified in the lexicon is 48% for both corpora. In-
terrater agreement was 80% for movies and 73% for
products (taken over 100 expressions from each cor-
pus.)

Considering just those appraisal expressions
which the raters decided were appraisal, the dis-
ambiguator achieved 58% accuracy on appraisal ex-
pressions from the movies corpus and 56% accuracy
on the products corpus. Further analysis of the re-
sults of the disambiguator shows that most of the er-
rors occur when the target type is the generic cate-
gory thing which occurs when the target is not in the
target lexicon. Performance on words recognized as
having more specific target types is better: 68% for
movies, and 59% for products. This indicates that
specific target type is an important indicator of at-
titude type.

7 Opinion Mining

We (briefly) demonstrate the usefulness of appraisal
expression extraction by using it for opinion mining.
In opinion mining, we find large numbers of reviews
and perform data mining to determine which aspects
of a product people like or dislike, and in which
ways. To do this, we search for association rules de-
scribing the appraisal features that can be found in
a single appraisal expression. We generally look for
rules that contain attitude type, orientation, thing
type, and a product name, when these rules occur
more frequently than expected.

The idea is similar to Agrawal and
Srikant’s (1995) notion of generalized associa-
tion rules. We treat each appraisal expression as
a transaction, with the attributes of attitude type,
orientation, polarity, force, and thing type, as well
as the document attributes product name, product
type, and document classification (based on the
number of stars the reviewer gave the product).
We use CLOSET+ (Wang et al., 2003) to find all
of the frequent closed itemsets in the data, with a
support greater than or equal to 20 occurrences.
Let 〈b, a1, a2, . . . an〉 or 〈b, A〉 denote the contents
of an itemset, and c (〈b, A〉) denote the support for
this itemset. For a given item b, π(b) denotes its
immediate parent its value taxonomy, or ‘root’ for
flat sets.
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Table 3: The most interesting specific rules for products.
b A Doc.

Int. Product Name Attitude Target Type Orientation Polarity class
45.7 Peg Perego Pliko Matic (1) ⇐ quality this-product positive unmarked
42.8 Lexmark Color JetPrinter 1100 ⇐ reaction this-product negative unmarked neg
41.9 Peg Perego Milano XL ⇐ reaction this-product positive unmarked pos
41.1 Peg Perego Pliko Matic ⇐ reaction this-product positive unmarked
40.8 Peg Perego Milano XL ⇐ quality this-product positive unmarked pos
37.5 Peg Perego Milano XL ⇐ reaction this-product positive unmarked
37.1 Peg Perego Milano XL ⇐ quality this-product positive unmarked
36.3 Agfa ePhoto Smile (2) ⇐ reaction experience negative unmarked neg
36.0 Agfa ePhoto Smile (2) ⇐ reaction experience negative neg
33.9 KB Gear KG-JC3S Jamcam ⇐ quality experience negative neg

Table 4: The most interesting oppositional rules for products.
b A Doc.

Int. Product Name Attitude Target Orient. Polarity class
31.6 Lexmark Color JetPrinter 1100 (3) ⇐ reaction this-product positive neg
31.5 Lexmark Color JetPrinter 1100 ⇐ quality this-product positive neg
29.5 Lexmark Color JetPrinter 1100 ⇐ reaction this-product positive unmarked neg
29.2 Lexmark Color JetPrinter 1100 ⇐ quality this-product positive unmarked neg
28.9 Lexmark Color JetPrinter 1100 ⇐ appreciation this-product positive neg

For each item set, we collect rules 〈b, A〉 and
compute their interestingness relative to the itemset
〈π(b), A〉. Interestingness is defined as follows:

Int =
P (A|b)

P (A|π(b))
=

c(〈b, A〉)× c(〈π(b)〉)
c(〈π(b), A〉)× c(〈b〉)

Int is the relative probability of finding the child
itemset in an appraisal expression, compared to find-
ing it in a parent itemset. Values greater than 1 in-
dicate that the child itemset appears more frequently
than we would expect.

We applied two simple filters to the output, to help
find more meaningful results. Specificity requires
that b be a product name, and that attitude type and
thing type be sufficiently deep nodes in the hier-
archy to describe something specific. (For exam-
ple, ‘product thing’ gives no real information about
what part of the product is being appraised.) Oppo-
sition chooses rules with a different rating than the
review as a whole, that is, document classification
is the opposite of appraisal orientation. The filter
also ensures that thing type is sufficiently specific,
as with specificity, and requires that b be a product
name.

We present the ten most ‘interesting’ rules from
each filter, for the products corpus. Rules from the
specificity filter are shown in Table 3 and rules from
the opposition filter are shown in Table 4. We con-
sider the meaning of some of these rules.

The first specificity rule (1) describes a typical ex-
ample of users who like the product very well over-

all. An example sentence that created this rule says
‘Not only is it an excellent stroller, because of it’s
[sic] size it even doubled for us as a portable crib.’

The specificity rules for the Agfa ePhoto Smile
Digital Camera (2) are an example of the kind of
rule we expect to see when bad user experience con-
tributes to bad reviews. The text of the reviews that
gave these rules quite clearly convey that users were
not happy specifically with the photo quality.

In the oppositional rules for the Lexmark Color
JetPrinter 1100 (3), we see that users made positive
comments about the product overall, while neverthe-
less giving the product a negative review. Drilling
down into the text, we can see some examples of re-
views like ‘On the surface it looks like a good printer
but it has many flaws that cause it to be frustrating.’

8 Conclusions

We have presented a new task, appraisal expres-
sion extraction, which, we suggest, is a fundamental
tasks for sentiment analysis. Shallow parsing based
on a set of appraisal lexicons, together with sparse
use of syntactic dependencies, can be used to ef-
fectively address the subtask of extracting adjectival
appraisal expressions. Indeed, straightforward data
mining applied to appraisal expressions can yield in-
sights into public opinion as expressed in patterns of
evaluative language in a corpus of product reviews.

Immediate future work includes extending the ap-
proach to include other types of appraisal expres-
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sions, such as where an attitude is expressed via a
noun or a verb. In this regard, we will be examin-
ing extension of existing methods for automatically
building lexicons of positive/negative words (Tur-
ney, 2002; Esuli and Sebastiani, 2005) to the more
complex task of estimating also attitude type and
force. As well, a key problem is the fact that eval-
uative language is often context-dependent, and so
proper interpretation must consider interactions be-
tween a given phrase and its larger textual context.
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Abstract

Scientific papers revolve around cita-
tions, and for many discourse level
tasks one needs to know whose work
is being talked about at any point in
the discourse. In this paper, we in-
troduce the scientific attribution task,
which links different linguistic expres-
sions to citations. We discuss the
suitability of different evaluation met-
rics and evaluate our classification ap-
proach to deciding attribution both in-
trinsically and in an extrinsic evalua-
tion where information about scientific
attribution is shown to improve per-
formance on Argumentative Zoning, a
rhetorical classification task.

1 Introduction

In the recent past, there has been a focus on
information management from scientific litera-
ture. In the genetics domain, for instance, in-
formation extraction of genes and gene–protein
interactions helps geneticists scan large amounts
of information (e.g., as explored in the TREC
Genomics track (Hersh et al., 2004)). Elsewhere,
citation indexes (Garfield, 1979) provide biblio-
metric data about the frequency with which par-
ticular papers are cited. The success of citation
indexers such as CiteSeer (Giles et al., 1998) and
Google Scholar relies on the robust detection
of formal citations in arbitrary text. In bibli-
ographic information retrieval, anchor text, i.e.,
the context of a citation can be used to charac-
terise (index) the cited paper using terms out-
side of that paper (Bradshaw, 2003); O’Connor
(1982) presents an approach for identifying the
area around citations where the text focuses on

that citation. And automatic citation classifi-
cation (Nanba and Okumura, 1999; Teufel et
al., 2006) determines the function that a cita-
tion plays in the discourse.

For such information access and retrieval pur-
poses, the relevance of a citation within a paper
is often crucial. One can estimate how impor-
tant a citation is by simply counting how often
it occurs in the paper. But as Kim and Webber
(2006) argue, this ignores many expressions in
text which refer to the cited author’s work but
which are not as easy to recognise as citations.
They address the resolution of instances of the
third person personal pronoun “they” in astron-
omy papers: it can either refer to a citation or to
some entities that are part of research within the
paper (e.g., planets or galaxies). Several appli-
cations should profit in principle from detecting
connections between referring expressions and
citations. For instance, in citation function clas-
sification, the task is to find out if a citation is
described as flawed or as useful. Consider:

Most computational models of discourse
are based primarily on an analysis of

the intentions of the speakers [Cohen and

Perrault, 1979][Allen and Perrault,
1980][Grosz and Sidner, 1986]WEAK.
The speaker will form intentions based on
his goals and then act on these intentions, pro-
ducing utterances. The hearer will then re-
construct a model of the speaker’s intentions
upon hearing the utterance. This approach
has many strong points, but does not
provide a very satisfactory account of
the adherence to discourse conventions in di-
alogue.

The three citations above are described as flawed
(detectable by “does not provide a very satis-
factory account”), and thus receive the label
Weak. However, in order to detect this, one
must first realise that “this approach” refers to
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the three cited papers. A contrasting hypoth-
esis could be that the citations are used (thus
deserving the label Use; the cue phrase “based
on” might make us think so (as in the context
“our work is based on”). This, however, can be
ruled out if we know that “the speaker” is not
referring to some aspect of the current paper.

2 The scientific attribution task

We define an attribution task where possible ref-
erents are members of the reference list (i.e.,
each cited paper), the Current-Paper, and
a back-off category No-Specific-Paper for
markables that are not attributable to any spe-
cific paper(s). Our markables are as follows:
all definite descriptions (e.g., “the hearer”, and
including demonstrative noun phrases such as
“these intentions”), all “work” nouns1, and all
pronouns (possessive, personal and demonstra-
tive); c.f., underlined strings in the above exam-
ple. Our notion of attribution link encompasses
two relations:

1. Anaphoric: The referents are entire re-
search papers, or the papers’ authors

2. Subpart: The referents are some compo-
nent of an approach/argument/claim in the
research paper

There are two tasks: attributing a linguistic
expression to the right paper (including the cur-
rent paper) – a task we call scientific attribution
– and deciding whether or not the expression is
anaphoric to the entirety of the paper, or just to
some subpart of it.

Kim and Webber (2006) solve the problem of
distinguishing between these relations for one
case. They decide whether the pronoun “they”
anaphorically refers to the authors of a cited pa-
per, or whether it refers to some entity that is
discussed in (a subpart of) a paper (e.g., “galax-
ies”). In this paper, we tackle the other problem
of scientific attribution.

We do not distinguish between the two types
of links stated above, but only identify which ci-
tation(s) a linguistic expression is attributable

1We use a list of around 40 research methodology re-
lated nouns from Teufel and Moens (2002), such as e.g.,
“study, account, investigation, result” etc. These are
nouns we are particularly interested in.

to. For tasks of interest to us, it is not enough
to only consider anaphoric references to entire
papers; authors often make statements compar-
ing/using/criticising aspects or subparts of cited
work. We therefore consider a far wider range
of markables than Kim and Webber’s single pro-
noun “they”.

Our attribution task differs from the tradi-
tional anaphora resolution task in that we have
a fixed list of possible referents (the reference
list items, Current-Paper or No-Specific-

Paper) that are known upfront. Also, we do
not form co-reference chains; we attribute a re-
ferring expression directly to one or more ref-
erents. Ours is therefore a multi-label classi-
fication task, where the citations, Current-

Paper and No-Specific-Paper are the labels,
and where one or more labels are assigned to
each markable.

We evaluate intrinsically by comparing to
human-annotated attribution, and extrinsically
by showing that automatically acquired knowl-
edge about scientific attribution improves per-
formance on a discourse classification task—
Argumentative Zoning (Teufel and Moens,
2002), where sentences are labelled as one
of {Own, Other, Background, Textual,

Aim, Basis, Contrast} according to their role
in the author’s argument.

We describe our data in §3 and methodology
in §4, discuss evaluation metrics in §5, and eval-
uate intrinsically in §6 and extrinsically in §7.

3 Data

We used data from the CmpLg (Computation
and Language archive; 320 conference articles
in computational linguistics). The articles are
in XML format.

We produced an annotated corpus (10 arti-
cles, 4290 data points, i.e., markables) based on
written guidelines. The task was found to be
quite intuitive by our annotators, and this was
reflected in high agreement - Krippendorff’s al-
pha2 of more than 0.8 (2 annotators, 3 papers,
1429 data points) on the attribution task. The
distribution of classes was, as expected, quite
skewed: 69% of markables are attributable to

2see description in §5.2
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Current-Paper, 7% to no specific paper and
24% to specific references (on average, 1.7 per
reference). Details about the annotation pro-
cess and human agreement figures can be found
in Siddharthan and Teufel (2007).

4 Machine Learning Approach

We frame the attribution problem as a classi-
fication task: Given a markable (the definite
description/pronoun/work noun under consid-
eration), a binary yes/no decision is made for
each cited paper, and a binary yes/no decision
is made for whether the markable is attributable
to the current paper. The list of labels for the
markable is compiled by including all the cita-
tions for which the machine learner returns yes,
and Current-Paper if the learner returns yes.
If the list is empty (learner returns no for every-
thing), the label is No-Specific-Paper.

Since the model for whether a markable is at-
tributable to the current work is likely to be
different from the model for whether it is at-
tributable to a citation, we trained separate
models for the two problems.

4.1 Deciding attribution to a citation

For each data point to be classified (called NP
below), we create a machine learning instance
for each reference list item by automatically
computing the following features from POS-
tagged text:

1. Properties of data point (NP) and the closest Cita-
tion instance (CIT) of the reference list item:

(a) Type of NP (Definite Description/Work
Noun/Pronoun)

(b) CIT is a self Citation or not

(c) CIT is syntactic (in running text) or paren-
thetical

(d) Is CIT Hobbs’ prediction (searching left–right
starting from current sentence and then con-
sidering previous sentences, is CIT the first
citation or reference to current work found)?

2. Distance measures:

(a) Dist. between NP and CIT measured in words

(b) Dist. between NP and CIT measured in sen-
tences

(c) Dist. between NP and CIT measured in para-
graphs

(d) Is CIT after NP in the discourse (cataphor)?

(e) Distance between CIT and the closest first
person pronoun or “this paper” in words

3. Contextual:

(a) Rank of CIT (how many other reference list
items are closer)

(b) Number of times CIT is cited in the paragraph

(c) Number of times CIT is cited in the whole
paper

(d) Current Section heading (this feature has 5
values: Introduction, Methods, Results, Con-
clusions, Unrecognised)

4. Agreement:

(a) Agreement Number (He/She & single author
non-self citation)

(b) Agreement Person (First & Current/Self Ci-
tation, Third and Not-Current)

We have a chicken and egg problem with cal-
culating the distance of a reference to current
work in 2(e). Unlike citations, these are not un-
ambiguously marked in the text. We calculate
distance from the closest first person pronoun
(even though these could possibly refer to a self
citation, rather than current work) or the phrase
“this paper”, which can again refer to other cita-
tions but predominantly refers to current work.

4.2 Deciding attribution to current work

We use the same features for the second clas-
sifier that makes the decision on whether the
data point refers to Current-Paper, with the
following changes: Features 1(b,c) are removed
as they are meaningless; 1(d) checks Hobbs’
prediction for a first person pronoun/“this pa-
per”, rather than CIT; in 2(a–d), the distance is
measured between the closest first person pro-
noun/“this paper” and the markable, rather
than a citation and the markable; similarly, in
3(b,c) we count instances of first person pro-
noun/“this paper”; for 2(e), we now calculate
the distance of the closest citation instance. In
short, the same features are used, but current
work and citations are swapped.

5 Evaluation Metrics

We consider two evaluation metrics. The first
is the scoring system used for the co-reference
task in the Message Understanding Conferences
MUC-6 and MUC-7. The second is Krippen-
dorff’s α. We briefly discuss both below.

5.1 The MUC-6/MUC-7 Metric
The MUC-6/MUC-7 Co-reference evaluation
metric (Vilain et al., 1995) works by compar-
ing co-reference classes across two annotated
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files. Calling one annotation the “model” and
the other the “system”, for each co-reference
class S in the model, c(S) is the minimal num-
ber of co-reference links needed to generate the
class (this is one less than the cardinality of the
class; c(S) = |S| − 1). m(S) is the number of
“missing” links in the system annotation rela-
tive to the co-reference class as marked up in
the model. In other words, this is the minimum
number of co-reference links that need to be
added to the system annotation to fully gener-
ate the co-reference class S in the model. Recall
error is then RE(S) = m(S)/c(S) and Recall is

R(S) = 1 − RE = c(S)−m(S)
c(S) . Recall for the en-

tire file (or set of files) is calculated by summing
over all co-reference classes in the model:

R =

∑
i c(Si) − m(Si)∑

i c(Si)

Precision (P ) is calculated by swapping the
model and system and the f-measure (F =
2R × P/(R + P )) is symmetric with respect to
both annotations.

5.2 Krippendorff’s Alpha

We follow Passonneau (2004) and Poesio and
Artstein (2005) in using Krippendorff (1980)’s
α metric to compute agreement between anno-
tations. The advantage of α over the more com-
monly used κ metric is that α allows for par-
tial agreement when annotators assign multiple
labels to the same markable; in this case calcu-
lating agreement on a markable requires a more
graded agreement calculation than the “1 if sets
are identical and 0 otherwise” provided for by
κ. Krippendorff’s α measures disagreement, and
allows for the use of distance metrics to calculate
partial disagreement. Following Passonneau, we
present results using four distance metrics:

1. (N)ominal: Two sets have distance N = 0
if they are identical and N = 1 if they are
not. α calculated using the nominal dis-
tance metric is equivalent to κ.

2. (J)accard: Two sets A and B have dis-
tance J = 1 − |A ∩ B|/|A ∪ B|. In other
words, the distance between two sets is
larger, the smaller their intersection and the
larger their union.

3. (D)ice: Two sets A and B have distance
D = 1 − 2 × |A ∩ B|/(|A| + |B|). In prac-
tice, the Dice distance metric behaves simi-
larly to the Jaccard metric, but tends to be
smaller, resulting in slightly higher α.

4. (M)ASI: This is the Jaccard distance J
weighted by a monotonicity distance m
where, m = 0 if two sets are identical;
m = 0.33 if one is a subset of the other;
m = 0.67 if the intersection and the two
set differences are all non-null; m = 1 if the
two sets are disjoint. Formally, the MASI
metric is M = m × J .

As an example, consider two sets {a, b, c} and
{b, c, d}. The distances between these sets are
N = 1, J = 1−2/4 = 0.5, D = 1−2×2/(3+3) =
0.33 and M = 0.67 × 0.5 = 0.33.

Krippendorff’s α is defined as α = 1−Do/De,
where Do is the observed disagreement and De

is the disagreement that is expected by chance:

Do =
1

c(c − 1)

∑

j

∑

k

∑

k′

njknjk′dkk′

De =
1

c(c − 1)

∑

k

∑

k′

nknk′dkk′

In the above formulae, c is the number of
coders, njk is the number of times item j is
classed as category k, nk is the number of times
any item is classed as category k and dkk′ is the
distance between categories k and k ′.

Like κ, Krippendorff’s α is 1 when there is
perfect agreement, 0 when the observed agree-
ment is only what was expected by chance, neg-
ative when observed agreement is less than ex-
pected by chance and positive when observed
agreement is greater than expected by chance.

6 Intrinsic Evaluation Results

We ran a machine learning experiment us-
ing 10-fold cross-validation and the memory-
based learner IBk3 (with k=6), using the Weka

toolkit (Witten and Frank, 2000). The perfor-
mance is shown in Tables 1 and 2. To position
these results we compare them with three base-
line lower bounds and the human performance
upper bound in Table 3. We use three baselines:

3Memory based learning gave better results on this
task than other learners (NB, HNB, IBk, J48, cf. § 7.3.
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Paper Items α-N α-J α-D α-M %A∗

0003055 446 .601 .606 .607 .610 85%
0005006 446 .670 .704 .711 .715 81%
0005015 462 .679 .696 .701 .706 81%
0005025 277 .707 .707 .707 .707 86%
0006011 393 .766 .771 .772 .775 88%
0006038 578 .551 .568 .573 .578 79%
0007035 393 .570 .590 .600 .609 90%
0008026 449 .700 .700 .700 .700 87%
0001001 420 .564 .565 .569 .571 88%
0001020 429 .730 .778 .790 .801 88%
AVG. 429 .654 .669 .673 .677 85%

∗% Agreement, the conservative estimate measured
using the Nominal metric

Table 1: Agreement with Human Gold Standard

• BASEM (Major Class): All data points are
labelled CURRENT-WORK

• BASEP (Previous): Data points are tagged
with the most recent label

• BASEH (Hobbs’ Prediction): Data points
are tagged with the label found by Hobbs’
(1986) search (Search left to right in each
sentence, starting from current sentence,
then considering previous sentences)

As Table 3 shows, our machine learning ap-
proach performs much better than the base-
lines on all the agreement metrics, and is indeed
closer to human performance than to any of the
baselines. The MUC evaluation appears to pro-
duce highly inflated results on our task – when
there is a small set of co-reference classes and
one of these classes contains 70% of data points,
it takes only a small number of missing links to
correct annotations. This results in unreason-
ably high values, particularly for the majority
class baseline of labelling every data point as
Current-Paper. We believe that the α met-
rics provide a much more realistic estimate of
the difficulty of the task and the relative perfor-
mances of different approaches.

Table 4 shows the performance of the ma-
chine learner for each of the three types of lin-
guistic expressions considered. Pronouns are
the easiest to resolve, with on average 90% re-
solved correctly (an agreement with the human
gold standard of α = .71). This drops to 85%
(α = .68) for definite descriptions and demon-
stratives, and further to 78% (α = .63) for re-

Paper No. Classes Recall Precision F
0003055 14 .934 .886 .910
0005006 17 .875 .870 .872
0005015 19 .897 .876 .886
0005025 16 .903 .874 .888
0006011 14 .942 .909 .925
0006038 25 .905 .893 .899
0007035 18 .957 .926 .941
0008026 9 .966 .962 .964
0001001 14 .949 .908 .928
0001020 18 .924 .926 .925
TOTAL 164 .924 .903 .913

Table 2: Evaluation using MUC-6/7 software

Algo α-N α-J α-D α-M %Agr∗muc-f
BaseM .002 .001 .001 .001 69% .934
BaseP -.101 -.083 -.081 -.077 19% .894
BaseH .387 .397 .399 .407 72% .910
IBk .654 .669 .673 .677 85% .913
Hum∗∗ .806 .808 .808 .809 91% .965

∗% Agreement, the conservative estimate measured
using the Nominal metric

∗∗Agreement between two human annotators over a
subset of the corpus (3 files, 1429 data points)

Table 3: Comparison with Baselines and Human
Performance (Averaged results)

maining work nouns (i.e., those not already in a
definite noun phrase).

While all the features contributed to the re-
ported results, the most important features (in
terms of information gain) for deciding attribu-
tion to a citation were the paragraph level cita-
tion count 3(b), the distance features 2(a,b,c,d),
the rank 3(a) and the Hobbs’ prediction 1(d).
The most important features for deciding attri-
bution to the current paper were the distance
features 2(a,c,e), the rank 3(a) and the Hobbs’
prediction 1(d).

7 Extrinsic Evaluation

To demonstrate the use of automatic scientific
attribution classification, we studied its util-
ity for one well known discourse annotation
task: Argumentative Zoning (Teufel and Moens,
2002). Argumentative Zoning (AZ) is the task of
applying one of seven discourse level tags (Fig-
ure 1) to each sentence in a scientific paper.

These categories model several aspects of sci-
entific papers: from the distinction of segments
by who an idea is attributed to (Own – Other –
Background), to the judgement of how the au-
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Paper Pronouns Definites Work Nouns
αM %N αM %N αM %N

0003055 .746 94% .556 83% .735 87%
0005006 .846 91% .703 85% .700 78%
0005015 .662 83% .692 79% .787 86%
0005025 .804 89% .717 87% .514 78%
0006011 .824 91% .807 91% .615 76%
0006038 .603 90% .609 81% .430 66%
0007035 .577 94% .507 91% .770 87%
0008026 .678 88% .726 87% .551 78%
0011001 .562 97% .633 87% .377 81%
0011020 .792 90% .798 92% .808 89%
AVG. .709 90% .675 85% .629 78%

Table 4: Results for different markable types

Category Description
Background Generally accepted background knowl-

edge
Other Specific other work
Own Own work: method, results, future

work
Aim Specific research goal
Textual Textual section structure
Contrast Contrast, comparison, weakness of

other solution
Basis Other work provides basis for own work

Figure 1: AZ Annotation scheme

thors relate to other work (Contrast – Basis)
to the rhetorical status of high-level discourse
goals (statement of Aim; overview of section
structure (Textual)). Some of these categories
(Background, Other and Own) occur in zones
that span many sentences. Other categories typ-
ically occur in short zones, often just a single
sentence (Textual, Aim, Contrast, Basis).

In all work to date, classification of sentences
into one of the AZ categories has been performed
on the basis of features extracted from within
the sentence, and a few contextual features such
as section heading and location in document.
Scientific attribution links previously unresolved
noun phrases or pronouns in the sentence to cita-
tions. As this provides the machine learner with
more information, AZ results should improve.

7.1 AZ Data

The evaluation corpus used is the one from
Teufel and Moens (2002). It consists of 80 con-
ference papers in computational linguistics, con-
taining around 12000 sentences. Each of these
is manually tagged as one of {OWN, OTH, BKG,

BAS, AIM, CTR, TXT}. The reliability observed
is reasonable (Kappa=0.71)).

7.2 Features

Following Teufel and Moens (2002), we used su-
pervised ML using features extracted by shallow
processing (POS tagging and pattern matching):

• Lexical (cue phrase) features consist
of three features: the first models occur-
rence of about 1700 manually identified sci-
entific cue phrases (such as “in this paper”).
The cue phrases are classified into semantic
groups. The second models the main verb
of the sentence, by lookup in a verb lexicon
organised by 13 main clusters of verb types
(e.g. “change verbs”), and the third models
the likely subject of the sentence, by clas-
sifying them either as the authors, or other
researchers, or none of the above, using an
extensive lexicon of regular expressions.

• Content word features model occurrence
and density of content words in the sen-
tences, where content words are either de-
fined as non-stoplist words in the subsection
heading preceding the sentence, or as words
with a high TF*IDF score.

• Linguistic features include (complex)
tense, voice, and presence of an auxiliary.

• Citation features detect properties of for-
mal citations in text, such as the occurrence
of authors’ names in text, the position of a
citation in text, and whether the citation
is a self citation (i.e., includes any of the
authors of the paper itself).

• Location features: Rhetorical roles are
expected at certain places in the document,
for instance, background sentences are more
likely to occur at the beginning of the text,
and goal statements often occur after about
a fifth of the paper. We model this by split-
ting the text into ten segments and assign-
ing each sentence to the segment it is lo-
cated in. We also use the section heading
as a contextual feature.

Some categories tend to occur in blocks (e.g.,
Own, Other, Background), and the context
in terms of the label of the previous sentence
has good predictive value. We model this (the
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Learner kappa Macro-F
No Attrib With Attrib No With

NB .45 .46 .53 .53
HNB .42 .45 .51 .53
IBk .34 .36 .39 .39
J48 .38 .41 .41 .48
Stacking .45 .48 .51 .53

Table 5: Improvement on AZ from using auto-
matic scientific attribution classification.

so-called History feature) by running the clas-
sifier twice, and including the prediction for the
previous sentence as a feature the second time.

Due to practical considerations, we obtained
our linguistic features using the RASP part of
speech tagger (Briscoe and Carroll, 1995), when
in previous work we used the LT TTT (Grover
et al., 2000). We would not expect this to in-
fluence results much, however. Another differ-
ence is that we use around 1700 additional cue
phrases acquired from previous work on another
discourse task4 (Teufel et al., 2006).

In addition to these features, we use four
features obtained from the scientific attribution
task described in this paper:

Scientific Attribution Features:

• Whether there is any reference to current
work in the sentence

• Whether there is any reference to any spe-
cific citation in the sentence

• Whether there is any reference in the sen-
tence to work that is in neither the current
paper nor any specific citation

• Which of these, if any, is in subject position

Our aim is to explore whether these features
obtained from the scientific attribution task in-
fluence machine learning performance on AZ.

7.3 AZ results

We ran five different machine learners with and
without the four scientific attribution features
(c.f., §7.2). Note that our labelled data for the
attribution task does not overlap with the 80 pa-
pers in the AZ corpus, and all attribution pre-
dictions used in features for this AZ experiment

4These cues are acquired manually from files that are
not part of the AZ evaluation corpus.

Without Attribution Features
Aim Ctr Txt Own Bkg Bas Oth

P .44 .42 .52 .84 .46 .34 .47
R .61 .30 .68 .88 .45 .37 .37
F .52 .35 .59 .86 .46 .35 .42

Correctly Classified Instances 73.0%
Kappa statistic 0.45
Macro-F 0.51

With Attribution Features
Aim Ctr Txt Own Bkg Bas Oth

P .57 .42 .57 .84 .44 .40 .55
R .61 .27 .66 .90 .47 .43 .42
F .59 .33 .61 .87 .46 .41 .47

Correctly Classified Instances 74.7%
Kappa statistic 0.48
Macro-F 0.53

Table 6: Best AZ results using Stacked classifier:
with and without Attribution Features.

are obtained entirely from unseen (and indeed
unlabelled) data based on the model learnt on
10 papers (c.f., §6). The learners we used (with
default Weka settings) are:

• NB: Naive Bayes learner

• HNB: Hidden Naive Bayes learner

• IBk: Memory based learner

• J48: Decision tree based learner

• STACKING: combining NB and J48 classi-
fiers with the stacking method

As mentioned under History feature above, we
run each learner twice, the second time includ-
ing the machine learning prediction for the pre-
vious sentence (as we found in Teufel and Moens
(2002) for NB, we noticed a slight improvement
in performance when using the history feature
(between .005 and .01 on both κ and Macro-
F for all learners)). We found an improvement
from including the four reference features with
all the learners, as shown in Table 5.

For a more detailed view of where the im-
provement comes from, refer to Table 6, which
shows precision, recall and f-measure per cate-
gory for our best learner. The biggest improve-
ments from using attribution features are for the
categories Other, Aim and Bas. The improve-
ment in Other was to be be expected, as this
zone is directly related to the attribution classi-
fication. The large improvements in Aim and
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Aim Ctr Txt Own Bkg Bas Oth
P .44 .34 .57 .84 .40 .37 .52
R .65 .20 .66 .88 .50 .40 .39
F .52 .26 .61 .86 .44 .38 .44

Correctly Classified Instances 72.5%
Kappa statistic 0.45
Macro-F 0.50

Table 7: Teufel and Moens (2002)’s best AZ re-
sults (Naive Bayes Classifier).

Bas is good news, as these are amongst our
most informative rhetorical categories for down-
stream tasks. Our best results of Kappa=0.48
and Macro-F=0.53 are better than the best pre-
viously published results on task (Kappa=0.45
and Macro-F=0.50 in Teufel and Moens (2002)).
Our results improve on the results of Teufel and
Moens (2002) (reproduced in Table 7) – both
overall and for each individual category.

8 Conclusions

We have described a new reference task - decid-
ing scientific attribution, and demonstrated high
human agreement (α > 0.8) on this task. Our
machine learning solution using shallow features
achieves an agreement of αM = 0.68 with the
human gold standard, increasing to αM = 0.71
if only pronouns need to be resolved. We have
also demonstrated that information about scien-
tific attribution improves results for a discourse
classification task (Argumentative Zoning).

We believe that similar improvements can be
achieved on other discourse annotation tasks in
the scientific literature domain. In particular,
we plan to investigate the use of scientific at-
tribution information for the citation function
classification task.
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Abstract

This paper studies methods that automat-
ically detect action-items in e-mail, an
important category for assisting users in
identifying new tasks, tracking ongoing
ones, and searching for completed ones.
Since action-items consist of a short span
of text, classifiers that detect action-items
can be built from a document-level or a
sentence-level view. Rather than com-
mit to either view, we adapt a context-
sensitive metaclassification framework to
this problem to combine therankingspro-
duced by different algorithms as well as
different views. While this framework is
known to work well for standard classi-
fication, its suitability for fusing rankers
has not been studied. In an empirical eval-
uation, the resulting approach yields im-
proved rankings that are less sensitive to
training set variation, and furthermore, the
theoretically-motivated reliability indica-
tors we introduce enable the metaclassi-
fier to now be applicable in any problem
where the base classifiers are used.

1 Introduction

From business people to the everyday person, e-
mail plays an increasingly central role in a modern
lifestyle. With this shift, e-mail users desire im-
proved tools to help process, search, and organize
the information present in their ever-expanding in-
boxes. A system that ranks e-mails according to the

∗This work was performed primarily while the first author
was supported by Carnegie Mellon University.

From: Henry Hutchins<hhutchins@innovative.company.com>

To: Sara Smith; Joe Johnson; William Woolings

Subject: meeting with prospective customers

Hi All,

I’d like to remind all of you that the group from GRTY will

be visiting us next Friday at 4:30 p.m. The schedule is:

+ 9:30 a.m. Informal Breakfast and Discussion in Cafeteria

+ 10:30 a.m. Company Overview

+ 11:00 a.m. Individual Meetings (Continue Over Lunch)

+ 2:00 p.m. Tour of Facilities

+ 3:00 p.m. Sales Pitch

In order to have this go off smoothly, I would like to practice

the presentation well in advance.As a result, I will need each

of your parts by Wednesday.

Keep up the good work!

–Henry

Figure 1:An E-mail with Action-Item (italics added).

likelihood of containing “to-do” oraction-itemscan
alleviate a user’s time burden and is the subject of
ongoing research throughout the literature.

In particular, an e-mail user may not always pro-
cess all e-mails, but even when one does, some
emails are likely to be of greater response urgency
than others. These messages often contain action-
items. Thus, while importance and urgency are not
equal to action-item content, an effective action-item
detection system can form one prominent subcom-
ponent in a larger prioritization system.

Action-item detection differs from standard text
classification in two important ways. First, the user
is interested both in detecting whether an email
contains action-items and in locating exactly where
these action-item requests are contained within the
email body. Second, action-item detection attempts
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to recover the sender’s intent — whether she means
to elicit response or action on the part of the receiver.

In this paper, we focus on the primary problem
of presenting e-mails in aranked orderaccording to
their likelihood of containing an action-item. Since
action-items typically consist of a short text span —
a phrase, sentence, or small passage — supervised
input to a learning system can either come at the
document-levelwhere an e-mail is labeled yes/no
as to whether it contains an action-item or at the
sentence-levelwhere each span that is an action-
item is explicitly identified. Then, a corresponding
document-level classifier or aggregated predictions
from a sentence-level classifier can be used to esti-
mate the overall likelihood for the e-mail.

Rather than commit to either view, we use a com-
bination technique to capture the information each
viewpoint has to offer on the current example. The
STRIVE approach (Bennettet al., 2005) has been
shown to provide robust combinations of heteroge-
neous models for standard topic classification by
capturing areas of high and low reliability via the
use of reliability indicators.

However, usingSTRIVE in order to produce im-
proved rankings has not been previously studied.
Furthermore, while they introduce some reliabil-
ity indicators that are general for text classification
problems as well as ones specifically tied to naı̈ve
Bayes models, they do not address other classifica-
tion models. We introduce a series of reliability in-
dicators connected to areas of high/low reliability in
kNN, SVMs, and decision trees to allow the combi-
nation model to include such factors as the sparse-
ness of training example neighbors around the cur-
rent example being classified. In addition, we pro-
vide a more formal motivation for the role these vari-
ables play in the resulting metaclassification model.

Empirical evidence demonstrates that the result-
ing approach yields a context-sensitive combination
model that improves the quality of rankings gener-
ated as well as reducing the variance of the ranking
quality across training splits.

2 Problem Approach

In contrast to related combination work, we focus on
improving rankingsthrough the use of a metaclass-
ification framework. In addition, rather than sim-
ply focusing on combining models from different
classification algorithms, we also examine combin-
ing models that have differentviews, in that both the

qualitative nature of the labeled data and the applica-
tion of the learned base models differ. Furthermore,
we improve upon work on context-sensitive com-
bination by introducing reliability indicators which
model the sensitivity of a classifier’s output around
the current prediction point. Finally, we focus on the
application of these methods to action-item data —
a growing area of interest which has been demon-
strated to behave differently than more standard text
classification problems (e.g. topic) in the literature
(Bennett and Carbonell, 2005).

2.1 Action-Item Detection

There are three basic problems for action-item de-
tection. (1)Document detection: Classify an e-mail
as to whether or not it contains an action-item. (2)
Document ranking: Rank the e-mails such that all
e-mail containing action-items occur as high as pos-
sible in the ranking. (3)Sentence detection: Classify
each sentence in an e-mail as to whether or not it is
an action-item.

Here we focus on the document ranking problem.
Improving the overall ranking not only helps users
find e-mails with action-items quicker (Bennett and
Carbonell, 2005) but can decrease response times
and help ensure that key e-mails are not overlooked.

Since a typical user will eventually process all
received mail, we assume that producing a quality
ranking will more directly measure the impact on
the user than accuracy or F1. Therefore, we focus on
ROC curves and area under the curve (AUC) since
both reflect the quality of the ranking produced.

2.2 Combining Classifiers with Metaclassifiers

One of the most common approaches to classi-
fier combination is stacking (Wolpert, 1992). In
this approach, a metaclassifier observes a past his-
tory of classifier predictions to learn how to weight
the classifiers according to their demonstrated ac-
curacies and interactions. To build the history,
cross-validation over thetraining set is used to ob-
tain predictions from each base classifier. Next, a
metalevel representation of the training set is con-
structed where each example consists of the class
label and the predictions of the base classifiers. Fi-
nally, a metaclassifier is trained on the metalevel rep-
resentation to learn a model of how to combine the
base classifiers.

However, it might be useful to augment the his-
tory with information other than the predicted prob-
abilities. For example, during peer review, reviewers
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Figure 2:Architecture ofSTRIVE. In STRIVE, an additional layer of learning is added where the metaclassifier can usethe context
established by the reliability indicators and the output of the base classifiers tomake an improved decision.

typically provide both a1-5 acceptance rating and a
1-5 confidence. The first of these is related to an es-
timate of class membership,P (“accept′′ | paper),
but the second is closer to a measure of expertise or
a self-assessment of the reviewer’s reliability on an
example-by-example basis.

Automatically deriving such self-assessments for
classification algorithms is non-trivial. TheStacked
Reliability IndicatorVariableEnsemble framework,
or STRIVE, demonstrates how to extend stacking by
incorporating such self-assessments as a layer of re-
liability indicators and introduces a candidate set of
functions (Bennettet al., 2005).

The STRIVEarchitecture is depicted in Figure 2.
From left to right: (1) a bag-of-words representation
of the document is extracted and used by the base
classifiers to predict class probabilities; (2) reliabil-
ity indicator functions use the predicted probabili-
ties and the features of the document to characterize
whether this document falls within the “expertise”
of the classifiers; (3) a metalevel classifier uses the
base classifier predictions and the reliability indica-
tors to make a more reliable combined prediction.

From the perspective of improving action-item
rankings, we are interested in whether stackingor
striving can improve the quality of rankings. How-
ever, we hypothesize that striving will perform better
since it can learn a model that varies the combination
rule based on the current example and thus, better
capture when a particular classifier at the document-
level or sentence-level, bag-of-words orn-gram rep-
resentation,etc.will produce a reliable prediction.

2.3 Formally Motivating Reliability Indicators

While STRIVE has been shown to provide robust
combination for topic classification, a formal moti-
vation is lacking for the type of reliability indicators
that are the most useful in classifier combination.

Assume we restrict our choice of metaclassifier to
a linear model. One natural choice is to rank the
e-mails according to the estimated posterior proba-
bility, P̂ (class = action item | x), but in a linear
combination framework it is actually more conve-
nient to work with the estimated log-odds or logit
transform which is monotone in the posterior,λ̂ =

log P̂ (class=action item|x)

1−P̂ (class=action item|x)
(Kahn, 2004).

Now, consider applying a metaclassifier to a sin-
gle base classifier. Given only a classifier’s probabil-
ity estimates, a metaclassifier cannot improve on the
estimates if they are well-calibrated (DeGroot and
Fienberg, 1986). Thus a metaclassifier applied to
a single base classifier corresponds to recalibration
(Kahn, 2004).

Assume each of then base models gives an un-
calibrated log-odds estimatêλi. Then the com-
bination model would have the form̂λ∗(x) =

W0(x)+
∑n

i=1 Wi(x)λ̂i(x) where theWi are exam-
ple dependent weight functions that the combination
model learns. The obvious implication is that our
reliability indicators can be informed by the optimal
values for the weighting functions.

We can determine the optimal weights in a sim-
plified case with a single base classifier by assuming
we are given “true” log-odds values,λ, and a family
of distributions ∆x such that∆x = p(z | x)
encodes what is local tox by giving the probability
of drawing a pointz near tox. We use∆ instead of
∆x for notational simplicity. Since∆ encodes the
example dependent nature of the weights, we can
dropx from the weight functions. To find weights
that minimize the squared difference between the
true log-odds and the estimated log-odds in the∆
vicinity of x, we can solve a standard regression

problem, argminw0,w1
E∆

[

(

w1 λ̂ + w0 − λ
)2

]

.

Under the assumptionVAR∆

[

λ̂
]

6= 0, this yields:
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w0 = E∆[λ]− w1E∆

[

λ̂
]

(1)

w1 =
COV∆

[

λ̂, λ
]

VAR∆

[

λ̂
] =

σλ

σλ̂

ρλ,λ̂ (2)

where σ and ρ are the stdev and correlation co-
efficient under∆, respectively. The first parame-
ter is a measure of calibration that addresses the
question, “How far off on average is the estimated
log-odds from the true log-odds in the local con-
text?” The second is a measure of correlation, “How
closely does the estimated log-odds vary with the
true log-odds?” Note that the second parameter de-
pends on the local sensitivity of the base classifier,

VAR
1/2
∆

[

λ̂
]

= σλ̂. Although we do not have true

log-odds, wecan introduce local density models to
estimate the local sensitivity of the model.

In particular, we introduce a series of relia-
bility indicators by first defining a∆ distribu-

tion and either computingVAR∆

[

λ̂
]

, E∆

[

λ̂
]

or

the closely related termsVAR∆

[

λ̂(z)− λ̂(x)
]

,

E∆

[

λ̂(z)− λ̂(x)
]

. We use the resulting values for

an example as features for a linear metaclassifier.
Thus we use a context-dependent bias term but leave
the more general model for future work.

2.4 Model-Based Reliability Indicators

As discussed in Section 2.3, we wish to define local
distributions in order to compute the local sensitivity
and similar terms for the base classification models.
To do so, we define local distributions that have the
same “flavor” as the base classification model.

First, consider thekNN classifier. Since we are
concerned with how the decision function would
change as we move locally around the current pre-
diction point, it is natural to consider a set of shifts
defined by thek neighbors. In particular, letdi de-
note the document that has been shifted by a factor
βi toward theith neighbor,i.e. di = d+βi(ni−d).
We use the largestβi such that the closest neighbor
to the new point is the original document,i.e. the
boundary of the Voronoi cell (see Figure 3). Clearly,
βi will not exceed0.5, and we can find it efficiently
using a simple bisection algorithm. Now, let∆ be
a uniform point-mass distribution over the shifted
points and̂λkNN, the output score of thekNN model.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1
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1
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2 3
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5

6

x

Figure 3:Illustration of thekNN shifts produced for a predic-
tion pointx using the numbered points as its neighborhood.

Given this definition of∆, it is now straight-
forward to compute thekNN based reliabil-
ity indicators: E∆[λ̂kNN(z) − λ̂kNN(x)] and

Var
1/2
∆ [λ̂kNN(z)− λ̂kNN(x)].

Similarly, we define variables for the SVM class-
ifier by considering a document’s locality in terms
of nearby support vectors from the set of support
vectors,V. To determineβi, we define it in terms
of the closest support vector inV to d. Let ε be
half the distance to the nearest point inV, i.e. ε =
1
2 minv∈V ‖v − d‖. Thenβi = ε

‖vi−d‖ .1 Thus, the
shift vectors are all rescaled to have the same length.
Now, we must define a probability for the shift. We
use a simple exponential based onε and the rela-
tive distance from the document to the support vec-
tor defining this shift. Letdi ∼ ∆ whereP∆(di) ∝

exp(−‖vi − d‖+ 2ε) and
∑V

i=1 P∆(di) = 1.2

Given this definition of ∆, we compute the
SVM based reliability indicators:E∆[λ̂SVM(z) −

λ̂SVM(x)] andVar
1/2
∆ [λ̂SVM(z)− λ̂SVM(x)].

Space prevents us from presenting all the deriva-
tions here. However, we also define decision-tree
based variables where the locality distribution gives
high probability to documents that would land in
nearby leaves. For a multinomial naı̈ve Bayes model
(NB), we define a distribution of documents iden-
tical to the prediction document except having an
occurrence of a single feature deleted. For the
multivariate Bernoulli näıve Bayes (MBNB) model

1We assume that the minimum distance is not zero. If it is
zero, then we return zero for all of the variables.

2As is standard to handle different document lengths, we
take the distance between documents after they have been nor-
malized to the unit sphere.
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that models feature presence/absence, we use a
distribution over all documents that has one pres-
ence/absence bit flipped from the prediction docu-
ment. It is interesting to note that the variables from
the näıve Bayes models can be shown to be equiva-
lent to variables introduced by Bennettet al. (2005)
— although those were derived in a different fashion
by analyzing the weight a single feature carries with
respect to the overall prediction.

Furthermore, from this starting point, we go on to
define similar variables of possible interest. Includ-
ing the two for each model described here, we define
10 kNN variables,5 SVM variables,2 decision-tree
variables,6 NB model based variables, and6 MBNB
variables. We describe these variables as well as im-
plementation details and computational complexity
results in (Bennett, 2006).

3 Experimental Analysis

3.1 Data

Our corpus consists of e-mails obtained from vol-
unteers at an educational institution and covers
subjects such as: organizing a research work-
shop, arranging for job-candidate interviews, pub-
lishing proceedings, and talk announcements. Af-
ter eliminating duplicate e-mails, the corpus con-
tains 744 messages with a total of 6301 automat-
ically segmented sentences. A human panel la-
beled each phrase or sentence that contained an
explicit request for information or action. 416 e-
mails have no action-items and 328 e-mails con-
tain action-items. Additional information such
as annotator agreement, distribution of message
length, etc. can be found in (Bennett and Car-
bonell, 2005). An anonymized corpus is available
at http://www.cs.cmu.edu/˜pbennett/action-item-dataset.html.

3.2 Feature Representation

We use two types of feature representation: a bag-
of-words representation which uses all unigram to-
kens as the feature pool; and a bag-of-n-grams
wheren includes alln-grams wheren ≤ 4. For
both representations at both the document-level and
sentence-level, we used only the top 300 features by
the chi-squared statistic.

3.3 Document-Level Classifiers

kNN
We used as-cut variant ofkNN common in text
classification (Yang, 1999) and a tfidf-weighting

of the terms with a distance-weighted vote of the
neighbors to compute the output.k was set to be
2(dlog2 Ne + 1) whereN is the number of training
points. 3 The score used as the uncalibrated log-
odds estimate of being an action-item is:

λ̂kNN(x) =
∑

n∈kNN(x)|c(n)=action

item

cos(x,n) −
∑

n∈kNN(x)|c(n) 6=action

item

cos(x,n).

SVM
We used a linear SVM as implemented in the
SVMlight package v6.01 (Joachims, 1999) with a
tfidf feature representation and L2-norm. All de-
fault settings were used. SVM’s margin score,
∑

αiyi K(xi,xj), has been shown to empirically
behave like an uncalibrated log-odds estimate (Platt,
1999).

Decision Trees
For the decision-tree implementation, we used the
WinMine toolkit and refer to this asDnetbelow (Mi-
crosoft Corporation, 2001). Dnet builds decision
trees using a Bayesian machine learning algorithm
(Chickeringet al., 1997; Heckermanet al., 2000).
The estimated log-odds is computed from a Laplace
correction to the empirical probability at a leaf node.

Näıve Bayes
We use a multinomial naı̈ve Bayes (NB) and a mul-
tivariate Bernoulli näıve Bayes classifier (MBNB)
(McCallum and Nigam, 1998). For these classifi-
ers, we smoothed word and class probabilities us-
ing a Bayesian estimate (with the word prior) and
a Laplace m-estimate, respectively. Since these are
probabilistic, they issue log-odds estimates directly.

3.4 Sentence-Level Classifiers

Each e-mail is automatically segmented into sen-
tences using RASP (Carroll, 2002). Since the cor-
pus has fine grained labels, we can train classifiers
to classify a sentence. Each classifier in Section 3.3
is also used to learn a sentence classifier. However,
we then must make a document-level prediction.

In order to produce a ranking score, the con-
fidence that the document contains an action-item is:

λ̂(d) =

{

1
n(d)

∑

s∈d|π(s)=1 λ̂(s), ∃s∈d|π(s) = 1
1

n(d) maxs∈d λ̂(s) o.w.

3This rule is not guaranteed be optimal for a particular value
of N but is motivated by theoretical results which show such a
rule converges to the optimal classifier as the number of training
points increases (Devroyeet al., 1996).
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wheres is a sentence in documentd, π is the class-
ifier’s 1/0 prediction,̂λ is the score the classifier as-
signs as its confidence thatπ(s) = 1, andn(d) is
the greater of 1 and the number of (unigram) to-
kens in the document. In other words, when any
sentence is predicted positive, the document score
is the length normalized sum of the sentence scores
above threshold. When no sentence is predicted pos-
itive, the document score is the maximum sentence
score normalized by length. The length normaliza-
tion compensates for the fact that we are more likely
to emit a false positive the longer a document is.

3.5 Stacking

To examine the hypothesis that the reliability in-
dicators provide utility beyond the information
present in the output of the20 base classifiers
(2 representations∗2 views∗5 classifiers), we con-
struct a linear stacking model which uses only the
base classifier outputs and no reliability indicators as
a baseline. For the implementation, we use SVMlight

with default settings. The inputs to this classifier are
normalized to have zero mean and a scaled variance.

3.6 Striving

Since we are constructing base classifiers for both
the bag-of-words and bag-of-n-grams representa-
tions, this gives58 reliability indicators from com-
puting the variables in Section 2.4 for the document-
level classifiers (58 = 2 ∗ [6 + 6 + 10 + 5 + 2]).

Although the model-based indicators are defined
for each sentence prediction, to use them at the
document-level we must somehow combine the re-
liability indicators over each sentence. The simplest
method is to average each classifier-based indicator
across the sentences in the document. We do so and
thus obtain another58 reliability indicators.

Furthermore, our model might benefit from some
of the structure a sentence-level classifier offers
when combining document predictions. Analogous
to the sensitivity of each base model, we can con-
sider such indicators as the mean and standard de-
viation of the classifier confidences across the sen-
tences within a document. For each sentence-level
base classifier, these become two more indicators
which we can benefit from when combining docu-
ment predictions. This introduces20 more variables
(20 = 2 representations ∗ 2 ∗ 5 classifiers).

Finally, we include the2 basic voting statistic
reliability-indicators (PercentPredictingPositiveand
PercentAgreeWBest) that Bennettet al.(2005) found

useful for topic classification. This yields a total of
138 reliability-indicators (138 = 58 + 20 + 58 + 2).
With the20 classifier outputs, there are a total of158
input features for striving to handle.

As with stacking, we use SVMlight with default
settings and normalize the inputs to this classifier to
have zero mean and a scaled variance.

3.7 Performance Measures

We wish to improve the rankings of the e-mails in
the inbox such that action-item e-mails occur higher
in the inbox. Therefore, we use the area under the
curve (AUC) of an ROC curve as a measure of rank-
ing performance. AUC is a measure of overall model
and ranking quality that has gained wider adoption
recently and is equivalent to the Mann-Whitney-
Wilcoxon sum of ranks test (Hanley and McNeil,
1982). To put improvement in perspective, we can
write our relative reduction in residual area (RRA)
as 1−AUC

1−AUCbaseline
. We present gains relative to the

best AUC performer (bRRA), and relative to perfect
dynamic selection performance, (dRRA), which as-
sumes we could accuratelydynamicallychoose the
best classifier per cross-validation run.

The F1 measure is the harmonic mean of preci-
sion and recall and is common throughout text class-
ification (Yang and Liu, 1999). Although we are not
concerned with F1 performance here, some users of
the system might be interested in improving rank-
ing while having negligible negative effect on F1.
Therefore, we examine F1 to ensure that an improve-
ment in ranking will not come at the cost of a statis-
tically significant decrease in F1.

3.8 Experimental Methodology

To evaluate performance of the combination sys-
tems, we perform10-fold cross-validation and com-
pute the average performance. For significance tests,
we use a two-tailed t-test (Yang and Liu, 1999)
to compare the values obtained during each cross-
validation fold with ap-value of0.05.

We examine two hypotheses: Stacking will out-
perform all of the base classifiers; Striving will out-
perform all the base classifiers and stacking.

3.9 Results & Discussion

Table 1 presents the summary of results. The best
performer in each column is in bold. If a combi-
nation method statistically significantly outperforms
all base classifiers, it is underlined.
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F1 AUC bRRA dRRA

Document-Level, Bag-of-Words Representation

Dnet 0.7398 0.8423 1.41 1.78

NB 0.6905 0.7537 2.27 2.91

MBNB 0.6729 0.7745 2.00 2.49

SVM 0.6918 0.8367 1.48 1.87

kNN 0.6695 0.7669 2.17 2.74

Document-Level, Ngram Representation

Dnet 0.7412 0.8473 1.38 1.77

NB 0.7361 0.8114 1.75 2.23

MBNB 0.7534 0.8537 1.30 1.61

SVM 0.7392 0.8640 1.24 1.59

kNN 0.7021 0.8244 1.62 2.01

Sentence-Level, Bag-of-Words Representation

Dnet 0.7793 0.8885 1.00 1.27

NB 0.7731 0.8645 1.21 1.50

MBNB 0.7888 0.8699 1.14 1.42

SVM 0.6985 0.8548 1.34 1.70

kNN 0.6328 0.6823 2.98 3.88

Sentence-Level, Ngram Representation

Dnet 0.7521 0.8723 1.13 1.42

NB 0.8012 0.8723 1.15 1.46

MBNB 0.8010 0.8777 1.10 1.38

SVM 0.7842 0.8620 1.23 1.58

kNN 0.6811 0.8078 1.76 2.29

Metaclassifiers

Stacking 0.7765 0.8996 0.88 1.12

STRIVE 0.7813 0.9145 0.76 0.94

Table 1: Base classifier and combiner performance

Now, we turn to the issue of whether combination
improves the ranking of the documents. Examining
the results in Table 1, we see thatSTRIVEstatistically
significantly beats every other classifier according to
AUC. Stacking outperforms the base classifiers with
respect to AUC but not statistically significantly.

Examining F1, we see that neither combination
method outperforms the best base classifier,NB
(sent,ngram). If we examine the hypothesis of
whether this base classifier significantly outperforms
either combination method, the hypothesis is re-
jected. Thus,STRIVE improves the overall ranking
with a negligible effect on F1.

Finally, we compare the ROC curves of striving,
stacking, and two of the most competitive base class-
ifiers in Figure 4. We see that striving loses by a
slight amount to stacking early in the curve but still
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Figure 4:ROC curves (rotated).

beats the base classifiers. Later in the curve, it dom-
inates all the classifiers. If we examine the curves
using error bars, we see that the variance ofSTRIVE

drops faster than the other classifiers as we move fur-
ther along thex-axis. Thus,STRIVE’s ranking quality
varies less with changes to the training set.

4 Related Work

Several researchers have considered text classifi-
cation tasks similar to action-item detection. Co-
hen et al. (2004) describe an ontology of “speech
acts”, such as “Propose a Meeting”, and attempt
to predict when an e-mail contains one of these
speech acts. Corston-Oliveret al. (2004) con-
sider detecting items in e-mail to “Put on a To-Do
List” using a sentence-level classifier. In earlier
work (Bennett and Carbonell, 2005), we demon-
strated that sentence-level classifiers typically out-
perform document-level classifiers on this problem
and examined the underlying reasons why this was
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the case. Furthermore, we presented user studies
demonstrating that users identify action-items more
rapidly when using the system.

In terms of classifier combination, a wide variety
of work has been done in the arena. TheSTRIVE

metaclassification approach (Bennettet al., 2005)
extended Wolpert’s stacking framework (Wolpert,
1992) to use reliability indicators. In recent work,
Leeet al. (2006) derive variance estimates for naı̈ve
Bayes and tree-augmented naı̈ve Bayes and use
them in the combination model. Our work comple-
ments theirs by laying groundwork for how to com-
pute variance estimates for models such askNN that
have no obvious probabilistic component.

5 Future Work and Conclusion

While there are many interesting directions for fu-
ture work, the most interesting is to directly integrate
the sensitivity and calibration quantities derived into
the more general model discussed in Section 2.3.

In this paper, we took an existing approach to
context-dependent combination,STRIVE, that used
many ad hoc reliability indicators and derived a
formal motivation for classifier model-based local
sensitivity indicators. These new reliability indi-
cators are efficiently computable, and the resulting
combination outperformed a vast array of alterna-
tive base classifiers for ranking in an action-item de-
tection task. Furthermore, the combination results
yielded a more robust performance relative to varia-
tion in the training sets. Finally, we demonstrated
that theSTRIVE method could be successfully ap-
plied to ranking.
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Abstract

Previous multi-document relationship ex-
traction and fusion research has focused
on single relationships. Shifting the fo-
cus to multiple relationships allows for the
use of mutual constraints to aid extrac-
tion. This paper presents a fusion method
which uses a probabilistic database model
to pick relationships which violate few
constraints. This model allows improved
performance on constructing corporate
succession timelines from multiple doc-
uments with respect to a multi-document
fusion baseline.

1 Introduction

Single document information extraction of named
entities and relationships has received much atten-
tion since the MUC evaluations1 in the mid-90s (Ap-
pelt et al., 1993; Grishman and Sundheim, 1996).
Recently, there has been increased interest in the
extraction of named entities and relationships from
multiple documents, since the redundancy of infor-
mation across documents has been shown to be a
powerful resource for obtaining high quality infor-
mation even when the extractors have access to little
or no training data (Etzioni et al., 2004; Hasegawa
et al., 2004). Much of the recent work in multi-
document relationship extraction has focused on
the extraction of isolated relationships (Agichtein,
2005; Pasca et al., 2006), but often the goal, as in

1http://www.itl.nist.gov/iaui/894.02/related projects/muc/

single document tasks like MUC, is to extract a tem-
plate or a relational database composed of related
facts.

With databases containing multiple relationships,
the semantics of the database impose constraints
on possible database configurations. This paper
presents a statistical method which picks relation-
ships which violate few constraints as measured by
a probabilistic database model. The constraints are
hard constraints, and robust estimates are achieved
by accounting for the underlying extraction/fusion
uncertainty.

This method is applied to the problem of con-
structing management succession timelines which
have a rich set of semantic constraints. Using con-
straints on probabilistic databases yields F-Measure
improvements of 5 to 18 points on a per-relationship
basis over a state-of-the-art multi-document extrac-
tion/fusion baseline. The constraints proposed in
this paper are used in a context of minimally super-
vised information extractors and present an alterna-
tive to costly manual annotation.

2 Semantic Constraints on Databases

This paper considers management succession
databases where each record has three fields: a
CEO’s name and the start and end years for that
person’s tenure as CEO (Table 1 Column 1). Each
record is represented by three binary logical pred-
icates: ceo(c,x), start(x,y1), end(x,y2), where c is
a company, x is a CEO’s name, and y1 and y2 are
years.2

2All of the relationships in this paper are defined to be bi-
nary relationships. When extracting relationships of higher ar-
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Explicit Implicit Logical Constraints
Relationships Relationships (a partial list)
ceo(c, x) precedes(x1,x2) ceo(c,x1), precedes(x1,x2) ⇔ ceo(c,x2), end(x1,y), start(x2, y)
start(x, y) inoffice(x, y) start(x,y1), inoffice(x,y2), end(x, y3) ⇒ y1 ≤ y2 ≤ y3

end(x, y) predates(x1, x2) inoffice(x1, y1), inoffice(x2, y2) , y1 < y2 ⇒ predates(x1,x2)
precedes(x1,x2) , inoffice(x1,y1), inoffice(x2,y2) ⇒ y1 ≤ y2

Table 1: Database semantics can provide 1) a method to augment the explicit relationships in the database
with implicit relationships and 2) logical constraints on these explicit and implicit relationships. In the above
table, c is a company, xi is a person, and yi is a time.

In this setting, database semantics allow for the
derivation of other implicit relationships from the
database: the immediate predecessor of a given CEO
(precedes(x1,x2)), all predecessors of a given CEO
(predates(x1,x2)) and all years the CEO was in of-
fice (inoffice(x,y3)), where x2 is a CEO’s name and
t3 a year (Table 1 Column 2).

These implicit relationships and the original ex-
plicit relationships are governed by a series of se-
mantic relations which impose constraints on the
permissible database configurations (Table 1 Col-
umn 3). For example, it will always be true that a
CEO’s start date precedes their end date:

∀x : start(x, y1), end(x, y2) ⇒ y1 ≤ y2.

Multi-document extraction of single relationships
exploits redundancy and variety of expression to ex-
tract accurate information from across many docu-
ments. However, these are not the only benefits of
extraction from a large document collection. As well
as being rich in redundant information, large docu-
ment collections also contain a wealth of secondary
relationships which are related to the relationship of
interest via constraints as described above. These
secondary relationships can yield benefits to aug-
ment those achieved by redundancy.

3 Multi-Document Database Fusion

There are typically two steps in the extraction of sin-
gle relationships from multiple documents. In the
first step, a relationship extractor goes through the
corpus, finds all possible relationships r in all sen-
tences s and gives them a score p(r|s). Next, the

ity, typically binary relationships are combined (McDonald et
al., 2005).

relationships are fused across sentences to generate
one score φr for each relationship.

This paper proposes a third step which combines
the fusion scores across relationships. This section
first presents a probabilistic database model gener-
ated from fusion scores and then shows how to use
this model for multi-document fusion.

3.1 A Probabilistic Database Model

A relationship r is defined to be a 3-tuple rt,a,b =
r(t, a, b), where t is the type of the relationship (e.g.
start), and a and b are the arguments of the binary
relationship.3

To construct a probabilistic database for a given
corpus, the weights generated in relationship fusion
are normalized to provide the conditional probability
of a relationship given its type:

p(rt,a,b
1 |t1) =

φ
rt,a,b
1∑

ri:rt
i=t φ

rt,a,b
i

,

where φr is the fusion score generated by the extrac-
tion/fusion system.4 By applying a prior over types
p(t), a distribution p(r1, t1) can be derived. Given
strong independence assumptions, the probability of
an ordered database configuration R = r1..n of types
t1..n is:

p(r1..n, t1..n) =
n∏

i=1

p(ri, ti). (1)

3For readibility in future examples, “a” and “b” are replaced
by the types of their arguments. For example, for start the year
in which the CEO starts is referred to as ryear .

4The following fusion method does not depend on a par-
ticular extraction/fusion architecture or training methodology,
merely this conditional probability distribution.

333



As proposed, the model in Equation 1 is faulty
since the relationships in a database are not inde-
pendent. Given a set of database constraints, certain
database configurations are illegal and should be as-
signed zero probability. To address this, the model
in Equation 1 is augmented with constraints that ex-
plicitly set the probability of a database configura-
tion to zero when they are violated.

A database constraint is a logical formula
η(r1..π(η)), where π(η) is the arity of the constraint
η. For the constraints presented in this paper, all
constraints η are modeled with two terms ηα and ηβ

where:

η(r1..π(η)) =
(
ηα(r1..π(η)) ⇒ ηβ(r1..π(η))

)
.

For a set of relationships, a constraint holds if η(·)
is true, and the constraint applies if ηα(·) is true. A
constraint η(·) can only be violated (false) when the
constraint applies, since: (false ⇒ X) = true.

In application to a database, each constraint η is
quantified over the database to become a quantified
constraint ηr1..n . For example, the constraints that a
person’s start date must come before their end date is
universally quantified over all pairs of relationships
in a configuration R = r1..n:

ηr1..n = ∀r1,r2 ∈ R : η(r1, r2) =
(rt

1 = start, rt
2 = end, rceo

1 = rceo
2 )

⇒ (ryear
1 < ryear

2 ).

This constraint applies to start and end relationships
whose CEO argument matches and is violated when
the years are not in order. If the quantified constraint
ηr1..n is true for a given database configuration r1..n

then it holds.
To ensure that only legal database configurations

are assigned positive probabilities, Equation 1 is
augmented with a factor

φη
r1..n

=

{
1 if ηr1..nholds
0 otherwise .

To include a constraint η, the database model in
Equation 1 is extended to be:

pη(r1..n, t1..n) =
1
Z

(∏
i

p(ri, ti)

)
φη

r1..n
,

where Z is the partition function and corresponds to
the total probability of all database configurations. A
set of constraints η1..Q = η1..ηQ can be integrated
similarly:

pη1..Q(r1..n, t1..n) =
1
Z

(∏
i

p(ri, ti)

)∏
q

φηq

r1..n

(2)

With these added constraints, the probabilistic
database model assigns non-zero probability only to
databases which don’t violate any constraints.

3.2 Constraints on Probabilistic Databases for
Relationship Rescoring

Though the constrained probabilistic database
model in Equation 2 is theoretically appealing, it
would be infeasible to calculate its partition func-
tion which requires enumeration of all legal 2n

databases. This section proposes two methods for
re-scoring relationships with regards to how likely
they are to be present in a legal database configu-
ration using the model proposed above. The first
method is a confidence estimate based on how likely
it is that η holds for a given relationship r1:

Λη(r1, t1) = Ep(r2..n,t2..n)

[
φη

r1..π(η)

]
=

∑
r2..π(η)

(∏π(η)
i=2 p(ri, ti)

)
φη

r1..π(η)∑
r2..π(η)

(∏π(η)
i=2 p(ri, ti)

)
=

∑
r2..π(η)

pη(r1..n, t1..n)∑
r2..π(η)

p(r1..n, t1..n)
,

where the expectation that the constraint holds
is equivalent to the likelihood ratio between the
database probability models with and without con-
straints. In effect, this model measures the expec-
tation that the constraint holds for a finite database
“look-ahead” of size π(η)− 1.

With this method, for a constraint to reduce the
confidence in a particular relationship by half, half
of all configurations would have to violate the con-
straint.5 Since inconsistencies are relatively rare, for
a given relationship Λη(r, t) ≈ 1 (i.e. almost all
small databases are legal).

5Assuming equal probability for all relationships.
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To remedy this, another factor φα is defined simi-
larly to φη, except that it takes a value of 1 only if the
constraint applies to that database configuration. An
applicability probability model is then defined as:

pα(r1..n, t1..n) =
1
Z

(∏
i

p(ri, ti)

)
φα

r1..n
.

The second confidence estimate is based on how
likely it is that the constraint is holds in cases where
it applies (i.e. is not violated):

Λη,α(r1, t1)

= Epα(r2..n,t2..n)

[
φη

r1..π(η)

]
=

∑
r2..π(η)

(∏π(η)
i=2 p(ri, ti)

)
φα

r1..π(η)
φη

r1..π(η)∑
r2..π(η)

(∏π(η)
i=2 p(ri, ti)

)
φα

r1..π(η)

.

When the constraint doesn’t apply it cannot be vio-
lated, so this confidence estimate ignores those con-
figurations that can’t be affected by the constraint.

Recall that Λη(r, t) is the likelihood ratio be-
tween the probability of configurations in which r
holds for constraint η and all configurations. In con-
trast, Λη,α(r, t) is the likelihood ratio between the
database configurations where r applies and holds
for η and the database configurations where η ap-
plies. In the later ratio, for confidence in a particular
relationship to be cut in half, only half of the con-
figurations which might actually contain an incon-
sistency would be required to produce a violation.6

As a result, Λη,α(r, t) gives a much higher penalty to
relationships which create inconsistencies than does
Λη(r, t).

In order to apply multiple constraints, indepen-
dent database look-aheads are generated for each
constraint q:

Λη1..Q,α1..Q(r1, t1) =
∏
q

Ληq ,αq(r1, t1).

For a particular relationship type, these confidence
scores are calculated and then used to rank the rela-

6For example, for a start relationship and the constraint that
a CEO must start before they end, this method would only ex-
amine configurations of one start and one end relationship for
the same CEO. The confidence in a particular start date would
be halved if half of the proposed end dates for a given CEO
occurred before it.

tionships via:

ĉη1..Q,α1..Q(r1, t1) = p(r1, t1)
∏
q

Ληq ,αq(r1, t1)

(3)

Databases with different precision/recall trade offs
can be selected by descending the ranked list.7

4 Experiments

In order to test the fusion method proposed above,
human annotators manually constructed truth data
of complete chief executive histories for 18 Fortune-
500 companies using online resources. Extraction
from these documents is particularly difficult be-
cause these data have vast differences in genre and
style and are considerably noisy. Furthermore, the
task is complicated to start with.8

A corpus was created for each company by is-
suing a Google query for “CEO-of-Company OR
Company-CEO”, and collecting the top ranked doc-
uments, generating up to 1000 documents per com-
pany. The data was then split randomly into training,
development and testing sets of 6, 4, and 8 compa-
nies.

Training : Anheuser-Busch, Hewlett-Packard,
Lenner, McGraw-Hill, Pfizer, Raytheon

Dev. : Boeing, Heinz, Staples, Textron
Test : General Electric, General Motors,

Gannett, The Home Depot, IBM,
Kroger, Sears, UPS

Ground truth was created from the entire web, but
since the corpus for each company is only a small
web snapshot, the experimental results are not simi-
lar to extraction tasks like MUC and ACE in that the
corpus is not guaranteed to contain the information
necessary to build the entire database. In particular,

7One thing to note is that since all relationships are given
confidence estimates separately, this process may result ulti-
mately in a database where constraints are violated. A potential
solution, which is not explored here, would be to incrementally
add relationships to the database from the ranked list only if
their addition doesn’t make the database inconsistent.

8For example, in certain companies, the title of the chief
executive has changed over the years, often going from “Presi-
dent” to “Chief Executive Officer”. To make things more com-
plicated, after the change, the role of “President” may still hang
on as a subordinate to the CEO!
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1) Only one start or end per person.
∀r1, r2 : η(r1, r2) = (rtype

1 = rtype
2 = (start ∪ end), rceo

1 = rceo
2 ) ⇒ (ryear

1 = ryear
2 )

2) Only a CEO’s start or end dates belong in the database.
∀r1∃r2 : η(r1, r2) = (rtype

1 = start ∪ end, rtype
2 = ceo) ⇒ (rceo

1 = rceo
2 )

3) Start dates come before end dates.
∀r1, r2 : η(r1, r2) = (rtype

1 = start, rtype
2 = end, rceo

1 = rceo
2 ) ⇒ (ryear

1 ≤ ryear
2 )

4) Can’t be in the middle of someone else’s tenure.
∀r1, r2, r3 : η(r1, r2, r3) = (rtype

1 = start ∪ inoffice, rtype
2 = end ∪ inoffice, rtype

3 = start ∪ inoffice ∪ end,
rceo
1 = rceo

2 6= rceo
3 , ryear

1 < ryear
2 ) ⇒ (ryear

3 ≤ ryear
1 ∪ ryear

3 ≥ ryear
2 )

5) CEO’s are only in office after their start.
∀r1, r2 : η(r1, r2) = (rtype

1 = start, rtype
2 = inoffice, rceo

1 = rceo
2 ) ⇒ (ryear

1 ≤ ryear
2 )

6) CEO’s are only in office before their end.
∀r1, r2 : η(r1, r2) = (rtype

1 = inoffice, rtype
2 = end, rceo

1 = rceo
2 ) ⇒ (ryear

1 ≤ ryear
2 )

7) Someone’s end is the same as their successor’s start.
∀r1, r2, r3 : η(r1, r2, r3) =

(rtype
1 = end, rtype

2 = start, rtype
3 = precedes, rceo

1 = rfirst
3 , rceo

2 = rsecond
3 ) ⇒ (ryear

1 = ryear
2 )

8) All of the someone’s dates (start, inoffice, end) are before their successors.
∀r1, r2, r3 : η(r1, r2, r3) = (rtype

1 = start ∪ end ∪ inoffice, rtype
2 = start ∪ inoffice ∪ end, rtype

3 = precedes,

rceo
1 = rfirst

3 , rceo
2 = rsecond

3 ) ⇒ (ryear
1 ≤ ryear

2 )
9) Only CEO succession in the database.
∀r1∃r1, r2 : η(r1, r2, r3) = (rtype

1 = precedes, rtype
2 = rtype

3 = ceo) ⇒ (rfirst
1 = rceo

2 , rsecond
1 = rceo

3 )

Table 2: For a CEO succession database like the one presented in Table 1, the above constraints must hold
if the database is consistent.

many CEOs from pre-Internet years were either in-
frequently mentioned or not mentioned at all in the
database.9 In the following experiments, recall is re-
ported for facts that were retrieved by the extraction
system.

4.1 Relationship Extraction and Fusion

A two-class maximum-entropy classifier was trained
for each relationship type. Each classifier takes a
sentence and two marked entities (e.g. a person and
a year)10 and gives the probability that a relation-
ship between the two entities is supported by the
sentence. For each relationship type, one of the ele-
ments is designated as the “hook” in order to gener-
ate likely negative examples.11 In training, all entity
pairs are collected from the corpus. The pairs whose
“hook” element doesn’t appear in the database are
thrown out. The remaining pairs are then marked

9Another consequence is that assessing the effectiveness of
the relationships extraction on a per-extraction basis is difficult.
Because there are no training sentences where it is known that
the sentence contains the relationship of interest, grading per-
extraction results can be deceptive.

10The person tagger used is the named-entity tagger from
OpenNLP tools and the year tagger simply finds any four digit
numbers between 1950 and 2010.

11For the CEO relationship, the company was taken to be
the hook. For the other relationships the hook was the primary
CEO.

by exact match to the database. In testing, the rela-
tionship extractor yields the probability p(r|s) of an
entity pair relationship r in a particular sentence s.

The features used in the classifier are: unigrams
between the given information and the target, dis-
tance in words between the given information and
the target, and the exact string between the given in-
formation and the target (if less that 3 words long).

After extraction from individual sentences, the re-
lationships are fused together such that there is one
score for each unique entity pair. In the case of per-
son names, normalization was performed to merge
coreferent but lexically distinct names (e.g. “Phil
Condit” and “Philip M. Condit”).

In the following experiments, the baseline fusion
score is:

φr =
∑

s

p(r|s) (4)

4.2 Experimental Results
Given the management succession database pro-
posed in Section 2, Table 2 enumerates a set of quan-
tified constraints. Information extraction and fusion
were run separately for each company to create a
probabilistic database. In this section, various con-
straint sets are applied, either individually or jointly,
and evaluated in two ways. The first measures per-
relationship precision/recall using the model pro-
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Second (8)
First Before
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Start Before End (3)

Inoffice After Start (5)
2,5

2,3,5,

Figure 1: Precision/Recall curve for start(x,t) rela-
tionships. The joint constraint “2,3,5,8” is the best
performing, even though constraints “3” and “8”
(not pictured) alone don’t perform well.

posed and the second looks at the precision/recall
of a heterogeneous database with many relationship
types. Both evaluations examine the ranked lists of
relationships, where the relationships are ranked by
rescoring via constraints on probabilistic databases
(Equation 3) and compared to the baseline fusion
score (Equation 4). The evaluations use two stan-
dard metrics, interpolated precision at recall level i
(PRi), and MaxF1:

PRi = max
j≥i

PRj,

MaxF1 = max
i

2
1

PRi
+ 1

Ri

.

Figures 1, 2, and 3 show precision/recall curves
for the application of various sets of constraints. Ta-
ble 3 lists the MaxF1 scores for each of the con-
straint variants. For start and end, the majority of
constraints are beneficial. For precedes, only the
constraint that improved performance constraints
both people in the relationship to be CEOs. Across
all relationships, performance is hurt when using the
constraint that there could only be one relationship
of each type for a given CEO. The reason behind
this is that the confidence estimate based on this
constraint favors relationships with few competitors,
and those relationships are typically for people who
are infrequent in the corpus (and therefore unlikely
to be CEOs).

The best-performing constraint sets yield between
5 and 18 points of improvement on Max F1 (Ta-
ble 3). Surprisingly, the gains from joint con-
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Baseline
Only One (1)

CEOs Only (2)
Inoffice Before End (6)

2,6

Figure 2: Precision/Recall curve for end(x,t) rela-
tionships alone. The joint constraint “2,6” is the best
performing.
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Baseline
End is Start (7)

First Before Second (8)
Only CEO Succession (9)

Figure 3: Precision/Recall for precedes(x,y) rela-
tionships alone. Though the constraint “First Before
Second (8)” helps performance on start(x,t) relation-
ships, the only constraint which aids here is “Only
CEOs Succession (9)”.

straints are sometimes more than their additive
gains. “2,3,5,6,8” is 6 points better for the start rela-
tionship than “2,3,5,6”, but the gains from “8” alone
are negligible.

These performance gains on the individual rela-
tionship types also lead to gains when generating an
entire database (Figure 4). The highest performing
constraint is the “CEOs Only (2)” constraint, which
outperforms the joint constraints of the previous sec-
tion. One reason the joint constraints don’t do as
well here is that each constraint makes the confi-
dence estimate smaller and smaller. This doesn’t
have an effect when judging the relationship types
individually, but when combining the relationships
results, the fused relationships types (start, end) be-
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Max F1
Constraint Set Start End Pre. DB
∅ (baseline) 31.2 35.8 34.5 37.9
Only One (1) 10.5 7.2 - 38.1
CEOs Only (2) or (9) 43.3 39.4 39.4 42.9
Start Before End (3) 40.8 32.8 - 40.9
No Overlaps (4) 31.5 35.9 - 36.8
Inoffice After Start (5) 32.5 - - 38.2
Inoffice Before End (6) - 36.5 - 37.4
End is Start (7) 7.3 8.0 20.7 39.2
First before Second (8) 31.4 35.6 26.3 38.1
2,5,6 43.3 40.8 - 42.7
2,3,5,6 43.9 43.3 - 42.2
2,3,5,6,8 49.3 43.9 26.3 40.9

Table 3: Max F1 scores for three relationships
Start(x,t), End(x,t) and Precedes(x,y)) in isolation
and within the context of whole database DB. The
joint constraints perform best for the explicit rela-
tionships in isolation. Using constraints on implicit
derived fields (Inoffice and Precedes) provides ad-
ditional benefit above constraints strictly on explicit
database fields (start, end, ceo).

come artificially lower ranked than the unfused rela-
tionship type (ceo). The best performing contrained
probabilistic database approach beats the baseline
by 5 points.

5 Related Work

Techniques for information extraction from min-
imally supervised data have been explored by
Brin (1998), Agichtein and Gravano (2000), and
Ravichandran and Hovy (2002). Those techniques
propose methods for estimating extractors from ex-
ample relationships and a corpus which contains in-
stances of those relationships.

Nahm and Mooney (2002) explore techniques for
extracting multiple relationships in single document
extraction. They learn rules for predicting certain
fields given other extracted fields (i.e. a someone
who lists Windows as a specialty is likely to know
Microsoft Word).

Perhaps the most related work to what is pre-
sented here is previous research which uses database
information as co-occurrence features for informa-
tion extraction in a multi-document setting. Mann

Inoffice Before End (6)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
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 1

 0  0.2  0.4  0.6  0.8  1

Baseline
CEOs Only (2)

Start Before End (3)
2, Inoffice After Start (5)

2,3,5,6

Figure 4: Precision/Recall curve for whole database
reconstruction. Performance curves using con-
straints dominate the baseline.

and Yarowsky (2005) present an incremental ap-
proach where co-occurrence with a known relation-
ship is a feature added in training and test. Cu-
lotta et al. (2006) introduce a data mining approach
where discovered relationships from a database are
used as features in extracting new relationships. The
database constraints presented in this paper provide
a more general framework for jointly conditioning
multiple relationships. Additionally, this constraint-
based approach can be applied without special train-
ing of the extraction/fusion system.

In the context of information fusion of single rela-
tionships across multiple documents, Downey et al.
(2005) propose a method that models the probabili-
ties of positive and negative extracted classifications.
More distantly related, Sutton and McCallum (2004)
and Finkel et al. (2005) propose graphical models
for combining information about a given entity from
multiple mentions.

In the field of question answering, Prager et al.
(2004) answer a question about the list of composi-
tions produced by a given subject by looking for re-
lated information about the subject’s birth and death.
Their method treats supporting information as fixed
hard constraints on the original questions and are ap-
plied in an ad-hoc fashion. This paper proposes a
probabilistic method for using constraints in the con-
text of database extraction and applies this method
over a larger set of relations.

Richardson and Domingos (2006) propose a
method for reasoning about databases and logical
constraints using Markov Random Fields. Their
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model applies reasoning starting from a known
database. In this paper the database is built from ex-
traction/fusion of relationships from web pages and
contains a significant amount of noise.

6 Conclusion
This paper has presented a probabilistic method for
fusing extracted facts in the context of database ex-
traction when there exist logical constraints between
the fields in the database. The method estimates the
probability than the inclusion of a given relationship
will violate database constraints by taking into ac-
count the uncertainty of the other extracted relation-
ships. Along with the relationships explicitly listed
in the database, constraints are formed over implicit
fields directly recoverable from the explicit listed re-
lationships.

The construction of CEO succession timelines us-
ing minimally trained extractors from web text is a
particularly challenging problem because of noise
resulting from the wide variation in genre in the cor-
pora and errors in extraction. The use of constraints
on probabilistic databases is effective in resolving
many of these errors, leading to improved precision
and recall of retrieved facts, with F-measure gains of
5 to 18 points.

The method presented in this paper combines
symbolic and statistical approaches to natural lan-
guage processing. Logical constraints are made
more robust by taking into account the uncertainty
of the extracted information. An interesting area
of future work is the application of data mining to
search for appropriate constraints to integrate into
this model.
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Abstract

Measuring semantic similarity between
words is vital for various applications
in natural language processing, such as
language modeling, information retrieval,
and document clustering. We propose a
method that utilizes the information avail-
able on the Web to measure semantic sim-
ilarity between a pair of words or entities.
We integrate page counts for each word in
the pair and lexico-syntactic patterns that
occur among the top ranking snippets for
the AND query using support vector ma-
chines. Experimental results on Miller-
Charles’ benchmark data set show that the
proposed measure outperforms all the ex-
isting web based semantic similarity mea-
sures by a wide margin, achieving a cor-
relation coefficient of0.834. Moreover,
the proposed semantic similarity measure
significantly improves the accuracy (F -
measure of0.78) in a named entity cluster-
ing task, proving the capability of the pro-
posed measure to capture semantic simi-
larity using web content.

1 Introduction

The study of semantic similarity between words has
been an integral part of natural language processing
and information retrieval for many years. Semantic
similarity measures are vital for various applications
in natural language processing such as word sense

disambiguation (Resnik, 1999), language model-
ing (Rosenfield, 1996), synonym extraction (Lin,
1998a) and automatic thesaurus extraction (Curran,
2002).

Pre-compiled taxonomies such as WordNet1 and
text corpora have been used in previous work on se-
mantic similarity (Lin, 1998a; Resnik, 1995; Jiang
and Conrath, 1998; Lin, 1998b). However, seman-
tic similarity between words change over time as
new senses and associations of words are constantly
created. One major issue behind taxonomies and
corpora oriented approaches is that they might not
necessarily capture similarity between proper names
such as named entities (e.g., personal names, loca-
tion names, product names) and the new uses of ex-
isting words. For example,appleis frequently asso-
ciated withcomputerson the Web but this sense of
apple is not listed in the WordNet. Maintaining an
up-to-date taxonomy of all the new words and new
usages of existing words is costly if not impossible.

The Web can be regarded as a large-scale, dy-
namic corpus of text. Regarding the Web as a live
corpus has become an active research topic recently.
Simple, unsupervised models have shown to per-
form better whenn-gram counts are obtained from
the Web rather than from a large corpus (Keller and
Lapata, 2003; Lapata and Keller, 2005). Resnik and
Smith (2003) extract bilingual sentences from the
Web to create parallel corpora for machine trans-
lation. Turney (2001) defines a point wise mutual
information (PMI-IR) measure using the number of
hits returned by a Web search engine to recognize
synonyms. Matsuo et. al, (2006b) follows a similar

1http://wordnet.princeton.edu/
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approach to measure the similarity between words
and apply their method in a graph-based word clus-
tering algorithm.

Due to the huge number of documents and the
high growth rate of the Web, it is difficult to di-
rectly analyze each individual document separately.
Search engines provide an efficient interface to this
vast information. Page counts and snippets are two
useful information sources provided by most Web
search engines. Page count of a query is the number
of pages that contain the query words2. A snippet is
a brief window of text extracted by a search engine
around the query term in a document. Snippets pro-
vide useful information about the immediate context
of the query term.

This paper proposes a Web-based semantic simi-
larity metric which combines page counts and snip-
pets using support vector machines. We extract
lexico-syntactic patterns from snippets. For exam-
ple, X is a Y indicates there is a high semantic sim-
ilarity betweenX and Y. Automatically extracted
lexico-syntactic patterns have been successfully em-
ployed in various term extraction tasks (Hearst,
1992).

Our contributions are summarized as follows:

• We propose a lexico-syntactic patterns-based
approach to compute semantic similarity using
snippets obtained from a Web search engine.

• We integrate different Web-based similarity
scores using WordNet synsets and support vec-
tor machines to create a robust semantic sim-
ilarity measure. The integrated measure out-
performs all existing Web-based semantic sim-
ilarity measures in a benchmark dataset and a
named entity clustering task. To the best of
our knowledge, this is the first attempt to com-
bine both WordNet synsets and Web content to
leverage a robust semantic similarity measure.

2 Previous Work

Given a taxonomy of concepts, a straightforward
method for calculating similarity between two words
(concepts) is to find the length of the shortest path

2page count may not necessarily be equal to the word fre-
quency because the queried word may appear many times in a
page

connecting the two words in the taxonomy (Rada
et al., 1989). If a word is polysemous (i.e., having
more than one sense) then multiple paths may ex-
ist between the two words. In such cases only the
shortest path between any two senses of the words is
considered for the calculation of similarity. A prob-
lem frequently acknowledged with this approach is
that it relies on the notion that all links in the taxon-
omy represent uniform distances.

Resnik (1995) proposes a similarity measure
based on information content. He defines the sim-
ilarity between two conceptsC1 andC2 in the tax-
onomy as the maximum of the information content
of all conceptsC that subsume bothC1 and C2.
Then the similarity between two words are defined
as the maximum of the similarity between any con-
cepts that the words belong to. He uses WordNet as
the taxonomy and information content is calculated
using the Brown corpus.

Li et al., (2003) combines structural semantic in-
formation from a lexical taxonomy and informa-
tion content from a corpus in a non-linear model.
They propose a similarity measure that uses shortest
path length, depth and local density in a taxonomy.
Their experiments using WordNet and the Brown
corpus reports a Pearson correlation coefficient of
0.8914 on the Miller and Charles’ (1998) bench-
mark dataset. They do not evaluate their method on
similarities between named entities. Recently, some
work has been carried out on measuring semantic
similarity using web content. Matsuo et al., (2006a)
propose the use of Web hits for the extraction of
communities on the Web. They measure the associ-
ation between two personal names using the overlap
coefficient, calculated based on the number of Web
hits for each individual name and their conjunction.

Sahami et al., (2006) measure semantic similarity
between two queries using the snippets returned for
those queries by a search engine. For each query,
they collect snippets from a search engine and rep-
resent each snippet as a TF-IDF weighted term vec-
tor. Each vector isL2 normalized and the centroid
of the set of vectors is computed. Semantic similar-
ity between two queries is then defined as the inner
product between the corresponding centroid vectors.
They do not compare their similarity measure with
taxonomy based similarity measures.

Chen et al., (2006) propose a web-based double-
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checking model to compute semantic similarity be-
tween words. For two wordsP and Q, they col-
lect snippets for each word from a web search en-
gine. Then they count the number of occurrences of
word P in the snippets for wordQ and the number
of occurrences of wordQ in the snippets for word
P . These values are combined non-linearly to com-
pute the similarity betweenP andQ. This method
heavily depends on the search engine’s ranking al-
gorithm. Although two wordsP andQ may be very
similar, there is no reason to believe that one can find
Q in the snippets forP , or vice versa. This observa-
tion is confirmed by the experimental results in their
paper which reports0 similarity scores for many
pairs of words in the Miller and Charles (1998) data
set.

3 Method

In this section we will describe the various similarity
features we use in our model. We utilize page counts
and snippets returned by the Google3 search engine
for simple text queries to define various similarity
scores.

3.1 Page Counts-based Similarity Scores

For the rest of this paper we use the notationH(P )
to denote the page count for the queryP in a search
engine. Terra and Clarke (2003) compare various
similarity scores for measuring similarity between
words in a corpus. We modify the traditional Jac-
card, overlap (Simpson), Dice and PMI measures
for the purpose of measuring similarity using page
counts. WebJaccard coefficient between words (or
phrases)P and Q, WebJaccard(P,Q), is defined
by,

WebJaccard(P,Q)

=

{
0 if H(P ∩Q) ≤ c

H(P∩Q)
H(P )+H(Q)−H(P∩Q) otherwise .(1)

Here,P ∩ Q denotes the conjunction queryP AND
Q. Given the scale and noise in the Web, some words
might occur arbitrarily, i.e. by random chance, on
some pages. Given the scale and noise in web data, it
is a possible that two words man order to reduce the
adverse effect due to random co-occurrences, we set

3http://www.google.com

the WebJaccard coefficient to zero if the page counts
for the queryP ∩Q is less than a thresholdc. 4

Likewise, we define WebOverlap coefficient,
WebOverlap(P, Q), as,

WebOverlap(P, Q)

=

{
0 if H(P ∩Q) ≤ c

H(P∩Q)
min(H(P ),H(Q)) otherwise .(2)

We defineWebDiceas a variant of Dice coeffi-
cient.WebDice(P,Q) is defined as,

WebDice(P, Q)

=

{
0 if H(P ∩Q) ≤ c

2H(P∩Q)
H(P )+H(Q) otherwise . (3)

We defineWebPMIas a variant form of PMI using
page counts by,

WebPMI(P, Q)

=





0 if H(P ∩Q) ≤ c

log2(
H(P∩Q)

N
H(P )

N
H(Q)

N

) otherwise .(4)

Here,N is the number of documents indexed by the
search engine. Probabilities in Formula 4 are esti-
mated according to the maximum likelihood princi-
ple. In order to accurately calculate PMI using For-
mula 4, we must knowN , the number of documents
indexed by the search engine. Although estimating
the number of documents indexed by a search en-
gine (Bar-Yossef and Gurevich, 2006) is an interest-
ing task itself, it is beyond the scope of this work. In
this work, we setN = 1010 according to the number
of indexed pages reported by Google.

3.2 Snippets-based Synonymous Word
Patterns

Page counts-based similarity measures do not con-
sider the relative distance betweenP andQ in a page
or the length of the page. AlthoughP andQ occur
in a page they might not be related at all. Therefore,
page counts-based similarity measures are prone to
noise and are not reliable whenH(P ∩Q) is low. On
the other hand snippets capture the local context of
query words. We propose lexico-syntactic patterns
extracted from snippets as a solution to the problems
with page counts-based similarity measures.

4we setc = 5 in our experiments
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To illustrate our pattern extraction algorithm con-
sider the following snippet from Google for the
queryjaguar ANDcat.

”The Jaguar is the largestcat in Western Hemi-
sphere and can subdue a larger prey than can the
puma”

Here, the phraseis the largestindicates a hy-
pernymic relationship between Jaguar and the cat.
Phrases such asalso known as, is a, part of, is an ex-
ample ofall indicate various of semantic relations.
Such indicative phrases have been successfully ap-
plied in various tasks such as synonym extraction,
hyponym extraction (Hearst, 1992) and fact extrac-
tion (Pasca et al., 2006).

We describe our pattern extraction algorithm in
three steps.

Step 1

We replace the two query terms in a snippet by two
wildcardsX andY. We extract all wordn-grams that
contain bothX and Y. In our experiments we ex-
tractedn-grams forn = 2 to 5. For example, from
the previous snippet we extract the pattern,X is the
largestX. In order to leverage the pattern extraction
process, we randomly select5000 pairs of synony-
mous nouns from WordNet synsets. We ignore the
nouns which do not have synonyms in the WordNet.
For nouns with more than one sense, we select syn-
onyms from its dominant sense. For each pair of
synonyms(P, Q), we query Google for“P” AND
“Q” and download the snippets. Let us call this col-
lection of snippets as thepositive corpus. We apply
the above mentionedn-gram based pattern extrac-
tion procedure and count the frequency of each valid
pattern in the positive corpus.

Step 2

Pattern extraction algorithm described in step1
yields4, 562, 471 unique patterns.80%of these pat-
terns occur less than10 times in the positive corpus.
It is impossible to learn with such a large number of
sparse patterns. Moreover, some patterns might oc-
cur purely randomly in a snippet and are not good
indicators of semantic similarity. To measure the
reliability of a pattern as an indicator of semantic
similarity we employ the following procedure. We
create a set of non-synonymous word-pairs by ran-
domly shuffling the words in our data set of synony-

Table 1: Contingency table
v other thanv All

Freq. in positive corpus pv P − pv P
Freq. in negative corpus nv N − nv N

mous word-pairs. We check each pair of words in
this newly created data set against WordNet and con-
firm that they do not belong to any of the synsets
in the WordNet. From this procedure we created
5000 non-synonymous pairs of words. For each
non-synonymous word-pair, we query Google for
the conjunction of its words and download snippets.
Let us call this collection of snippets as thenega-
tive corpus. For each pattern generated in step1, we
count its frequency in the negative corpus.

Step 3

We create a contingency table as shown in Table 1
for each patternv extracted in step1 using its fre-
quencypv in positive corpus andnv in negative cor-
pus. In Table 1,P denotes the total frequency of all
patterns in the positive corpus andN denotes that in
the negative corpus.

Using the information in Table 1, we calculate
χ2 (Manning and Scḧutze, 2002) value for each pat-
tern as,

χ2 =
(P + N)(pv(N − nv)− nv(P − pv))

2

PN(pv + nv)(P + N − pv − nv)
.

(5)
We selected the top ranking200 patterns experimen-
tally as described in section 4.2 according to theirχ2

values. Some of the selected patterns are shown in
Table 2.

3.3 Training

For each pair of synonymous and non-synonymous
words in our datasets, we count the frequency of
occurrence of the patterns selected in Step3. We
normalize the frequency count of each pattern by
dividing from the total frequency of all patterns.
Moreover, we compute the page counts-based fea-
tures as given by formulae (1-4). Using the200
pattern features and the4 page counts-based fea-
tures we create204 dimensional feature vectors for
each training instance in our synonymous and non-
synonymous datasets. We train a two class support
vector machine (SVM) (Vapnik, 1998), where class

343



+1 represents synonymous word-pairs and class
−1 represents non-synonymous word-pairs. Finally,
SVM outputs are converted to posterior probabilities
(Platt, 2000). We consider the posterior probability
of a given pair of words belonging to class+1 as the
semantic similarity between the two words.

4 Experiments

To evaluate the performance of the proposed se-
mantic similarity measure, we conduct two sets of
experiments. Firstly, we compare the similarity
scores produced by the proposed measure against
the Miller-Charles’ benchmark dataset. We analyze
the performance of the proposed measure with the
number of snippets and the size of the training data
set. Secondly, we apply the proposed measure in a
real-world named entity clustering task and measure
its performance.

4.1 The Benchmark Dataset

We evaluated the proposed method against Miller-
Charles (1998) dataset, a dataset of30 5 word-pairs
rated by a group of38 human subjects. Word-
pairs are rated on a scale from0 (no similarity) to
4 (perfect synonymy). Miller-Charles’ dataset is
a subset of Rubenstein-Goodenough’s (1965) orig-
inal dataset of65 word-pairs. Although Miller-
Charles’ experiment was carried out25 years
later than Rubenstein-Goodenough’s, two sets of
ratings are highly correlated (Pearson correlation
coefficient=0.97). Therefore, Miller-Charles ratings
can be considered as a reliable benchmark for eval-
uating semantic similarity measures.

4.2 Pattern Selection

We trained a linear kernel SVM with topN pattern
features (ranked according to theirχ2 values) and
calculated the Pearson correlation coefficient against
the Miller-Charles’ benchmark dataset. Experimen-
tal results are shown in Figure 1. From Figure 1
we selectN = 200, where correlation maximizes.
Features with the highest linear kernel weights are
shown in Table 2 alongside with theirχ2 values. The
weight of a feature in the linear kernel can be consid-
ered as a rough estimate of the influence it has on the

5Due to the omission of two word-pairs in earlier versions
of WordNet most researchers had used only28 pairs for evalu-
ations
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Figure 1: Correlation vs No of pattern features

Table 2: Features with the highest SVM linear ker-
nel weights

feature χ2 SVM weight
WebDice N/A 8.19

X/Y 33459 7.53
X, Y : 4089 6.00
X or Y 3574 5.83
X Y for 1089 4.49

X . the Y 1784 2.99
with X ( Y 1819 2.85

X=Y 2215 2.74
X and Y are 1343 2.67

X of Y 2472 2.56

final SVM output. WebDice has the highest linear
kernel weight followed by a series of patterns-based
features. WebOverlap (rank=18, weight=2.45), We-
bJaccard (rank=66, weight=0.618) and WebPMI
(rank=138, weight=0.0001) are not shown in Table 2
due to space limitations. It is noteworthy that the
pattern features in Table 2 agree with the intuition.
Lexical patterns (e.g.,X or Y, X and Y are, X of Y) as
well as syntactic patterns (e.g., bracketing, comma
usage) are extracted by our method.

4.3 Semantic Similarity

We score the word-pairs in Miller-Charles dataset
using the page counts-based similarity measures,
previous work on web-based semantic similarity
measures (Sahami (2006), Chen (2006)) and the
proposed method (SVM). Results are shown in Ta-
ble 4.3. All figures except for the Miller-Charles
ratings are normalized into[0, 1] range for the ease
of comparison6. Proposed method (SVM) re-

6Pearson correlation coefficient is invariant against a linear
transformation
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Table 3: Semantic Similarity of Human Ratings and baselines on Miller-Charles dataset
Word Pair Miller- Web Web Web Web Sahami Chen (CODC) Proposed

Charles Jaccard Dice Overlap PMI (2006) (2006) (SVM)
cord-smile 0.13 0.102 0.108 0.036 0.207 0.090 0 0
rooster-voyage 0.08 0.011 0.012 0.021 0.228 0.197 0 0.017
noon-string 0.08 0.126 0.133 0.060 0.101 0.082 0 0.018
glass-magician 0.11 0.117 0.124 0.408 0.598 0.143 0 0.180
monk-slave 0.55 0.181 0.191 0.067 0.610 0.095 0 0.375
coast-forest 0.42 0.862 0.870 0.310 0.417 0.248 0 0.405
monk-oracle 1.1 0.016 0.017 0.023 0 0.045 0 0.328
lad-wizard 0.42 0.072 0.077 0.070 0.426 0.149 0 0.220
forest-graveyard 0.84 0.068 0.072 0.246 0.494 0 0 0.547
food-rooster 0.89 0.012 0.013 0.425 0.207 0.075 0 0.060
coast-hill 0.87 0.963 0.965 0.279 0.350 0.293 0 0.874
car-journey 1.16 0.444 0.460 0.378 0.204 0.189 0.290 0.286
crane-implement 1.68 0.071 0.076 0.119 0.193 0.152 0 0.133
brother-lad 1.66 0.189 0.199 0.369 0.644 0.236 0.379 0.344
bird-crane 2.97 0.235 0.247 0.226 0.515 0.223 0 0.879
bird-cock 3.05 0.153 0.162 0.162 0.428 0.058 0.502 0.593
food-fruit 3.08 0.753 0.765 1 0.448 0.181 0.338 0.998
brother-monk 2.82 0.261 0.274 0.340 0.622 0.267 0.547 0.377
asylum-madhouse 3.61 0.024 0.025 0.102 0.813 0.212 0 0.773
furnace-stove 3.11 0.401 0.417 0.118 1 0.310 0.928 0.889
magician-wizard 3.5 0.295 0.309 0.383 0.863 0.233 0.671 1
journey-voyage 3.84 0.415 0.431 0.182 0.467 0.524 0.417 0.996
coast-shore 3.7 0.786 0.796 0.521 0.561 0.381 0.518 0.945
implement-tool 2.95 1 1 0.517 0.296 0.419 0.419 0.684
boy-lad 3.76 0.186 0.196 0.601 0.631 0.471 0 0.974
automobile-car 3.92 0.654 0.668 0.834 0.427 1 0.686 0.980
midday-noon 3.42 0.106 0.112 0.135 0.586 0.289 0.856 0.819
gem-jewel 3.84 0.295 0.309 0.094 0.687 0.211 1 0.686
Correlation 1 0.259 0.267 0.382 0.548 0.579 0.693 0.834

ports the highest correlation of0.8129 in our ex-
periments. Our implementation of Co-occurrence
Double Checking (CODC) measure (Chen et al.,
2006) reports the second best correlation of0.6936.
However, CODC measure reports zero similarity for
many word-pairs. This is because for a word-pair
(P, Q), we might not necessarily findQ among the
top snippets forP (and vice versa). CODC mea-
sure returns zero under these conditions. Sahami
et al. (2006) is ranked third with a correlation of
0.5797. Among the four page counts based mea-
sures WebPMI reports the highest correlation (r =
0.5489). Overall, the results in Table 4.3 suggest
that snippet-based measures are more accurate than
page counts-based measures in capturing semantic
similarity. This is evident for word-pairs where at
least one of the words is a polysemous word (e.g.,
pairs that includecock, brother). Page counts-based
measures do not consider the context in which the
words appear in a page, thus cannot disambiguate

Table 4: Comparison with taxonomy based methods
Method correlation
Human replication 0.901
Resnik (1995) 0.745
Lin (1998) 0.822
Li et al (2003) 0.891
Edge-counting 0.664
Information content 0.745
Jiang & Conrath (1998) 0.848
proposed (SVM) 0.834

the multiple senses.

As summarized in Table 4.3, proposed method
is comparable with the WordNet based methods.
In fact, the proposed method outperforms simple
WordNet based approaches such as Edge-Counting
and Information Content measures. However, con-
sidering the high correlation between human sub-
jects (0.9), there is still room for improvement.

Figure 2 illustrates the effect of the number
of snippets on the performance of the proposed
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method. Correlation coefficient steadily improves
with the number of snippets used for extracting pat-
terns. When few snippets are processed only a few
patterns are found, thus the feature vector becomes
sparse, resulting in poor performance. Figure 3 de-
picts the correlation with human ratings for various
combinations of positive and negative training in-
stances. Maximum correlation coefficient of0.834
is achieved with1900 positive training examples and
2400 negative training examples. Moreover, Fig-
ure 3 reveals that correlation does not improve be-
yond2500 positive and negative training examples.
Therefore, we can conclude that2500 examples are
sufficient to leverage the proposed semantic similar-
ity measure.

4.4 Named Entity Clustering

Measuring semantic similarity between named en-
tities is vital in many applications such as query
expansion (Sahami and Heilman, 2006) and com-
munity mining (Matsuo et al., 2006a). Since most
named entities are not covered by WordNet, simi-
larity measures based on WordNet alone cannot be

Table 5: Performance of named entity clustering
Method Precision Recall F Measure
WebJaccard 0.5926 0.712 0.6147
WebOverlap 0.5976 0.68 0.5965
WebDice 0.5895 0.716 0.6179
WebPMI 0.2649 0.428 0.2916
Sahami (2006) 0.6384 0.668 0.6426
Chen (2006) 0.4763 0.624 0.4984
Proposed 0.7958 0.804 0.7897

used in such tasks. Unlike common English words,
named entities are constantly being created. Manu-
ally maintaining an up-to-date taxonomy of named
entities is costly, if not impossible. The proposed
semantic similarity measure is appealing as it does
not require pre-compiled taxonomies. In order to
evaluate the performance of the proposed measure
in capturing the semantic similarity between named
entities, we set up a named entity clustering task.
We selected50 person names from5 categories :
tennis players, golfers, actors, politicians and scien-
tists, (10 names from each category) from thedmoz
directory7. For each pair of names in our dataset,
we measure the association between the two names
using the proposed method and baselines. We use
group-average agglomerative hierarchical clustering
to cluster the names in our dataset into five clusters.
We employed the B-CUBED metric (Bagga and
Baldwin, 1998) to evaluate the clustering results. As
summarized in Table 5 the proposed method outper-
forms all the baselines with a statistically significant
(p ≤ 0.01 Tukey HSD)F score of0.7897.

5 Conclusion

We propose an SVM-based approach to combine
page counts and lexico-syntactic patterns extracted
from snippets to leverage a robust web-based seman-
tic similarity measure. The proposed similarity mea-
sure outperforms existing web-based similarity mea-
sures and competes with models trained on Word-
Net. It requires just2500 synonymous word-pairs,
automatically extracted from WordNet synsets, for
training. Moreover, the proposed method proves
useful in a named entity clustering task. In future,
we intend to apply the proposed method to automat-
ically extract synonyms from the web.

7http://dmoz.org
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Abstract
In word sense disambiguation, choosing
the most frequent sense for an ambigu-
ous word is a powerful heuristic. However,
its usefulness is restricted by the availabil-
ity of sense-annotated data. In this paper,
we propose an information retrieval-based
method for sense ranking that does not re-
quire annotated data. The method queries
an information retrieval engine to estimate
the degree of association between a word
and its sense descriptions. Experiments on
the Senseval test materials yield state-of-
the-art performance. We also show that the
estimated sense frequencies correlate reli-
ably with native speakers’ intuitions.

1 Introduction

Word sense disambiguation (WSD), the ability to
identify the intended meanings (senses) of words
in context, is crucial for accomplishing many NLP
tasks that require semantic processing. Examples in-
clude paraphrase acquisition, discourse parsing, or
metonymy resolution. Applications such as machine
translation (Vickrey et al., 2005) and information re-
trieval (Stokoe, 2005) have also been shown to ben-
efit from WSD.

Given the importance of WSD for basic NLP
tasks and multilingual applications, much work has
focused on the computational treatment of sense
ambiguity, primarily using data-driven methods.
Most accurate WSD systems to date are super-
vised and rely on the availability of training data
(see Yarowsky and Florian 2002; Mihalcea and Ed-
monds 2004 and the references therein). Although
supervised methods typically achieve better perfor-
mance than unsupervised alternatives, their appli-
cability is limited to those words for which sense
labeled data exists, and their accuracy is strongly
correlated with the amount of labeled data avail-
able. Furthermore, current supervised approaches

rarely outperform the simple heuristic of choosing
the most common or dominant sense in the train-
ing data (henceforth “the first sense heuristic”), de-
spite taking local context into account. One reason
for this is the highly skewed distribution of word
senses (McCarthy et al., 2004a). A large number of
frequent content words is often associated with only
one dominant sense.

Obtaining the first sense via annotation is ob-
viously costly and time consuming. Sense anno-
tated corpora are not readily available for different
languages or indeed sense inventories. Moreover,
a word’s dominant sense will vary across domains
and text genres (the word court in legal documents
will most likely mean tribunal rather than yard).
It is therefore not surprising that recent work (Mc-
Carthy et al., 2004a; Mohammad and Hirst, 2006;
Brody et al., 2006) attempts to alleviate the anno-
tation bottleneck by inferring the first sense auto-
matically from raw text. Automatically acquired first
senses will undoubtedly be noisy when compared to
human annotations. Nevertheless, they can be use-
fully employed in two important tasks: (a) to create
preliminary annotations, thus supporting the “anno-
tate automatically, correct manually” methodology
used to provide high volume annotation in the Penn
Treebank project; and (b) in combination with super-
vised WSD methods that take context into account;
for instance, such methods could default to the dom-
inant sense for unseen words or words with uninfor-
mative contexts.

This paper focuses on a knowledge-lean sense
ranking method that exploits a sense inventory like
WordNet and corpus data to automatically induce
dominant senses. The proposed method infers the
associations between words and sense descriptions
automatically by querying an IR engine whose in-
dex terms have been compiled from the corpus
of interest. The approach is inexpensive, language-
independent, requires minimal supervision, and uses
no additional knowledge other than the word senses
proper and morphological query expansions. We
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evaluate our method on two tasks. First, we use
the acquired dominant senses to disambiguate the
meanings of words in the Senseval-2 (Palmer et al.,
2001) and Senseval-3 (Snyder and Palmer, 2004)
data sets. Second, we simulate native speakers’ intu-
itions about the salience of word meanings and ex-
amine whether the estimated sense frequencies cor-
relate with sense production data. In all cases our ap-
proach outperforms a naive baseline and yields per-
formances comparable to state of the art.

In the following section, we provide an overview
of existing work on sense ranking. In Section 3, we
introduce our IR-based method, and describe several
sense ranking models. In Section 4, we present our
results. Discussion of our results and future work
conclude the paper (Section 5).

2 Related Work

McCarthy et al. (2004a) were the first to pro-
pose a computational model for acquiring dominant
senses from text corpora. Key in their approach is
the observation that distributionally similar neigh-
bors often provide cues about a word’s senses. The
model quantifies the degree of similarity between
a word’s sense descriptions and its closest neigh-
bors, thus delivering a ranking over senses where the
most similar sense is intuitively the dominant sense.
Their method exploits two notions of similarity,
distributional and semantic. Distributionally similar
words are acquired from the British National Cor-
pus using an information-theoretic similarity mea-
sure (Lin, 1998) operating over dependency re-
lations (e.g., verb-subject, verb-object). The latter
are obtained from the output of Briscoe and Car-
roll’s (2002) parser. The semantic similarity between
neighbors and senses is measured using a manually
crafted taxonomy such as WordNet (see Budanitsky
and Hirst 2001 for an overview of WordNet-based
similarity measures).

Mohammad and Hirst (2006) propose an algo-
rithm for inferring dominant senses without rely-
ing on distributionally similar neighbors. Their ap-
proach capitalizes on the collocational nature of
semantically related words. Assuming a coarse-
grained sense inventory (e.g., the Macquarie The-
saurus), it first creates a matrix whose columns rep-
resent all categories (senses) c1 . . .cn in the inven-
tory and rows the ambiguous target words w1 . . .wm;
the matrix cells record the number of times a tar-

get word ti co-occurs with category c j within a win-
dow of size s. Using an appropriate statistical test,
they estimate the relative strength of association be-
tween an ambiguous word and each of its senses.
The sense with the highest association is the pre-
dominant sense.

Our work shares with McCarthy et al. (2004a) and
Mohammad and Hirst (2006) the objective of infer-
ring dominant senses automatically. We propose a
knowledge-lean method that relies on word associa-
tion and requires no syntactic annotation. The latter
may be unavailable when working with languages
other than English for which state-of-the-art parsers
or taggers have not been developed. Mohammad and
Hirst (2006) estimate the co-occurrence frequency
of a word and its sense descriptors by considering
small window sizes of up to five words. These esti-
mates will be less reliable for moderately frequent
words or for sense inventories with many senses.
Our approach is more robust to sparse data – we
work with document-based frequencies – and thus
suitable for both coarse and fine grained sense in-
ventories. Furthermore, it is computationally inex-
pensive; in contrast to McCarthy et al. (2004a) we
do not rely on the structure of the sense inventory
for measuring the similarity between synonyms and
their senses. Moreover, unlike Mohammad and Hirst
(2006), our algorithm only requires co-occurrence
frequencies for the target word and its senses, with-
out considering all senses in the inventory and all
words in the corpus simultaneously.

3 Method

3.1 Motivation

Central in our approach is the assumption that con-
text provides important cues regarding a word’s
meaning. The idea dates back at least to Firth (1957)
(“You shall know a word by the company it keeps”)
and underlies most WSD work to date. Another ob-
servation that has found wide application in WSD is
that words tend to exhibit only one sense in a given
discourse or document (Gale et al., 1992). Further-
more, documents are typically written with certain
topics in mind which are often indicated by word
distributional patterns (Harris, 1982).

For example, documents talking about congres-
sional tenure are likely to contain words such as term
of office or incumbency, whereas documents talking
about legal tenure (i.e., the right to hold property)
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are likely to include the words right or land. Now,
we could estimate which sense of tenure is most
prevalent simply by comparing whether tenure co-
occurs more often with term of office than with land
provided we knew that both of these terms are se-
mantically related to tenure. Fortunately, senses in
WordNet (and related taxonomies) are represented
by synonym terms. So, all we need to do for esti-
mating a word’s sense frequencies is to count how
often it co-occurs with its synonyms. We adopt here
a fairly broad definition of co-occurrence, two words
co-occur if they are attested in the same document.
We could obtain such counts from any document
collection; however, to facilitate comparisons with
prior work (e.g., McCarthy et al. 2004a), all our ex-
periments use the British National Corpus (BNC). In
what follows we describe in detail how we retrieve
co-occurrence counts from the BNC and how we ac-
quire dominant senses.

3.2 Dominant Sense Acquisition

Throughout the paper we use the term frequency as a
shorthand for document frequency, i.e., the number
of documents that contain a word or a set of words
which may or may not be adjacent. The method
we propose here exploits document frequencies of
words and their sense definitions. We base our dis-
cussion below on the WordNet sense inventory and
its representation of senses in terms of synonym
sets (synsets). However, our approach is not lim-
ited to this particular lexicon; any dictionary with
synonym-based sense definitions could serve our
purposes.

As an example consider the noun tenure, which
has the following senses in WordNet:

(1) Sense 1
tenure, term of office, incumbency
=> term
Sense 2
tenure, land tenure
=> legal right

The senses are represented by the two synsets
{tenure, term of office, incumbency} and
{tenure, land tenure}. (The hypernyms for each
sense are also listed; indicated by the arrows.) We
can now approximate the frequency with which a
word w1 occurs with the sense s by computing its
synonym frequencies: for each word w2 ∈ syns(s),

the set of synonyms of s, we field a query of the form
w1 AND w2. These synonym frequencies can then be
used to determine the most frequent sense of w1 in a
variety of ways (to be detailed below).

The synsets for the two senses in (1) give rise to
the queries in (2) and (3). Note that two queries are
generated for the first synset, as it contains two syn-
onyms of the target word tenure.

(2) a. "tenure" AND "term of office"
b. "tenure" AND "incumbency"

(3) "tenure" AND "land tenure"

For example, query (2-a) will return the number of
documents in which tenure and term of office co-
occur. Presumably, tenure is mainly used in its dom-
inant sense in these documents. In the same way,
query (3) will return documents in which tenure is
used in the sense of land tenure. Note that this way
of approximating synonym frequencies as document
frequencies crucially relies on the “one sense per
discourse” hypothesis (Gale et al., 1992), under the
assumption that a document counts as a discourse
for word sense disambiguation purposes.

Apart from synonym frequencies, we also gener-
ate hypernym frequencies by submitting queries of
the form w1 AND w2, for each w2 ∈ hype(s), the set of
immediate hypernyms of the sense s. The hypernym
queries for the two senses of tenure are:

(4) "tenure" AND "term"

(5) "tenure" AND "legal right"

Hypernym queries are particularly useful for synsets
of size one, i.e., where a word in a given sense has
no synonyms, and is only differentiated from other
senses by its hypernyms.

Before submitting queries such as the ones in
(2) and (3) to an IR engine, we perform query
expansion to make sure that all relevant in-
flected forms are included. For example the query
term "tenure" is expanded to ("tenure" OR
"tenures"), i.e., both singular and plural noun
forms are generated. Similarly, all inflected verb
forms are generated, e.g., "keep up" gives rise to
the query term ("keep up" OR "keeps up" OR
"keeping up" OR "kept up"). John Carroll’s
suite of morphological tools (morpha and morphg)
is used to generate inflected forms for verbs and
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nouns.1

The queries generated this way are then submitted
to an IR engine to obtain document counts. Specifi-
cally, we indexed the BNC using GLIMPSE (Global
Implicit Search) a fast and flexible indexing and
query system2 (Manber and Wu, 1994). GLIMPSE
supports approximate and exact matching, Boolean
queries, wild cards, regular expressions, and many
other options. The text is divided into equal size
blocks and an inverted index is created containing
the words and the block numbers in which they oc-
cur. Given a query, GLIMPSE will retrieve the rele-
vant documents using a two-level search method. It
will first locate the query in the inverted index and
then use sequential search to find an exact answer.

Once synonym frequencies and hypernym fre-
quencies are in place, we can compute a word’s pre-
dominant sense in a number of ways. First, we can
vary the way the frequency of a given sense is esti-
mated based on synonym frequencies:

• Sum: The frequency of a given synset is com-
puted as the sum of the synonym frequen-
cies. For example, the frequency of the dom-
inant sense of tenure would be computed by
adding up the document frequencies returned
by queries (2-a) and (2-b).

• Average (Avg): The frequency of a synset is
computed by taking the average of synonym
frequencies.

• Highest (High): The frequency of a synset is
determined by the synonym with the highest
frequency.

Secondly, we can vary whether or not hypernyms are
taken into account:

• No hypernyms (−Hyp): Only the synonym
frequencies are included when computing the
frequency of a synset. For example, only the
queries of (2-a) and (2-b) are relevant for esti-
mating the dominant sense of tenure.

• Hypernyms (+Hyp): Both synonym and hy-
pernym frequencies are taken into account

1The tools can be downloaded from http://www.
informatics.susx.ac.uk/research/nlp/carroll/
morph.html.

2The software can be downloaded from http:
//webglimpse.net/download.php

when computing sense frequency. For example,
the frequency for the senses of tenure would
be computed based on the document frequen-
cies returned by queries (2-a), (2-b), and (4)
(by summing, averaging, or taking the highest
value, as before).

The third option relates to whether the sense fre-
quencies are used in raw or in normalized form:

• Non-normalized (−Norm): The raw synonym
frequencies are used as estimates of sense fre-
quencies.

• Normalized (+Norm): Sense frequencies are
computed by dividing the word-synonym fre-
quency by the frequency of the synonym in
isolation. For example, the normalized fre-
quency for (2-a) is computed by dividing
the document frequency for "tenure" AND
"term of office" by the document fre-
quency for "term of office". Normalizing
takes into account the fact that the members of
the synset of a sense may differ in frequency.

The combination of the above parameters yields 12
sense ranking models. We explore the parameter
space exhaustively on the Senseval-2 benchmark
data set. The best performing model on this data set
is then used in all our subsequent experiments. We
use Senseval-2 as a development set, but we also
demonstrate that a far smaller manually annotated
sample is sufficient for selecting the best model.

4 Experiments

Our experiments were driven by three questions:
(1) Is WSD feasible at all with a model that does
not employ any syntactic or semantic knowledge?
Recall that McCarthy et al. (2004a) propose a model
that crucially relies on a robust parser for estimat-
ing dominant senses. (2) What is the best parameter
setting for our model? (3) Do the acquired dominant
senses correlate with human judgments? If our sense
frequencies exhibit no such correlation, it is unlikely
that they will be useful in practical applications.

To address the first two questions we use the in-
duced first senses to perform WSD on the Senseval-
2 and Senseval-3 data sets. For our third question we
compare native speakers’ semantic intuitions against
the BNC sense frequencies.
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−Norm +Norm
+Hyp −Hyp +Hyp −Hyp

P R P R P R P R
Sum 42.3 40.8 46.3 44.6 45.9 44.3 48.6 46.8
High 51.6 49.8 51.1 49.3 57.2 55.1 59.7 57.6
Avg 44.1 42.6 48.5 46.8 49.6 47.8 51.5 49.6

Table 1: Results for Senseval-2 data by model in-
stantiation

4.1 Model Selection

The goal of our first experiment is to establish which
model configuration (see Section 3.2) is best suited
for the WSD task. We thus varied how the overall
frequency is computed (Sum, High, Avg), whether
hyponyms are included (±Hyp), and whether the
frequencies are normalized (±Norm). To explore the
parameter space, we used the Senseval-2 all-words
test data as our development set. This data set con-
sists of three documents from the Wall Street Jour-
nal containing approximately 2,400 content words.
Following McCarthy et al. (2004a), we first use our
method to find the dominant sense for all word types
in the corpus and then use that sense to disambiguate
tokens without taking contextual information into
account. We used WordNet 1.7.1 (Fellbaum, 1998)
senses.3

We compared our results to a baseline that se-
lects for each word type a random sense, assumes
it is the dominant one, and uses it to disambiguate
all instances of the target word (McCarthy et al.,
2004a). We also report the WSD performance of a
more competitive baseline that always chooses the
sense with the largest synset as the dominant sense.
Consider again the word tenure from Section 3.2.
According to this baseline, the dominant sense for
tenure is the first one since it is represented by the
largest synset (three members).

Our results on Senseval-2 are summarized in Ta-
ble 1. We observe that models that do not include
hypernyms yield consistently better precision and
recall than models that include them. On the one
hand, hypernyms render the estimated sense distri-
butions less sparse. On the other hand, they intro-
duce considerable noise; the resulting sense frequen-
cies are often similar – the same hypernyms can be

3Senseval-2 is annotated with WordNet 1.7 senses which
we converted to 1.7.1 using a publicly available mapping (see
http://www.cs.unt.edu/˜rada/downloads.html).

BaseR BaseS Model
P R P R P R N

Noun 26.8 25.4 45.8 43.4 53.1∗# 50.2∗# 1,063
Verb 11.2 11.1 19.9 19.5 48.2∗# 47.3∗# 569
Adj 22.1 21.4 56.5 56.0 56.7∗ 56.2∗ 451
Adv 48.0 45.9 66.4 62.9 86.4∗# 81.8∗# 301
All 26.3 25.4 42.2 40.7 59.7∗# 57.6∗# 2,384

Table 2: Results of best model (High, +Norm,
−Hyp) for Senseval-2 data by part of speech
(∗: sig. diff. from BaseR, #: sig. diff. from BaseS;
p < 0.01 using χ2 test)

shared among several senses – and selecting one pre-
dominant sense over the other can be due to very
small frequency differences. We also find that mod-
els with normalized document counts outperform
models without normalization. This is not surpris-
ing, there is ample evidence in the literature (Mo-
hammad and Hirst, 2006; Turney, 2001) that associ-
ation measures (e.g., conditional probability, mutual
information) are better indicators of lexical similar-
ity than raw frequency. Finally, selecting the syn-
onym with the highest frequency (and defaulting to
its sense) achieves better results in comparison to av-
eraging or summing over all synsets.

In sum, the best performing model is High,
+Norm, −Hyp, achieving a precision of 59.7% and
a recall of 57.9%. The results for this model are bro-
ken down by part of speech in Table 2. Here, we
also include a comparison with the random base-
line (BaseR) and a baseline that selects the dominant
sense by synset size (BaseS). We observe that the
optimal model significantly outperforms both base-
lines on the complete data set (see row All in Ta-
ble 2) and on most individual parts of speech (perfor-
mances are comparable for our model and BaseS on
adjectives). BaseS is far better than BaseR and gen-
erally harder to beat. Defaulting to synset size in the
absence of any other information is a good heuristic;
large synsets often describe frequent senses. Vari-
ants of our model that select a dominant sense by
summing over synset members are closest to this
baseline. Note that our best performing model does
not rely on synset size; it simply selects the synonym
with the highest frequency, despite the fact that it
might belong to a large or small synset. We con-
jecture that its superior performance is due to the
collocational nature of semantic similarity (Turney,
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−Norm +Norm
+Hyp −Hyp +Hyp −Hyp

P R P R P R P R
Sum 42.3 40.8 46.3 44.6 45.2 44.7 44.6 44.0
High 51.6 49.8 51.1 49.3 55.0 54.3 61.3 60.5
Avg 44.1 42.6 48.5 46.8 51.5 50.8 50.4 49.8

Table 3: Results for 10% of Senseval-2 data by
model instantiation

2001).
In order to establish that High, +Norm, −Hyp is

the optimal model, we utilized the whole Senseval-
2 data set. Using such a large dataset is more likely
to yield a stable parameter setting, but it also raises
the question whether parameter optimization could
take place on a smaller dataset which is less costly
to produce. Table 3 explores the parameter space on
a sample randomly drawn from Senseval-2 that con-
tains only 240 tokens (i.e., one tenth of the original
data set). The behavior of our models on this smaller
sample is comparable to that on the entire Senseval-
2 data. Importantly, both sets yield the same best
model, i.e., High, +Norm, −Hyp. In the remainder
of this paper we will use this model for further ex-
periments without additional parameter tuning.

4.2 Application to Senseval-3 Data

We next evaluate our best model the on the
Senseval-3 English all-words data set. Senseval-3
consists of two Wall Street Journal articles and
one excerpt from the Brown corpus (approximately
5,000 content words in total). Similarly to the ex-
periments reported in the previous section, we used
WordNet 1.7.1. We calculate recall and precision
with the Senseval-3 scorer.

Our results are given in Table 4. Besides the
two baselines (BaseR and BaseS), we also com-
pare our model to McCarthy et al. (2004b)4 and
the best unsupervised (IRST-DDD) and supervised
(GAMBLE) systems that participated in Senseval-3.
IRST-DDD was developed by Strapparava et al.
(2004) and performs domain driven disambiguation.
Specifically, the approach compares the domain of
the context surrounding the target word with the do-
mains of its senses and uses a version of WordNet

4Comparison against Mohammad and Hirst (2006) was not
possible since they use a sense inventory other than WordNet
(i.e., Roget’s thesaurus) and evaluate their model on artificially
generated sense-tagged data.

P R
BaseR 23.1#†$‡ 22.7#†$‡

BaseS 36.6∗†$‡ 35.9∗†$‡

McCarthy 49.0∗#$‡ 43.0∗#$‡

IR-Model 58.0∗#†‡ 57.0∗#†‡

IRST-DDD 58.3∗#†‡ 58.2∗#†‡

Semcor 62.4∗#†$ 62.4∗#†$

GAMBLE 65.1∗#†$‡ 65.2∗#†$‡

Table 4: Comparison of results on Senseval-3 data
(∗: sig. diff. from BaseR, #: sig. diff. from BaseS,
†: sig. diff. from McCarthy, $: sig. diff. from IR-
Model, ‡: sig. diff. from SemCor; p < 0.01 using
χ2 test)

BaseR BaseS Model
P R P R P R N

Noun 27.8 12.2 41.1 41.0 58.1∗# 58.0∗# 900
Verb 12.8 4.6 20.0 19.9 61.0∗# 60.8∗# 732
Adj 29.2 5.2 56.5 56.5 50.3∗ 50.3∗ 363
Adv 100.0 0.6 100.0 81.2 100.0 81.2 16
All 23.1 22.7 36.6 35.9 58.0∗# 57.0∗# 2,011

Table 5: Results of best model (High, +Norm,
−Hyp) for Senseval-3 data by part of speech
(∗: sig. diff. from BaseR, #: sig. diff. from BaseS;
p < 0.01 using χ2 test)

augmented with domain labels (e.g., economy, ge-
ography). GAMBL (Decadt et al., 2004) is a super-
vised system: a classifier is trained for each ambigu-
ous word using memory-based learning. We also re-
port the performance achieved by defaulting to the
first WordNet entry for a given word and part of
speech. Entries in WordNet are ranked according
to the sense frequency estimates obtained from the
manually annotated SemCor corpus. First senses ob-
tained from SemCor will be naturally less noisy than
those computed by our method which does not make
use of manual annotation in any way. We therefore
consider the WSD performance achieved with Sem-
Cor first senses as an upper bound for automatically
acquired first senses.

Our model significantly outperforms the two
baselines and McCarthy et al. (2004b). Its precision
and recall according to individual parts of speech is
shown in Table 5. The model performs comparably
to IRST-DDD and significantly worse than GAM-
BLE. This is not entirely surprising given that GAM-
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BLE is a supervised system trained on a variety
of manually annotated resources including SemCor,
data from previous Senseval workshops and the ex-
ample sentences in WordNet 1.7.1. GAMBLE is the
only system that significantly outperforms the Sem-
Cor upper bound. Finally, note that our model is
conceptually simpler than McCarthy et al. (2004b)
and IRST-DDD. It neither requires a parser (for ob-
taining distributionally similar neighbors) nor any
knowledge other than WordNet (e.g., domain la-
bels). This makes our method portable to languages
for which syntactic analysis tools and elaborate se-
mantic resources are not available.

4.3 Modeling Human Data
Research in psycholinguistics has shown that the
meanings of ambiguous words are not perceived as
equally salient in the absence of a biasing context
(Durkin and Manning, 1989; Twilley et al., 1994).
Rather, language users often ascribe dominant and
subordinate meanings to polysemous words. Previ-
ous studies have elicited intuitions with regard to
word senses using a free association task. For ex-
ample, Durkin and Manning (1989) collected asso-
ciation norms from native speakers for 175 ambigu-
ous words. They asked subjects to read each word
and write down the first meaning that came to mind.
The words were presented out of context. From the
subjects’ responses, they computed sense frequen-
cies, which revealed that most words were attributed
a particular meaning with a markedly higher fre-
quency than other meanings.

In this experiment, we examine whether our
model agrees with human intuitions regarding the
prevalence of word senses. We inferred the dominant
meanings for the polysemous words used in Durkin
and Manning (1989). These exhibit a relatively high
degree of ambiguity (the average number of senses
per word is three) and cover a wide variety of parts
of speech (for the full set of words and elicited
sense frequencies see their Appendix A, pp. 501–
609). One stumbling block to using this data are
the meanings associated with the ambiguous words.
These were provided by native English speakers and
may not necessarily correspond to senses described
by trained lexicographers. Fortunately, we were able
to map most of them (except for six which we dis-
carded) on WordNet synsets (version 1.6); two an-
notators performed the mapping by comparing the
sense descriptions provided by Durkin and Manning

act Freq answer Freq
pretense/performance 37 response 81
to perform 30 solution 18
to take action 16
division 12
a deed 3

Table 6: Meaning frequencies for act and answer;
normative data from Durkin and Manning (1989)

to WordNet synsets. The annotators agreed in their
assignments 81% of the time. Disagreements were
resolved through mediation.

Examples of Durkin and Manning’s (1989)
normative data are given in Table 6. The sense
response for answer was mapped to the WordNet
synset {answer, reply, response} (Sense 1),
the sense solution was mapped to the synset
{solution, answer, result, resolution,
solvent} (Sense 2), etc. Durkin and Manning did
not take part of speech ambiguity into account, as
Table 6 shows, subjects came up with meanings
relating to the verb and noun part of speech of act.

We explored the relationship between the sense
frequencies provided by human subjects and those
estimated by our model by computing the Spearman
rank correlation coefficient ρ. We obtained sense
frequencies from the BNC using the best model
from Section 4.1 (High, +Norm, −Hyp). We found
that the resulting sense frequencies were signifi-
cantly correlated with the human sense frequencies
(ρ = 0.384, p < 0.01). We performed the same ex-
periment using McCarthy et al.’s (2004a) model,
which also achieved a significant correlation (ρ =
0.316, p < 0.01). This result provides an additional
validation of our model as it demonstrates that the
sense frequencies it generates can capture the sense
preferences of naive human subjects (rather than
trained lexicographers).

5 Discussion

In this paper we proposed an IR-based approach
for inducing dominant senses automatically. Our
method estimates the degree of association between
words and their sense descriptions (represented by
synsets in WordNet) simply by querying an IR en-
gine. Evaluation on the Senseval data sets showed
that our model significantly outperformed a naive
random sense baseline and a more competitive one
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based on synset size. Our method was significantly
better than McCarthy et al. (2004b) on Senseval-2
and Senseval-3. On the latter data set, its perfor-
mance was comparable to that of the best unsuper-
vised system (Strapparava et al., 2004).

An important future direction lies in evaluating
the disambiguation potential of our models across
domains and languages. Furthermore, our experi-
ments have relied on WordNet for providing the
appropriate sense descriptions. Future work must
assess whether the models presented in this pa-
per can be extended to alternative sense invento-
ries (e.g., dictionary definitions) that may differ in
granularity and structure. We will also experiment
with a wider range of lexical association measures
for quantifying the similarity of a word and its
synonyms. Examples include odds ratio (Moham-
mad and Hirst, 2006) and Turney’s (2001) IR-based
pointwise mutual information (PMI-IR).

Our experiments revealed that the IR-based model
is particularly good at disambiguating certain parts
of speech (e.g., verbs, see Tables 2 and 5). A promis-
ing direction is the combination of different ranking
models (Brody et al., 2006) and the integration of
dominant sense models with supervised WSD.
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Abstract

An intelligent thesaurus assists a writer
with alternative choices of words and or-
ders them by their suitability in the writ-
ing context. In this paper we focus on
methods for automatically choosing near-
synonyms by their semantic coherence
with the context. Our statistical method
uses the Web as a corpus to compute
mutual information scores. Evaluation
experiments show that this method per-
forms better than a previous method on
the same task. We also propose and evalu-
ate two more methods, one that uses anti-
collocations, and one that uses supervised
learning. To asses the difficulty of the
task, we present results obtained by hu-
man judges.

1 Introduction

When composing a text, a writer can access a the-
saurus to retrieve words that are similar to a given
target word, when there is a need to avoid repeating
the same word, or when the word does not seem to
be the best choice in the context.

Our intelligent thesaurus is an interactive appli-
cation that presents the user with a list of alterna-
tive words (near-synonyms), and, unlike standard
thesauri, it orders the choices by their suitability to
the writing context. We investigate how the collo-
cational properties of near-synonyms can help with
choosing the best words. This problem is difficult

because the near-synonyms have senses that are very
close to each other, and therefore they occur in sim-
ilar contexts; we need to capture the subtle differ-
ences specific to each near-synonym.

Our thesaurus brings up only alternatives that
have the same part-of-speech with the target word.
The choices could come from various inventories
of near-synonyms or similar words, for example the
Roget thesaurus (Roget, 1852), dictionaries of syn-
onyms (Hayakawa, 1994), or clusters acquired from
corpora (Lin, 1998).

In this paper we focus on the task of automat-
ically selecting the best near-synonym that should
be used in a particular context. The natural way to
validate an algorithm for this task would be to ask
human readers to evaluate the quality of the algo-
rithm’s output, but this kind of evaluation would be
very laborious. Instead, we validate the algorithms
by deleting selected words from sample sentences,
to see whether the algorithms can restore the miss-
ing words. That is, we create a lexical gap and eval-
uate the ability of the algorithms to fill the gap. Two
examples are presented in Figure 1. All the near-
synonyms of the original word, including the word
itself, become the choices in the solution set (see the
figure for two examples of solution sets). The task is
to automatically fill the gap with the best choice in
the particular context. We present a method of scor-
ing the choices. The highest scoring near-synonym
will be chosen. In order to evaluate how well our
method works we consider that the only correct so-
lution is the original word. This will cause our eval-
uation scores to underestimate the performance, as
more than one choice will sometimes be a perfect
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Sentence: This could be improved by more detailed considera-
tion of the processes of ......... propagation inherent in digitizing
procedures.
Original near-synonym: error
Solution set: mistake, blooper, blunder, boner, contretemps,
error, faux pas, goof, slip, solecism

Sentence: The day after this raid was the official start of oper-
ation strangle, an attempt to completely destroy the ......... lines
of communication.
Original near-synonym: enemy
Solution set: opponent, adversary, antagonist, competitor, en-
emy, foe, rival

Figure 1: Examples of sentences with a lexical gap,
and candidate near-synonyms to fill the gap.

solution. Moreover, what we consider to be the best
choice is the typical usage in the corpus, but it may
vary from writer to writer. Nonetheless, it is a con-
venient way of producing test data.

The statistical method that we propose here is
based on semantic coherence scores (based on mu-
tual information) of each candidate with the words
in the context. We explore how far such a method
can go when using the Web as a corpus. We estimate
the counts by using the Waterloo MultiText1 system
(Clarke and Terra, 2003b) with a corpus of about
one terabyte of text collected by a Web crawler. We
also propose a method that uses collocations and
anti-collocations, and a supervised method that uses
words and mutual information scores as featured for
machine learning.

2 Related work

The idea of using the Web as a corpus of texts
has been exploited by many researchers. Grefen-
stette (1999) used the Web for example-based ma-
chine translation; Kilgarriff (2001) investigated the
type of noise in Web data; Mihalcea and Moldovan
(1999) and Agirre and Martinez (2000) used it as an
additional resource for word sense disambiguation;
Resnik (1999) mined the Web for bilingual texts;
Turney (2001) used Web frequency counts to com-
pute information retrieval-based mutual-information
scores. In a Computational Linguistics special issue
on the Web as a corpus (Kilgarriff and Grefenstette,

1We thank Egidio Terra, Charlie Clarke, and Univ. of Wa-
terloo for allowing us to use MultiText, and to Peter Turney and
IIT/NRC for giving us access to their local copy of the corpus.

2003), Keller and Lapata (2003) show that Web
counts correlate well with counts collected from a
balanced corpus: the size of the Web compensates
for the noise in the data. In this paper we are using a
very large corpus of Web pages to address a problem
that has not been successfully solved before.

In fact, the only work that addresses exactly the
same task is that of Edmonds (1997), as far as we
are aware. Edmonds gives a solution based on a
lexical co-occurrence network that included second-
order co-occurrences. We use a much larger corpus
and a simpler method, and we obtain much better
results.

Our task has similarities to the word sense disam-
biguation task. Our near-synonyms have senses that
are very close to each other. In Senseval, some of
the fine-grained senses are also close to each other,
so they might occur in similar contexts, while the
coarse-grained senses are expected to occur in dis-
tinct contexts. In our case, the near-synonyms are
different words to choose from, not the same word
with different senses.

3 A statistical method for near-synonym
choice

Our method computes a score for each candidate
near-synonym that could fill in the gap. The near-
synonym with the highest score is the proposed so-
lution. The score for each candidate reflects how
well a near-synonym fits in with the context. It is
based on the mutual information scores between a
near-synonym and the content words in the context
(we filter out the stopwords).

The pointwise mutual information (PMI) be-
tween two words x and y compares the probabil-
ity of observing the two words together (their joint
probability) to the probabilities of observing x and y
independently (the probability of occurring together
by chance) (Church and Hanks, 1991): PMI(x, y) =
log2

P (x,y)
P (x)P (y)

The probabilities can be approximated by:
P (x) = C(x)/N , P (y) = C(y)/N , P (x, y) =
C(x, y)/N , where C denotes frequency counts and
N is the total number of words in the corpus. There-
fore: PMI(x, y) = log2

C(x,y)·N
C(x)·C(y) , where N can be

ignored in comparisons.
We model the context as a window of size 2k

357



around the gap (the missing word): k words to the
left and k words to the right of the gap. If the sen-
tence is s = · · ·w1 · · ·wk Gap wk+1 · · ·w2k · · ·,
for each near-synonym NSi from the group of can-
didates, the semantic coherence score is computed
by the following formula:

Score(NSi, s) = Σk
j=1PMI(NSi, wj) +

Σ2k
j=k+1PMI(NSi, wj).

We also experimented with the same formula
when the sum is replaced with maximum to see
whether a particular word in the context has higher
influence than the sum of all contributions (though
the sum worked better).

Because we are using the Waterloo terabyte cor-
pus and we issue queries to its search engine,
we have several possibilities of computing the fre-
quency counts. C(x, y) can be the number of co-
occurrences of x and y when y immediately follows
x, or the distance between x and y can be up to q.
We call q the query frame size. The tool for access-
ing the corpus allows us to use various values for q.

The search engine also allows us to approxi-
mate words counts with document counts. If the
counts C(x), C(y), and C(x, y) are approximated
as the number of document in which they appear,
we obtain the PMI-IR formula (Turney, 2001). The
queries we need to send to the search engine are
the same but they are restricted to document counts:
C(x) is the number of document in which x occurs;
C(x, y) is the number of documents in which x is
followed by y in a frame of size q.

Other statistical association measures, such as
log-likelihood, could be used. We tried only PMI
because it is easy to compute on a Web corpus and
because PMI performed better than other measures
in (Clarke and Terra, 2003a).

We present the results in Section 6.1, where we
compare our method to a baseline algorithm that al-
ways chooses the most frequent near-synonyms and
to Edmonds’s method for the same task, on the same
data set. First, however, we present two other meth-
ods to which we compare our results.

4 The anti-collocations method

For the task of near-synonym choice, another
method that we implemented is the anti-collocations
method. By anti-collocation we mean a combina-

ghastly mistake spelling mistake
∗ghastly error spelling error
ghastly blunder ∗spelling blunder
∗ghastly faux pas ∗spelling faux pas
∗ghastly blooper ∗spelling blooper
∗ghastly solecism ∗spelling solecism
∗ghastly goof ∗spelling goof
∗ghastly contretemps ∗spelling contretemps
∗ghastly boner ∗spelling boner
∗ghastly slip ∗spelling slip

Table 1: Examples of collocations and anti-
collocations. The ∗ indicates the anti-collocations.

tion of words that a native speaker would not use
and therefore should not be used when automatically
generating text. This method uses a knowledge-
base of collocational behavior of near-synonyms ac-
quired in previous work (Inkpen and Hirst, 2006). A
fragment of the knowledge-base is presented in Ta-
ble 1, for the near-synonyms of the word error and
two collocate words ghastly and spelling. The lines
marked by ∗ represent anti-collocations and the rest
represent strong collocations.

The anti-collocations method simply ranks the
strong collocations higher than the anti-collocations.
In case of ties it chooses the most frequent near-
synonym. In Section 6.2 we present the results of
comparing this method to the method from the pre-
vious section.

5 A supervised learning method

We can also apply supervised learning techniques to
our task. It is easy to obtain labeled training data,
the same way we collected test data for the two un-
supervised methods presented above. We train clas-
sifiers for each group of near-synonyms. The classes
are the near-synonyms in the solution set. The word
that produced the gap is the expected solution, the
class label; this is a convenient way of producing
training data, no need for manual annotation. Each
sentence is converted into a vector of features to be
used for training the supervised classifiers. We used
two types of features. The features of the first type
are the PMI scores of the left and right context with
each class (each near-synonym from the group). The
number of features of this type is twice the number
of classes, one score for the part of the sentence at
the left of the gap, and one for the part at the right
of the gap. The features of the second type are the
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1. mistake, error, fault
2. job, task, chore
3. duty, responsibility, obligation
4. difficult, hard
5. material, stuff
6. put up, provide, offer
7. decide, settle, resolve, adjudicate.

Table 2: The near-synonym groups used in Exp1.

words in the context window. For each group of
near-synonyms, we used as features the 500 most-
frequent words situated close to the gaps in a devel-
opment set. The value of a word feature for each
training example is 1 if the word is present in the
sentence (at the left or at the right of the gap), and 0
otherwise. We trained classifiers using several ma-
chine learning algorithms, to see which one is best
at discriminating among the near-synonyms. In Sec-
tion 6.3, we present the results of several classifiers.

A disadvantage of the supervised method is that it
requires training for each group of near-synonyms.
Additional training would be required whenever we
add more near-synonyms to our knowledge-base.

6 Evaluation

6.1 Comparison to Edmonds’s method

In this section we present results of the statistical
method explained in Section 3. We compare our
results with those of Edmonds’s (1997), whose so-
lution used the texts from the year 1989 of the
Wall Street Journal (WSJ) to build a lexical co-
occurrence network for each of the seven groups
of near-synonyms from Table 2. The network in-
cluded second-order co-occurrences. Edmonds used
the WSJ 1987 texts for testing, and reported accura-
cies only a little higher than the baseline. The near-
synonyms in the seven groups were chosen to have
low polysemy. This means that some sentences with
wrong senses of near-synonyms might be in the

For comparison purposes, in this section we use
the same test data (WSJ 1987) and the same groups
of near-synonyms (we call these sentences the Exp1
data set). Our method is based on mutual informa-
tion, not on co-occurrence counts. Our counts are
collected from a much larger corpus.

Table 3 presents the comparative results for the
seven groups of near-synonyms (we did not repeat

Accuracy
Set No. of Base- Edmonds Stat. Stat.

cases line method method method
(Docs) (Words)

1. 6,630 41.7% 47.9% 61.0% 59.1%
2. 1,052 30.9% 48.9% 66.4% 61.5%
3. 5,506 70.2% 68.9% 69.7% 73.3%
4. 3,115 38.0% 45.3% 64.1% 66.0%
5. 1,715 59.5% 64.6% 68.6% 72.2%
6. 11,504 36.7% 48.6% 52.0% 52.7%
7. 1,594 37.0% 65.9% 74.5% 76.9%
AVG 31,116 44.8% 55.7% 65.1% 66.0%

Table 3: Comparison between the statistical method
from Section 3, baseline algorithm, and Edmonds’s
method (Exp1 data set).

them in the first column of the table, only the num-
ber of the group.). The last row averages the ac-
curacies for all the test sentences. The second col-
umn shows how many test sentences we collected
for each near-synonym group. The third column is
for the baseline algorithm that always chooses the
most frequent near-synonym. The fourth column
presents the results reported in (Edmonds, 1997).
column show the results of the supervised learning
classifier described in Section 5. The fifth column
presents the result of our method when using doc-
ument counts in PMI-IR, and the last column is for
the same method when using word counts in PMI.
We show in bold the best accuracy for each data set.
We notice that the automatic choice is more difficult
for some near-synonym groups than for the others.
In this paper, by accuracy we mean the number of
correct choices made by each method (the number of
gaps that were correctly filled). The correct choice is
the near-synonym that was initially replaced by the
gap in the test sentence.

To fine-tune our statistical method, we used the
data set for the near-synonyms of the word difficult
collected from the WSJ 1989 corpus as a develop-
ment set. We varied the context window size k and
the query frame q, and determined good values for
the parameter k and q. The best results were ob-
tained for small window sizes, k = 1 and k = 2
(meaning k words to the left and k words to the right
of the gap). For each k, we varied the query frame
size q. The results are best for a relatively small
query frame, q = 3, 4, 5, when the query frame is
the same or slightly larger then the context window.
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The results are worse for a very small query frame,
q = 1, 2 and for larger query frames q = 6, 7, ..., 20
or unlimited. The results presented in the rest of the
paper are for k = 2 and q = 5. For all the other data
sets used in this paper (from WSJ 1987 and BNC)
we use the parameter values as determined on the
development set.

Table 3 shows that the performance is generally
better for word counts than for document counts.
Therefore, we prefer the method that uses word
counts (which is also faster in our particular set-
ting). The difference between them is not statis-
tically significant. Our statistical method performs
significantly better than both Edmond’s method and
the baseline algorithm. For all the results presented
in this paper, statistical significance tests were done
using the paired t-test, as described in (Manning and
Schütze, 1999), page 209.

On average, our method performs 22 percentage
points better than the baseline algorithm, and 10
percentage points better than Edmonds’s method.
Its performance is similar to that of the supervised
method (see Section 6.3). An important advan-
tage of our method is that it works on any group
of near-synonyms without training, whereas Ed-
monds’s method required a lexical co-occurrence
network to be built in advance for each group of
near-synonyms and the supervised method required
training for each near-synonym group.

We note that the occasional presence of near-
synonyms with other senses than the ones we need
might make the task somewhat easier. Nonetheless,
the task is still difficult, even for human judges, as
we will see in Section 6.4. On the other hand, be-
cause the solution allows only one correct answer
the accuracies are underestimated.

6.2 Comparison to the anti-collocations
method

In a second experiment we compare the results of
our methods with the anti-collocation method de-
scribed in Section 4. We use the data set from our
previous work, which contain sentences from the
first half of the British National Corpus, with near-
synonyms from the eleven groups from Table 4.

The number of near-synonyms in each group is
higher compared with WordNet synonyms, because
they are taken from (Hayakawa, 1994), a dictionary

1. benefit, advantage, favor, gain, profit
2. low, gush, pour, run, spout, spurt, squirt, stream
3. deficient, inadequate, poor, unsatisfactory
4. afraid, aghast, alarmed, anxious, apprehensive, fearful,
frightened, scared, terror-stricken
5. disapproval, animadversion, aspersion, blame, criticism, rep-
rehension
6. mistake, blooper, blunder, boner, contretemps, error, faux
pas, goof, slip, solecism
7. alcoholic, boozer, drunk, drunkard, lush, sot
8. leave, abandon, desert, forsake
9. opponent, adversary, antagonist, competitor, enemy, foe, ri-
val
10. thin, lean, scrawny, skinny, slender, slim, spare, svelte, wil-
lowy, wiry
11. lie, falsehood, fib, prevarication, rationalization, untruth

Table 4: The near-synonym groups used in Exp2.

that explains differences between near-synonyms.
Moreover we retain only the sentences in which at
least one of the context words is in our previously
acquired knowledge-base of near-synonym colloca-
tions. That is, the anti-collocations method works
only if we know how a word in the context collo-
cates with the near-synonyms from a group. For the
sentences that do not contain collocations or anti-
collocations, it will perform no better than the base-
line, because the information needed by the method
is not available in the knowledge-base. Even if we
increase the coverage of the knowledge-base, the
anti-collocation method might still fail too often due
to words that were not included.

Table 5 presents the results of the comparison. We
used two data sets: TestSample, which includes at
most two sentences per collocation (the first two sen-
tences from the corpus); and TestAll, which includes
all the sentences with collocations as they occurred
in the corpus. The reason we chose these two tests is
not to bias the results due to frequent collocations.

The last two columns are the accuracies achieved
by our method. The second last column shows the
results of the method when the word counts are ap-
proximated with document counts. The improve-
ment over the baseline is 16 to 27 percentage points.
The improvement over the anti-collocations method
is 10 to 17 percentage points.

6.3 Comparison to supervised learning

We present the results of the supervised method
from Section 5 on the data sets used in Section 6.1.
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Accuracy
Test set No. Base- Anti- Stat. Stat.

of line collocs method method
cases method (Docs) (Words)

Test 171 57.0% 63.3% 75.6% 73.3%
Sample
TestAll 332 48.5% 58.6% 70.0% 75.6%

Table 5: Comparison between the statistical method
from Section 3 and the anti-collocations method
from Section 4. (Exp2 data set from Section 6.2).

ML method (Weka) Features Accuracy
Decision Trees PMI scores 65.4%
Decision Rules PMI scores 65.5%
Naı̈ve Bayes PMI scores 52.5%
K-Nearest Neighbor PMI scores 64.5%
Kernel Density PMI scores 60.5%
Boosting (Dec. Stumps) PMI scores 67.7%
Naı̈ve Bayes 500 words 68.0%
Decision Trees 500 words 67.0%
Naı̈ve Bayes PMI + 500 words 66.5%
Boosting (Dec. Stumps) PMI + 500 words 69.2%

Table 6: Comparative results for the supervised
learning method using various ML learning algo-
rithms (Weka), averaged over the seven groups of
near-synonyms from the Exp1 data set.

As explained before, the data sets contain sentences
with a lexical gap. For each of the seven groups
of near-synonyms, the class to choose from, in or-
der to fill in the gaps is one of the near-synonyms in
each cluster. We implemented classifiers that use as
features either the PMI scores of the left and right
context with each class, or the words in the con-
text windows, or both types of features combined.
We used as features the 500 most-frequent words for
each group of near-synonyms. We report accuracies
for 10-fold cross-validation.

Table 6 presents the results, averaged for the seven
groups of near-synonyms, of several classifiers from
the Weka package (Witten and Frank, 2000). The
classifiers that use PMI features are Decision Trees,
Decision Rules, Naı̈ve Bayes, K-Nearest Neighbor,
Kernel Density, and Boosting a weak classifier (De-
cision Stumps – which are shallow decision trees).
Then, a Naı̈ve Bayes classifier that uses only the
word features is presented, and the same type of
classifiers with both types of features. The other
classifiers from the Weka package were also tried,
but the results did not improve and these algorithms

Accuracy
Test Base- Supervised Supervised Unsuper-
set line Boosting Boosting vised

(PMI) (PMI+words) method
1. 41.7% 55.8% 57.3% 59.1%
2. 30.9% 68.1% 70.8% 61.5%
3. 70.2% 86.5% 86.7% 73.3%
4. 38.0% 66.5% 66.7% 66.0%
5. 59.5% 70.4% 71.0% 72.2%
6. 36.7% 53.0% 56.1% 52.7%
7. 37.0% 74.0% 75.8% 76.9%
AVG 44.8% 67.7% 69.2% 66.0%

Table 7: Comparison between the unsupervised sta-
tistical method from Section 3 and the supervised
method described in Section 5, on the Exp1 data set.

had difficulties in scaling up. In particular, when
using the 500 word features for each training exam-
ple, only the Naı̈ve Bayes algorithm was able to run
in reasonable time. We noticed that the Naı̈ve Bayes
classifier performs very poorly on PMI features only
(55% average accuracy), but performs very well on
word features (68% average accuracy). In contrast,
the Decision Tree classifier performs well on PMI
features, especially when using boosting with Deci-
sion Stumps. When using both the PMI scores and
the word features, the results are slightly higher. It
seems that both types of features are sufficient for
training a good classifier, but combining them adds
value.

Table 7 presents the detailed results of two of the
supervised classifiers, and repeats, for easier com-
parison, the results of the unsupervised statistical
method from Section 6.1. The supervised classifier
that uses only PMI scores performs similar to the un-
supervised method. The best supervised classifier,
that uses both types of features, performs slightly
better than the unsupervised statistical method, but
the difference is not statistically significant. We con-
clude that the results of the supervised methods and
the unsupervised statistical method are similar. An
important advantage of the unsupervised method is
that it works on any group of near-synonyms without
training.

6.4 Results obtained by human judges

We asked two human judges, native speakers of En-
glish, to guess the missing word in a random sample
of the Exp1 data set (50 sentences for each of the
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Test set J1-J2 J1 J2 System
Agreement Acc. Acc. Accuracy

1. 72% 70% 76% 53%
2. 82% 84% 84% 68%
3. 86% 92% 92% 78%
4. 76% 82% 76% 66%
5. 76% 82% 74% 64%
6. 78% 68% 70% 52%
7. 80% 80% 90% 77%
AVG 78.5% 79.7% 80.2% 65.4%

Table 8: Results obtained by two human judges on a
random subset of the Exp1 data set.

7 groups of near-synonyms, 350 sentences in total).
The judges were instructed to choose words from the
list of near-synonyms. The choice of a word not in
the list was allowed, but not used by the two judges.
The results in Table 8 show that the agreement be-
tween the two judges is high (78.5%), but not per-
fect. This means the task is difficult, even if some
wrong senses in the test data might have made the
task easier in a few cases.

The human judges were allowed to choose more
than one correct answer when they were convinced
that more than one near-synonym fits well in the
context. They used this option sparingly, only in 5%
of the 350 sentences. Taking the accuracy achieved
of the human judges as an upper limit, the automatic
method has room for improvement (10-15 percent-
age points). In future work, we plan to allow the
system to make more than one choice when appro-
priate (for example when the second choice has a
very close score to the first choice).

7 The intelligent thesaurus

Our experiments show that the accuracy of the first
choice being the best choice is 66 to 75%; therefore
there will be cases when the writer will not choose
the first alternative. But the accuracy for the first
two choices is quite high, around 90%, as presented
in Table 9.

If the writer is in the process of writing and selects
a word to be replaced with a near-synonym proposed
by the thesaurus, then only the context on the left of
the word can be used for ordering the alternatives.
Our method can be easily adapted to consider only
the context on the left of the gap. The results of
this case are presented in Table 10, for the data sets

Test set Accuracy Accuracy
first choice first 2 choices

Exp1, AVG 66.0% 88.5%
Exp2, TestSample 73.3% 94.1%
Exp2, TestAll 75.6% 87.5%

Table 9: Accuracies for the first two choices as or-
dered by an interactive intelligent thesaurus.

Test set Accuracy Accuracy
first choice first 2 choices

Exp1, AVG 58.0% 84.8%
Exp2, TestSample 57.4% 75.1%
Exp2, TestAll 56.1% 77.4%

Table 10: Results of the statistical method when
only the left context is considered.

used in the previous sections. The accuracy values
are lower than in the case when both the left and the
right context are considered (Table 9). This is due
in part to the fact that some sentences in the test sets
have very little left context, or no left context at all.
On the other hand, many times the writer composes
a sentence or paragraph and then she/he goes back
to change a word that does not sound right. In this
case, both the left and right context will be available.

In the intelligent thesaurus, we could combine
the supervised and unsupervised method, by using
a supervised classifier when the confidence in the
classification is high, and by using the unsupervised
method otherwise. Also the unsupervised statisti-
cal method would be used for the groups of near-
synonyms for which a supervised classifier was not
previously trained.

8 Conclusion

We presented a statistical method of choosing the
best near-synonym in a context. We compared this
method to a previous method (Edmonds’s method)
and to the anti-collocation method and showed that
the performance improved considerably. We also
show that the unsupervised statistical method per-
forms comparably to a supervised learning method.

Our method based on PMI scores performs well,
despite the well-known limitations of PMI in cor-
pora. PMI tends to have problems mostly on very
small counts, but it works reasonably with larger
counts. Our web corpus is quite large, therefore the
problem of small counts does not appear.
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In the intelligent thesaurus, we do not make the
near-synonym choice automatically, but we let the
user choose. The first choice offered by the the-
saurus is the best one quite often; the first two
choices are correct 90% of the time.

Future work includes a word sense disambigua-
tion module. In case the target word selected by the
writer has multiple senses, they could trigger sev-
eral groups of near-synonyms. The system will de-
cide which group represents the most likely senses
by computing the semantic coherence scores aver-
aged over the near-synonyms from each group.

We plan to explore the question of which inven-
tory of near-synonyms or similar words is the most
suitable for use in the intelligent thesaurus.

Choosing the right near-synonym in context is
also useful in other applications, such as natural lan-
guage generation (NLG) and machine translation.
In fact we already used the near-synonym choice
module in an NLG system, for complementing the
choices made by using the symbolic knowledge in-
corporated into the system.
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Abstract

We propose a novel HMM-based framework to
accurately transliterate unseen named entities.
The framework leverages features in letter-
alignment and letter n-gram pairs learned from
available bilingual dictionaries. Letter-classes,
such as vowels/non-vowels, are integrated to
further improve transliteration accuracy. The
proposed transliteration system is applied to
out-of-vocabulary named-entities in statistical
machine translation (SMT), and a significant
improvement over traditional transliteration ap-
proach is obtained. Furthermore, by incor-
porating an automatic spell-checker based on
statistics collected from web search engines,
transliteration accuracy is further improved.
The proposed system is implemented within
our SMT system and applied to a real transla-
tion scenario from Arabic to English.

1 Introduction

Cross-lingual natural language applications, such as in-
formation retrieval, question answering, and machine
translation for web-documents (e.g. Google translation),
are becoming increasingly important. However, current
state-of-the-art statistical machine translation (SMT) sys-
tems cannot yet translate named-entities which are not
seen during training. New named-entities, such as per-
son, organization, and location names are continually
emerging on the World-Wide-Web. To realize effective
cross-lingual natural language applications, handling out-
of-vocabulary named-entities is becoming more crucial.

Named entities (NEs) can be translated via transliter-
ation: mapping symbols from one writing system to an-
other. Letters of the source language are typically trans-
formed into the target language with similar pronunci-
ation. Transliteration between languages which share
similar alphabets and sound systems is usually not dif-
ficult, because the majority of letters remain the same.
However, the task is significantly more difficult when the
language pairs are considerably different, for example,
English-Arabic, English-Chinese, and English-Japanese.
In this paper, we focus onforward transliteration from
Arabic to English.

The work in (Arbabi et al., 1994), to our knowledge, is
the first work on machine transliteration of Arabic names
into English, French, and Spanish. The idea is to vow-
elize Arabic names by adding appropriate vowels and uti-
lizing a phonetic look-up table to provide the spelling in
the target language. Their framework is strictly applica-
ble within standard Arabic morphological rules. Knight
and Graehl (1997) introduced finite state transducers that
implement back-transliteration from Japanese to English,
which was then extended to Arabic-English in (Stalls and
Knight, 1998). Al-Onaizan and Knight (2002) translit-
erated named entities in Arabic text to English by com-
bining phonetic-based and spelling-based models, and re-
ranking candidates with full-name web counts, named en-
tities co-reference, and contextual web counts. Huang
(2005) proposed a specific model for Chinese-English
name transliteration with clusterings of names’ origins,
and appropriate hypotheses are generated given the ori-
gins. All of these approaches, however, are not based
on a SMT-framework. Technologies developed for SMT
are borrowed in Virga and Khudanpur (2003) and Ab-
dulJaleel and Larkey (2003). Standard SMT alignment
models (Brown et al., 1993) are used to align letter-pairs
within named entity pairs for transliteration. Their ap-
proach are generative models for letter-to-letter transla-
tions, and the letter-alignment is augmented with heuris-
tics. Letter-level contextual information is shown to be
very helpful for transliteration. Oh and Choi (2002)
used conversion units for English-Korean Transliteration;
Goto et al. (2003) used conversion units, mapping En-
glish letter-sequence into Japanese Katakana character
string. Li et al. (2004) presented a framework allowing
direct orthographical mapping of transliteration units be-
tween English and Chinese, and an extended model is
presented in Ekbal et al. (2006).

We propose ablock-leveltransliteration framework, as
shown in Figure 1, to model letter-level context infor-
mation for transliteration at two levels. First, we pro-
pose a bi-stream HMM incorporating letter-clusters to
better model thevowel and non-vowel transliterations
with position-information, i.e.,initial and final, to im-
prove the letter-level alignment accuracy. Second, based
on the letter-alignment, we proposeletter n-gram(letter-
sequence) alignment models (block) to automatically
learn the mappings from source letter n-grams to target
letter n-grams. A few features specific for transliterations
are explored, and a log-linear model is used to combine
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Figure 1:Transliteration System Structure. The upper-part is
the two-directional Bi-Stream HMM for letter-alignment; the
lower-part is a log-linear model for combining different feature
functions for block-level transliteration.

these features to learn block-level transliteration-pairs
from training data. The proposed transliteration frame-
work obtained significant improvements over a strong
baseline transliteration approach similar to AbdulJaleel
and Larkey (2003) and Virga and Khudanpur (2003).

The remainder of this paper is organized as follows.
In Section 2, we formulate the transliteration as a general
translation problem; in Section 4, we propose a log-linear
alignment model with a local search algorithm to model
the letter n-gram translation pairs; in Section 5, exper-
iments are presented. Conclusions and discussions are
given in Section 6.

2 Transliteration as Translation

Transliteration can be viewed as a special case of transla-
tion. In this approach, source and target NEs are split into
letter sequences, and each sequence is treated as apseudo
sentence. The appealing reason of formulating transliter-
ation in this way is to utilize advanced alignment models,
which share ideas applied also within phrase-based sta-
tistical machine translation (Koehn, 2004).

To apply this approach to transliteration, however,
some unique aspects should be considered. First, letters
should be generated from left to right, without any re-
ordering. Thus, the transliteration models can only exe-
cute forward sequential jumps. Second, for unvowelized
languages such as Arabic, a single Arabic letter typically
maps to less than four English letters. Thus, the fertility
for each letter should be recognized to ensure reasonable
length relevance. Third, the position of the letter within
a NE is important. For example, in Arabic, letters such
as “al” at the beginning of the NE can only be translated
into “the” or “al”. Therefore position information should
be considered within the alignment models.

Incorporating the above considerations, transliteration
can be formulated as a noisy channel model. LetfJ

1 =

f1f2...fJ denote the source NE withJ letters, eI
1 =

e1e2...eI be an English transliteration candidate withI
letters. According to Bayesian decision rule:

êI
1=arg max

{eI
1}

P (eI
1|fJ

1 )= arg max
{eI

1}
P (fJ

1 |eI
1)P (eI

1), (1)

whereP (fJ
1 |eI

1) is theletter translation modelandP (eI
1)

is the Englishletter sequence modelcorresponding to
the monolingual language models in SMT. In this noisy-
channel scheme,P (fJ

1 |eI
1) is the key component for

transliteration, in which the transliteration betweeneI
1

andfJ
1 can be modeled at either letter-to-letter level, or

letter n-gram transliteration level (block-level).
Our transliteration models are illustrated in Figure 1.

We propose a Bi-Stream HMM ofP (fJ
1 |eI

1) to infer
letter-to-letter alignments in two directions: Arabic-to-
English (F-to-E) and English-to-Arabic (E-to-F), shown
in the upper-part in Figure 1; refined alignment is then
obtained. We propose a log-linear model to extract block-
level transliterations with additional informative features,
as illustrated in the lower-part of Figure 1.

3 Bi-Stream HMMs for Transliteration

Standard IBM translation models (Brown et al., 1993)
can be used to obtain letter-to-letter translations. How-
ever, these models are not directly suitable, because
letter-alignment within NEs is strictly left-to-right. This
sequential property is well suited to HMMs (Vogel et al.,
1996), in which the jumps from the current aligned posi-
tion can only be forward.

3.1 Bi-Stream HMMs

We propose a bi-stream HMM for letter-alignment within
NE pairs. For the source NEfJ

1 and a target NEeI
1, a bi-

stream HMM is defined as follows:

p(fJ
1 |eI

1)=
∑

aJ
1

J∏

j=1

p(fj |eaj )p(cfj |ceaj
)p(aj |aj−1), (2)

whereaj mapsfj to the English lettereaj at the position
aj in the English named entity.p(aj |aj−1) is the transi-
tion probability distribution assuming first-order Markov
dependency;p(fj |eaj ) is a letter-to-letter translation lex-
icon; cfj is the letter cluster offj andp(cfj |ceaj

) is a
cluster level translation lexicon. As mentioned in the
above, the vowel/non-vowel linguistic features can be uti-
lized to cluster the letters. The letters from the same clus-
ter tend to share the similar letter transliteration forms.
p(cfj |ceaj

) enables to leverage such letter-correlation in
the transliteration process.

The HMM in Eqn. 2 generates two streams of observa-
tions: the letters together with the letters’ classes follow-
ing the distribution ofp(fj |eaj ) andp(cfj |ceaj

) at each
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Figure 2:Block of letters for transliteration. A block is defined
by the left- and right- boundaries in the NE-pair.

state, respectively. To be in accordance with the mono-
tone nature of the NE’s alignment mentioned before, we
enforce the following constraints in Eqn. 3, so that the
transition can only jump forward or stay at the same state:

aj−aj−1≥0 ∀j ∈ [1, J ]. (3)

Since the two streams are conditionally independent
given the current state, the extended EM is straight-
forward, with only small modifications of the standard
forward-backward algorithm (Zhao et al., 2005), for pa-
rameter estimation.

3.2 Designing Letter-Classes

Pronunciation is typically highly structured. For in-
stance, in English the pronunciation structure of “cvc”
(consonant-vowel-consonant) is common. By incorpo-
rating letter classes into the proposed two-stream HMM,
the models’ expressiveness and robustness can be im-
proved. In this work, we focus on transliteration of Ara-
bic NEs into English. We define six non-overlapping
letter classes:vowel, consonant, initial , final, noclass,
andunknown. Initial andfinal classes represent semantic
markers at the beginning or end of NEs such as “Al” and
“wAl” (in romanization form). Noclasssignifies letters
which can be pronounced as both a vowel and a conso-
nant depending on context, for example, the English let-
ter “y”. The unknownclass is reserved for punctuations
and letters that we do not have enough linguistic clues for
mapping them to phonemes.

4 Transliteration Blocks

To further leverage the information from the letter-
context beyond the letter-classes incorporated in our bi-
stream HMM in Eqn. 2, we defineletter n-grams, which
consist ofn consecutive letters, as the basic transliter-
ation unit. A block is defined as a pair of such letter
n-grams which are transliterations of each other. Dur-
ing decoding of unseen NEs, transliteration is performed
block-by-block, rather than letter-by-letter. The goal of

transliteration model is to learn high-quality translitera-
tion blocks from the training data in a unsupervised fash-
ion.

Specifically, a blockX can be represented by its left
and right boundaries in the source and target NEs shown
in Figure 2:

X = (f j+l
j , ei+k

i ), (4)

wheref j+l
j is the source letter-ngram with(l + 1) letters

in source language, and its projection ofei +k
i in the En-

glish NE with left boundary at the position ofi, and right
boundary at(i + k).

We formulate theblock extractionas a local search
problem following the work in Zhao and Waibel (2005):
given a source letter n-gramf j+l

j , search for the pro-

jected boundaries of candidate target letter n-gramei +k
i

according to a weighted combination of the diverse fea-
tures in alog-linear modeldetailed in§4.3. The log-linear
model serves as a performance measure to guide the local
search, which, in our setup, israndomized hill-climbing,
to extract bilingual letter n-gram transliteration pairs.

4.1 Features for Block Transliteration

Three features:fertility, distortion, and lexical transla-
tion are investigated for inferring transliteration blocks
from the NE pairs. Each feature corresponds to one as-
pect of the block within the context of a given NE pair.

4.1.1 Letter n-gram Fertility

The fertility P (φ|e) of a target lettere specifies the
probability of generatingφ source letters for translitera-
tion. The fertilities can be easily read-off from the letter-
alignment, i.e., the output from the Bi-stream HMM.
Given letter fertility modelP (φ|ei), a target letter n-gram
eI
1, and a source n-gramfJ

1 of lengthJ , we compute a
probability of letter n-gram lengthrelevance:P (J |eI

1)
via a dynamic programming.

The probability of generatingJ letters by the English
letter n-grameI

1 is defined:

P (J |eI
1) = max

{φI
1,J=

∑I
i=1 φi}

I∏

i=1

P (φi|ei). (5)

The recursively updated costφ[j, i] in dynamic program-
ming is defined as follows:

φ[j, i] = max





φ[j, i− 1] + log PNull(0|ei)
φ[j − 1, i− 1] + log Pφ(1|ei)
φ[j − 2, i− 1] + log Pφ(2|ei)
φ[j − 3, i− 1] + log Pφ(3|ei)

, (6)

wherePNull(0|ei) is the probability of generating a Null
letter fromei; Pφ(k=1|ei) is the letter-fertility model of
generatingone source letter fromei; φ[j, i] is the cost
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so far for generatingj letters fromi consecutive English
letters (letter n-gram)ei

1 : e1, · · · , ei.
After computing the cost ofφ[J, I], the probability

P (J |eI
1) is computed for generating the length of the

source NEfJ
1 from the English NEeI

1 shown in Eqn. 5.
With this letter n-gram fertility model, for every block,
we can compute a fertility score to estimate how relevant
the lengths of the transliteration-pairs are.

4.1.2 Distortion of Centers
When aligning blocks of letters within transliteration

pairs, we expect most of them are close to the diagonal
due to the monotone alignment nature. Thus, a simple
position metric is proposed for each block considering
the relative positions within NE-pairs.

The center̄ fj+l
j

of the source phrasef j+l
j with a

length of(l + 1) is simply a normalized relative position
in the source entity defined as follows:

¯fj+l
j

=
1

l + 1

j′=j+l∑

j′=j

j′

l + 1
. (7)

For the center of English letter-phraseei+k
i , we first

define the expected corresponding relative center for ev-
ery source letterfj′ using the lexicalized position score
as follows:

¯ei+k
i

(fj′) =
1

k + 1
·
∑(i+k)

i′=i i′ · P (fj′ |ei′)∑(i+k)
i′=i P (fj′ |ei′)

, (8)

whereP (fj′ |ei) is the letter translation lexicon estimated
in IBM Models 1∼5. i is the position index, which
is weighted by the letter-level translation probabilities;
the term of

∑i+k
i′=i P (fj′ |ei′) provides a normalization so

that the expected center is within the range of the target
length. The expected center forei+k

i is simply the aver-
age of thē ei+k

i
(fj′):

¯ei+k
i

=
1

l + 1

j+l∑

j′=j

¯ei+k
i

(fj′) (9)

Given the estimated centers of̄fj+l
j

and¯ei+k
i

, we

can compute how close they are via the probability of
P (¯fj+l

j
|¯ei+k

i
). In our case, because of the mono-

tone alignment nature of transliteration pairs, a simple
gaussian model is employed to enforce that the point
(¯ei+k

i
,¯fj+l

j
) is not far away from the diagonal.

4.1.3 Letter Lexical Transliteration
Similar to IBM Model-1 (Brown et al., 1993), we use

a “bag-of-letter” generative model within a block to ap-
proximate the lexical transliteration equivalence:

P (f j+l
j |ei+k

i )=
j+l∏

j′=j

i+k∑

i′=i

P (fj′ |ei′)P (ei′ |ei+k
i ), (10)

whereP (ei′ |ei+k
i ) ' 1/(k+1) is approximated by a bag-

of-word unigram. Since named entities are usually rela-
tively short, this approximation works reasonably well in
practice.

4.2 Extended Feature Functions

Because of the underlying nature of the noisy-channel
model in our proposed transliteration approach in Section
2, the three base feature functions are extended to cover
the directions both from target-to-source and source-to-
target. Therefore, we have in total six feature functions
for inferring transliteration blocks from a named entity
pair.

Besides the above six feature functions, we also com-
pute the average letter-alignment links per block. We
count the number of letter-alignment links within the
block, and normalize the number by the length of the
source letter-ngram. Note that, we can refine the letter-
alignment by growing the intersections of the two di-
rection letter-alignments from Bi-stream HMM via ad-
ditional aligned letter-pairs seen in the union of the two.
In a way, this approach is similar to those of refining the
word-level alignment for SMT in (Och and Ney, 2003).
This step is shown in the upper-part in Figure 1.

Overall, our proposed feature functions cover rela-
tively different aspects for transliteration blocks: the
block level length relevance probability in Eqn. 5, lexical
translation equivalence, and positions’ distortion from a
gaussian distribution in Eqn. 8, in both directions; and
the average number of letter-alignment links within the
block. Also, these feature functions are positive and
bounded within[0, 1]. Therefore, it is suitable to apply a
log-linear model (in§4.3) to combine theweightedindi-
vidual strengths from the proposed feature functions for
better modeling the quality of the candidate translitera-
tion blocks. This log-linear model will serve as a per-
formance measure in a local-search in§4.4 for inferring
transliteration blocks.

4.3 Log-Linear Transliteration Model

We propose a log-linear model to combine the seven fea-
ture functions in§4.1 with proper weights as in Eqn. 11:

Pr(X|e, f)=
exp(

∑M
m=1 λmφm(X, e, f))∑

{X′} exp(
∑M

m=1 λmφm(X ′, e, f))
,

(11)
whereφm(X, e, f) are the real-valued bounded feature
functions corresponding to the seven models introduced
in §4.1. The log-linear model’s parameters are the
weights{λm} associated with each feature function.

With hand-labeled data,{λm} can be learnt via gen-
eralized iterative scaling algorithm (GIS) (Darroch and
Ratcliff, 1972) or improved iterative scaling (IIS) (Berger
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et al., 1996). However, as these algorithms are computa-
tionally expensive, we apply an alternative approach us-
ing a simplex down-hill algorithm to optimize the weights
toward better F-measure of block transliterations. Each
feature function corresponds to one dimension in the sim-
plex, and the local optimum only happens at a vertex of
the simplex. Simplex-downhill has several advantages:
it is an efficient approach for optimizing multi-variables
given some performance measure. We compute the F-
measure against a gold-standard block set extracted from
hand-labeled letter-alignment.

To build gold-standard blocks from hand-labeled
letter-alignment, we propose theblock transliteration co-
herencein a two-stage fashion. First is the forward pro-
jection: for each candidate source letter-ngramf j+n

j ,
search for itsleft-mostel and right-most er projected
positions in thetarget NE according to the given letter-
alignment. Second is the backward projection: for the
target letter-gramer

l , search for itsleft-mostfl′ andright-
mostfr′ projected positions in thesourceNE. Now if
l′≥j andr′≤j+n, i.e. fr

l is contained within the source
letter-ngramf j+n

j , then this blockX = (f j+n
j , er

l ) is de-

fined ascoherentfor the aligned pairs:(f j+n
j , er

l ) . We
accept coherentX as gold-standard blocks. This block
transliteration coherence is generally sound for extracting
the gold-blocks mostly because of the the monotone left-
to-right nature of the letter-alignment for transliteration.
A related coherence assumption can be found in (Fox,
2002), where their assumption on phrase-pairs for sta-
tistical machine translation is shown to be somewhat re-
strictive for SMT. This is mainly because the word align-
ment is oftennon-monotone, especially for langauge-
pairs from different families such as Arabic-English and
Chinese-English.

4.4 Aligning Letter-Blocks: a Local Search

Aligning the blocks within NE pairs can be formulated
as a local search given the heuristic function defined in
Eqn. 11. To be more specific: given a Arabic letter-ngram
f j+l

j , our algorithm searches for the best translation can-

didateei+k
i in the target named entities. In our implemen-

tation, we use stochastic hill-climbing with Eqn. 11 as the
performance measure. Down-hill moves are accepted to
allow one or two left and right null letters to be attached
to ei+k

i to expand the table of transliteration-blocks.
To make the local search more effective, we normal-

ize the letter translation lexiconp(f |e) within the parallel
entity pair as in:

P̂ (f |e) =
P (f |e)∑J

j′=1 P (fj′ |e)
. (12)

In this way, the distribution of̂P (f |e) is sharper and more
focused in the context of an entity pair.

Overall, given the parallel NE pairs, we can train the
letter level translation models in both directions via the
Bi-stream HMM in Eqn. 2. From the letter-alignment,
we can build the letter translation lexicons and fertility
tables. With these tables, the base feature functions are
then computed for each candidate block, and the features
are combined in the log-linear model in Eqn. 11. Given
a named-entity pair in the training data, we rank all the
transliteration blocks by the scores using the log-linear
model. This step is shown in the lower-part in Figure 1.

4.5 Decoding Unseen NEs

The decoding of NEs is an extension to the noisy-channel
scheme in Eqn. 1. In our configurations for NE translit-
eration, the extracted transliteration blocks are used. Our
letter ngram is a standard letter-ngram model trained us-
ing the SriLM toolkit (Stolcke, 2002). To transliterate the
unseen NEs, the decoder (Hewavitharana et al., 2005) is
configured for monotone decoding. It loads the transliter-
ation blocks and the letter-ngram LM, and it decodes the
unseen Arabic named entities with block-based translit-
eration from left to right.

5 Experiments

5.1 The Data

We have 74,887 bilingual geographic names from
LDC2005G01-NGA, 11,212 bilingual person names
from LDC2005G021, and about 6,000 bilingual names
extracted from the BAMA2 dictionary. In total, there are
92,099 NE pairs. We split them into three parts: 91,459
pairs as the training dataset, 100 pairs as the development
dataset, and 540 unique NE pairs as the held-out dataset.

An additional test set is collected from the TIDES 2003
Arabic-English machine translation evaluation test set.
The 663 sentences contain 286 unique words, which were
not covered by the available training data. From this set
of untranslated words, we manually labeled the entities of
persons, locations and organizations, giving a total of97
unique un-translated NEs. The BAMA toolkit was used
to romanize the Arabic words. Some names from this test
set are shown in Figure 1.

These untranslated NEs make up only a very small
fraction of all words in the test set. Therefore, having
correct transliterations would give only small improve-
ments in terms of BLEU (Papineni et al., 2002) and NIST
scores. However, successfully translating these unknown
NEs is very crucial for cross-lingual distillation tasks or
question-answering based on the MT-output.

1The corpus is provided as FOUO (for official use only) in
theDARPA-GALEproject

2LDC2004L02: Buckwalter Arabic Morphological Ana-
lyzer version 2.0
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Table 1: Test Set Examples.

To evaluate the transliteration performance, we use
edit-distancebetween the hypothesis against a reference
set. This is to count the number of insertions, dele-
tions, and substitutions required to correct the hypoth-
esis to match the given reference. An edit-distance of
zero is a perfect match. However, NEs typically have
more than one correct variant. For example, the Arabic
name “mHmd” (in romanized form) can be transliterated
as Muhammad or Mohammed; both are considered as
correct transliterations. Ideally, we want to have all vari-
ants as reference transliterations. To enable our translit-
eration evaluation to be more informative given only one
reference, edit-distance of one between hypothesis and
reference is considered to be an acceptable match.

5.2 Comparison of Transliteration Models

We compare the performance of three systems within our
proposed framework in Figure.1: the baseline Block sys-
tem, a system in which we use a log-linear combination
of alignment features as described in§4.3, we call the the
L-Block system, and finally a system, which also uses
the bi-stream HMM alignment model as described in§3.
This last system will be denoted LCBE system.

The baseline is based on the refined letter-alignment
from the two directions of IBM-Model-4, trained with a
scheme of15h545 using GIZA++ (Och and Ney, 2004).
The final alignment was obtained by growing the inter-
sections between Arabic-to-English (AE) and English-
to-Arabic (EA) alignments with additional aligned letter-
pairs seen in the union. This is to compensate for the
inherent asymmetry in alignment models. Blocks (letter-
ngram pairs) were collected directly from the refined
letter-alignment, using the same algorithm as described
in §4.3 for extracting gold-standard letter blocks. There is
no length restrictions to the letter-ngram extracted in our
system. All the blocks were then scored using relative
frequencies and lexical scores in both directions, similar
to the scoring of phrase-pairs in SMT (Koehn, 2004).

In the L-Block system additional feature functions as
defined in§4.1 were computed on top of the letter-level
alignment obtained from the baseline system. A log-
linear model combining these features was learned with
the gold-blocks described in§4.3. Transliteration blocks
were extracted using the local-search§4.4. The other

Table 2: Transliteration accuracy for different translitera-
tion models.

System Accuracy
Baseline 39.18%
L-Block 41.24%
LCBE 46.39%

components remained the same as in the baseline system.
The LCBE system is an extension to both the baseline

and the L-Block system. The key difference in LCBE
is that our proposed bi-stream HMM in Eqn. 2 was ap-
plied in both directions with extended letter-classes. The
resulting combined alignment was used together with all
features of the L-Block system to guide the local-search
for extracting the blocks. The same procedure of decod-
ing was then carried out for the unseen NEs using the
extracted blocks.

To build the letter language model for the decoding
process, we first split the English entities into charac-
ters; additionalposition indicators“ begin” and “end”
were added to the begin and end position of the named-
entity; “ middle” was added between the first name and
last name. A letter-trigram language model with SRI LM
toolkit (Stolcke, 2002) was then built using the target side
(English) of NE pairs tagged with the above position in-
formation.

Table 2 shows that the baseline system gives an accu-
racy of 39.18%, while the extended systems L-Block and
LCBE give 41.24% and 46.39%, respectively. These re-
sults show that the additional features besides the letter-
alignment are helpful. The L-Block system, which uses
these features, outperforms the baseline system signifi-
cantly by 2.1% absolute in accuracy. The results also
show that the bi-stream HMM alignment, which uses not
only the letters but also the letter-classes, leads to signif-
icant improvement. It outperforms the L-Block system,
which does not leverage the letter-classes and monotone
alignment, by 4.15% absolute.

5.3 Incorporation of Spell Checking

Our spelling-checker is based on the suggested word-
forms from web search engines for ambiguous candi-
dates. We collected web statistics frequency for both the
proposed transliteration candidates from our system, and
also the suggested candidates from web-search engines.
All the candidates were re-ranked by their frequencies.

Figure 3 shows the performances on the held-out set,
using system LCBE augmented with a spell-checker
(LCBE+Spell), with varying sizes of N-best hypotheses
lists. The held-out set contains 540 unique named entity
pairs. We show accuracy when exact match is requested
and when an edit distances of one is allowed.
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Figure 3:Transliteration accuracy of LCBE and LCBE+Spell
models for 540 named entity pairs in the held-out set.

Figure 4: Transliteration accuracy of N-best hypotheses for
LCBE and LCBE+Spell models it the MT-03 test set.

Figure 4 shows the performances in the unseen test set
of LCBE and LCBE+Spell, with varying sizes of N-best
hypotheses lists. LCBE+Spell reaches 52% accuracy in
1-best hypothesis. In the 5-best and 10-best cases, the ac-
curacies of LCBE+Spell system archive the highest per-
formances with 66% and 72.16% respectively. The spell-
checker increases the 1-best accuracy by 11.12% and the
10-best accuracy by 7.69%. All these improvements are
statistically significant. These results are also comparable
to other state-of-the-art statistical Arabic name transliter-
ation systems such as (Al-Onaizan and Knight, 2002).

5.4 Comparison with the Google Web Translation

We finally compared our best system with the
state-of-the-art Arabic-English Google Web Translation
(Google). Table 3 shows transliteration examples from
our best system in comparison with Google (as in June
20, 2006)3. The Google system achieved 45.36% accu-
racy for the 1-best hypothesis, which is comparable to
the results when using the LCBE transliteration system,
while LCBE+Spell archived 52%.

3http://www.google.com/translatet

Table 3: Transliteration examples between LCBE+Spell
and Google web translation.

6 Conclusions and Discussions

In this paper we proposed a novel transliteration model.
Viewing transliteration as a translation task we adopt
alignment and decoding techniques used in a phrase-
based statistical machine translation system to work on
letter sequences instead of word sequences. To improve
the performance we extended the HMM alignment model
into a bi-stream HMM alignment by incorporating letter-
classes into the alignment process. We also showed that a
block-extraction approach, which uses a log-linear com-
bination of multiple alignment features, can give signif-
icant improvements in transliteration accuracy. Finally,
spell-checking based on work occurrence statistics ob-
tained from the web gave an additional boost in translit-
eration accuracy.

The goal for this work is to improve the quality of ma-
chine translation, esp. when used in cross-lingual infor-
mation retrieval and distillation tasks, by incorporating
the proposed framework to handle unknown words. Fig-
ure 5 gives an example of the difference named entity
transliteration can make. Shown are the original SMT
system output, the translation when the proposed translit-
eration models are used to translate the unknown named-
entities, and the reference translation. A comparison of
the two SMT outputs indicates that integrating the pro-
posed transliteration model into our machine translation
system can significantly improve translation utility.
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Abstract

Letter-to-phoneme conversion generally
requires aligned training data of letters
and phonemes. Typically, the align-
ments are limited to one-to-one align-
ments. We present a novel technique of
training with many-to-many alignments.
A letter chunking bigram prediction man-
ages double letters and double phonemes
automatically as opposed to preprocess-
ing with fixed lists. We also apply
an HMM method in conjunction with
a local classification model to predict a
global phoneme sequence given a word.
The many-to-many alignments result in
significant improvements over the tradi-
tional one-to-one approach. Our system
achieves state-of-the-art performance on
several languages and data sets.

1 Introduction

Letter-to-phoneme (L2P) conversion requires a sys-
tem to produce phonemes that correspond to a given
written word. Phonemes are abstract representa-
tions of how words should be pronounced in natural
speech, while letters or graphemes are representa-
tions of words in written language. For example, the
phonemes for the wordphoenixare [ f i n I k s ].

The L2P task is a crucial part of speech synthesis
systems, as converting input text (graphemes) into
phonemes is the first step in representing sounds.
L2P conversion can also help improve performance

in spelling correction (Toutanova and Moore, 2001).
Unfortunately, proper nouns and unseen words pre-
vent a table look-up approach. It is infeasible to con-
struct a lexical database that includes every word in
the written language. Likewise, orthographic com-
plexity of many languages prevents us from using
hand-designed conversion rules. There are always
exceptional rules that need to be added to cover a
large vocabulary set. Thus, an automatic L2P sys-
tem is desirable.

Many data-driven techniques have been proposed
for letter-to-phoneme conversion systems, including
pronunciation by analogy (Marchand and Damper,
2000), constraint satisfaction (Van Den Bosch and
Canisius, 2006), Hidden Markov Model (Taylor,
2005), decision trees (Black et al., 1998), and
neural networks (Sejnowski and Rosenberg, 1987).
The training data usually consists of written words
and their corresponding phonemes, which are not
aligned; there is no explicit information indicating
individual letter and phoneme relationships. These
relationships must be postulated before a prediction
model can be trained.

Previous work has generally assumed one-to-one
alignment for simplicity (Daelemans and Bosch,
1997; Black et al., 1998; Damper et al., 2005).
An expectation maximization (EM) based algo-
rithm (Dempster et al., 1977) is applied to train the
aligners. However, there are several problems with
this approach. Letter strings and phoneme strings
are not typically the same length, so null phonemes
and null letters must be introduced to make one-
to-one-alignments possible, Furthermore, two letters
frequently combine to produce a single phoneme
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(double letters), and a single letter can sometimes
produce two phonemes (double phonemes).

To help address these problems, we propose an
automatic many-to-many aligner and incorporate it
into a generic classification predictor for letter-to-
phoneme conversion. Our many-to-many aligner
automatically discovers double phonemes and dou-
ble letters, as opposed to manually preprocessing
data by merging phonemes using fixed lists. To our
knowledge, applying many-to-many alignments to
letter-to-phoneme conversion is novel.

Once we have our many-to-many alignments, we
use that data to train a prediction model. Many
phoneme prediction systems are based on local pre-
diction methods, which focus on predicting an indi-
vidual phoneme given each letter in a word. Con-
versely, a method like pronunciation by analogy
(PbA) (Marchand and Damper, 2000) is considered
a global prediction method: predicted phoneme se-
quences are considered as a whole. Recently, Van
Den Bosch and Canisius (2006) proposed trigram
class prediction, which incorporates a constraint sat-
isfaction method to produce a global prediction for
letter-to-phoneme conversion. Both PbA and tri-
gram class prediction show improvement over pre-
dicting individual phonemes, confirming that L2P
systems can benefit from incorporating the relation-
ship between phonemes in a sequence.

In order to capitalize on the information found
in phoneme sequences, we propose to apply an
HMM method after a local phoneme prediction pro-
cess. Given a candidate list of two or more possible
phonemes, as produced by the local predictor, the
HMM will find the best phoneme sequence. Using
this approach, our system demonstrates an improve-
ment on several language data sets.

The rest of the paper is structured as follows.
We describe the letter-phoneme alignment methods
including a standard one-to-one alignment method
and our many-to-many approach in Section 2. The
alignment methods are used to align graphemes
and phonemes before the phoneme prediction mod-
els can be trained from the training examples. In
Section 3, we present a letter chunk prediction
method that automatically discovers double letters
in grapheme sequences. It incorporates our many-
to-many alignments with prediction models. In
Section 4, we present our application of an HMM

method to the local prediction results. The results
of experiments on several language data sets are dis-
cussed in Section 5. We conclude and propose future
work in Section 6.

2 Letter-phoneme alignment

2.1 One-to-one alignment

There are two main problems with one-to-one align-
ments:

1. Double letters: two letters map to one phoneme
(e.g.sh- [ S ], ph - [ f ]).

2. Double phonemes: one letter maps to two
phonemes (e.g.x - [ k s ], u - [ j u ]).

First, consider the double letter problem. In most
cases when the grapheme sequence is longer than
the phoneme sequence, it is because some letters are
silent. For example, in the wordabode, pronounced
[ @ b o d ], the lettere produces a null phoneme (ε).
This is well captured by one-to-one aligners. How-
ever, the longer grapheme sequence can also be gen-
erated by double letters; for example, in the word
king, pronounced [ kI N ], the lettersng together
produce the phoneme [N ]. In this case, one-to-one
aligners using null phonemes will produce an in-
correct alignment. This can cause problems for the
phoneme prediction model by training it to produce
a null phoneme from either of the lettersn or g.

In the double phoneme case, a new phoneme is
introduced to represent a combination of two (or
more) phonemes. For example, in the wordfume
with phoneme sequence [ f j u m ], the letteru pro-
duces both the [ j ] and [ u ] phonemes. There
are two possible solutions for constructing a one-
to-one alignment in this case. The first is to cre-
ate a new phoneme by merging the phonemes [ j ]
and [ u ]. This requires constructing a fixed list of
new phonemes before beginning the alignment pro-
cess. The second solution is to add a null letter in
the grapheme sequence. However, the null letter not
only confuses the phoneme prediction model, but
also complicates the the phoneme generation phase.

For comparison with our many-to-many ap-
proach, we implement a one-to-one aligner based on
the epsilon scattering method (Black et al., 1998).
The method applies the EM algorithm to estimate

373



Algorithm 1 : Pseudocode for a many-to-many
expectation-maximization algorithm.

Algorithm: EM-many2many

Input : xT , yV ,maxX,maxY
Output : γ

forall mapping operationsz do
γ(z) := 0

foreachsequence pair(xT , yV ) do
Expectation-many2many(xT , yV ,maxX,maxY, γ)

Maximization-Step(γ)

the probability of mapping a letterl to a phoneme
p, P (l, p). The initial probability table starts by
mapping all possible alignments between letters and
phonemes for each word in the training data, in-
troducing all possible null phoneme positions. For
example, the word/phoneme-sequence pairabode
[ @ b o d ] has five possible positions where a null
phoneme can be added to make an alignment.

The training process uses the initial probability ta-
ble P (l, p) to find the best possible alignments for
each word using the Dynamic Time Warping (DTW)
algorithm (Sankoff and Kruskal, 1999). At each it-
eration, the probability tableP (l, p) is re-calculated
based on the best alignments found in that iteration.
Finding the best alignments and re-calculating the
probability table continues iteratively until there is
no change in the probability table. The final proba-
bility tableP (l, p) is used to find one-to-one align-
ments given graphemes and phonemes.

2.2 Many-to-Many alignment

We present a many-to-many alignment algorithm
that overcomes the limitations of one-to-one align-
ers. The training of the many-to-many aligner is
an extension of the forward-backward training of a
one-to-one stochastic transducer presented in (Ris-
tad and Yianilos, 1998). Partial counts are counts of
all possible mappings from letters to phonemes that
are collected in theγ table, while mapping probabil-
ities (initially uniform) are maintained in theδ table.
For each grapheme-/phoneme-sequence pair(x, y),
theEM-many2manyfunction (Algorithm 1) calls the
Expectation-many2manyfunction (Algorithm 2) to
collect partial counts.T andV are the lengths ofx
andy respectively. ThemaxX andmaxY variables
are the maximum lengths of subsequences used in
a single mapping operation forx and y. (For the

Algorithm 2 : Pseudocode for a many-to-many
expectation algorithm.

Algorithm: Expectation-many2many

Input : xT , yV ,maxX,maxY, γ
Output : γ

α := Forward-many2many(xT , yV ,maxX,maxY )
β := Backward-many2many(xT , yV ,maxX,maxY )

if (αT,V = 0) then
return

for t = 0...T do
for v = 0...V do

if (t > 0 ∧DELX) then
for i = 1...maxX st t− i ≥ 0 do

γ(xtt−i+1, ε)+ =
αt−i,vδ(x

t
t−i+1,ε)βt,v

αT,V

if (v > 0 ∧DELY ) then
for j = 1...maxY st v − j ≥ 0 do

γ(ε, yvv−j+1)+ =
αt,v−jδ(ε,y

v
v−j+1)βt,v

αT,V

if (v > 0 ∧ t > 0) then
for i = 1...maxX st t− i ≥ 0 do

for j = 1...maxY st v − j ≥ 0 do

γ(xtt−i+1, y
v
v−j+1)+ =

αt−i,v−jδ(x
t
t−i+1,y

v
v−j+1)βt,v

αT,V

task at hand, we set bothmaxX andmaxY to 2.)
The Maximization-stepfunction simply normalizes
the partial counts to create a probability distribution.
Normalization can be done over the whole table to
create a joint distribution or per grapheme to create
a conditional distribution.

TheForward-many2manyfunction (Algorithm 3)
fills in the tableα, with each entryα(t, v) being the
sum of all paths through the transducer that gen-
erate the sequence pair(xt1, y

v
1). Analogously, the

Backward-many2manyfunction fills inβ, with each
entryβ(t, v) being the sum of all paths through the
transducer that generate the sequence pair(xTt , y

V
v ).

The constantsDELX andDELY indicate whether
or not deletions are allowed on either side. In our
system, we allow letter deletions (i.e. mapping of
letters to null phoneme), but not phoneme deletions.

Expectation-many2manyfirst calls the two func-
tions to fill theα andβ tables, and then uses the
probabilities to calculate partial counts for every
possible mapping in the sequence pair. The par-
tial count collected at positionst and v in the se-
quence pair is the sum of all paths that generate the
sequence pair and go through (t, v), divided by the
sum of all paths that generate the entire sequence
pair (α(T, V )).

Once the probabilities are learned, the Viterbi
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Algorithm 3 : Pseudocode for a many-to-many
forward algorithm.

Algorithm: Forward-many2many

Input : (xT , yV ,maxX,maxY )
Output : α

α0,0 := 1
for t = 0...T do

for v = 0...V do
if (t > 0 ∨ v > 0) then
αt,v = 0

if (t > 0 ∧DELX) then
for i = 1...maxX st t− i ≥ 0 do
αt,v+ = δ(xtt−i+1, ε)αt−i,v

if (v > 0 ∧DELY ) then
for j = 1...maxY st v − j ≥ 0 do
αt,v+ = δ(ε, yvv−j+1)αt,v−j

if (v > 0 ∧ t > 0) then
for i = 1...maxX st t− i ≥ 0 do

for j = 1...maxY st v − j ≥ 0 do
αt,v+ = δ(xtt−i+1, y

v
v−j+1)αt−i,v−j

algorithm can be used to produce the most likely
alignment as in the following equations. Back point-
ers to maximizing arguments are kept at each step so
the alignment can be reconstructed.

α(0, 0) = 1 (1)

α(t, v) = max
1≤i≤maxX,
1≤j≤maxY

8<: δ(xtt−i+1, ε)αt−i,v
δ(ε, yvv−j+1)αt,v−j
δ(xtt−i+1, y

v
v−j+1)αt−i,v−j

(2)

Given a set of words and their phonemes, align-
ments are made across graphemes and phonemes.
For example, the wordphoenix, with phonemes [ f i
n I k s ], is aligned as:

ph oe n i x
| | | | |
f i n I ks

The lettersph are an example of the double let-
ter problem (mapping to the single phoneme [ f ]),
while the letter x is an example of the double
phoneme problem (mapping to both [ k ] and [ s ]
in the phoneme sequence). These alignments pro-
vide more accurate grapheme-to-phoneme relation-
ships for a phoneme prediction model.

3 Letter chunking

Our new alignment scheme provides more accu-
rate alignments, but it is also more complex —
sometimes a prediction model should predict two

phonemes for a single letter, while at other times
the prediction model should make a prediction based
on a pair of letters. In order to distinguish between
these two cases, we propose a method called “letter
chunking”.

Once many-to-many alignments are built across
graphemes and phonemes, each word contains a set
of letter chunks, each consisting of one or two let-
ters aligned with phonemes. Each letter chunk can
be considered as a grapheme unit that contains either
one or two letters. In the same way, each phoneme
chunk can be considered as a phoneme unit consist-
ing of one or two phonemes. Note that the double
letters and double phonemes are implicitly discov-
ered by the alignments of graphemes and phonemes.
They are not necessarily consistent over the train-
ing data but based on the alignments found in each
word.

In the phoneme generation phase, the system has
only graphemes available to predict phonemes, so
there is no information about letter chunk bound-
aries. We cannot simply merge any two letters that
have appeared as a letter chunk in the training data.
For example, although the letter pairsh is usually
pronounced as a single phoneme in English (e.g.
gash [ g ae S ]), this is not true universally (e.g.
gasholder[ g ae s h o l d@ r ]). Therefore, we im-
plement a letter chunk prediction model to provide
chunk boundaries given only graphemes.

In our system, a bigram letter chunking predic-
tion automatically discovers double letters based on
instance-based learning (Aha et al., 1991). Since the
many-to-many alignments are drawn from 1-0, 1-1,
1-2, 2-0, and 2-1 relationships, each letter in a word
can form a chunk with its neighbor or stand alone
as a chunk itself. We treat the chunk prediction as
a binary classification problem. We generate all the
bigrams in a word and determine whether each bi-
gram should be a chunk based on its context. Table 1
shows an example of how chunking prediction pro-
ceeds for the wordlongs. Lettersli−2, li−1, li+1, and
li+2 are the context of the bigramli; chunk = 1 if
the letter bigramli is a chunk. Otherwise, the chunk
simply consists of an individual letter. In the exam-
ple, the word is decomposed asl|o|ng|s, which can
be aligned with its pronunciation [ l| 6 | N | z ]. If
the model happens to predict consecutive overlap-
ping chunks, only the first of the two is accepted.
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li−2 li−1 li li+1 li+2 chunk

lo n g 0
l on g s 0

l o ng s 1
o n gs 0

Table 1: An example of letter chunking prediction.

4 Phoneme prediction

Most of the previously proposed techniques for
phoneme prediction require training data to be
aligned in one-to-one alignments. Those models
approach the phoneme prediction task as a classi-
fication problem: a phoneme is predicted for each
letter independently without using other predictions
from the same word. These local predictions assume
independence of predictions, even though there are
clearly interdependencies between predictions. Pre-
dicting each phoneme in a word without considering
other assignments may not satisfy the main goal of
finding a set of phonemes that work together to form
a word.

A trigram phoneme prediction with constraint sat-
isfaction inference (Van Den Bosch and Canisius,
2006) was proposed to improve on local predictions.
From each letter unit, it predicts a trigram class that
has the target phoneme in the middle surrounded by
its neighboring phonemes. The phoneme sequence
is generated in such a way that it satisfies the tri-
gram, bigram and unigram constraints. The over-
lapping predictions improve letter-to-phoneme per-
formance mainly by repairing imperfect one-to-one
alignments.

However, the trigram class prediction tends to be
more complex as it increases the number of tar-
get classes. For English, there are only 58 uni-
gram phoneme classes but 13,005 tri-gram phoneme
classes. The phoneme combinations in the tri-gram
classes are potentially confusing to the prediction
model because the model has more target classes in
its search space while it has access to the same num-
ber of local features in the grapheme side.

We propose to apply a supervised HMM method
embedded with local classification to find the most
likely sequence of phonemes given a word. An
HMM is a statistical model that combines the obser-
vation likelihood (probability of phonemes given let-

ters) and transition likelihood (probability of current
phoneme given previous phonemes) to predict each
phoneme. Our approach differs from a basic Hidden
Markov Model for letter-to-phoneme system (Tay-
lor, 2005) that formulates grapheme sequences as
observation states and phonemes as hidden states.
The basic HMM system for L2P does not provide
good performance on the task because it lacks con-
text information on the grapheme side. In fact, a
pronunciation depends more on graphemes than on
the neighboring phonemes; therefore, the transition
probability (language model) should affect the pre-
diction decisions only when there is more than one
possible phoneme that can be assigned to a letter.

Our approach is to use an instance-based learn-
ing technique as a local predictor to generate a set
of phoneme candidates for each letter chunk, given
its context in a word. The local predictor produces
confidence values for Each candidate phoneme. We
normalize the confidence values into values between
0 and 1, and treat them as the emission probabilities,
while the transition probabilities are derived directly
from the phoneme sequences in the training data.

The pronunciation is generated by considering
both phoneme prediction values and transition prob-
abilities. The optimal phoneme sequence is found
with the Viterbi search algorithm. We limit the size
of the context ton = 3 in order to avoid over-
fitting and minimize the complexity of the model.
Since the candidate set is from the classifier, the
search space is limited to a small number of can-
didate phonemes (1 to 5 phonemes in most cases).

The HMM postprocessing is independent of local
predictions from the classifier. Instead, it selects the
best phoneme sequence from a set of possible lo-
cal predictions by taking advantage of the phoneme
language model, which is trained on the phoneme
sequences in the training data.

5 Evaluation

We evaluated our approaches on CMUDict, Brulex,
and German, Dutch and English Celex cor-
pora (Baayen et al., 1996). The corpora (except
English Celex) are available as part of the Letter-
to-Phoneme Conversion PRONALSYL Challenge1.

1The PRONALSYL Challenge: http://www.
pascal-network.org/Challenges/PRONALSYL/ .
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Language Data set Number of words
English CMUDict 112,102
English Celex 65,936
Dutch Celex 116,252
German Celex 49,421
French Brulex 27,473

Table 2: Number of words in each data set.

For the English Celex data, we removed duplicate
words as well as words shorter than four letters. Ta-
ble 2 shows the number of words and the language
of each corpus.

For all of our experiments, our local classifier
for predicting phonemes is the instance-based learn-
ing IB1 algorithm (Aha et al., 1991) implemented
in the TiMBL package (Daelemans et al., 2004).
The HMM technique is applied as post process-
ing to the instance-based learning to provide a se-
quence prediction. In addition to comparing one-to-
one and many-to-many alignments, we also compare
our method to the constraint satisfaction inference
method as described in Section 4. The results are
reported in word accuracy rate based on the 10-fold
cross validation, with the mean and standard devia-
tion values.

Table 3 shows word accuracy performance across
a variety of methods. We show results comparing
the one-to-one aligner described in Section 2.1 and
the one-to-one aligner provided by the PRONAL-
SYL challenge. The PRONALSYS one-to-one
alignments are taken directly from the PRONAL-
SYL challenge, whose method is based on an EM
algorithm. For both alignments, we use instance-
based learning as the prediction model.

Overall, our one-to-one alignments outperform
the alignments provided by the data sets for all cor-
pora. The main difference between the PRONAL-
SYS one-to-one alignment and our one-to-one align-
ment is that our aligner does not allow a null letter
on the grapheme side. Consider the wordabomina-
tion [ @ b 6 m I n e S @ n ]: the first six letters and
phonemes are aligned the same way by both align-
ers (abomin- [ @ b 6 m I n ]). However, the two
aligners produce radically different alignments for
the last five letters. The alignment provided by the
PRONALSYS one-to-one alignments is:

a t i o n
| | | | | | |
e S @ n

while our one-to-one alignment is:

a t i o n
| | | | |
e S @ n

Clearly, the latter alignment provides more informa-
tion on how the graphemes map to the phonemes.

Table 3 also shows that impressive improvements
for all evaluated corpora are achieved by using
many-to-many alignments rather than one-to-one
alignments (1-1 align vs. M-M align). The signif-
icant improvements, ranging from 2.7% to 7.6% in
word accuracy, illustrate the importance of having
more precise alignments. For example, we can now
obtain the correct alignment for the second part of
the wordabomination:

a ti o n
| | | |
e S @ n

Instead of adding a null phoneme in the phoneme
sequence, the many-to-many aligner maps the letter
chunkti to a single phoneme.

The HMM approach is based on the same hy-
pothesis as the constraint satisfaction inference
(CSInf) (Van Den Bosch and Canisius, 2006). The
results in Table 3 (1-1+CSInf vs. 1-1+HMM) show
that the HMM approach consistently improves per-
formance over the baseline system (1-1 align), while
the CSInf degrades performance on the Brulex data
set. For the CSInf method, most errors are caused
by trigram confusion in the prediction phase.

The results of our best system, which combines
the HMM method with the many-to-many align-
ments (M-M+HMM), are better than the results re-
ported in (Black et al., 1998) on both the CMU-
Dict and German Celex data sets. This is true even
though Black et al. (1998) use explicit lists of letter-
phoneme mappings during the alignment process,
while our approach is a fully automatic system that
does not require any handcrafted list.

6 Conclusion and future work

We presented a novel technique of applying many-
to-many alignments to the letter-to-phoneme conver-
sion problem. The many-to-many alignments relax
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Language Data set PRONALSYS 1-1 align 1-1+CsInf 1-1+HMM M-M align M-M+HMM
English CMUDict 58.3± 0.49 60.3± 0.53 62.9± 0.45 62.1± 0.53 65.1± 0.60 65.6± 0.72
English Celex — 74.6± 0.80 77.8± 0.72 78.5± 0.76 82.2± 0.63 83.6± 0.63
Dutch Celex 84.3± 0.34 86.6± 0.36 87.5± 0.32 87.6± 0.34 91.1± 0.27 91.4± 0.24
German Celex 86.0± 0.40 86.6± 0.54 87.6± 0.47 87.6± 0.59 89.3± 0.53 89.8± 0.59
French Brulex 86.3± 0.67 87.0± 0.38 86.5± 0.68 88.2± 0.39 90.6± 0.57 90.9± 0.45

Table 3: Word accuracies achieved on data sets based on the 10-fold cross validation.PRONALSYS: one-
to-one alignments provided by the PRONALSYL challenge.1-1 align: our one-to-one alignment method
described in Section 2.1.CsInf: Constraint satisfaction inference (Van Den Bosch and Canisius, 2006).
M-M align: our many-to-many alignment method.HMM: our HMM embedded with a local prediction.

the constraint assumptions of the traditional one-to-
one alignments. Letter chunking bigram prediction
incorporates many-to-many alignments into the con-
ventional phoneme prediction models. Finally, the
HMM technique yields global phoneme predictions
based on language models.

Impressive word accuracy improvements are
achieved when the many-to-many alignments are ap-
plied over the baseline system. On several languages
and data sets, using the many-to-many alignments,
word accuracy improvements ranged from 2.7% to
7.6%, as compared to one-to-one alignments. The
HMM cooperating with the local predictions shows
slight improvements when it is applied to the many-
to-many alignments. We illustrated that the HMM
technique improves the word accuracy more con-
sistently than the constraint-based approach. More-
over, the HMM can be easily incorporated into the
many-to-many alignment approach.

We are investigating the possibility of integrat-
ing syllabification information into our system. It
has been reported that syllabification can poten-
tially improve pronunciation performance in En-
glish (Marchand and Damper, 2005). We plan
to explore other sequence prediction approaches,
such as discriminative training methods (Collins,
2004), and sequence tagging with Support Vector
Machines (SVM-HMM) (Altun et al., 2003) to in-
corporate more features (context information) into
the phoneme generation model. We are also inter-
ested in applying our approach to other related areas
such as morphology and transliteration.
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Mathias Creutz∗, Teemu Hirsimäki∗, Mikko Kurimo ∗, Antti Puurula ∗, Janne Pylkkönen∗,
Vesa Siivola∗, Matti Varjokallio ∗, Ebru Arısoy†, Murat Saraçlar †, andAndreas Stolcke‡
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Abstract

We analyze subword-based language
models (LMs) in large-vocabulary
continuous speech recognition across
four “morphologically rich” languages:
Finnish, Estonian, Turkish, and Egyptian
Colloquial Arabic. By estimatingn-gram
LMs over sequences ofmorphs instead
of words, better vocabulary coverage
and reduced data sparsity is obtained.
Standard word LMs suffer from high
out-of-vocabulary (OOV) rates, whereas
the morph LMs can recognize previously
unseen word forms by concatenating
morphs. We show that the morph LMs
generally outperform the word LMs and
that they perform fairly well on OOVs
without compromising the accuracy
obtained for in-vocabulary words.

1 Introduction

As automatic speech recognition systems are being
developed for an increasing number of languages,
there is growing interest in language modeling ap-
proaches that are suitable for so-called “morpholog-
ically rich” languages. In these languages, the num-
ber of possible word forms is very large because
of many productive morphological processes; words
are formed through extensive use of, e.g., inflection,
derivation and compounding (such as the English
words ‘rooms’, ‘roomy’, ‘bedroom’, which all stem
from the noun ‘room’).

For some languages, language modeling based on
surface forms of words has proven successful, or at
least satisfactory. The most studied language, En-
glish, is not characterized by a multitude of word

forms. Thus, the recognition vocabulary can sim-
ply consist of a list of words observed in the training
text, andn-gram language models (LMs) are esti-
mated over word sequences. The applicability of the
word-based approach to morphologically richer lan-
guages has been questioned. In highly compounding
languages, such as the Germanic languages German,
Dutch and Swedish, decomposition of compound
words can be carried out to reduce the vocabulary
size. Highly inflecting languages are found, e.g.,
among the Slavic, Romance, Turkic, and Semitic
language families. LMs incorporating morphologi-
cal knowledge about these languages can be applied.
A further challenging category comprises languages
that are both highly inflecting and compounding,
such as the Finno-Ugric languages Finnish and Es-
tonian.

Morphology modeling aims to reduce the out-
of-vocabulary (OOV) rate as well as data sparsity,
thereby producing more effective language mod-
els. However, obtaining considerable improvements
in speech recognition accuracy seems hard, as is
demonstrated by the fairly meager improvements
(1–4 % relative) over standard word-based models
accomplished by, e.g., Berton et al. (1996), Ordel-
man et al. (2003), Kirchhoff et al. (2006), Whit-
taker and Woodland (2000), Kwon and Park (2003),
and Shafran and Hall (2006) for Dutch, Arabic, En-
glish, Korean, and Czech, or even the worse perfor-
mance reported by Larson et al. (2000) for German
and Byrne et al. (2001) for Czech. Nevertheless,
clear improvements over a word baseline have been
achieved for Serbo-Croatian (Geutner et al., 1998),
Finnish, Estonian (Kurimo et al., 2006b) and Turk-
ish (Kurimo et al., 2006a).

In this paper, subword language models in the
recognition of speech of four languages are ana-
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lyzed: Finnish, Estonian, Turkish, and the dialect
of Arabic spoken in Egypt, Egyptian Colloquial
Arabic (ECA). All these languages are considered
“morphologically rich”, but the benefits of using
subword-based LMs differ across languages. We at-
tempt to discover explanations for these differences.
In particular, the focus is on the analysis of OOVs:
A perceived strength of subword models, when con-
trasted with word models, is that subword models
can generalize to previously unseen word forms by
recognizing them as sequences of shorter familiar
word fragments.

2 Morfessor

Morfessor is an unsupervised, data-driven, method
for the segmentation of words into morpheme-like
units. The general idea is to discover as com-
pact a description of the input text corpus as possi-
ble. Substrings occurring frequently enough in sev-
eral different word forms are proposed asmorphs,
and the words in the corpus are then represented
as a concatenation of morphs, e.g., ‘hand, hand+s,
left+hand+ed, hand+ful’. Through maximum a pos-
teriori optimization (MAP), an optimal balance is
sought between the compactness of the inventory of
morphs, i.e., themorph lexicon, versus the compact-
ness of the representation of the corpus.

Among others, de Marcken (1996), Brent (1999),
Goldsmith (2001), Creutz and Lagus (2002), and
Creutz (2006) have shown that models based on
the above approach produce segmentations that re-
semble linguistic morpheme segmentations, when
formulated mathematically in a probabilistic frame-
work or equivalently using the Minimum Descrip-
tion Length (MDL) principle (Rissanen, 1989).
Similarly, Goldwater et al. (2006) use a hierarchical
Dirichlet model in combination with morph bigram
probabilities.

The Morfessor model has been developed over
the years, and different model versions exist. The
model used in the speech recognition experiments of
the current paper is the original, so-calledMorfes-
sor Baselinealgorithm, which is publicly available
for download.1. The mathematics of the Morfessor
Baseline model is briefly outlined in the following;
consult Creutz (2006) for details.

1
http://www.cis.hut.fi/projects/morpho/

2.1 MAP Optimization Criterion

In slightly simplified form, the optimization crite-
rion utilized in the model corresponds to the maxi-
mization of the following posterior probability:

P (lexicon| corpus) ∝

P (lexicon) · P (corpus| lexicon) =
∏

lettersα

P (α) ·
∏

morphsµ

P (µ). (1)

The lexicon consists of all distinct morphs spelled
out; this forms a long string of lettersα, in which
each morph is separated from the next morph using
a morph boundary character. The probability of the
lexicon is the product of the probability of each let-
ter in this string. Analogously, the corpus is repre-
sented as a sequence of morphs, which corresponds
to a particular segmentation of the words in the cor-
pus. The probability of this segmentation equals the
product of the probability of each morph tokenµ.
Letter and morph probabilities are maximum likeli-
hood estimates (empirical Bayes).

2.2 From Morphs to n-Grams

As a result of the probabilistic (or MDL) approach,
the morph inventory discovered by the Morfessor
Baseline algorithm is larger the more training data
there is. In some speech recognition experiments,
however, it has been desirable to restrict the size of
the morph inventory. This has been achieved by set-
ting a frequency threshold on the words on which
Morfessor is trained, such that the rarest words will
not affect the learning process. Nonetheless, the
rarest words can be split into morphs in accordance
with the model learned, by using the Viterbi algo-
rithm to select the most likely segmentation. The
process is depicted in Figure 1.

2.3 Grapheme-to-Phoneme Mapping

The mapping between graphemes (letters) and
phonemes is straightforward in the languages stud-
ied in the current paper. More or less, there is
a one-to-one correspondence between letters and
phonemes. That is, the spelling of a word indicates
the pronunciation of the word, and when splitting the
word into parts, the pronunciation of the parts in iso-
lation does not differ much from the pronunciation
of the parts in context. However, a few exceptions
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Figure 1: How to train a segmentation model using
the Morfessor Baseline algorithm, and how to fur-
ther train ann-gram model based on morphs.

have been treated more rigorously in the Arabic ex-
periments: e.g., in some contexts the same (spelled)
morph can have multiple possible pronunciations.

3 Experiments and Analysis

The goal of the conducted experiments is to com-
paren-gram language models based on morphs to
standard wordn-gram models in automatic speech
recognition across languages.

3.1 Data Sets and Recognition Systems

The results from eight different tests have been an-
alyzed. Some central properties of the test config-
urations are shown in Table 1. The Finnish, Esto-
nian, and Turkish test configurations are slight vari-
ations of experiments reported earlier in Hirsimäki
et al. (2006) (Fin1: ‘News task’, Fin2: ‘Book task’),
Kurimo et al. (2006a) (Fin3, Tur1), and Kurimo et
al. (2006b) (Fin4, Est, Tur2).

Three different recognition platforms have been
used, all of which are state-of-the-art large vocab-
ulary continuous speech recognition (LVCSR) sys-
tems. The Finnish and Estonian experiments have
been run on the HUT speech recognition system de-
veloped at Helsinki University of Technology.

The Turkish tests were performed using the
AT&T decoder (Mohri and Riley, 2002); the acous-
tic features were produced using the HTK front end
(Young et al., 2002). The experiments on Egyptian
Colloquial Arabic (ECA) were carried out using the
SRI DecipherTM speech recognition system.

3.1.1 Speech Data and Acoustic Models

The type and amount of speech data vary from
one language to another. The Finnish data con-

sists of news broadcasts read by one single female
speaker (Fin1), as well as an audio book read by an-
other female speaker (Fin2, Fin3, Fin4). The Finnish
acoustic models are speaker dependent (SD). Mono-
phones (mon) were used in the earlier experiments
(Fin1, Fin2), but these were later replaced by cross-
context triphones (tri).

The Estonian speech data has been collected from
a large number of speakers and consists of sen-
tences from newspapers as well as names and dig-
its read aloud. The acoustic models are speaker-
independent triphones (SI tri) adapted online using
Cepstral Mean Subtraction and Constrained Maxi-
mum Likelihood Linear Regression. Also the Turk-
ish acoustic training data contains speech from hun-
dreds of speakers. The test set is composed of news-
paper text read by one female speaker. Speaker-
independent triphones are used as acoustic models.

The Finnish, Estonian, and Turkish data sets con-
tain planned speech, i.e., written text read aloud.
By contrast, the Arabic data consists of transcribed
spontaneous telephone conversations,2 which are
characterized by disfluencies and by the presence
of “non-speech”, such as laugh and cough sounds.
There are multiple speakers in the Arabic data, and
online speaker adaptation has been performed.

3.1.2 Text Data and Language Models

The n-gram language models are trained using
the SRILM toolkit (Stolcke, 2002) (Fin1, Fin2,
Tur1, Tur2, ECA) or similar software developed
at HUT (Siivola and Pellom, 2005) (Fin3, Fin4,
Est). All models utilize the Modified Interpolated
Kneser-Ney smoothing technique (Chen and Good-
man, 1999). The Arabic LM is trained on the
same corpus that is used for acoustic training. This
data set is regrettably small (160 000 words), but it
matches the test set well in style, as it consists of
transcribed spontaneous speech. The LM training
corpora used for the other languages contain fairly
large amounts of mainly news and book texts and
conceivably match the style of the test data well.

In the morph-based models, words are split into
morphs using Morfessor, and statistics are collected
for morph n-grams. As the desired output of the

2LDC CallHome corpus of Egyptian ColloquialAra-
bic: http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC97S45
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Table 1: Test configurations
Fin1 Fin2 Fin3 Fin4 Est Tur1 Tur2 ECA

Recognizer HUT HUT HUT HUT HUT AT&T AT&T SRI
Speech data
Type of speech read read read read read read read spont.
Training set [kwords] 20 49 49 49 790 230 110 160
Speakers in training set 1 1 1 1 1300 550 250 310
Test set [kwords] 4.3 1.9 1.9 1.9 3.7 7.0 7.0 16
Speakers in test set 1 1 1 1 50 1 1 57
Text data
LM training set [Mwords] 36 36 32 150 53 17 27 0.16
Models
Acoustic models SD mon SD mon SD tri SD tri SI tri SI tri SI tri SItri
Morph lexicon [kmorphs] 66 66 120 25 37 52 34 6.1
Word lexicon [kwords] 410 410 410 – 60 120 50 18
Out-of-vocabulary words
OOV LM training set [%] 5.0 5.0 5.9 – 14 5.3 9.6 0.61
OOV test set [%] 5.0 7.2 7.3 – 19 5.5 12 9.9
New words in test set [%] 2.7 3.0 3.1 1.5 3.4 1.6 1.5 9.8

speech recognizer is a sequence of words rather than
morphs, the LM explicitly models word breaks as
special symbols occurring in the morph sequence.

For comparison, wordn-gram models have been
tested. The vocabulary cannot typically include ev-
ery word form occurring in the training set (because
of the large number of different words), so the most
frequent words are given priority; the actual lexicon
sizes used in each experiment are shown in Table 1.
Any word not contained in the lexicon is replaced by
a special out-of-vocabulary symbol.

As words and morphs are units of different length,
their optimal performance may occur at different or-
ders of then-gram. The best order of then-gram
has been optimized on development test sets in the
following cases: Fin1, Fin2, Tur1, ECA (4-grams
for both morphs and words) and Tur2 (5-grams for
morphs, 3-grams for words). The models have ad-
ditionally been pruned using entropy-based pruning
(Tur1, Tur2, ECA) (Stolcke, 1998). In the other
experiments (Fin3, Fin4, Est), no fixed maximum
value ofn was selected.n-Gram growing was per-
formed (Siivola and Pellom, 2005), such that those
n-grams that maximize the training set likelihood
are gradually added to the model. The unrestricted
growth of the model is counterbalanced by an MDL-
type complexity term. The highest order ofn-grams
accepted was 7 for Finnish and 8 for Estonian.

Note that the optimization procedure is neutral
with respect to morphs vs. words. Roughly the
same number of parameters are allowed in the result-

ing LMs, but typically the morphn-gram LMs are
smaller than the corresponding wordn-gram LMs.

3.1.3 Out-of-Vocabulary Words

Table 1 further shows statistics on out-of-
vocabulary rates in the data sets. This is relevant
for the assessment of the word models, as the OOV
rates define the limits of these models.

The OOV rate for the LM training set corresponds
to the proportion of words replaced by the OOV
symbol in the LM training data, i.e., words that were
not included in the recognition vocabulary. The high
OOV rates for Estonian (14 %) and Tur2 (9.6 %) in-
dicate that the word lexicons have poor coverage of
these sets. By contrast, the ECA word lexicon cov-
ers virtually the entire training set vocabulary.

Correspondingly, the test set OOV rate is the pro-
portion of words that occur in the data sets used
for running the speech recognition tests, but that are
missing from the recognition lexicons. This value
is thus theminimum errorthat can be obtained by
the word models, or put differently, the recognizer
is guaranteed to get at least this proportion of words
wrong. Again, the values are very high for Estonian
(19 %) and Tur2 (12 %), but also for Arabic (9.9 %)
because of the insufficient amount of training data.

Finally, the figures labeled “new words in test set”
denote the proportion of words in the test set that do
not occur in the LM training set. Thus, these values
indicate the minimum error achievable byanyword
model trained on the training sets available.
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Figure 2: Word accuracies for the different speech
recognition test configurations.

3.2 Results and Analysis

The morph-based and word-based results of the con-
ducted speech recognition experiments are shown in
Figure 2 (for Fin4, no comparable word experiment
has been carried out). The evaluation measure used
is word accuracy(WAC): the number of correctly
recognized words minus the number of incorrectly
inserted words divided by the number of words in
the reference transcript. (Another frequently used
measure is theword error rate, WER, which relates
to word accuracy as WER = 100 % – WAC.)

Figure 2 shows that the morph models perform
better than the word models, with the exception
of the Arabic experiment (ECA), where the word
model outperforms the morph model. The statisti-
cal significance of these differences is confirmed by
one-tailed paired Wilcoxon signed-rank tests at the
significance level of 0.05.

Overall, the best performance is observed for the
Finnish data sets, which is explained by the speaker-
dependent acoustic models and clean noise condi-
tions. The Arabic setup suffers from the insufficient
amount of LM training data.

3.2.1 In-Vocabulary Words

For a further investigation of the outcome of the
experiments, the test sets have been partitioned into
regions based on the types of words they contain.
The recognition output is aligned with the refer-
ence transcript, and the regions aligned within-

vocabulary(IV) reference words (words contained
in the vocabulary of the word model) are put in
one partition and the remaining words (OOVs) are
put in another partition. Word accuracies are then
computed separately for the two partitions. Inserted
words, i.e., words that are not aligned with any word
in the reference, are put in the IV partition, unless
they are adjacent to an OOV region, in which case
they are put in the OOV partition.

Figure 3a shows word accuracies for the in-
vocabulary words. Without exception, the accuracy
for the IVs is higher than that of the entire test set vo-
cabulary. One could imagine that the word models
would do better than the morph models on the IVs,
since the word models are totally focused on these
words, whereas the morph models reserve modeling
capacity for a much larger set of words. The word
accuracies in Fig. 3a also partly seem to support this
view. However, Wilcoxon signed-rank tests (level
0.05) show that the superiority of the word model is
statistically significant only for Arabic and for Fin3.

With few exceptions, it is thus possible to draw
the conclusion thatmorph models are capable of
modeling a much larger set of words than word
models without, however, compromising the perfor-
mance on the limited vocabulary covered by the
word models in a statistically significant way.

3.2.2 Out-of-Vocabulary Words

Since the word model and morph model perform
equally well on the subset of words that are included
in the lexicon of the word model, the overall supe-
riority of the morph model needs to come from its
successful coping with out-of-vocabulary words.

In Figure 3b, word accuracies have been plot-
ted for the out-of-vocabulary words contained in the
test set. It is clear that the recognition accuracy for
the OOVs is much lower than the overall accuracy.
Also, negative accuracy values are observed. This
happens when the number of insertions exceeds the
number of correctly recognized units.

In Figure 3b, if speaker-dependent and speaker-
independent setups are considered separately (and
Arabic is left out), there is a tendency for the morph
models to recognize the OOVs more accurately, the
higher the OOV rate is. One could say that a morph
model has a double advantage over a correspond-
ing word model: the larger the proportion of OOVs
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Figure 3: Word accuracies computed separately for those words in the test sets that are (a) included in and
(b) excluded from the vocabularies of the word vocabulary; cf. figures listed on the row “OOV test set” in
Table 1. Together these two partitions make up the entire test set vocabulary. For comparison, the results for
the entire sets are shown using gray-shaded bars (also displayed in Figure 2).

in the word model is, the larger the proportion of
words that the morph model can recognize but the
word model cannot, a priori. In addition, the larger
the proportion of OOVs, the more frequent and more
“easily modelable” words are left out of the word
model, and the more successfully these words are
indeed learned by the morph model.

3.2.3 New Words in the Test Set

All words present in the training data (some of
which are OOVs in the word models) “leave some
trace” in the morph models, in then-gram statistics
that are collected for morph sequences. How, then,
about new words that occur only in the test set, but
not in the training set? In order to recognize such
words correctly, the model must combine morphs in
ways it has not observed before.

Figure 4 demonstrates that the new unseen words
are very challenging. Now, also the morph mod-
els mostly obtain negative word accuracies, which
means that the number of insertions adjacent to new
words exceeds the number of correctly recognized
new words. The best results are obtained in clean
acoustic conditions (Fin2, Fin3, Fin4) with only few
foreign names, which are difficult to get right using
typical Finnish phoneme-to-grapheme mappings (as
the negative accuracy of Fin1 suggests).

3.3 Vocabulary Growth and Arabic

Figure 5 shows the development of the size of
the vocabulary (unique word forms) for growing
amounts of text in different corpora. The corpora
used for Finnish, Estonian, and Turkish (planned
speech/text), as well as Arabic (spontaneous speech)
are the LM training sets used in the experiments.
Additional sources have been provided for Arabic
and English: Arabic text (planned) from the FBIS
corpus of Modern Standard Arabic (a collection
of transcribed radio newscasts from various radio
stations in the Arabic speaking world), as well as
text from the New York Times magazine (English
planned) and spontaneous transcribed English tele-
phone conversations from the Fisher corpus.

The figure illustrates two points: (1) The faster
the vocabulary growth is, the larger the potential ad-
vantage of morph models is in comparison to stan-
dard word models, because of OOV and data spar-
sity problems. The obtained speech recognition re-
sults seem to support this hypothesis; the applied
morph LMs are clearly beneficial for Finnish and
Estonian, mostly beneficial for Turkish, and slightly
detrimental for ECA. (2) A more slowly growing
vocabulary is used in spontaneous speech than in
planned speech (or written text). Moreover, the
Arabic ‘spontaneous’ curve is located fairly close
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Figure 4: Word accuracies computed for the words
in the test sets that do not occur at all in the train-
ing sets; cf. figures listed on the row “new words
in test set” in Table 1. For comparison, the gray-
shaded bars show the corresponding results for the
entire test sets (also displayed in Figure 2).

to the English ‘planned’ curve and much below
the Finnish, Estonian, and Turkish curves. Thus,
even though Arabic is considered a “morphologi-
cally rich” language, this is not manifested through
a considerable vocabulary growth (and high OOV
rate) in the Egyptian Colloquial Arabic data used in
the current speech recognition experiments. Conse-
quently, it may not be that surprising that the morph
model did not work particularly well for Arabic.

Arabic words consist of a stem surrounded by pre-
fixes and suffixes, which are fairly successfully seg-
mented out by Morfessor. However, Arabic also
hastemplaticmorphology, i.e., the stem is formed
through the insertion of a vowel pattern into a “con-
sonantal skeleton”.

Additional experiments have been performed us-
ing the ECA data and Factored Language Models
(FLMs) (Kirchhoff et al., 2006). The FLM is a
powerful model that makes use of several sources
of information, in particular a morphological lexi-
con of ECA. The FLM incorporates mechanisms for
handling templatic morphology, but despite its so-
phistication, it barely outperforms the standard word
model: The word accuracy of the FLM is 42.3 % and
that of the word model is 41.8 %. The speech recog-
nition implementation of both the FLM and the word
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Figure 5: Vocabulary growth curves for the differ-
ent corpora of spontaneous and planned speech (or
written text). For growing amounts of text (word
tokens) the number of unique different word forms
(word types) occurring in the corpus are plotted.

model is based onwhole words(although subword
units are used for assigning probabilities to word
forms in the FLM). This contrasts these models with
the morph model, which splits words into subword
units also in the speech recognition implementation.
It seems that the splitting is a source of errors in this
experimental setup with very little data available.

4 Discussion

Alternative morph-based and word-based ap-
proaches exist. We have tried some, but none of
them has outperformed the described morph models
for Finnish, Estonian, and Turkish, or the word and
FLM models for Egyptian Arabic (in a statistically
significant way). The tested models comprise
more linguistically accurate morph segmentations
obtained using later Morfessor versions (Categories-
ML and Categories-MAP) (Creutz, 2006), as well
as analyses obtained from morphological parsers.

Hybrids, i.e., word models augmented with
phonemes or other subword units have been pro-
posed (Bazzi and Glass, 2000; Galescu, 2003;
Bisani and Ney, 2005). In our experiments, such
models have outperformed the standard word mod-
els, but not the morph models.

Simply growing the word vocabulary to cover the
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entire vocabulary of large training corpora could be
one (fairly “brute-force”) approach, but this is hardly
feasible for languages such as Finnish. The en-
tire Finnish LM training data of 150 million words
(used in Fin4) contains more than 4 million unique
word forms, a value ten times the size of the rather
large word lexicon currently used. And even if a 4-
million-word lexicon were to be used, the OOV rate
of the test set would still be relatively high: 1.5 %.

Judging by the Arabic experiments, there seems
to be some potential in Factored Language Models.
The FLMs might work well also for the other lan-
guages, and in fact, to do justice to the more ad-
vanced morph models from later versions of Mor-
fessor, FLMs or some other refined techniques may
be necessary as a complement to the currently used
standardn-grams.
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limited vocabulary speech recognition for agglutinative lan-
guages. InProc. NAACL-HLT, New York, USA.

O.-W. Kwon and J. Park. 2003. Korean large vocabulary con-
tinuous speech recognition with morpheme-based recogni-
tion units.Speech Communication, 39(3–4):287–300.

M. Larson, D. Willett, J. Koehler, and G. Rigoll. 2000. Com-
pound splitting and lexical unit recombination for improved
performance of a speech recognition system for German par-
liamentary speeches. InProc. ICSLP.

M. Mohri and M. D. Riley. 2002. DCD library, Speech
recognition decoder library. AT&T Labs Research.http:
//www.research.att.com/sw/tools/dcd/.

R. Ordelman, A. van Hessen, and F. de Jong. 2003. Compound
decomposition in Dutch large vocabulary speech recogni-
tion. In Proc. Eurospeech, pp. 225–228, Geneva, Switzer-
land.

J. Rissanen. 1989. Stochastic complexity in statistical inquiry.
World Scientific Series in Computer Science, 15:79–93.

I. Shafran and K. Hall. 2006. Corrective models for speech
recognition of inflected languages. InProc. EMNLP, Syd-
ney, Australia.

V. Siivola and B. Pellom. 2005. Growing ann-gram model. In
Proc. Interspeech, pp. 1309–1312, Lisbon, Portugal.

A. Stolcke. 1998. Entropy-based pruning of backoff language
models. InProc. DARPA BNTU Workshop, pp. 270–274,
Lansdowne, VA, USA.

A. Stolcke. 2002. SRILM – an extensible language modeling
toolkit. In Proc. ICSLP, pp. 901–904.http://www.speech.
sri.com/projects/srilm/.

E. W. D. Whittaker and P. C. Woodland. 2000. Particle-based
language modelling. InProc. ICSLP, pp. 170–173, Beijing,
China.

S. Young, D. Ollason, V. Valtchev, and P. Woodland. 2002.
The HTK book (for version 3.2 of HTK). University of Cam-
bridge.

387



Proceedings of NAACL HLT 2007, pages 388–395,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Tree Revision Learning for Dependency Parsing

Giuseppe Attardi
Dipartimento di Informatica

Università di Pisa
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Abstract

We present a revision learning model for
improving the accuracy of a dependency
parser. The revision stage corrects the out-
put of the base parser by means of revi-
sion rules learned from the mistakes of
the base parser itself. Revision learning
is performed with a discriminative classi-
fier. The revision stage has linear com-
plexity and preserves the efficiency of the
base parser. We present empirical evalu-
ations on the treebanks of two languages,
which show effectiveness in relative error
reduction and state of the art accuracy.

1 Introduction

A dependency parse tree encodes useful semantic in-
formation for several language processing tasks. De-
pendency parsing is a simpler task than constituent
parsing, since dependency trees do not have ex-
tra non-terminal nodes and there is no need for a
grammar to generate them. Approaches to depen-
dency parsing either generate such trees by consid-
ering all possible spanning trees (McDonald et al.,
2005), or build a single tree on the fly by means of
shift-reduce parsing actions (Yamada & Matsumoto,
2003). In particular, Nivre and Scholz (2004) and
Attardi (2006) have developed deterministic depen-
dency parsers with linear complexity, suitable for
processing large amounts of text, as required, for ex-
ample, in information retrieval applications.

We investigate a novel revision approach to
dependency parsing related to re-ranking and

transformation-based methods (Brill, 1993; Brill,
1995; Collins, 2000; Charniak & Johnson, 2005;
Collins & Koo, 2006). Similarly to re-ranking, the
second stage attempts to improve the output of a
base parser. Instead of re-ranking n-best candi-
date parses, our method works by revising a sin-
gle parse tree, either the first-best or the one con-
structed by a deterministic shift-reduce parser, as in
transformation-based learning. Parse trees are re-
vised by applying rules which replace incorrect with
correct dependencies. These rules are learned by
comparing correct parse trees with incorrect trees
produced by the base parser on a training corpus.
We use the same training corpus on which the base
parser was trained, but this need not be the case.
Hence, we define a new learning task whose output
space is a set of revision rules and whose input is
a set of features extracted at each node in the parse
trees produced by the parser on the training corpus.
A statistical classifier is trained to solve this task.

The approach is more suitable for dependency
parsing since trees do not have non-terminal nodes,
therefore revisions do not require adding/removing
nodes. However, the method applies to any parser
since it only analyzes output trees. An intuitive mo-
tivation for this method is the observation that a
dependency parser correctly identifies most of the
dependencies in a tree, and only local corrections
might be necessary to produce a correct tree. Per-
forming several parses in order to generate multiple
trees would often just repeat the same steps. This
could be avoided by focusing on the points where at-
tachments are incorrect. In the experiments reported
below, on average, the revision stage performs 4.28
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corrections per sentence, or one every 6.25 tokens.
In our implementation we adopt a shift-reduce

parser which minimizes computational costs. The
resulting two-stage parser has complexity O(n), lin-
ear in the length of the sentence. We evaluated our
model on the treebanks of English and Swedish. The
experimental results show a relative error reduction
of, respectively, 16% and 11% with respect to the
base parser, achieving state of accuracy on Swedish.

2 Dependency parsing

Detection of dependency relations can be useful
in tasks such as information extraction (Culotta &
Sorensen, 2004), lexical acquisition (Snow et al.,
2005), ontology learning (Ciaramita et al., 2005),
and machine translation (Ding & Palmer, 2005).
A dependency parser is trained on a corpus an-
notated with lexical dependencies, which are eas-
ier to produce by annotators without deep linguis-
tic knowledge and are becoming available in many
languages (Buchholz & Marsi, 2006). Recent de-
velopments in dependency parsing show that deter-
ministic parsers can achieve good accuracy (Nivre &
Scholz, 2004), and high performance, in the range of
hundreds of sentences per second (Attardi, 2006).

A dependency parser takes as input a sentence
s and returns a dependency graph G. Let D =
{d1, d2, ..., dm} be the set of permissible depen-
dency types. A dependency graph for a sentence
s = 〈s1, s2, ..., sn〉 is a labeled directed graph G =
(s,A), such that:

(a) s is the set of nodes, corresponding to the to-
kens in the input string;

(b) A is a set of labeled arcs (wi, d, wj), wi,j ∈ s,
d ∈ D; wj is called the head, wi the modifier
and d the dependency label;

(c) ∀wi ∈ s there is at most one arc a ∈ A, such
that a = (wi, d, wj);

(d) there are no cycles;

In statistical parsing a generator (e.g. a
PCFG) is used to produce a number of candidate
trees (Collins, 2000) with associated scores. This
approach has been used also for dependency parsing,
generating spanning trees as candidates and comput-
ing the maximum spanning tree using discriminative
learning algorithms (McDonald et al., 2005).

Shift 〈S,n|I,T,A〉
〈n|S,I,T,A〉 (1)

Right 〈s|S,n|I,T,A〉
〈S,n|I,T,A∪{(s,r,n)}〉 (2)

Left 〈s|S,n|I,T,A〉
〈S,s|I,T,A∪{(n,r,s)}〉 (3)

Right2
〈s1|s2|S,n|I,T,A〉

〈s1|S,n|I,T,A∪{(s2,r,n)}〉 (4)

Left2
〈s1|s2|S,n|I,T,A〉

〈s2|S,s1|I,T,A∪{(n,r,s2)}〉 (5)

Right3
〈s1|s2|s3|S,n|I,T,A〉

〈s1|s2|S,n|I,T,A∪{(s3,r,n)}〉 (6)

Left3
〈s1|s2|s3|S,n|I,T,A〉

〈s2|s3|S,s1|I,T,A∪{(n,r,s3)}〉 (7)

Extract 〈s1|s2|S,n|I,T,A〉
〈n|s1|S,I,s2|T,A〉 (8)

Insert 〈S,I,s1|T,A〉
〈s1|S,I,T,A〉 (9)

Table 1. The set of parsing rules of the base parser.

Yamada and Matsumoto (2003) have proposed an
alternative approach, based on deterministic bottom-
up parsing. Instead of learning directly which tree
to assign to a sentence, the parser learns which
Shift/Reduce actions to use for building the tree.
Parsing is cast as a classification problem: at each
step the parser applies a classifier to the features rep-
resenting its current state to predict the next action to
perform. Nivre and Scholz (2004) proposed a vari-
ant of the model of Yamada and Matsumoto that re-
duces the complexity from the worst case quadratic
to linear. Attardi (2006) proposed a variant of the
rules that allows deterministic single-pass parsing
and as well as handling non-projective relations.
Several approaches to dependency parsing on multi-
ple languages have been evaluated in the CoNLL-X
Shared Task (Buchholz & Marsi, 2006).

3 A shift-reduce dependency parser

As a base parser we use DeSR, a shift-reduce
parser described in (Attardi, 2006). The parser
constructs dependency trees by scanning input sen-
tences in a single left-to-right pass and performing
Shift/Reduce parsing actions. The parsing algorithm
is fully deterministic and has linear complexity. Its
behavior can be described as repeatedly selecting
and applying some parsing rules to transform its
state.

The state of the parser is represented by a quadru-
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ple 〈S, I, T,A〉: S is the stack, I is the list of (re-
maining) input tokens, T is a stack of saved to-
kens and A is the arc relation for the dependency
graph, consisting of a set of labeled arcs (wi, r, wj),
wi, wj ∈ W (the set of tokens), and d ∈ D (the
set of dependencies). Given an input sentence s,
the parser is initialized to 〈∅, s, ∅, ∅〉, and terminates
when it reaches the configuration 〈s, ∅, ∅, A〉.

Table 1 lists all parsing rules. The Shift rule
advances on the input, while the various Left,
Right variants create links between the next in-
put token and some previous token on the stack.
Extract/Insert generalize the previous rules by
respectively moving one token to the stack T and
reinserting the top of T into S. An essential differ-
ence with respect to the rules of Yamada and Mat-
sumoto (2003) is that the Right rules move back to
the input the top of the stack, allowing some further
processing on it, which would otherwise require a
second pass. The extra Left and Right rules (4-
7, Table 1), and the ExtractInsert rules (8 and
9, Table 1), are new rules added for handling non-
projective trees. The algorithm works as follows:

Algorithm 1: DeSR
input: s = w1, w2, ..., wn

begin
S ← 〈〉
I ← 〈w1, w2, ..., wn〉
T ← 〈〉
A← 〈〉
while I 6= 〈〉 do

x← getContext(S, I, T,A)
y ← estimateAction(w,x)
performAction(y, S, I, T,A)

end

The function getContext() extracts a vector x
of contextual features around the current token, i.e.,
from a subset of I and S. estimateAction() pre-
dicts a parsing action y given a trained model w and
x. In the experiments presented below, we used as
features the lemma, Part-of-Speech, and dependency
type of the following items:

• 2 top items from S;
• 4 items from I;

Step Description
r Up to root node
u Up one parent
−n Left to the n-th token
+n Right to the n-th token
[ Head of previous constituent
] Head of following constituent
> First token of previous constituent
< First token of following constituent
d−− Down to the leftmost child
d + + Down to the rightmost child
d− 1 Down to the first left child
d + 1 Down to the first right child
dP Down to token with POS P

Table 2. Description of the atomic movements allowed on
the graph relatively to a token w.

• 2 leftmost and 2 rightmost children from the
top of S and I .

4 Revising parse trees

The base parser is fairly accurate and even when
there are mistakes most sentence chunks are correct.
The full correct parse tree can often be recovered by
performing just a small number of revisions on the
base parse. We propose to learn these revisions and
to apply them to the single best tree output by the
base parser. Such an approach preserves the deter-
ministic nature of the parser, since revising the tree
requires a second sequential step over the whole sen-
tence. The second step may also improve accuracy
by incorporating additional evidence, gathered from
the analysis of the tree which is not available during
the first stage of parsing.

Our approach introduces a second learning task
in which a model is trained to revise parse trees.
Several questions needs to be addressed: which tree
transformations to use in revising the parse tree,
how to determine which transformation to apply, in
which order, and which features to use for learning.

4.1 Basic graph movements
We define a revision as a combination of atomic
moves on a graph; e.g., moving a link to the follow-
ing or preceding token in the sentence, up or down
the graph following the directed edges. Table 2 sum-
marizes the set of atomic steps we used.
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Figure 1. An incorrect dependency tree: the dashed arrow from ”sale” to ”by” should be replaced with the one from
”offered” to ”by”.

4.2 Revision rules

A revision rule is a sequence of atomic steps on the
graph which identifies the head of a modifier. As an
example, Figure 1 depicts a tree in which the mod-
ifier “by” is incorrectly attached to the head “sale”
(dashed arrow), rather than to the correct head “of-
fered” (continuous arrow)1. There are several possi-
ble revision rules for this case: “uu”, move up two
nodes; −3, three tokens to the left, etc. To bound
the complexity of feature extraction the maximum
length of a sequence is bound to 4. A revision for
a dependency relation is a link re-direction, which
moves a single link in a tree to a different head. This
is an elementary transformation which preserves the
number of nodes in the tree.

A possible problem with these rules is that they
are not tree-preserving, i.e. a tree may become a
cyclic graph. For instance, rules that create a link
to a descendant introduce cycles, unless the appli-
cation of another rule will link one of the nodes in
the path to the descendant to a node outside the cy-
cle. To address these issues we apply the following
heuristics in selecting the proper combination: rules
that redirect to child nodes are chosen only when
no other rule is applicable (upwards rule are safe),
and shorter rules are preferred over longer ones. In
our experiments we never observed the production
of any cycles.

On Wall Street Journal Penn Treebank section 22
we found that the 20 most frequent rules are suffi-
cient to correct 80% of the errors, see Table 3. This
confirms that the atomic movements produce simple
and effective revision rules.

1Arrows go from head to modifier as agreed among the par-
ticipants to the CoNLL-X shared task.

COUNTS RULE TARGET LOCATION
983 uu Up twice
685 -1 Token to the left
469 +1 Token to the right
265 [ Head of previous constituent
215 uuu Up 3 times
197 +1u Right, up
194 r To root
174 -1u Left, up
116 >u Token after constituent, up
103 ud−− Up down to leftmost child
90 V To 1st child with POS verb
83 d+1 Down to first right child
82 uuuu Up 4 times
74 < Token before constituent
73 ud+1 Up down to 1st right child
71 uV Up, down to 1st verb
61 ud-1 Up, down to last left child
56 ud+1d+1 Up, down to 1st right child twice
55 d+1d+1 Down to 1st right child twice
48 d−− Down to leftmost child

Table 3. 20 most frequent revision rules in wsj22.

4.3 Tree revision problem

The tree revision problem can be formalized as fol-
lows. Let G = (s,A) be a dependency tree for
sentence s = 〈w1, w2, ..., wn〉. A revision rule is
a mapping r : A → A which, when applied to an
arc a = (wi, d, wj), returns an arc a′ = (wi, d, ws).
A revised parse tree is defined as r(G) = (s,A′)
such that A′ = {r(a) : a ∈ A}.

This definition corresponds to applying the revi-
sions to the original tree in a batch, as in (Brill,
1993). Alternatively, one could choose to apply the
transformations incrementally, applying each one to
the tree resulting from previous applications. We
chose the first alternative, since the intermediate
trees created during the transformation process may
not be well-formed dependency graphs, and analyz-
ing them in order to determine features for classifi-
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cation might incur problems. For instance, the graph
might have abnormal properties that differ from
those of any other graph produced by the parser.
Moreover, there might not be enough cases of such
graphs to form a sufficiently large training set.

5 Learning a revision model

We frame the problem of revising a tree as a super-
vised classification task. Given a training set S =
(xi, yi)N

i=1, such that xi ∈ IRd and yi ∈ Y , our goal
is to learn a classifier, i.e., a function F : X → Y .
The output space represents the revision rules, in
particular we denote with y1 the identity revision
rule. Features represents syntactic and morphologi-
cal properties of the dependency being examined in
its context on the graph.

5.1 Multiclass perceptron
The classifier used in revision is based on the per-
ceptron algorithm (Rosemblatt, 1958), implemented
as a multiclass classifier (Crammer & Singer, 2003).
One introduces a weight vector αi ∈ IRd for each
yi ∈ Y , in which αi,j represents the weight associ-
ated with feature j in class i, and learn α with the
perceptron from the training data using a winner-
take-all discriminant function:

F (x) = arg max
y∈Y

〈x, αy〉 (10)

The only adjustable parameter in this model is the
number of instances T to use for training. We chose
T by means of validation on the development data,
typically with a value around 10 times the size of the
training data. For regularization purposes we adopt
an average perceptron (Collins, 2002) which returns
for each y, αy = 1

T

∑T
t=1 αt

y, the average of all
weight vectors αt

y posited during training. The per-
ceptron was chosen because outperformed other al-
gorithms we experimented with (MaxEnt, MBL and
SVM), particularly when including feature pairs, as
discussed later.

5.2 Features
We used as features for the revision phase the same
type of features used for training the parser (de-
scribed in Section 3). This does not have to be the
case in general. In fact, one might want to introduce
features that are specific for this task. For example,

global features of the full tree which might be not
possible to represent or extract while parsing, as in
statistical parse re-ranking (Collins & Koo, 2006).

The features used are lemma, Part-of-Speech, and
dependency type of the following items: the current
node, its parent, grandparent, great-grandparent, of
the children thereof and, in addition, the previous
and next tokens of the node. We also add as features
all feature pairs that occurred more than 10 times,
to reduce the size of the feature space. In alternative
one could use a polynomial kernel. We preferred this
option because, given the large size of the training
data, a dual model is often impractical.

5.3 Revision model

Given a dependency graph G = (s,A), for a sen-
tence s = 〈w1, ..., wn〉, the revised tree is R(G) =
(s,A′), where each dependency a′

i is equal to F (ai).
In other words, the head in ai has been changed, or
not, according to the rule predicted by the classifier.
In particular, we assume that revisions are indepen-
dent of each other and perform a revision of a tree
from left to right. As Table 3 suggests, there are
many revision rules with low frequency. Rather than
learning a huge classifier, for rules with little train-
ing data, we limit the number of classes to a value
k. We experimented with values between 30 and
50, accounting for 98-99% of all rules, and even-
tually used 50, by experimenting with the develop-
ment portion of the data. All rules that fall outside
the threshold are collected in a single class y0 of “un-
resolved” cases. If predicted, y0, similarly to y1, has
no effect on the dependency.

Occasionally, in 59 sentences out of 2416 on
section 23 of the Wall Street Journal Penn Tree-
bank (Marcus et al., 1993), the shift-reduce parser
fails to attach a node to a head, producing a dis-
connected graph. The disconnected node will ap-
pear as a root, having no head. The problem occurs
most often on punctuations (66/84 on WSJ section
23), so it affects only marginally the accuracy scores
(UAS, LAS) as computed in the CoNLL-X evalua-
tion (Buchholz & Marsi, 2006). A final step of the
revision deals with multiple roots, using a heuristic
rule it selects one of the disconnected sub-trees as
root, a verb, and attaches all sub-trees to it.
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Figure 2. Frequency of the 30 most frequent rules ob-
tained with different parsers on wsj22 and wsj2-21.

5.4 Algorithm complexity
The base dependency parser is deterministic and per-
forms a single scan over the sentence. For each word
it performs feature extraction and invokes the classi-
fier to predict the parsing action. If prediction time is
bound by a constant, as in linear classifiers, parsing
has linear complexity. The revision pass is deter-
ministic and performs similar feature extraction and
prediction on each token. Hence, the complexity of
the overall parser is O(n). In comparison, the com-
plexity of McDonald’s parser (2006) is cubic, while
the parser of Yamada and Matsumoto (2003) has a
worst case quadratic complexity.

6 Experiments

6.1 Data and setup
We evaluated our method on English using the stan-
dard partitions of the Wall Street Journal Penn Tree-
bank: sections 2-21 for training, section 22 for
development, and section 23 for evaluation. The
constituent trees were transformed into dependency
trees by means of a script implementing rules pro-
posed by Collins and Yamada2. In a second eval-
uation we used the Swedish Treebank (Nilsson et
al., 2005) from CoNLL-X, approximately 11,000
sentences; for development purposes we performed
cross-validation on the training data.

We trained two base parsers on the Penn Tree-
bank: one with our own implementation of Maxi-

2http://w3.msi.vxu.se/%7enivre/research/Penn2Malt.html

Parser UAS LAS
DeSR-ME 84.96 83.53
DeSR-MBL 88.41 86.85
Revision-MBL 89.11 86.39
Revision-ME 90.27 86.44
N&S 87.3 -
Y&M 90.3 -
MST-2 91.5 -

Table 4. Results on the Wall Street Journal Penn Tree-
bank.

mum Entropy, one with the TiMBL library for Mem-
ory Based Learning (MBL, (Timbl, 2003)). We
parsed sections 2 to 21 with each parser and pro-
duced two datasets for training the revision model:
“wsj2-21.mbl” and “wsj2-21.me”. Each depen-
dency is represented as a feature vector (cf. Sec-
tion 5.2), the prediction is a revision rule (cf. Sec-
tion 4.2). For the smaller Swedish data we trained
one base parser with MaxEnt and one with the SVM
implementation in libSVM (Chang & Lin, 2001) us-
ing a polynomial kernel with degree 2.

6.2 Results

On the Penn Treebank, the base parser trained with
MBL (DeSR-MBL) achieves higher accuracy, 88.41
unlabeled accuracy score (UAS), than the same
parser trained with MaxEnt (DeSR-ME), 84.96
UAS. The revision model trained on “wsj2-21.me”
(Revision-ME) increases the accuracy of DeSR-ME
to 88.01 UAS (+3%). The revision model trained
on “wsj2-21.mbl” (DeSR-MBL) improves the accu-
racy of DeSR-MBL from 88.42 to 89.11 (+0.7%).
The difference is mainly due to the fact that DeSR-
MBL is quite accurate on the training data, almost
99%, hence “wsj2-21.mbl” contains less errors on
which to train the revision parser. This is typi-
cal of the memory-based learning algorithm used
in DeSR-MBL. Conversely, DeSR-ME achieves a
score of of 85% on the training data, which is
closer to the actual accuracy of the parser on unseen
data. As an illustration, Figure 2 plots the distri-
butions of revision rules in “wsj2-21.mbl” (DeSR-
MBL), “wsj2-21.me” (DeSR-ME), and “wsj22.mbl”
(DeSR-MBL) which represents the distribution of
correct revision rules on the output of DeSR-MBL
on the development set. The distributions of “wsj2-
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Parser UAS LAS
DeSR-SVM 88.41 83.31
Revision-ME 89.76 83.13
Corston-Oliver& Aue 89.54 82.33
Nivre 89.50 84.58

Table 5. Results on the Swedish Treebank.

21.me” and “wsj22.mbl” are visibly similar, while
“wsj2-21.mbl” is significantly more skewed towards
not revising. Hence, the less accurate parser DeSR-
ME might be more suitable for producing revision
training data. Applying the revision model trained
on “wsj2-21.me” (Revision-ME) to the output of
DeSR-MBL the result is 90.27% UAS. A relative
error reduction of 16.05% from the previous 88.41
UAS of DeSR-MBL. This finding suggests that it
may be worth while experimenting with all possi-
ble revision-model/base-parser pairs as well as ex-
ploring alternative ways for generating data for the
revision model; e.g., by cross-validation.

Table 4 summarizes the results on the Penn Tree-
bank. Revision models are evaluated on the output
of DeSR-MBL. The table also reports the scores ob-
tained on the same data set by by the shift reduce
parsers of Nivre and Scholz’s (2004) and Yamada
and Matsumoto (2003), and McDonald and Pereira’s
second-order maximum spanning tree parser (Mc-
Donald & Pereira, 2006). However the scores are
not directly comparable, since in our experiments
we used the settings of the CoNLL-X Shared Task,
which provide correct POS tags to the parser.

On the Swedish Treebank collection we trained
a revision model (Revision-ME) on the output of
the MaxEnt base parser. We parsed the evalua-
tion data with the SVM base parser (DeSR-SVM)
which achieves 88.41 UAS. The revision model
achieves 89.76 UAS, with a relative error reduc-
tion of 11.64%. Here we can compare directly with
the best systems for this dataset in CoNLL-X. The
best system (Corston-Oliver & Aue, 2006), a vari-
ant of the MST algorithm, obtained 89.54 UAS,
while the second system (Nivre, 2006) obtained
89.50; cf. Table 5. Parsing the Swedish evalua-
tion set (about 6,000 words) DeSR-SVM processes
1.7 words per second on a Xeon 2.8Ghz machine,
DeSR-ME parses more than one thousand w/sec. In
the revision step Revision-ME processes 61 w/sec.

7 Related work

Several authors have proposed to improve parsing
via re-ranking (Collins, 2000; Charniak & Johnson,
2005; Collins & Koo, 2006). The base parser pro-
duces a list of n-best parse trees for a sentence. The
re-ranker is trained on the output trees, using addi-
tional global features, with a discriminative model.
These approaches achieve error reductions up to
13% (Collins & Koo, 2006). In transformation-
based learning (Brill, 1993; Brill, 1995; Satta &
Brill, 1995) the learning algorithm starts with a
baseline assignment, e.g., the most frequent Part-of-
Speech for a word, then repeatedly applies rewriting
rules. Similarly to re-ranking our method aims at
improving the accuracy of the base parser with an
additional learner. However, as in transformation-
based learning, it avoids generating multiple parses
and applies revisions to arcs in the tree which it con-
siders incorrect. This is consistent with the architec-
ture of our base parser, which is deterministic and
builds a single tree, rather than evaluating the best
outcome of a generator.

With respect to transformation-based methods,
our method does not attempt to build a tree but only
to revise it. That is, it defines a different output space
from the base parser’s: the possible revisions on the
graph. The revision model of Nakagawa et al. (2002)
applies a second classifier for deciding whether the
predictions of a base learner are accurate. However,
the model only makes a binary decision, which is
suitable for the simpler problem of POS tagging.
The work of Hall and Novak (Hall & Novak, 2005)
is the closest to ours. Hall and Novak develop a cor-
rective model for constituency parsing in order to
recover non-projective dependencies, which a stan-
dard constituent parser does not handle. The tech-
nique is applied to parsing Czech.

8 Conclusion

We presented a novel approach for improving the
accuracy of a dependency parser by applying re-
vision transformations to its parse trees. Experi-
mental results prove that the approach is viable and
promising. The proposed method achieves good ac-
curacy and excellent performance using a determin-
istic shift-reduce base parser. As an issue for further
investigation, we mention that in this framework, as
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in re-ranking, it is possible to exploit global features
in the revision phase; e.g., semantic features such as
those produced by named-entity detection systems.
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jas. 2005. Unsupervised Learning of Semantic Rela-
tions between Concepts of a Molecular Biology Ontol-
ogy. In Proceedings of IJCAI 2005.

M. Collins. 2000. Discriminative Reranking for Natural
Language Parsing. In Proceedings of ICML 2000.

M. Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
EMNLP 2002.

M. Collins and T. Koo. 2006. Discriminative Reranking
for Natural Language Parsing. Computational Lin-
guistics 31(1): pp.25-69.

K. Crammer and Y. Singer. 2003. Ultraconservative On-
line Algorithms for Multiclass Problems. Journal of
Machine Learning Research 3: pp.951-991.

S. Corston-Oliver and A. Aue. 2006. Dependency Pars-
ing with Reference to Slovene, Spanish and Swedish.
In Proceedings of CoNLL-X.

A. Culotta and J. Sorensen. 2004. Dependency Tree Ker-
nels for Relation Extraction. In Proceedings of ACL
2004.

W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2003. Timbl: Tilburg memory
based learner, version 5.0, reference guide. Technical
Report ILK 03-10, Tilburg University, ILK.

Y. Ding and M. Palmer. 2005. Machine Translation us-
ing Probabilistic Synchronous Dependency Insertion
Grammars. In Proceedings of ACL 2005.

K. Hall and V. Novak. 2005. Corrective Modeling for
Non-Projective Dependency Parsing. In Proceedings
of the 9th International Workshop on Parsing Tech-
nologies.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2): pp.
313-330.

R. McDonald, F. Pereira, K. Ribarov and J. Hajic̆. 2005.
Non-projective Dependency Parsing using Spanning
Tree Algorithms. In Proceedings of HLT-EMNLP
2005.

R. McDonald and F. Pereira. 2006. Online Learning
of Approximate Dependency Parsing Algorithms. In
Proceedings of EACL 2006.

T. Nakagawa, T. Kudo and Y. Matsumoto. 2002. Revi-
sion Learning and its Applications to Part-of-Speech
Tagging. In Proceedings of ACL 2002.

J. Nilsson, J. Hall and J. Nivre. 2005. MAMBA Meets
TIGER: Reconstructing a Swedish Treebank from An-
tiquity. In Proceedings of the NODALIDA.

J. Nivre and M. Scholz. 2004. Deterministic Depen-
dency Parsing of English Text. In Proceedings of
COLING 2004.

J. Nivre. 2006. Labeled Pseudo-Projective Dependency
Parsing with Support Vector Machines. In Proceed-
ings of CoNLL-X.

F. Rosemblatt. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psych. Rev., 68: pp. 386-407.

G. Satta and E. Brill. 1995, Efficient Transformation-
Based Parsing. In Proceedings of ACL 1996.

R. Snow, D. Jurafsky and Y. Ng 2005. Learning Syn-
tactic Patterns for Automatic Hypernym Discovery. In
Proceedings of NIPS 17.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines.
In Proceedings of the 9th International Workshop on
Parsing Technologies.

395



Proceedings of NAACL HLT 2007, pages 396–403,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Incremental Non-Projective Dependency Parsing

Joakim Nivre
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Abstract

An open issue in data-driven dependency
parsing is how to handle non-projective
dependencies, which seem to be required
by linguistically adequate representations,
but which pose problems in parsing with
respect to both accuracy and efficiency.
Using data from five different languages,
we evaluate an incremental deterministic
parser that derives non-projective depen-
dency structures in O(n2) time, supported
by SVM classifiers for predicting the next
parser action. The experiments show that
unrestricted non-projective parsing gives
a significant improvement in accuracy,
compared to a strictly projective baseline,
with up to 35% error reduction, leading
to state-of-the-art results for the given
data sets. Moreover, by restricting the
class of permissible structures to limited
degrees of non-projectivity, the parsing
time can be reduced by up to 50% without
a significant decrease in accuracy.

1 Introduction

Data-driven dependency parsing has been shown to
give accurate and efficient parsing for a wide range
of languages, such as Japanese (Kudo and Mat-
sumoto, 2002), English (Yamada and Matsumoto,
2003), Swedish (Nivre et al., 2004), Chinese (Cheng
et al., 2004), and Czech (McDonald et al., 2005).

Whereas most of the early approaches were limited
to strictly projective dependency structures, where
the projection of a syntactic head must be contin-
uous, attention has recently shifted to the analysis
of non-projective structures, which are required for
linguistically adequate representations, especially in
languages with free or flexible word order.

The most popular strategy for capturing non-
projective structures in data-driven dependency
parsing is to apply some kind of post-processing to
the output of a strictly projective dependency parser,
as in pseudo-projective parsing (Nivre and Nilsson,
2005), corrective modeling (Hall and Novák, 2005),
or approximate non-projective parsing (McDonald
and Pereira, 2006). And it is rare to find parsers
that derive non-projective structures directly, the no-
table exception being the non-projective spanning
tree parser proposed by McDonald et al. (2005).

There are essentially two arguments that have
been advanced against using parsing algorithms
that derive non-projective dependency structures di-
rectly. The first is that the added expressivity com-
promises efficiency, since the parsing problem for a
grammar that allows arbitrary non-projective depen-
dency structures has been shown to beNP complete
(Neuhaus and Bröker, 1997). On the other hand,
most data-driven approaches do not rely on gram-
mars, and with a suitable factorization of depen-
dency structures, it is possible to achieve parsing of
unrestricted non-projective structures inO(n2) time,
as shown by McDonald et al. (2005).

The second argument against non-projective de-
pendency parsing comes from the observation that,
even in languages with free or flexible word order,
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most dependency structures are either projective or
very nearly projective. This can be seen by con-
sidering data from treebanks, such as the Prague
Dependency Treebank of Czech (Böhmová et al.,
2003), the TIGER Treebank of German (Brants et
al., 2002), or the Slovene Dependency Treebank
(Džeroski et al., 2006), where the overall proportion
of non-projective dependencies is only about 2%
even though the proportion of sentences that con-
tain some non-projective dependency is as high as
25%. This means that an approach that starts by de-
riving the best projective approximation of the cor-
rect dependency structure is likely to achieve high
accuracy, while an approach that instead attempts
to search the complete space of non-projective de-
pendency structures runs the risk of finding struc-
tures that depart too much from the near-projective
norm. Again, however, the results of McDonald et
al. (2005) suggest that the latter risk is minimized if
inductive learning is used to guide the search.

One way of improving efficiency, and potentially
also accuracy, in non-projective dependency parsing
is to restrict the search to a subclass of “mildly non-
projective” structures. Nivre (2006) defines degrees
of non-projectivity in terms of the maximum number
of intervening constituents in the projection of a syn-
tactic head and shows that limited degrees of non-
projectivity give a much better fit with the linguistic
data than strict projectivity, but also enables more ef-
ficient processing than unrestricted non-projectivity.
However, the results presented by Nivre (2006) are
all based on oracle parsing, which means that they
only provide upper bounds on the accuracy that can
be achieved.

In this paper, we investigate to what extent con-
straints on non-projective structures can improve
accuracy and efficiency in practical parsing, using
treebank-induced classifiers to predict the actions of
a deterministic incremental parser. The parsing al-
gorithm used belongs to the family of algorithms de-
scribed by Covington (2001), and the classifiers are
trained using support vector machines (SVM) (Vap-
nik, 1995). The system is evaluated using treebank
data from five languages: Danish, Dutch, German,
Portuguese, and Slovene.

The paper is structured as follows. Section 2
defines syntactic representations as labeled depen-
dency graphs and introduces the notion of degree

used to constrain the search. Section 3 describes the
parsing algorithm, including modifications neces-
sary to handle degrees of non-projectivity, and sec-
tion 4 describes the data-driven prediction of parser
actions, using history-based models and SVM clas-
sifiers. Section 5 presents the experimental setup,
section 6 discusses the experimental results, and sec-
tion 7 contains our conclusions.

2 Dependency Graphs

A dependency graph is a labeled directed graph, the
nodes of which are indices corresponding to the to-
kens of a sentence. Formally:

Definition 1 Given a set R of dependency types
(arc labels), a dependency graph for a sentence
x = (w1, . . . , wn) is a labeled directed graph G =
(V,E, L), where:

1. V = {0, 1, 2, . . . , n}
2. E ⊆ V × V
3. L : E → R

The set V of nodes (or vertices) is the set of non-
negative integers up to and including n. This means
that every token index i of the sentence is a node
(1 ≤ i ≤ n) and that there is a special node 0, which
will always be a root of the dependency graph. The
set E of arcs (or edges) is a set of ordered pairs
(i, j), where i and j are nodes. Since arcs are used
to represent dependency relations, we will say that i
is the head and j is the dependent of the arc (i, j).
The function L assigns a dependency type (label)
r ∈ R to every arc e ∈ E. We use the notation
i → j to mean that there is an arc connecting i and
j (i.e., (i, j) ∈ E); we use the notation i r→ j if
this arc is labeled r (i.e., ((i, j), r) ∈ L); and we
use the notation i→∗ j and i↔∗ j for the reflexive
and transitive closure of the arc relation E and the
corresponding undirected relation, respectively.

Definition 2 A dependency graph G is well-formed
if and only if:

1. The node 0 is a root, i.e., there is no node i such
that i→ 0 (ROOT).

2. G is weakly connected, i.e., i ↔∗ j for every
pair of nodes i, j (CONNECTEDNESS).

3. Every node has at most one head, i.e., if i→ j
then there is no node k such that k 6= i and
k → j (SINGLE-HEAD).

397



(“Only one of them concerns quality.”)
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Figure 1: Dependency graph for Czech sentence from the Prague Dependency Treebank

The well-formedness conditions are independent in
that none of them is entailed by any (combination)
of the others, but they jointly entail that the graph
is a tree rooted at the node 0. By way of example,
figure 1 shows a Czech sentence from the Prague
Dependency Treebank (Böhmová et al., 2003) with
a well-formed dependency graph according to Defi-
nitions 1 and 2.

The constraints imposed on dependency graphs in
Definition 2 are assumed in almost all versions of
dependency grammar, especially in computational
systems, and are sometimes complemented by a
fourth constraint:

4. The graph G is projective, i.e., if i → j then
i →∗ k, for every node k such that i < k < j
or j < k < i (PROJECTIVITY).

Most theoretical formulations of dependency gram-
mar regard projectivity as the norm but recognize
the need for non-projective representations to cap-
ture non-local dependencies (Mel’čuk, 1988; Hud-
son, 1990). Finding a way of incorporating a suit-
ably restricted notion of non-projectivity into prac-
tical parsing systems is therefore an important step
towards a more adequate syntactic analysis, as dis-
cussed in the introduction of this paper.

In order to distinguish classes of dependency
graphs that fall in between arbitrary non-projective
and projective, Nivre (2006) introduces a notion
of degree of non-projectivity, such that projective
graphs have degree 0 while arbitrary non-projective
graphs have unbounded degree.

Definition 3 Let G = (V,E, L) be a well-formed
dependency graph, let G(i,j) be the subgraph of G

defined by V(i,j) = {i, i+ 1, . . . , j−1, j}, and let
min(e) be the smallest and max(e) the largest ele-
ment of an arc e in the linear order <:

1. The degree of an arc e ∈ E is the number of
connected components (i.e., weakly connected
subgraphs) in G(min(e)+1,max(e)−1) that are not
dominated by the head of e in G(min(e),max(e)).

2. The degree of G is the maximum degree of any
arc e ∈ E.

To exemplify the notion of degree, we note that the
dependency graph in figure 1 has degree 1. The only
non-projective arc in the graph is (5, 1) and G(2,4)

contains three connected components, each consist-
ing of a single root node (2, 3, 4). Since exactly one
of these, 3, is not dominated by 5 in G(1,5), the arc
(5, 1) has degree 1.

Nivre (2006) presents an empirical study, based
on data from the Prague Dependency Treebank of
Czech (Böhmová et al., 2003) and the Danish De-
pendency Treebank (Kromann, 2003), showing that
more than 99.5% of all sentences occurring in the
two treebanks have a dependency graph with a max-
imum degree of 2; about 98% have a maximum de-
gree of 1; but only 77% in the Czech data and 85% in
the Danish data have degree 0 (which is equivalent to
assuming PROJECTIVITY). This suggests that lim-
ited degrees of non-projectivity may allow a parser
to capture a larger class of naturally occurring syn-
tactic structures, while still constraining the search
to a proper subclass of all possible structures.1

1Alternative notions of mildly non-projective dependency
structures are explored in Kuhlmann and Nivre (2006).
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3 Parsing Algorithm

Covington (2001) describes a parsing strategy for
dependency representations that has been known
since the 1960s but not presented in the literature.
The left-to-right (or incremental) version of this
strategy can be formulated in the following way:

PARSE(x = (w1, . . . , wn))
1 for j = 1 up to n
2 for i = j − 1 down to 0
3 LINK(i, j)

LINK(i, j) is a nondeterministic operation that adds
the arc i → j (with some label), adds the arc j → i
(with some label), or does nothing at all. In this
way, the algorithm builds a graph by systematically
trying to link every pair of nodes (i, j) (i < j).
We assume that LINK(i,j) respects the ROOT and
SINGLE-HEAD constraints and that it does not in-
troduce cycles into the graph, i.e., it adds an arc
i → j only if j 6= 0, there is no k 6= i such that
k → j, and it is not the case that j →∗ i. Given
these constraints, the graph G given at termination
can always be turned into a well-formed dependency
graph by adding arcs from the root 0 to any root node
in {1, . . . , n}.

Assuming that LINK(i, j) can be performed in
some constant time c, the running time of the al-
gorithm is

∑n
i=1 c(i − 1) = c(n

2

2 −
n
2 ), which in

terms of asymptotic complexity is O(n2). Checking
ROOT and SINGLE-HEAD in constant time is easy,
but in order to prevent cycles we need to be able
to find, for any node k, the root of the connected
component to which k belongs in the partially built
graph. This problem can be solved efficiently us-
ing standard techniques for disjoint sets, including
path compression and union by rank, which guaran-
tee that the necessary checks can be performed in
average constant time (Cormen et al., 1990).

In the experiments reported in this paper, we mod-
ify the basic algorithm by making the performance
of LINK(i, j) conditional on the arcs (i, j) and (j, i)
being permissible under different degree constraints:

PARSE(x = (w1, . . . , wn), d)
1 for j = 1 up to n
2 for i = j − 1 down to 0
3 if PERMISSIBLE(i, j, d)
4 LINK(i, j)

The function PERMISSIBLE(i, j, d) returns true if
and only if i → j and j → i have a degree less
than or equal to d given the partially built graph G.
Setting d = 0 gives strictly projective parsing, while
d = ∞ corresponds to unrestricted non-projective
parsing. With low values of d, we will reduce the
number of calls to LINK(i, j), which will reduce
the overall parsing time provided that the time re-
quired to compute PERMISSIBLE(i, j, d) is insignif-
icant compared to the time needed for LINK(i, j).
This is typically the case in data-driven systems,
where LINK(i, j) requires a call to a trained classi-
fier, while PERMISSIBLE(i, j, d) only needs access
to the partially built graph G.2

4 History-Based Parsing

History-based parsing uses features of the parsing
history to predict the next parser action (Black et al.,
1992). In the current setup, this involves using fea-
tures of the partially built dependency graph G and
the input x = (w1, . . . , wn) to predict the outcome
of the nondeterministic LINK(i, j) operation. Given
that we use a deterministic parsing strategy, this re-
duces to a pure classification problem.

Let Φ(i, j, G) = (φ1,. . . ,φm) be a feature vec-
tor representation of the parser history at the time
of performing LINK(i, j). The task of the history-
based classifier is then to map Φ(i, j, G) to one of
the following actions:

1. Add the arc i r→ j (for some r ∈ R).
2. Add the arc j r→ i (for some r ∈ R).
3. Do nothing.

Training data for the classifier can be generated by
running the parser on a sample of treebank data, us-
ing the gold standard dependency graph as an ora-
cle to predict LINK(i, j) and constructing one train-
ing instance (Φ(i, j, G), a) for each performance of
LINK(i, j) with outcome a.

The features in Φ(i, j, G) = (φ1, . . . , φm) can
be arbitrary features of the input x and the partially
built graph G but will in the experiments below be
restricted to linguistic attributes of input tokens, in-
cluding their dependency types according to G.

2Checking PERMISSIBLE(i, j, d), again requires finding the
roots of connected components and can therefore be done in
average constant time.
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Language Tok Sen T/S Lem CPoS PoS MSF Dep NPT NPS
Danish 94 5.2 18.2 no 10 24 47 52 1.0 15.6
Dutch 195 13.3 14.6 yes 13 302 81 26 5.4 36.4
German 700 39.2 17.8 no 52 52 0 46 2.3 27.8
Portuguese 207 9.1 22.8 yes 15 21 146 55 1.3 18.9
Slovene 29 1.5 18.7 yes 11 28 51 25 1.9 22.2

Table 1: Data sets; Tok = number of tokens (*1000); Sen = number of sentences (*1000); T/S = tokens
per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained part-of-speech tags;
PoS = number of (fine-grained) part-of-speech tags; MSF = number of morphosyntactic features (split into
atoms); Dep = number of dependency types; NPT = proportion of non-projective dependencies/tokens (%);
NPS = proportion of non-projective dependency graphs/sentences (%)

The history-based classifier can be trained with
any of the available supervised methods for func-
tion approximation, but in the experiments below we
will rely on SVM, which has previously shown good
performance for this kind of task (Kudo and Mat-
sumoto, 2002; Yamada and Matsumoto, 2003).

5 Experimental Setup

The purpose of the experiments is twofold. First, we
want to investigate whether allowing non-projective
structures to be derived incrementally can improve
parsing accuracy compared to a strictly projective
baseline. Secondly, we want to examine whether
restricting the degree of non-projectivity can im-
prove efficiency compared to an unrestricted non-
projective baseline. In order to investigate both these
issues, we have trained one non-projective parser
for each language, allowing arbitrary non-projective
structures as found in the treebanks during training,
but applying different constraints during parsing:

1. Non-projective (d =∞)
2. Max degree 2 (d = 2)
3. Max degree 1 (d = 1)

These three versions of the non-projective parser are
compared to a strictly projective parser (d = 0),
which uses the same parsing algorithm but only con-
siders projective arcs in both training and testing.3

The experiments are based on treebank data from
five languages: the Danish Dependency Treebank

3An alternative would have been to train all parsers on non-
projective data, or restrict the training data for each parser
according to its parsing restriction. Preliminary experiments
showed that the setup used here gave the best performance for
all parsers involved.

(Kromann, 2003), the Alpino Treebank of Dutch
(van der Beek et al., 2002), the TIGER Treebank of
German (Brants et al., 2002), the Floresta Sintáctica
of Portuguese (Afonso et al., 2002), and the Slovene
Dependency Treebank (Džeroski et al., 2006).4 The
data sets used are the training sets from the CoNLL-
X Shared Task on multilingual dependency parsing
(Buchholz and Marsi, 2006), with 20% of the data
reserved for testing using a pseudo-random split. Ta-
ble 1 gives an overview of the five data sets, showing
the number of tokens and sentences, the presence
of different kinds of linguistic annotation, and the
amount of non-projectivity.

The features used in the history-based model for
all languages include the following core set of 20
features, where i and j are the tokens about to be
linked and the context stack is a stack of root nodes
k in G(i+1,j−1), added from right to left (i.e., with
the top node being closest to i):

1. Word form: i, j, j+1, h(i).
2. Lemma (if available): i.
3. Part-of-speech: i−1, i, j, j+1, j+2, k, k−1.
4. Coarse part-of-speech (if available): i, j, k.
5. Morphosyntactic features (if available): i, j.
6. Dependency type: i, j, l(i), l(j), r(i).

In the specification of features, we use k and k−1 to
refer to the two topmost tokens on the context stack,
and we use h(α), l(α) and r(α) to refer to the head,

4This set does not include the Prague Dependency Treebank
of Czech (Böhmová et al., 2003), one of the most widely used
treebanks in studies of non-projective parsing. The reason is
that the sheer size of this data set makes extensive experiments
using SVM learning extremely time consuming. The work on
Czech was therefore initially postponed but is now ongoing.
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Danish Dutch German Portuguese Slovene
Constraint AS ER AS ER AS ER AS ER AS ER
Non-projective 88.13 8.34 86.79 36.18 89.78 21.51 90.59 11.39 76.52 6.83
Max degree 2 88.08 7.95 86.15 33.09 89.74 21.20 90.58 11.30 76.48 6.67
Max degree 1 88.00 7.33 85.12 28.12 89.49 19.28 90.48 10.36 76.40 6.35
Projective 87.05 – 79.30 – 86.98 – 89.38 – 74.80 –

Table 2: Parsing accuracy; AS = attachment score; ER = error reduction w.r.t. projective baseline (%)

the leftmost dependent and the rightmost dependent
of a token α in the partially built dependency graph.5

In addition to the core set of features, the model
for each language has been augmented with a small
number of additional features, which have proven
useful in previous experiments with the same data
set. The maximum number of features used is 28
(Danish); the minimum number is 23 (German).

The history-based classifiers have been trained
using SVM learning, which combines a maximum
margin strategy with the use of kernel functions
to map the original feature space to a higher-
dimensional space. More specifically, we use LIB-
SVM (Chang and Lin, 2001) with a quadratic kernel
K(xi, xj) = (γxTi xj +r)2. We use the built-in one-
versus-one strategy for multi-class classification and
convert symbolic features to numerical features us-
ing the standard technique of binarization.

Parsing accuracy is measured by the unlabeled at-
tachment score (AS), i.e., the proportion of words
that are assigned the correct head (not counting
punctuation). Although the parsers do derive labeled
dependency graphs, we concentrate on the graph
structure here, since this is what is concerned in the
distinction between projective and non-projective
dependency graphs. Efficiency is evaluated by re-
porting the parsing time (PT), i.e., the time required
to parse the respective test sets. Since both training
sets and test sets vary considerably in size between
languages, we are primarily interested in the rela-
tive differences for parsers applied to the same lan-
guage. Experiments have been performed on a Sun-
Blade 2000 with one 1.2GHz UltraSPARC-III pro-
cessor and 2GB of memory.

5The lack of symmetry in the feature set reflects the asym-
metry in the partially built graphG, where, e.g., only i can have
dependents to the right at decision time. This explains why there
are more features defined in terms of graph structure for i and
more features defined in terms of string context for j.

6 Results and Discussion

Table 2 shows the parsing accuracy of the non-
projective parser with different maximum degrees,
both the raw attachment scores and the amount of
error reduction with respect to the baseline parser.
Our first observation is that the non-projective parser
invariably achieves higher accuracy than the pro-
jective baseline, with differences that are statisti-
cally significant across the board (using McNemar’s
test). The amount of error reduction varies be-
tween languages and seems to depend primarily on
the frequency of non-projective structures, which is
not surprising. Thus, for Dutch and German, the
two languages with the highest proportion of non-
projective structures, the best error reduction is over
35% and over 20%, respectively. However, there
seems to be a sparse data effect in that Slovene,
which has the smallest training data set, has the
smallest error reduction despite having more non-
projective structures than Danish and Portuguese.

Our second observation is that the highest score is
always obtained with an unbounded degree of non-
projectivity during parsing. This seems to corrobo-
rate the results obtained by McDonald et al. (2005)
with a different parsing method, showing that the
use of inductive learning to guide the search dur-
ing parsing eliminates the potentially harmful ef-
fect of increasing the size of the search space. Al-
though the differences between different degrees of
non-projectivity are not statistically significant for
the current data sets,6 the remarkable consistency
across languages suggests that they are nevertheless
genuine. In either case, however, they must be con-
sidered marginal, except possibly for Dutch, which
leads to our third and final observation about accu-

6The only exception is the difference between a maximum
degree of 1 and unrestricted non-projective for Dutch, which is
significant according to McNemar’s test with α= .05.
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Danish Dutch German Portuguese Slovene
Constraint PT TR PT TR PT TR PT TR PT TR
Non-projective 426 – 3791 – 24454 – 3708 – 204 –
Max degree 2 395 7.29 2068 45.46 17903 26.79 3004 18.99 130 36.39
Max degree 1 346 18.72 1695 55.28 13079 46.52 2446 34.04 108 47.05
Projective 211 50.53 784 79.32 7362 69.90 1389 62.55 429 79.00

Table 3: Parsing time; PT = parsing time (s); TR = time reduction w.r.t. non-projective baseline (%)

System Danish Dutch German Portuguese Slovene
CoNLL-X McDonald et al. 84.79 79.19 87.34 86.82 73.44
CoNLL-X Nivre et al. 84.77 78.59 85.82 87.60 70.30
Incremental non-projective 84.85 77.91 85.90 87.12 70.86

Table 4: Related work (labeled attachment score)

racy, namely that restricting the maximum degree of
non-projectivity to 2 or 1 has a very marginal effect
on accuracy and is always significantly better than
the projective baseline.

Turning next to efficiency, table 3 shows the pars-
ing time for the different parsers across the five lan-
guages. Our first observation here is that the pars-
ing time can be reduced by restricting the degree
of non-projectivity during parsing, thus corroborat-
ing the claim that the running time of the history-
based classifier dominates the overall parsing time.
As expected, the largest reduction is obtained with
the strictly projective parser, but here we must also
take into account that the training data set is smaller
(because of the restriction to projective potential
links), which improves the average running time of
the history-based classifier in itself. Our second ob-
servation is that the amount of reduction in parsing
time seems to be roughly related to the amount of
non-projectivity, with a reduction of about 50% at
a max degree of 1 for the languages where more
than 20% of all sentences are non-projective (Dutch,
German, Slovene) but significantly smaller for Por-
tuguese and especially for Danish. On the whole,
however, the reduction in parsing time with limited
degrees of non-projectivity is substantial, especially
considering the very marginal drop in accuracy.

In order to compare the performance to the state
of the art in dependency parsing, we have retrained
the non-projective parser on the entire training data
set for each language and evaluated it on the final
test set from the CoNLL-X shared task (Buchholz

and Marsi, 2006). Thus, table 4 shows labeled at-
tachment scores, the main evaluation metric used in
the shared task, in comparison to the two highest
scoring systems from the original evaluation (Mc-
Donald et al., 2006; Nivre et al., 2006). The incre-
mental non-projective parser has the best reported
score for Danish and outperforms at least one of the
other two systems for four languages out of five,
although most of the differences are probably too
small to be statistically significant. But whereas the
spanning tree parser of McDonald et al. (2006) and
the pseudo-projective parser of Nivre et al. (2006)
achieve this performance only with special pre- or
post-processing,7 the approach presented here de-
rives a labeled non-projective graph in a single incre-
mental process and hence at least has the advantage
of simplicity. Moreover, it has better time complex-
ity than the approximate second-order spanning tree
parsing of McDonald et al. (2006), which has expo-
nential complexity in the worst case (although this
does not appear to be a problem in practice).

7 Conclusion

In this paper, we have investigated a data-driven ap-
proach to dependency parsing that combines a deter-
ministic incremental parsing algorithm with history-
based SVM classifiers for predicting the next parser
action. We have shown that, for languages with a

7McDonald et al. (2006) use post-processing for non-
projective dependencies and for labeling. Nivre et al. (2006) use
pre-processing of training data and post-processing of parser
output to recover non-projective dependencies.
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non-negligible proportion of non-projective struc-
tures, parsing accuracy can be improved signifi-
cantly by allowing non-projective structures to be
derived. We have also shown that the parsing time
can be reduced substantially, with only a marginal
loss in accuracy, by limiting the degree of non-
projectivity allowed during parsing. A comparison
with results from the CoNLL-X shared task shows
that the parsing accuracy is comparable to that of the
best available systems, which means that incremen-
tal non-projective dependency parsing is a viable al-
ternative to approaches based on post-processing of
projective approximations.
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Abstract

We present several improvements to unlexicalized
parsing with hierarchically state-split PCFGs. First,
we present a novel coarse-to-fine method in which
a grammar’s own hierarchical projections are used
for incremental pruning, including a method for ef-
ficiently computing projections of a grammar with-
out a treebank. In our experiments, hierarchical
pruning greatly accelerates parsing with no loss in
empirical accuracy. Second, we compare various
inference procedures for state-split PCFGs from the
standpoint of risk minimization, paying particular
attention to their practical tradeoffs. Finally, we
present multilingual experiments which show that
parsing with hierarchical state-splitting is fast and
accurate in multiple languages and domains, even
without any language-specific tuning.

1 Introduction

Treebank parsing comprises two problems:learn-
ing, in which we must select a model given a tree-
bank, andinference, in which we must select a
parse for a sentence given the learned model. Pre-
vious work has shown that high-quality unlexical-
ized PCFGs can be learned from a treebank, either
by manual annotation (Klein and Manning, 2003)
or automatic state splitting (Matsuzaki et al., 2005;
Petrov et al., 2006). In particular, we demon-
strated in Petrov et al. (2006) that a hierarchically
split PCFG could exceed the accuracy of lexical-
ized PCFGs (Collins, 1999; Charniak and Johnson,
2005). However, many questions about inference
with such split PCFGs remain open. In this work,
we present

1. an effective method for pruning in split PCFGs
2. a comparison of objective functions for infer-

ence in split PCFGs,
3. experiments on automatic splitting for lan-

guages other than English.
In Sec. 3, we present a novel coarse-to-fine pro-
cessing scheme for hierarchically split PCFGs. Our

method considers the splitting history of the final
grammar, projecting it onto its increasingly refined
prior stages. For any projection of a grammar, we
give a new method for efficiently estimating the pro-
jection’s parameters from the source PCFG itself
(rather than a treebank), using techniques for infi-
nite tree distributions (Corazza and Satta, 2006) and
iterated fixpoint equations. We then parse with each
refinement, in sequence, much along the lines of
Charniak et al. (2006), except with much more com-
plex and automatically derived intermediate gram-
mars. Thresholds are automatically tuned on held-
out data, and the final system parses up to 100 times
faster than the baseline PCFG parser, with no loss in
test set accuracy.

In Sec. 4, we consider the well-known issue of
inference objectives in split PCFGs. As in many
model families (Steedman, 2000; Vijay-Shanker and
Joshi, 1985), split PCFGs have a derivation / parse
distinction. The split PCFG directly describes a gen-
erative model over derivations, but evaluation is sen-
sitive only to the coarser treebank symbols. While
the most probable parse problem is NP-complete
(Sima’an, 1992), several approximate methods exist,
including n-best reranking by parse likelihood, the
labeled bracket algorithm of Goodman (1996), and
a variational approximation introduced in Matsuzaki
et al. (2005). We present experiments which explic-
itly minimize various evaluation risks over a can-
didate set using samples from the split PCFG, and
relate those conditions to the existing non-sampling
algorithms. We demonstrate that n-best reranking
according to likelihood is superior for exact match,
and that the non-reranking methods are superior for
maximizing F1. A specific contribution is to discuss
the role of unary productions, which previous work
has glossed over, but which is important in under-
standing why the various methods work as they do.
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Finally, in Sec. 5, we learn state-split PCFGs for
German and Chinese and examine out-of-domain
performance for English. The learned grammars are
compact and parsing is very quick in our multi-stage
scheme. These grammars produce the highest test
set parsing figures that we are aware of in each lan-
guage, except for English for which non-local meth-
ods such as feature-based discriminative reranking
are available (Charniak and Johnson, 2005).

2 Hierarchically Split PCFGs

We consider PCFG grammars which are derived
from a raw treebank as in Petrov et al. (2006): A
simple X-bar grammar is created by binarizing the
treebank trees. We refer to this grammar asG0.
From this starting point, we iteratively refine the
grammar in stages, as illustrated in Fig. 1. In each
stage, all symbols are split in two, for exampleDT
might becomeDT-1andDT-2. The refined grammar
is estimated using a variant of the forward-backward
algorithm (Matsuzaki et al., 2005). After a split-
ting stage, many splits are rolled back based on (an
approximation to) their likelihood gain. This pro-
cedure gives an ontogeny of grammarsGi, where
G = Gn is the final grammar. Empirically, the
gains on the English Penn treebank level off after 6
rounds. In Petrov et al. (2006), some simple smooth-
ing is also shown to be effective. It is interesting to
note that these grammars capture many of the “struc-
tural zeros” described by Mohri and Roark (2006)
and pruning rules with probability belowe−10 re-
duces the grammar size drastically without influenc-
ing parsing performance. Some of our methods and
conclusions are relevant to all state-split grammars,
such as Klein and Manning (2003) or Dreyer and
Eisner (2006), while others apply most directly to
the hierarchical case.

3 Search

When working with large grammars, it is standard to
prune the search space in some way. In the case of
lexicalized grammars, the unpruned chart often will
not even fit in memory for long sentences. Several
proven techniques exist. Collins (1999) combines a
punctuation rule which eliminates many spans en-
tirely, and then uses span-synchronous beams to
prune in a bottom-up fashion. Charniak et al. (1998)
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Figure 1: Hierarchical refinement proceeds top-down while pro-
jection recovers coarser grammars. The top word for the first
refinements of the determiner tag (DT) is shown on the right.

introduces best-first parsing, in which a figure-of-
merit prioritizes agenda processing. Most relevant
to our work is Charniak and Johnson (2005) which
uses apre-parsephase to rapidly parse with a very
coarse, unlexicalized treebank grammar. Any item
X:[i, j] with sufficiently low posterior probability in
the pre-parse triggers the pruning of its lexical vari-
ants in a subsequent full parse.

3.1 Coarse-to-Fine Approaches

Charniak et al. (2006) introducesmulti-level coarse-
to-fineparsing, which extends the basic pre-parsing
idea by adding more rounds of pruning. In their
work, the extra pruning was with grammars even
coarser than the raw treebank grammar, such as
a grammar in which all nonterminals are col-
lapsed. We propose a novel multi-stage coarse-to-
fine method which is particularly natural for our hi-
erarchically split grammar, but which is, in princi-
ple, applicable to any grammar. As in Charniak et
al. (2006), we construct a sequence of increasingly
refined grammars, reparsing with each refinement.
The contributions of our method are that we derive
sequences of refinements in a new way (Sec. 3.2),
we consider refinements which are themselves com-
plex, and, because our full grammar is not impossi-
ble to parse with, we automatically tune the pruning
thresholds on held-out data.

3.2 Projection

In our method, which we callhierarchical coarse-
to-fine parsing, we consider a sequence of PCFGs
G0, G1, . . . Gn = G, where eachGi is a refinement
of the preceding grammarGi−1 and G is the full
grammar of interest. Each grammarGi is related to
G = Gn by aprojectionπn→i or πi for brevity. A
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projection is a map from the non-terminal (including
pre-terminal) symbols ofG onto a reduced domain.
A projection of grammar symbols induces a pro-
jection of rules and therefore entire non-weighted
grammars (see Fig. 1).

In our case, we also require the projections to be
sequentially compatible, so thatπi→j =πk→j◦πi→k.
That is, each projection is itself a coarsening of the
previous projections. In particular, we take the pro-
jectionπi→j to be the map that collapses split sym-
bols in roundi to their earlier identities in roundj.

It is straightforward to take a projectionπ and
map a CFGG to its induced projectionπ(G). What
is less obvious is how the probabilities associated
with the rules ofG should be mapped. In the case
whereπ(G) is more coarse than the treebank orig-
inally used to trainG, and when that treebank is
available, it is easy to project the treebank and di-
rectly estimate, say, the maximum-likelihood pa-
rameters forπ(G). This is the approach taken by
Charniak et al. (2006), where they estimate what in
our terms are projections of the raw treebank gram-
mar from the treebank itself.

However, treebank estimation has several limita-
tions. First, the treebank used to trainG may not
be available. Second, if the grammarG is heavily
smoothed or otherwise regularized, its own distri-
bution over trees may be far from that of the tree-
bank. Third, the meanings of the split states can and
do drift between splitting stages. Fourth, and most
importantly, we may wish to project grammars for
which treebank estimation is problematic, for exam-
ple, grammars which are more refined than the ob-
served treebank grammars. Our method effectively
avoids all of these problems by rebuilding and refit-
ting the pruning grammars on the fly from the final
grammar.

3.2.1 Estimating Projected Grammars

Fortunately, there is a well worked-out notion of
estimating a grammar from an infinite distribution
over trees (Corazza and Satta, 2006). In particular,
we can estimate parameters for a projected grammar
π(G) from the tree distribution induced byG (which
can itself be estimated in any manner). The earli-
est work that we are aware of on estimating models
from models in this way is that of Nederhof (2005),
who considers the case of learning language mod-

els from other language models. Corazza and Satta
(2006) extend these methods to the case of PCFGs
and tree distributions.

The generalization of maximum likelihood esti-
mation is to find the estimates forπ(G) with min-
imum KL divergence from the tree distribution in-
duced byG. Sinceπ(G) is a grammar over coarser
symbols, we fitπ(G) to the distributionG induces
over π-projected trees:P (π(T )|G). The proofs
of the general case are given in Corazza and Satta
(2006), but the resulting procedure is quite intuitive.

Given a (fully observed) treebank, the maximum-
likelihood estimate for the probability of a ruleX →
Y Z would simply be the ratio of the count ofX to
the count of the configurationX → Y Z. If we wish
to find the estimate which has minimum divergence
to an infinite distributionP (T ), we use the same for-
mula, but the counts become expected counts:

P (X → Y Z) =
EP (T )[X → Y Z]

EP (T )[X]

with unaries estimated similarly. In our specific
case,X,Y, and Z are symbols inπ(G), and the
expectations are taken overG’s distribution of π-
projected trees,P (π(T )|G). We give two practical
methods for obtaining these expectations below.

3.2.2 Calculating Projected Expectations

Concretely, we can now estimate the minimum
divergence parameters ofπ(G) for any projection
π and PCFGG if we can calculate the expecta-
tions of the projected symbols and rules according to
P (π(T )|G). The simplest option is to sample trees
T from G, project the samples, and take average
counts off of these samples. In the limit, the counts
will converge to the desired expectations, provided
the grammar is proper. However, we can exploit the
structure of our projections to obtain the desired ex-
pectations much more simply and efficiently.

First, consider the problem of calculating the ex-
pected counts of a symbolX in a tree distribution
given by a grammarG, ignoring the issue of projec-
tion. These expected counts obey the following one-
step equations (assuming a uniqueroot symbol):

c(root) = 1

c(X) =
∑

Y→αXβ

P (αXβ|Y )c(Y )
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Here,α, β, or both can be empty, and a ruleX → γ

appears in the sum once for eachX it contains. In
principle, this linear system can be solved in any
way.1 In our experiments, we solve this system it-
eratively, with the following recurrences:

c0(X)←

{

1 if X = root

0 otherwise

ci+1(X)←
∑

Y→αXβ

P (αXβ|Y )ci(Y )

Note that, as in other iterative fixpoint methods, such
as policy evaluation for Markov decision processes
(Sutton and Barto, 1998), the quantitiesck(X) have
a useful interpretation as the expected counts ignor-
ing nodes deeper than depthk (i.e. the roots are all
the root symbol, soc0(root) = 1). In our experi-
ments this method converged within around 25 iter-
ations; this is unsurprising, since the treebank con-
tains few nodes deeper than 25 and our base gram-
marG seems to have captured this property.

Once we have the expected counts of symbols
in G, the expected counts of their projections
X ′ = π(X) according toP (π(T )|G) are given by
c(X ′) =

∑

X:π(X)=X′ c(X). Rules can be esti-
mated directly using similar recurrences, or given by
one-step equations:

c(X → γ) = c(X)P (γ|X)

This process very rapidly computes the estimates
for a projection of a grammar (i.e. in a few seconds
for our largest grammars), and is done once during
initialization of the parser.

3.2.3 Hierarchical Projections

Recall that our final state-split grammarsG come,
by their construction process, with an ontogeny of
grammarsGi where each grammar is a (partial)
splitting of the preceding one. This gives us a nat-
ural chain of projectionsπi→j which projects back-
wards along this ontogeny of grammars (see Fig. 1).
Of course, training also gives us parameters for
the grammars, but only the chain of projections is
needed. Note that the projected estimates need not

1Whether or not the system has solutions depends on the
parameters of the grammar. In particular,G may be improper,
though the results of Chi (1999) imply thatG will be proper if
it is the maximum-likelihood estimate of a finite treebank.

(and in general will not) recover the original param-
eters exactly, nor would we want them to. Instead
they take into account any smoothing, substate drift,
and so on which occurred by the final grammar.

Starting from the base grammar, we run the pro-
jection process for each stage in the sequence, cal-
culatingπi (chained incremental projections would
also be possible). For the remainder of the paper,
except where noted otherwise, all coarser grammars’
estimates are these reconstructions, rather than those
originally learned.

3.3 Experiments

As demonstrated by Charniak et al. (2006) parsing
times can be greatly reduced by pruning chart items
that have low posterior probability under a simpler
grammar. Charniak et al. (2006) pre-parse with a se-
quence of grammars which are coarser than (parent-
annotated) treebank grammars. However, we also
work with grammars which are already heavily split,
up to half as split as the final grammar, because we
found the computational cost for parsing with the
simple X-bar grammar to be insignificant compared
to the costs for parsing with more refined grammars.

For a final grammarG = Gn, we compute esti-
mates for then projectionsGn−1, . . . , G0 =X-Bar,
whereGi = πi(G) as described in the previous sec-
tion. Additionally we project to a grammarG−1 in
which all nonterminals, except for the preterminals,
have been collapsed. During parsing, we start of
by exhaustively computing the inside/outside scores
with G−1. At each stage, chart items with low poste-
rior probability are removed from the chart, and we
proceed to compute inside/outside scores with the
next, more refined grammar, using the projections
πi→i−1 to map between symbols inGi andGi−1. In
each pass, we skip chart items whose projection into
the previous stage had a probability below a stage-
specific threshold, until we reachG = Gn (after
seven passes in our case). ForG, we do not prune
but instead return the minimum risk tree, as will be
described in Sec. 4.

Fig. 2 shows the (unlabeled) bracket posteriors af-
ter each pass and demonstrates that most construc-
tions can be ruled out by the simpler grammars,
greatly reducing the amount of computation for the
following passes. The pruning thresholds were em-
pirically determined on a held out set by computing
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Figure 2: Bracket posterior probabilities (black = high) for the
first sentence of our development set during coarse-to-fine
pruning. Note that we compute the bracket posteriors at a much
finer level but are showing the unlabeled posteriors for illustra-
tion purposes. No pruning is done at the finest level (G6 = G)
but the minimum risk tree is returned instead.

the most likely tree underG directly (without prun-
ing) and then setting the highest pruning threshold
for each stage that would not prune the optimal tree.
This setting also caused no search errors on the test
set. We found our projected grammar estimates to be
at least equally well suited for pruning as the orig-
inal grammar estimates which were learned during
the hierarchical training. Tab. 1 shows the tremen-
dous reduction in parsing time (all times are cumu-
lative) and gives an overview over grammar sizes
and parsing accuracies. In particular, in our Java im-
plementation on a 3GHz processor, it is possible to
parse the 1578 development set sentences (of length
40 or less) in less than 1200 seconds with an F1 of
91.2% (no search errors), or, by pruning more, in
680 seconds at 91.1%. For comparison, the Feb.
2006 release of the Charniak and Johnson (2005)
parser runs in 1150 seconds on the same machine
with an F1 of 90.7%.

4 Objective Functions for Parsing

A split PCFG is a grammarG over symbols of the
form X-k whereX is an evaluation symbol (such
as NP) and k is some indicator of a subcategory,
such as a parent annotation.G induces aderiva-
tion distributionP (T |G) over treesT labeled with
split symbols. This distribution in turn induces
a parse distributionP (T ′|G) = P (π(T )|G) over
(projected) trees with unsplit evaluation symbols,
whereP (T ′|G) =

∑

T :T ′=π(T ) P (T |G). We now
have several choices of how to select a tree given
these posterior distributions over trees. In this sec-
tion, we present experiments with the various op-
tions and explicitly relate them to parse risk mini-
mization (Titov and Henderson, 2006).

G0 G2 G4 G6

Nonterminals 98 219 498 1140
Rules 3,700 19,600 126,100 531,200

No pruning 52 min 99 min 288 min 1612 min
X-bar pruning 8 min 14 min 30 min 111 min
C-to-F (no loss) 6 min 12 min 16 min 20 min
F1 for above 64.8 85.2 89.7 91.2

C-to-F (lossy) 6 min 8 min 9 min 11 min
F1 for above 64.3 84.7 89.4 91.1

Table 1: Grammar sizes, parsing times and accuracies for hier-
archically split PCFGs with and without hierarchical coarse-to-
fine parsing on our development set (1578 sentences with 40 or
less words from section 22 of the Penn Treebank). For compar-
ison the parser of Charniak and Johnson (2005) has an accuracy
of F1=90.7 and runs in 19 min on this set.

The decision-theoretic approach to parsing would
be to select the parse tree which minimizes our ex-
pected loss according to our beliefs:

T ∗

P = argmin
TP

∑

TT

P (TT |w,G)L(TP , TT )

where TT and TP are “true” and predicted parse
trees. Here, our loss is described by the functionL

whose first argument is the predicted parse tree and
the second is the gold parse tree. Reasonable can-
didates forL include zero-one loss (exact match),
precision, recall, F1 (specifically EVALB here), and
so on. Of course, the naive version of this process is
intractable: we have to loop over all (pairs of) pos-
sible parses. Additionally, it requires parse likeli-
hoodsP (TP |w,G), which are tractable, but not triv-
ial, to compute for split models. There are two op-
tions: limit the predictions to a small candidate set or
choose methods for which dynamic programs exist.

For arbitrary loss functions, we can approximate
the minimum-risk procedure by taking the min over
only a set ofcandidate parsesTP . In some cases,
each parse’s expected risk can be evaluated in closed
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Rule score:r(A → B C, i, k, j) =
∑

x

∑

y

∑

z

POUT(Ax, i, j)P(Ax → By Cz)PIN(By, i, k)PIN(Cy, k, j)

VARIATIONAL : q(A → B C, i, k, j) =
r(A → B C, i, k, j)

P

x
POUT(Ax,i,j)PIN (Ax,i,j) TG = argmaxT

∏

e∈T q(e)

MAX -RULE-SUM: q(A → B C, i, k, j) =
r(A → B C, i, k, j)

PIN (root,0,n) TG = argmaxT

∑

e∈T q(e)

MAX -RULE-PRODUCT: q(A → B C, i, k, j) =
r(A → B C, i, k, j)

PIN (root,0,n) TG = argmaxT

∏

e∈T q(e)

Figure 3: Different objectives for parsing with posteriors, yielding comparable results.A, B, C are nonterminal symbols,x, y, z
are latent annotations andi, j, k are between-word indices. Hence(Ax, i, j) denotes a constituent labeled withAx spanning from
i to j. Furthermore, we writee = (A → B C, i, j, k) for brevity.

form. Exact match (likelihood) has this property. In
general, however, we can approximate the expecta-
tion with samples fromP (T |w,G). The method for
sampling derivations of a PCFG is given in Finkel
et al. (2006) and Johnson et al. (2007). It requires a
single inside-outside computation per sentence and
is then efficient per sample. Note that for split gram-
mars, a posterior parse sample can be drawn by sam-
pling a derivation and projecting away the substates.

Fig. 2 shows the results of the following exper-
iment. We constructed 10-best lists from the full
grammarG in Sec. 2 using the parser of Petrov et
al. (2006). We then took the same grammar and ex-
tracted 500-sample lists using the method of Finkel
et al. (2006). The minimum risk parse candidate was
selected for various loss functions. As can be seen,
in most cases, risk minimization reduces test-set loss
of the relevant quantity. Exact match is problematic,
however, because 500 samples is often too few to
draw a match when a sentence has a very flat poste-
rior, and so there are many all-way ties.2 Since ex-
act match permits a non-sampled calculation of the
expected risk, we show this option as well, which
is substantially superior. This experiment highlights
that the correct procedure for exact match is to find
the most probable parse.

An alternative approach to reranking candidate
parses is to work with inference criteria which ad-
mit dynamic programming solutions. Fig. 3 shows
three possible objective functions which use the eas-
ily obtained posterior marginals of the parse tree dis-
tribution. Interestingly, while they have fairly differ-
ent decision theoretic motivations, their closed-form
solutions are similar.

25,000 samples do not improve the numbers appreciably.

One option is to maximize likelihood in an ap-
proximate distribution. Matsuzaki et al. (2005)
present a VARIATIONAL approach, which approxi-
mates the true posterior over parses by a cruder, but
tractable sentence-specific one. In this approximate
distribution there is no derivation / parse distinction
and one can therefore optimize exact match by se-
lecting the most likely derivation.

Instead of approximating the tree distribution we
can use an objective function that decomposes along
parse posteriors. The labeled brackets algorithm of
Goodman (1996) has such an objective function. In
its original formulation this algorithm maximizes
the number of expected correct nodes, but instead
we can use it to maximize the number of correct
rules (the MAX -RULE-SUM algorithm). A worry-
ing issue with this method is that it is ill-defined for
grammars which allow infinite unary chains: there
will be no finite minimum risk tree under recall loss
(you can always reduce the risk by adding one more
cycle). We implement MAX -RULE-SUM in a CNF-
like grammar family where above each binary split
is exactly one unary (possibly a self-loop). With
this limitation, unary chains are not a problem. As
might be expected, this criterion improves bracket
measures at the expense of exact match.

We found it optimal to use a third approach,
in which rule posteriors are multiplied instead of
added. This corresponds to choosing the tree with
greatest chance of having all rules correct, under
the (incorrect) assumption that the rules correct-
ness are independent. This MAX -RULE-PRODUCT

algorithm does not need special treatment of infi-
nite unary chains because it is optimizing a product
rather than a sum. While these three methods yield
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Objective P R F1 EX

BEST DERIVATION
Viterbi Derivation 89.6 89.4 89.5 37.4

RERANKING
Random 87.6 87.7 87.7 16.4
Precision (sampled) 91.1 88.1 89.6 21.4
Recall (sampled) 88.2 91.3 89.7 21.5
F1 (sampled) 90.2 89.3 89.8 27.2
Exact (sampled) 89.5 89.5 89.5 25.8
Exact (non-sampled) 90.8 90.8 90.8 41.7
Exact/F1 (oracle) 95.3 94.4 95.0 63.9

DYNAMIC PROGRAMMING

VARIATIONAL 90.7 90.9 90.8 41.4
MAX -RULE-SUM 90.5 91.3 90.9 40.4
MAX -RULE-PRODUCT 91.2 91.1 91.2 41.4

Table 2: A 10-best list from our bestG can be reordered as to
maximize a given objective either using samples or, under some
restricting assumptions, in closed form.

very similar results (see Fig. 2), the MAX -RULE-
PRODUCT algorithm consistently outperformed the
other two.

Overall, the closed-form options were superior to
the reranking ones, except on exact match, where the
gains from correctly calculating the risk outweigh
the losses from the truncation of the candidate set.

5 Multilingual Parsing

Most research on parsing has focused on English
and parsing performance on other languages is gen-
erally significantly lower.3 Recently, there have
been some attempts to adapt parsers developed for
English to other languages (Levy and Manning,
2003; Cowan and Collins, 2005). Adapting lexi-
calized parsers to other languages in not a trivial
task as it requires at least the specification of head
rules, and has had limited success. Adapting unlexi-
calized parsers appears to be equally difficult: Levy
and Manning (2003) adapt the unlexicalized parser
of Klein and Manning (2003) to Chinese, but even
after significant efforts on choosing category splits,
only modest performance gains are reported.

In contrast, automatically learned grammars like
the one of Matsuzaki et al. (2005) and Petrov et al.
(2006) require a treebank for training but no addi-
tional human input. One has therefore reason to

3Of course, cross-linguistic comparison of results is com-
plicated by differences in corpus annotation schemes and sizes,
and differences in linguistic characteristics.

ENGLISH GERMAN CHINESE
(Marcus et al., 1993) (Skut et al., 1997) (Xue et al., 2002)

TrainSet Section 2-21 Sentences 1-18,602Articles 26-270
DevSet Section 22 18,603-19,602 Articles 1-25
TestSet Section 23 19,603-20,602 Articles 271-300

Table 3: Experimental setup.

believe that their performance will generalize bet-
ter across languages than the performance of parsers
that have been hand tailored to English.

5.1 Experiments

We trained models for English, Chinese and Ger-
man using the standard corpora and splits as shown
in Tab. 3. We applied our model directly to each
of the treebanks, without any language dependent
modifications. Specifically, the same model hyper-
parameters (merging percentage and smoothing fac-
tor) were used in all experiments.

Tab. 4 shows that automatically inducing latent
structure is a technique that generalizes well across
language boundaries and results in state of the art
performance for Chinese and German. On English,
the parser is outperformed only by the reranking
parser of Charniak and Johnson (2005), which has
access to a variety of features which cannot be cap-
tured by a generative model.

Space does not permit a thorough exposition of
our analysis, but as in the case of English (Petrov
et al., 2006), the learned subcategories exhibit inter-
esting linguistic interpretations. In German, for ex-
ample, the model learns subcategories for different
cases and genders.

5.2 Corpus Variation

Related to cross language generalization is the gen-
eralization across domains for the same language.
It is well known that a model trained on the Wall
Street Journal loses significantly in performance
when evaluated on the Brown Corpus (see Gildea
(2001) for more details and the exact setup of their
experiment, which we duplicated here). Recently
McClosky et al. (2006) came to the conclusion that
this performance drop is not due to overfitting the
WSJ data. Fig. 4 shows the performance on the
Brown corpus during hierarchical training. While
the F1 score on the WSJ is rising we observe a drop
in performance after the 5th iteration, suggesting
that some overfitting is occurring.
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≤ 40 words all
Parser LP LR LP LR

ENGLISH
Charniak et al. (2005) 90.1 90.1 89.5 89.6
Petrov et al. (2006) 90.3 90.0 89.8 89.6
This Paper 90.7 90.5 90.2 89.9

ENGLISH (reranked)
Charniak et al. (2005)4 92.4 91.6 91.8 91.0

GERMAN
Dubey (2005) F1 76.3 -
This Paper 80.8 80.7 80.1 80.1

CHINESE5

Chiang et al. (2002) 81.1 78.8 78.0 75.2
This Paper 80.8 80.7 78.8 78.5

Table 4: Our final test set parsing performance compared to the
best previous work on English, German and Chinese.
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Grammar Size

F 1

Hierarchically Split PCFGs
Charniak and Johnson (2005) generative parser
Charniak and Johnson (2005) reranking parser

G
3

G
5 G

6G
4

Figure 4: Parsing accuracy starts dropping after 5 trainingiter-
ations on the Brown corpus, while it is improving on the WSJ,
indicating overfitting.

6 Conclusions

The coarse-to-fine scheme presented here, in con-
junction with the risk-appropriate parse selection
methodology, allows fast, accurate parsing, in multi-
ple languages and domains. For training, one needs
only a raw context-free treebank and for decoding
one needs only a final grammar, along with coars-
ening maps. The final parser is publicly available at
http://www.nlp.cs.berkeley.edu.
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Abstract

We present a novel method for creating A∗ esti-
mates for structured search problems. In our ap-
proach, we project a complex model onto multiple
simpler models for which exact inference is effi-
cient. We use an optimization framework to es-
timate parameters for these projections in a way
which bounds the true costs. Similar to Klein and
Manning (2003), we then combine completion es-
timates from the simpler models to guide search
in the original complex model. We apply our ap-
proach to bitext parsing and lexicalized parsing,
demonstrating its effectiveness in these domains.

1 Introduction

Inference tasks in NLP often involve searching for
an optimal output from a large set of structured out-
puts. For many complex models, selecting the high-
est scoring output for a given observation is slow or
even intractable. One general technique to increase
efficiency while preserving optimality is A∗ search
(Hart et al., 1968); however, successfully using A∗

search is challenging in practice. The design of ad-
missible (or nearly admissible) heuristics which are
both effective (close to actual completion costs) and
also efficient to compute is a difficult, open prob-
lem in most domains. As a result, most work on
search has focused on non-optimal methods, such
as beam search or pruning based on approximate
models (Collins, 1999), though in certain cases ad-
missible heuristics are known (Och and Ney, 2000;
Zhang and Gildea, 2006). For example, Klein and
Manning (2003) show a class of projection-based A∗

estimates, but their application is limited to models
which have a very restrictive kind of score decom-
position. In this work, we broaden their projection-
based technique to give A∗ estimates for models
which do not factor in this restricted way.

Like Klein and Manning (2003), we focus on
search problems where there are multiple projec-
tions or “views” of the structure, for example lexical
parsing, in which trees can be projected onto either
their CFG backbone or their lexical attachments. We
use general optimization techniques (Boyd and Van-
denberghe, 2005) to approximately factor a model
over these projections. Solutions to the projected
problems yield heuristics for the original model.
This approach is flexible, providing either admissi-
ble or nearly admissible heuristics, depending on the
details of the optimization problem solved. Further-
more, our approach allows a modeler explicit control
over the trade-off between the tightness of a heuris-
tic and its degree of inadmissibility (if any). We de-
scribe our technique in general and then apply it to
two concrete NLP search tasks: bitext parsing and
lexicalized monolingual parsing.

2 General Approach

Many inference problems in NLP can be solved
with agenda-based methods, in which we incremen-
tally build hypotheses for larger items by combining
smaller ones with some local configurational struc-
ture. We can formalize such tasks as graph search
problems, where states encapsulate partial hypothe-
ses and edges combine or extend them locally.1 For
example, in HMM decoding, the states are anchored
labels, e.g. VBD[5], and edges correspond to hidden
transitions, e.g. VBD[5]→ DT[6].

The search problem is to find a minimal cost path
from the start state to a goal state, where the path
cost is the sum of the costs of the edges in the path.

1In most complex tasks, we will in fact have a hypergraph,
but the extension is trivial and not worth the added notation.
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Figure 1: Example cost factoring: In (a), each cell of the matrix is a local configuration composed of two projections (the row and
column of the cell). In (b), the top matrix is an example cost matrix, which specifies the cost of each local configuration. The
bottom matrix represents our factored estimates, where each entry is the sum of configuration projections. For this example, the
actual cost matrix can be decomposed exactly into two projections. In (c), the top cost matrix cannot be exactly decomposed along
two dimensions. Our factored cost matrix has the property that each factored cost estimate is below the actual configuration cost.
Although our factorization is no longer tight, it still can be used to produce an admissible heuristic.

For probabilistic inference problems, the cost of an
edge is typically a negative log probability which de-
pends only on some local configuration type. For
instance, in PCFG parsing, the (hyper)edges refer-
ence anchored spans X[i, j], but the edge costs de-
pend only on the local rule typeX → Y Z. We will
usea to refer to a local configuration and usec(a)
to refer to its cost. Because edge costs are sensi-
tive only to local configurations, the cost of a path
is

∑
a c(a). A∗ search requires aheuristic function,

which is an estimateh(s) of thecompletion cost, the
cost of a best path from states to a goal.

In this work, following Klein and Manning
(2003), we consider problems withprojectionsor
“views,” which define mappings to simpler state and
configuration spaces. For instance, suppose that we
are using an HMM to jointly model part-of-speech
(POS) and named-entity-recognition (NER) tagging.
There might be one projection onto the NER com-
ponent and another onto the POS component. For-
mally, a projectionπ is a mapping from states to
some coarser domain. A state projection induces
projections of edges and of the entire graphπ(G).

We are particularly interested in search problems
with multiple projections{π1, . . . , π`} where each
projection,πi, has the following properties: its state
projections induce well-defined projections of the
local configurationsπi(a) used for scoring,and the
projected search problem admits a simpler infer-
ence. For instance, the POS projection in our NER-
POS HMM is a simpler HMM, though the gains
from this method are greater when inference in the
projections have lower asymptotic complexity than

the original problem (see sections 3 and 4).
In defining projections, we have not yet dealt with

the projected scoring function. Suppose that the
cost of local configurations decomposes along pro-
jections as well. In this case,

c (a) =
∑̀
i=1

ci(a) , ∀a ∈ A (1)

whereA is the set of local configurations andci(a)
represents the cost of configurationa under projec-
tion πi. A toy example of such a cost decomposi-
tion in the context of a Markov process over two-part
states is shown in figure 1(b), where the costs of the
joint transitions equal the sum of costs of their pro-
jections. Under the strong assumption of equation
(1), Klein and Manning (2003) give an admissible
A∗ bound. They note that the cost of a path decom-
poses as a sum of projected path costs. Hence, the
following is an admissible additive heuristic (Felner
et al., 2004),

h(s) =
∑̀
i=1

h∗i (s) (2)

whereh∗i (s) denote the optimal completion costs in
the projected search graphπi(G). That is, the com-
pletion cost of a state bounds the sum of the comple-
tion costs in each projection.

In virtually all cases, however, configuration costs
will not decompose over projections, nor would we
expect them to. For instance, in our joint POS-NER
task, this assumption requires that the POS and NER
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transitions and observations be generated indepen-
dently. This independence assumption undermines
the motivation for assuming a joint model. In the
central contribution of this work, we exploit the pro-
jection structure of our search problem without mak-
ing any assumption about cost decomposition.

Rather than assuming decomposition, we propose
to find scoresφ for the projected configurations
which arepointwise admissible:

∑̀
i=1

φi(a) ≤ c(a), ∀a ∈ A (3)

Here,φi(a) represents a factored projection cost of
πi(a), theπi projection of configurationa. Given
pointwise admissibleφi’s we can again apply the
heuristic recipe of equation (2). An example of
factored projection costs are shown in figure 1(c),
where no exact decomposition exists, but a point-
wise admissible lower bound is easy to find.

Claim. If a set of factored projection costs
{φ1, . . . , φ`} satisfy pointwise admissibility, then
the heuristic from (2) is an admissible A∗ heuristic.

Proof. Assumea1, . . . , ak are configurations used
to optimally reach the goal from states. Then,

h∗(s) =

kX
j=1

c(aj) ≥
kX
j=1

X̀
i=1

φi(aj)

=
X̀
i=1

 
kX
j=1

φi(aj)

!
≥
X̀
i=1

h∗i (s) = h(s)

The first inequality follows from pointwise admis-
sibility. The second inequality follows because each
inner sum is a completion cost for projected problem
πi and thereforeh∗i (s) lower bounds it. Intuitively,
we can see two sources of slack in such projection
heuristics. First, there may be slack in the pointwise
admissible scores. Second, the best paths in the pro-
jections will be overly optimistic because they have
been decoupled (see figure 5 for an example of de-
coupled best paths in projections).

2.1 Finding Factored Projections for
Non-Factored Costs

We can find factored costsφi(a) which are point-
wise admissible by solving an optimization problem.

We think of our unknown factored costs as a block
vectorφ = [φ1, .., φ`], where vectorφi is composed
of the factored costs,φi(a), for each configuration
a ∈ A. We can then find admissible factored costs
by solving the following optimization problem,

minimize
φ

‖γ‖ (4)

such that, γa = c(a)−
∑̀
i=1

φi(a), ∀a ∈ A

γa ≥ 0, ∀a ∈ A

We can think of eachγa as the amount by which
the cost of configurationa exceeds the factored pro-
jection estimates (the pointwise A∗ gap). Requiring
γa ≥ 0 insures pointwise admissibility. Minimiz-
ing the norm of theγa variables encourages tighter
bounds; indeed if‖γ‖ = 0, the solution corresponds
to an exact factoring of the search problem. In the
case where we minimize the 1-norm or∞-norm, the
problem above reduces to a linear program, which
can be solved efficiently for a large number of vari-
ables and constraints.2

Viewing our procedure decision-theoretically, by
minimizing the norm of the pointwise gaps we are
effectively choosing a loss function which decom-
poses along configuration types and takes the form
of the norm (i.e. linear or squared losses). A com-
plete investigation of the alternatives is beyond the
scope of this work, but it is worth pointing out that
in the end we will care only about the gap on entire
structures, not configurations, and individual config-
uration factored costs need not even be pointwise ad-
missible for the overall heuristic to be admissible.

Notice that the number of constraints is|A|, the
number of possible local configurations. For many
search problems, enumerating the possible configu-
rations is not feasible, and therefore neither is solv-
ing an optimization problem with all of these con-
straints. We deal with this situation in applying our
technique to lexicalized parsing models (section 4).

Sometimes, we might be willing to trade search
optimality for efficiency. In our approach, we can
explicitly make this trade-off by designing an alter-
native optimization problem which allows for slack

2We used the MOSEK package (Andersen and Andersen,
2000).
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in the admissibility constraints. We solve the follow-
ing soft version of problem (4):

minimize
φ

‖γ+‖+ C‖γ−‖ (5)

such that,γa = c(a)−
∑̀
i=1

φi(a), ∀a ∈ A

whereγ+ = max{0, γ} andγ− = max{0,−γ}
represent the componentwise positive and negative
elements ofγ respectively. Eachγ−a > 0 represents
a configuration where our factored projection esti-
mate is not pointwise admissible. Since this situa-
tion may result in our heuristic becoming inadmis-
sible if used in the projected completion costs, we
more heavily penalize overestimating the cost by the
constantC.

2.2 Bounding Search Error

In the case where we allow pointwise inadmissibil-
ity, i.e. variablesγ−a , we can bound our search er-
ror. Supposeγ−max = maxa∈A γ−a and thatL∗ is
the length of the longest optimal solution for the
original problem. Then,h(s) ≤ h∗(s) + L∗γ−max,
∀s ∈ S. This ε-admissible heuristic (Ghallab and
Allard, 1982) bounds our search error byL∗γ−max.3

3 Bitext Parsing

In bitext parsing, one jointly infers a synchronous
phrase structure tree over a sentencews and its
translationwt (Melamed et al., 2004; Wu, 1997).
Bitext parsing is a natural candidate task for our
approximate factoring technique. A synchronous
tree projects monolingual phrase structure trees onto
each sentence. However, the costs assigned by
a weighted synchronous grammar (WSG)G do
not typically factor into independent monolingual
WCFGs. We can, however, produce a useful surro-
gate: a pair of monolingual WCFGs with structures
projected byG and weights that, when combined,
underestimate the costs ofG.

Parsing optimally relative to a synchronous gram-
mar using a dynamic program requires timeO(n6)
in the length of the sentence (Wu, 1997). This high
degree of complexity makes exhaustive bitext pars-
ing infeasible for all but the shortest sentences. In

3This bound may be very loose ifL is large.

contrast, monolingual CFG parsing requires time
O(n3) in the length of the sentence.

3.1 A∗ Parsing

Alternatively, we can search for an optimal parse
guided by a heuristic. The states in A∗ bitext pars-
ing are rooted bispans, denotedX [i, j] :: Y [k, l].
States represent a joint parse over subspans[i, j] of
ws and[k, l] ofwt rooted by the nonterminalsX and
Y respectively.

Given a WSGG, the algorithm prioritizes a state
(or edge)e by the sum of its inside costβG(e) (the
negative log of its inside probability) and its outside
estimateh(e), or completion cost.4 We are guaran-
teed the optimal parse if our heuristich(e) is never
greater thanαG(e), the true outside cost ofe.

We now consider a heuristic combining the com-
pletion costs of the monolingual projections ofG,
and guarantee admissibility by enforcing point-wise
admissibility. Each statee = X [i, j] :: Y [k, l]
projects a pair of monolingual rooted spans. The
heuristic we propose sums independent outside costs
of these spans in each monolingual projection.

h(e) = αs(X [i, j]) + αt(Y [k, l])

These monolingual outside scores are computed rel-
ative to a pair of monolingual WCFG grammarsGs
andGt given by splitting each synchronous rule

r =
(

X(s)

Y(t)

)
→

(
α β
γ δ

)
into its componentsπs(r) = X→ αβ andπt(r) =
Y→γδ and weighting them via optimizedφs(r) and
φt(r), respectively.5

To learn pointwise admissible costs for the mono-
lingual grammars, we formulate the following opti-
mization problem:6

minimize
γ,φs,φt

‖γ‖1

such that,γr = c(r)− [φs(r) + φt(r)]
for all synchronous rulesr ∈ G
φs ≥ 0, φt ≥ 0, γ ≥ 0

4All inside and outside costs are Viterbi, not summed.
5Note that we need only parse each sentence (monolin-

gually) once to compute the outside probabilities for every span.
6The stated objective is merely one reasonable choice

among many possibilities which require pointwise admissibil-
ity and encourage tight estimates.
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Figure 2: The gap between the heuristic (left) and true comple-
tion cost (right) comes from relaxing the synchronized problem
to independent subproblems and slack in the factored models.

Figure 2 diagrams the two bounds that enforce the
admissibility ofh(e). For any outside costαG(e),
there is a corresponding optimal completion struc-
ture o underG, which is an outer shell of a syn-
chronous tree.o projects monolingual completions
os andot which have well-defined costscs(os) and
ct(ot) under Gs and Gt respectively. Their sum
cs(os) + ct(ot) will underestimateαG(e) by point-
wise admissibility.

Furthermore, the heuristic we compute underesti-
mates this sum. Recall that the monolingual outside
scoreαs(X [i, j]) is the minimal costs for any com-
pletion of the edge. Hence,αs(X [i, j]) ≤ cs(os)
andαt(X [k, l]) ≤ ct(ot). Admissibility follows.

3.2 Experiments

We demonstrate our technique using the syn-
chronous grammar formalism of tree-to-tree trans-
ducers (Knight and Graehl, 2004). In each weighted
rule, an aligned pair of nonterminals generates two
ordered lists of children. The non-terminals in each
list must align one-to-one to the non-terminals in the
other, while the terminals are placed freely on either
side. Figure 3(a) shows an example rule.

Following Galley et al. (2004), we learn a gram-
mar by projecting English syntax onto a foreign lan-
guage via word-level alignments, as in figure 3(b).7

We parsed 1200 English-Spanish sentences using
a grammar learned from 40,000 sentence pairs of
the English-Spanish Europarl corpus.8 Figure 4(a)
shows that A∗ expands substantially fewer states
while searching for the optimal parse with ourop-

7The bilingual corpus consists of translation pairs with fixed
English parses and word alignments. Rules were scored by their
relative frequencies.

8Rare words were replaced with their parts of speech to limit
the memory consumption of the parser.
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Figure 3: (a) A tree-to-tree transducer rule. (b) An example
training sentence pair that yields rule (a).

timization heuristic. Theexhaustivecurve shows
edge expansions using the null heuristic. The in-
termediate result, labeledEnglish only, used only
the English monolingual outside score as a heuris-
tic. Similar results using only Spanish demonstrate
that both projections contribute to parsing efficiency.
All three curves in figure 4 represent running times
for finding the optimal parse.

Zhang and Gildea (2006) offer a different heuris-
tic for A∗ parsing of ITG grammars that provides a
forward estimate of the cost of aligning the unparsed
words in both sentences. We cannot directly apply
this technique to our grammar because tree-to-tree
transducers only align non-terminals. Instead, we
can augment our synchronous grammar model to in-
clude a lexical alignment component, then employ
both heuristics. We learned the following two-stage
generative model: a tree-to-tree transducer generates
trees whose leaves are parts of speech. Then, the
words of each sentence are generated, either jointly
from aligned parts of speech or independently given
a null alignment. The cost of a complete parse un-
der this new model decomposes into the cost of the
synchronous tree over parts of speech and the cost
of generating the lexical items.

Given such a model, both our optimization heuris-
tic and the lexical heuristic of Zhang and Gildea
(2006) can be computed independently. Crucially,
the sum of these heuristics is still admissible. Re-
sults appear in figure 4(b). Both heuristics (lexi-
cal andoptimization) alone improve parsing perfor-
mance, but their sumopt+lexsubstantially improves
upon either one.
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Figure 4: (a) Parsing efficiency results with optimization heuristics show that both component projections constrain the problem.
(b) Including a lexical model and corresponding heuristic further increases parsing efficiency.

4 Lexicalized Parsing

We next apply our technique to lexicalized pars-
ing (Charniak, 1997; Collins, 1999). In lexical-
ized parsing, the local configurations are lexicalized
rules of the formX[h, t] → Y [h′, t′] Z[h, t], where
h, t, h′, and t′ are the head word, head tag, ar-
gument word, and argument tag, respectively. We
will use r = X → Y Z to refer to the CFG back-
bone of a lexicalized rule. As in Klein and Man-
ning (2003), we view each lexicalized rule,`, as
having a CFG projection,πc(`) = r, and a de-
pendency projection,πd(`) = (h, t, h′, t′)(see fig-
ure 5).9 Broadly, the CFG projection encodes con-
stituency structure, while the dependency projection
encodes lexical selection, and both projections are
asymptotically more efficient than the original prob-
lem. Klein and Manning (2003) present a factored
model where the CFG and dependency projections
are generated independently (though with compati-
ble bracketing):

P (Y [h, t]Z[h′, t′] | X[h, t]) = (6)

P (Y Z|X)P (h′, t′|t, h)

In this work, we explore the following non-factored
model, which allows correlations between the CFG
and dependency projections:

P (Y [h, t]Z[h′, t′] | X[h, t]) = P (Y Z|X, t, h) (7)

P (t′|t, Z, h′, h) P (h′|t′, t, Z, h′, h)

This model is broadly representative of the suc-
cessful lexicalized models of Charniak (1997) and

9We assume information about the distance and direction of
the dependency is encoded in the dependency tuple, but we omit
it from the notation for compactness.

Collins (1999), though simpler.10

4.1 Choosing Constraints and Handling
Unseen Dependencies

Ideally we would like to be able to solve the op-
timization problem in (4) for this task. Unfortu-
nately, exhaustively listing all possible configura-
tions (lexical rules) yields an impractical number of
constraints. We therefore solve a relaxed problem in
which we enforce the constraints for only a subset
of the possible configurations,A′ ⊆ A. Once we
start dropping constraints, we can no longer guaran-
tee pointwise admissibility, and therefore there is no
reason not to also allow penalized violations of the
constraints we do list, so we solve (5) instead.

To generate the set of enforced constraints, we
first include all configurations observed in the gold
training trees. We then sample novel configurations
by choosing(X,h, t) from the training distribution
and then using the model to generate the rest of the
configuration. In our experiments, we ended up with
434,329 observed configurations, and sampled the
same number of novel configurations. Our penalty
multiplierC was 10.

Even if we supplement our training set with many
sample configurations, we will still see new pro-
jected dependency configurations at test time. It is
therefore necessary to generalize scores from train-
ing configurations to unseen ones. We enrich our
procedure by expressing the projected configuration
costs as linear functions of features. Specifically, we
define feature vectorsfc(r) and fd(h, t, h′t′) over
the CFG and dependency projections, and intro-

10All probability distributions for the non-factored model are
estimated by Witten-Bell smoothing (Witten and Bell, 1991)
where conditioning lexical items are backed off first.
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duce corresponding weight vectorswc andwd. The
weight vectors are learned by solving the following
optimization problem:

minimize
γ,wc,wd

‖γ+‖2 + C‖γ−‖2 (8)

such that, wc ≥ 0, wd ≥ 0

γ` = c(`)− [wTc fc(r) + wTd fd(h, t, h
′, t′)]

for ` = (r, h, t, h′, t′) ∈ A′

Our CFG feature vector has only indicator features
for the specific rule. However, our dependency fea-
ture vector consists of an indicator feature of the tu-
ple (h, t, h′, t′) (including direction), an indicator of
the part-of-speech type(t, t′) (also including direc-
tion), as well as a bias feature.

4.2 Experimental Results

We tested our approximate projection heuristic on
two lexicalized parsing models. The first is the fac-
tored model of Klein and Manning (2003), given
by equation (6), and the second is the non-factored
model described in equation (7). Both models
use the same parent-annotated head-binarized CFG
backbone and a basic dependency projection which
models direction, but not distance or valence.11

In each case, we compared A∗ using our approxi-
mate projection heuristics to exhaustive search. We
measure efficiency in terms of the number of ex-
panded hypotheses (edges popped); see figure 6.12

In both settings, the factored A∗ approach substan-
tially outperforms exhaustive search. For the fac-

11The CFG and dependency projections correspond to the
PCFG-PA and DEP-BASIC settings in Klein and Manning
(2003).

12All models are trained on section 2 through 21 of the En-
glish Penn treebank, and tested on section 23.

tored model of Klein and Manning (2003), we can
also compare our reconstructed bound to the known
tight bound which would result from solving the
pointwise admissible problem in (4) with all con-
straints. As figure 6 shows, the exact factored
heuristic does outperform our approximate factored
heuristic, primarily because of many looser, backed-
off cost estimates for unseen dependency tuples. For
the non-factored model, we compared our approxi-
mate factored heuristic to one which only bounds the
CFG projection as suggested by Klein and Manning
(2003). They suggest,

φc(r) = min
`∈A:πc(`)=r

c(`)

where we obtain factored CFG costs by minimizing
over dependency projections. As figure 6 illustrates,
this CFG only heuristic is substantially less efficient
than our heuristic which bounds both projections.

Since our heuristic is no longer guaranteed to be
admissible, we evaluated its effect on search in sev-
eral ways. The first is to check for search errors,
where the model-optimal parse is not found. In the
case of the factored model, we can find the optimal
parse using the exact factored heuristic and compare
it to the parse found by our learned heuristic. In our
test set, the approximate projection heuristic failed
to return the model optimal parse in less than 1% of
sentences. Of these search errors, none of the costs
were more than 0.1% greater than the model optimal
cost in negative log-likelihood. For the non-factored
model, the model optimal parse is known only for
shorter sentences which can be parsed exhaustively.
For these sentences up to length 15, there were no
search errors. We can also check for violations of
pointwise admissibility for configurations encoun-
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Figure 6: Edges popped by exhaustive versus factored A∗ search. The chart in (a) is using the factored lexicalized model from
Klein and Manning (2003). The chart in (b) is using the non-factored lexicalized model described in section 4.

tered during search. For both the factored and non-
factored model, less than 2% of the configurations
scored by the approximate projection heuristic dur-
ing search violated pointwise admissibility.

While this is a paper about inference, we also
measured the accuracy in the standard way, on sen-
tences of length up to 40, using EVALB. The fac-
tored model with the approximate projection heuris-
tic achieves an F1 of 82.2, matching the performance
with the exact factored heuristic, though slower. The
non-factored model, using the approximate projec-
tion heuristic, achieves an F1 of 83.8 on the test set,
which is slightly better than the factored model.13

We note that the CFG and dependency projections
are as similar as possible across models, so the in-
crease in accuracy is likely due in part to the non-
factored model’s coupling of CFG and dependency
projections.

5 Conclusion

We have presented a technique for creating A∗ es-
timates for inference in complex models. Our tech-
nique can be used to generate provably admissible
estimates when all search transitions can be enumer-
ated, and an effective heuristic even for problems
where all transitions cannot be efficiently enumer-
ated. In the future, we plan to investigate alterna-
tive objective functions and error-driven methods for
learning heuristic bounds.
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Abstract

A new architecture for identifying and in-
terpreting temporal expressions is intro-
duced, in which the large set of com-
plex hand-crafted rules standard in sys-
tems for this task is replaced by a series
of machine learned classifiers and a much
smaller set of context-independent seman-
tic composition rules. Experiments with
the TERN 2004 data set demonstrate that
overall system performance is comparable
to the state-of-the-art, and that normaliza-
tion performance is particularly good.

1 Introduction

In order to fully understand a piece of text, we
must understand its temporal structure. The first
step toward such an understanding is identifying ex-
plicit references to time. We focus on the task of
automatically annotating temporal expressions (or
timexes)—both identifying them in text and inter-
preting them to determine what times they refer to.
Timex annotation is more than normalizing date ex-
pressions. First, time consists of more than calen-
dar dates and clock times—it also includes points of
finer and coarser granularity, durations, and sets of
times. Second, the expressions that refer to time are
not just full date and time expressions—they may be
underspecified, ambiguous, and anaphoric.

Building a system for the full timex identifica-
tion and interpretation task can be tedious, requiring
a great deal of manual effort. The 2004 Temporal
Expression Recognition and Normalization (TERN)
evaluation1 evaluated systems on two tasks: timex

1http://timex2.mitre.org/tern.html

recognition (identification) alone and recognition
and normalization (interpretation) together. All the
full-task systems were rule-based systems; the top
performing full-task system uses in excess of one
thousand hand-crafted rules, which probe words and
their contexts in order to both identify timexes and
to assemble information necessary to interpret them
(Negri and Marseglia, 2004). By contrast, machine
learned systems dominated the recognition-only task
and even achieved slightly better recognition scores
than their rule-based counterparts.

We seek to demonstrate that a timex annotation
system that performs both recognition and normal-
ization need not be a tangle of rules that serve dou-
ble duty for identification and interpretation and that
mix up context-dependent and context-independent
processing. We propose a novel architecture that
clearly separates syntactic, semantic, and prag-
matic processing and factors out context-dependent
from context-independent processing. Factoring
out context-dependent disambiguation into separate
classification tasks introduces the opportunity for
using machine learning, which supports our main
goal: building a portable, trainable timex annota-
tion system in which the role of hand-crafted rules
is minimized. The system we present here (avail-
able from http://ilps.science.uva.nl/
Resources/timextag/) achieves the goal of
making use of only a small set of hand-crafted,
context-independent rules to achieve state-of-the-art
normalization performance.

In the following section, we define what a timex
is. We give an overview of our system architecture
in §3 and describe the components in §4–7. §8 pro-
vides an evaluation of our system on the full timex
annotation task, and we conclude in §9.

420



2 What is a timex?

Temporal semantics receives a great deal of attention
in the semantics literature (cf. (Mani et al., 2005)),
but the focus is generally on verbal semantics (i.e.,
tense and aspect). In determining what a timex is
and how one should be normalized, we simply fol-
low the TIDES TIMEX2 standard for timex annota-
tion (Ferro et al., 2004). According to this standard,
timexes are phrases or words that refer to times,
where times may be points or durations, or sets of
points or durations. Points are more than just in-
stanteous moments in time—a point may also be a
time with some duration, as long as it spans a single
unit of some temporal granularity. Whether a timex
refers to a point or a duration is a question of per-
spective rather than of ontology. A point-referring
timex such as October 18, 2006 refers to an interval
of one day as an atom at the granularity of a day. A
duration-referring timex such as the whole day may
refer to the same temporal interval, but it focuses on
the durative nature of this interval.

In addition to specifying which phrases are
timexes, the TIMEX2 standard also provides a set
of attributes for normalizing these timexes. We fo-
cus on the VAL attribute, which takes values that are
an extension of the ISO-8601 standard for represent-
ing time (ISO, 1997). TIMEX2 VAL attributes can
take one of three basic types of values:
Points are expressed as a string matching the pat-
tern dddd-dd-ddTdd:dd:dd.d+, where d in-
dicates a digit. Such a string is to be interpreted as
year-month-dateThour:minute:seconds, and may be
truncated from the right, indicating points of coarser
granularity. Any place may be filled with a place-
holder X, which indicates an unknown or vague
value, and there are also a handful of token values
(character strings) for seasons and parts of the day
which may substitute for months and times. There is
also an alternate week-based format dddd-Wdd-d,
interpreted as year-Wweek number-day of the week.
Durations are expressed as a string matching the
pattern Pd+u or PTd+u, where d+ indicates one or
more digits and u indicates a unit token (such as Y
for years). A placeholder X may be used instead of
a number to indicate vagueness.
Vague points: past ref, present ref,
future ref.

Parsed
document
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classifier
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classifierphrases timexes
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Figure 1: Timex annotation architecture (letters for
ease of reference).

The other attribute which we address in this paper
is the boolean-valued SET attribute; a SET timex
is one that refers to a recurring time. The remain-
ing attributes are MOD, ANCHOR VAL, and AN-
CHOR DIR; our system produces values for these
attributes, but we do not address them in this paper.

The TIMEX2 annotation standard has been used
to create several manually annotated corpora. For
the experiments we present in this paper, we use
the corpora annotated for the TERN 2004 evalua-
tion (Ferro, 2004). These consist of a training set
of 511 documents of newswire and broadcast news
transcripts, with 5326 TIMEX2s, and a test set of
192 similar documents, with 1828 TIMEX2s.

3 Architecture

The architecture of our timex annotation system is
depicted in Fig. 1. Our system begins with parsed
documents as input. Our recognition module is a
machine learned classifier (A); it is described in §4.

Phrases that have been classified as timexes are
then sent to the semantic class classifier (B). Seman-
tic class disambiguation is the first point at which
context dependence enters into timex interpretation.
While some timexes are unambiguous with respect
to whether they refer to a point, a duration, or a
set, many timexes are semantically ambiguous and
can only be disambiguated in context. The machine
learned classifier for this task is described in §5.

Based on the class assigned by the semantic class
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classifier, the semantic composition component (C)
generates (underspecified) semantic representations
using class-specific, context-independent rules. The
rules we use are simple pattern-matching rules that
map lexical items or sequences of lexical items
within a timex to semantic representations. We de-
scribe the semantic composition component in §6.

For most classes of timexes, the semantic compo-
sition component generates a semantic representa-
tion that can be directly translated into a normalized
value. Timexes that refer to specific points are the
only exception. While some point timexes are fully
qualified, and thus also directly normalizable, many
need to be anchored to another time in context in
order to be fully normalized. Thus, context depen-
dence again enters the timex interpretation process,
and now in two ways. One is obvious: these refer-
ential timexes, which need a temporal anchor, have
to find it in context. This task requires a reference
resolution process (E), which is described in §7.1.

The second ambiguity regards the relation be-
tween a referential timex and its anchor. Referen-
tial timexes, like anaphoric definites, relate to their
anchors through a bridging relation, which is deter-
mined primarily by the content of the timex—e.g.,
two years later refers to a point two years after its
anchor. For some referential timexes, though, the
direction of the relation (before or after the anchor)
is not specified. The machine learned classifier (D)
resolves this ambiguity; see §7.2.

For referential timexes, final normalization (F) is
a straightforward combination of semantic represen-
tation, temporal anchor, and direction class.

Not pictured in Fig. 1 is a module that recognizes
and normalizes timexes in document metadata using
a set of simple regular expressions (REs; 14 in total).
This module also determines the document time-
stamp for referential timexes by using a few heuris-
tics to choose from among multiple timestamps or a
date from the document text, if necessary.

While our architecture is novel, we are not the first
to modularize timex annotation systems. Even thor-
oughly rule-based systems (Negri and Marseglia,
2004; Saquete et al., 2002), separate temporal an-
chor tracking from the rest of the normalization pro-
cess. The system of Mani and Wilson (2000) goes
further in using separate sets of hand-crafted rules
for recognition and normalization and in separating

out several disambiguation tasks. Ahn et al. (2005b)
decouple recognition from normalization—even us-
ing machine learning for recognition—and handle
several disambiguation tasks separately. In none of
these systems, though, are context-independent and
context-dependent processing thoroughly separated,
as here, and in all these systems, it is the rules that
drive the processing—in both Mani et al. and Ahn
et al.’s systems, sets of rules are used to determine
which timexes need to be disambiguated.

4 Component A: Recognizing timexes

Systems that perform both recognition and nor-
malization tend to take a rule-based approach to
recognition (Mani and Wilson, 2000; Saquete et
al., 2002; Schilder, 2004; Negri and Marseglia,
2004). Recognition-only systems are often based on
machine learned classifiers (Hacioglu et al., 2005;
Bethard and Martin, 2006), although some do use
finite-state methods (Boguraev and Ando, 2005).
Ahn et al. (2005a) find a benefit to decoupling recog-
nition from normalization, and since our goal is
to build a modular, trainable system, we take a
machine-learning approach to recognition that is in-
dependent of our normalization components.

Generally, machine learned timex recognition
systems reduce the task of identifying a timex
phrase to one of classifying individual words by us-
ing (some variant of) B-I-O tagging, in which each
word is tagged as (B)eginning, (I)nside, or (O)utside
a timex phrase. Such a tagging scheme is not in-
herently sensitive to syntactic constituency and not
well-suited to identifying nested timexes (but cf.
(Hacioglu et al., 2005)). Considering that syntactic
parsers are readily available, we have explored sev-
eral ways of leveraging parse information in recog-
nition, although we describe here only the method
we use for experiments later in this paper.

We treat timex recognition as a binary phrase
classification task: syntactic constituents are clas-
sified as timexes or non-timexes. We restrict clas-
sification to the following phrase types and lexical
categories (based on (Ferro et al., 2004, §5)): NP,
ADVP, ADJP, NN, NNP, JJ, CD, RB, and PP.2 In
order to identify candidate phrases and to extract

2We include PPs despite the TIDES guidelines, which ex-
plicitly exclude temporal PPs such as before Thursday because
of prepositional modifiers such as around and about.
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Identification Exact match
prec rec F prec rec F

TEXT 0.912 0.786 0.844 0.850 0.732 0.787
DOC 0.929 0.813 0.867 0.878 0.769 0.819
BRO 0.973 0.891 0.930 0.905 0.829 0.865
BFT 0.976 0.880 0.926 0.885 0.798 0.839

Table 1: Recognition results: Identification.

parse-based features, we parse the TEXT elements
of our documents with the Charniak parser (Char-
niak, 2000). Because of both parser and annotator
errors, only 90.2% of the timexes in the training data
align exactly with a parse, which gives an estimated
upper-bound on recall using this method.

We use support vector machines for classification,
in particular, the LIBSVM linear kernel implemen-
tation (Chang and Lin, 2001). The features we ex-
tract include character type patterns, lexical features
such as weekday name and numeric year, a context
window of two words to the left, and several parse-
based features: the phrase type, the phrase head and
initial word (and POS tag), and the dependency par-
ent (and corresponding relation) of the head.

As with all our experiments in this paper, we
train on the TERN training corpus and test on the
test corpus. Our scores (precision, recall and F-
measure for both identification (i.e., overlap) and
exact-match) are given in Table 1, along with the
scores of the best recognition-only (BRO) and full-
task (BFT) TERN 2004 systems. Since our phrase
classification method is only applied within docu-
ment TEXT elements, we also present results using
both our RE-based document metadata tagger and
our phrase classifier for full documents (DOC). Only
these scores can be compared with the TERN scores.

Our scores using this method approach those of
the best systems, but there is still a gap, which, as
we see in §8, affects our overall task performance.

5 Component B: Semantic classification

Timexes may refer to points, durations, or recur-
rences. While some timexes refer unambiguously to
one of these, many timexes are ambiguous between
two or even three of these (see (Hitzeman, 1993) for
a theoretical semantic perspective on this ambigu-
ity). Timexes may also refer generically or vaguely,
which is another source of ambiguity.

While the TIMEX2 standard does not explicitly

specify semantic classes in its annotations, the se-
mantic classes we distinguish for our normalization
system can be easily inferred from the form of the
values of the attributes that are annotated, as follows:
Recurrence (recur): SET attribute set to true
Generic or vague duration (gendur): VAL begins
with PX or PTX
Duration: VAL begins with P[0-9] or PT[0-9]
Generic or vague point (genpoint): Three possi-
bilities: time-of-day w/o associated date expression
(VAL begins with T[0-9]); general reference to past,
present, or future (VAL is one of the vague tokens);
date expression with unspecified high-order position
(i.e., millennium position is X)
Point: Date expression with specified high-order
position (may be precise or not—i.e., may include X
at other positions—also may be of any granularity,
from millennium down to hundredths of a second).

Resolving semantic class ambiguities is a context-
dependent task that can be easily factored out of se-
mantic interpretation, reducing the burden on the se-
mantic interpretation rules. The classification task is
straightforward: each timex must be classified into
one of the five classes described above or into the
null class (for timexes that have no VAL). Since the
TERN data is not explicitly annotated for semantic
class, we use the class definitions above to derive the
semantic class of a timex from its VAL attribute.

We again use the LIBSVM linear kernel for clas-
sification, with the same features as for recogni-
tion. Even though some timexes are unambiguous
with respect to semantic class, we train the classi-
fier over all timexes, in the expectation that the con-
texts of unambiguous timexes will be similar enough
to those of ambiguous timexes of the same class to
help in classification. We compare the performance
of our machine learned classifier to a heuristic base-
line classifier that uses the head of the timex and the
presence of numbers, names, and certain modifiers
within the timex to decide how to classify it.

Table 2 gives the error rates, per class and overall,
for the baseline and learned classifiers over phrase-
aligned gold-standard timexes. The machine learned
classifier halves the error rate of the baseline, mostly
as a result of better performance on the duration and
point classes. In §8, we see how this improvement
in classification affects end-to-end performance.

Mani and Wilson (2000) and Ahn et al. (2005b)
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classifier overall null duration . . .
BL 0.2085 1.0000 0.2534 . . .

SVM 0.1078 0.4143 0.1507 . . .
class dist 1290 70 146 . . .

. . . gendur genpoint point recur

. . . 0.0204 0.1462 0.1322 0.6087

. . . 0.1020 0.1462 0.0496 0.2174

. . . 49 253 726 46

Table 2: Error rates: semantic class.

also perform limited semantic class disambiguation.
Both use machine learned classifiers to distinguish
specific and generic uses of today, and Ahn et al.
also use a machine learned classifier to disambiguate
timexes between a point and a duration reading.
Their error rate for this task is 27%, but since a set
of heuristics is first used to select just ambiguous
timexes, this score cannot be compared to ours.

6 Component C: Semantic composition

The semantic composition module uses context-
independent, class-specific rules to compute for each
timex an underspecified representation—a typed
feature structure that depends on the timex’s seman-
tic class (features include unit and value for dura-
tions, year, month, date, and referential class for
points; cf. (Dale and Mazur, 2006)). As the rules are
not responsible for identification or class or direc-
tion disambiguation, they are fewer in number and
simpler than in other systems (cf. 1000+ in (Negri
and Marseglia, 2004)). Each rule consists of an RE-
pattern, which may refer to a small lexicon of names,
units, and numeric words, and is applied using a cus-
tom transducer. In total, there are 89 rules; Table 3
gives the distribution of rules and an example rule
for each class. Tokens in ALLCAPS indicate lexical
classes; tokens in MixedCase indicate other rules;
and tokens in lowercase indicate lexical items.

7 Temporal anchors

Some point timexes are fully qualified, while others
require a reference time, or temporal anchor, to be
fully normalized.3 There are three ways in which
a temporal anchor is chosen for a timex. Some
timexes, such as today, three years ago, and next
week, are deictic and anchored to the time of speech

3Our use of the term temporal anchor is distinct from the
ANCHOR VAL and ANCHOR DIR attributes.

class rules example
dur 13 Numeric -? (UNIT | UNITS)

gendur 3 (UNIT | UNITS)
genpt 21 (NUM24 | NUMWORD) o ’ clock
point 31 ˆ Approx? DAYNAME? MONTHNAME

.? Num31OrRank ,? YearNum
recur 11 (every | per) Numeric UNITS
misc 10 NUMWORD ((and | -)? NUMWORD)*

Table 3: Distribution of semantic composition rules.

(for us, the document timestamp). Others, such as
two months earlier and the next week, are anaphoric
and anchored to a salient time in discourse, just like
an anaphoric pronoun or definite. The distinction
between deictic and anaphoric timexes is not always
clear-cut, since many anaphoric timexes, in the ab-
sence of an appropriate antecedent, are anchored de-
ictically. A timex may also contain its own anchor:
e.g., two days after May 3, whose anchor is the em-
bedded anaphoric timex May 3.

Once a referential timex’s temporal anchor has
been determined, the value of the anchor must be
combined with the timex, which may be either an
offset or a name-like timex. Offsets, such as two
months earlier, provide a unit u, a magnitude m,
and optionally, a direction (before or after); the value
of an offset is the point (of granularity u) that is m
u units from its anchor in the indicated direction.
Name-like timexes provide a position in a cycle,
such as a day name within a week, and optionally,
a direction. The value of a name-like timex is the
time point bearing the name within the correspond-
ing cycle of its anchor (or the immediately preceding
or succeeding cycle, depending on the direction).

For both offsets and name-like timexes, the direc-
tion indication is optional. When no direction in-
dication is given, the appropriate direction must be
determined from context, as in this initial sentence
from an article from 1998-11-28:

(1) A fundamentalist Muslim lawmaker has vowed
to stop a shopping festival planned in February,
a newspaper reported Saturday.

The first timex, February, clearly refers to the Febru-
ary following its anchor (the timestamp), while the
second timex, Saturday, seems to refer to a point
preceding its anchor (also the timestamp).

The next two sections describe our methods for
temporal anchoring and direction classification.
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7.1 Component E: Temporal anchor tracking

Since temporal anchors are not annotated in the
TIMEX2 standard, our system uses a simple heuris-
tic method for temporal anchoring (cf. (Wiebe et al.,
1997), who use a more complex rule-based system
for timex anchoring in scheduling dialogues). Since
we distinguish deictic and anaphoric timexes during
semantic composition, we use a combination of two
methods: for deictic timexes, the document time-
stamp is used, and for (some) anaphoric timexes, the
most recent point timex, if it is fine-grained enough,
is used as the temporal anchor (otherwise, the docu-
ment timestamp is used). Because the documents in
our corpora are short news texts, we actually treat
anaphoric name-like points as deictic and use the
most recent timex only for anaphoric offsets.

7.2 Component D: Direction classification

The idea of separating direction classification from
the remainder of the normalization task is not new.
(Mani and Wilson, 2000) use a heuristic method
for this task, while (Ahn et al., 2005b) use a ma-
chine learned classifier. In contrast to Ahn et al.,
who use a set of heuristics to identify ambiguous
timexes and train and test only on those, we train
our classifier on all point and genpoint timexes and
apply it to all point timexes. Genpoint timexes and
many point timexes are not ambiguous w.r.t. direc-
tion, but we expect that the contexts of unambiguous
timexes will be similar enough to those of ambigu-
ous timexes of the same class to help classification.

Direction class is not annotated as part of the
TIMEX2 standard. Given a temporal anchor track-
ing method, though, it is possible to derive imperfect
direction class information from the VAL attribute.
We use our anchor tracking method to associate each
point and genpoint timex with an anchor and then
compare the VAL of the timex with that of its an-
chor to decide what its direction class should be.

We again use the LIBSVM linear kernel for clas-
sification. We add two sets of features to those used
for recognition and semantic classification. The first
is inspired by Mani et al., who rely on the tense of
neighboring verbs to decide direction class. Since
verb tense alone is inherently deictic, it is not suffi-
cient to decide the direction, but we do add both the
closest verb (w.r.t. dependency paths) and its POS

classifier overall after before same
BL 0.1749 0.4587 0.0802 0.1934

SVM 0.2245 0.4404 0.1578 0.2305
SVM VERB 0.2094 0.3119 0.1631 0.2346

SVM ALL 0.1185 0.2110 0.0989 0.1070
class dist 726 109 374 243

Table 4: Error rates: direction class.

tag (as well as any verbs directly related to this verb)
as features. The second set of features compares day
names, month names, and years to the document
timestamp. The comparison determines whether,
within a single cycle of the appropriate granularity
(week for day-names and year for month-names),
the point named by the timex would be before, after,
or the same as the point referred to by the timestamp.

We compare our learned classifier with a heuristic
baseline classifier which first checks for the presence
of a year or certain modifiers such as ago or next in
the timex; if that fails, it computes the date features
described above for each word in the timex and re-
turns same if any word compares to the timestamp
as same; if that fails, it uses the tense of the nearest
verb; and finally, it defaults to same.

Table 4 shows the results of applying our clas-
sifiers to all phrase-aligned gold-standard point
timexes. BL is the baseline; SVM, SVM VERB, and
SVM ALL are the classifiers learned using our basic
feature set, the basic feature set plus the verb fea-
tures, and all the features, respectively. The learned
classifier using all the features reduces the error rate
of the baseline classifier by about a third. Note,
though, that the learned classifiers without the date
comparison features (SVM and SVM VERB) perform
substantially worse than even the baseline. One rea-
son for this becomes clear from Table 5, which gives
the error rates for the classifiers restricted to timexes
consisting solely of a month or a day name. Unlike
points in general, these timexes are all ambiguous
with respect to direction and are, in fact, the primary
motivation for both Mani et al. and Ahn et al. to con-
sider direction classification as a separate task.

These results demonstrate that the date compari-
son feature is responsible for a substantial reduction
in error rate (over 85% from SVM to SVM ALL) and
that for the same class, performance is perfect. This
is largely due to the writing style of the documents,
in which the current day is often referred to by name
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classifier overall after before same
BL 0.1000 0.4348 0.1061 0.0000

SVM 0.3647 0.6087 0.3485 0.3086
SVM VERB 0.3176 0.3478 0.3485 0.2840

SVM ALL 0.0529 0.1304 0.0909 0.0000
class dist 170 23 66 81

Table 5: Error rates: direction month/day.

instead of as today, as in example (1).
Although both Mani et al. and Ahn et al. build

direction classifiers, neither provide comparable re-
sults. Mani et al. do not evaluate their direction
heuristics at all, and Ahn et al. train and test their
machine learned classifier only on timexes deter-
mined to be ambiguous by their heuristics. In any
case, their error rate is significantly higher, at 38%.

8 End-to-end performance

We now consider the performance of the entire sys-
tem and the contributions of the components. First,
though, we discuss our evaluation metrics.

8.1 Scoring

The official TERN scoring script computes precision
and recall for VAL only with respect to correctly rec-
ognized TIMEX2s with a non-null VAL. While this
may be useful in determining how far behind nor-
malization is from recognition for a given system, it
does not provide an accurate picture of end-to-end
system performance, since the recall base does not
include all possible timexes and the precision base
does not include incorrectly recognized timexes.

The scoring script provides several raw counts
that can be used to compute measures that are more
indicative of end-to-end performance: actTIMEX2
(# of actually recognized TIMEX2s); corrTIMEX2
(# of correctly recognized TIMEX2s); posVAL
(# of correctly recognized TIMEX2s with a non-
null gold VAL); corrVAL (# of correctly recog-
nized TIMEX2s with a non-null gold VAL for
which the system assigns the correct VAL); and
spurVAL (# of correctly recognized TIMEX2s with
null gold VAL for which the system assigns a
VAL). With these counts, we can define corrNOVAL
(# of correctly recognized TIMEX2s with a null
gold VAL for which the system assigns a null
VAL), as corrTIMEX2 − posVAL − spurVAL. We
then define end-to-end precision (absP) and recall

(absR) as (corrVAL + corrNOVAL)/actTIMEX2
and (corrVAL+corrNOVAL)/possTIMEX2, respec-
tively. Official precision and recall for VAL are com-
puted as corrVAL/actVAL and corrVAL/possVAL.

8.2 Results

Our first set of results (Table 6(Top)), which are
restricted to timexes in document TEXT elements,
compares our system (LLL) to a version of our sys-
tem (BL) that uses the baseline classifiers for seman-
tic and direction class. It also presents a series of or-
acle results that demonstrate the effect of swapping
in perfect classification for each of the learned clas-
sifiers. The oracle runs are labeled with a three-letter
code in which the first letter ((P)erfect or (L)earned)
refers to phrase classification; the second, to seman-
tic classification; and the third, to direction classi-
fication. Note: perfect phrase classification is not
the same as perfect recognition, since it excludes
timexes that fail to align with parsed phrases.

Using the learned classifiers (LLL), which reduce
error rates by about one-half for semantic class and
one-third for direction class over the baseline clas-
sifiers, results in a five-point improvement in abso-
lute F-measure over the baseline system (BL). We
also see from runs LLP, LPL, and LPP that further
improvement of these classifiers would substantially
improve end-to-end performance. Finally, we see
from runs PLL and PPP that recognition performance
is a major limiting factor in our end-to-end scores.

In Table 6(Bottom), we present results over full
documents, including metadata and text. LLL and
PLL are the same as before; ITC-IRST is the sys-
tem of (Negri and Marseglia, 2004), which achieved
the highest official F-measure in the TERN 2004
evaluation. The results of our system (LLL) are
comparable to those of ITC-irst: because we recog-
nize fewer timexes, our official F-measure is higher
(0.899 vs. 0.872) while our absolute F-measure is
lower (0.769 vs. 0.806). We see from run PLL that
our recognition module is largely to blame—with
perfect phrase classification for recognition, our nor-
malization modules produce substantially better re-
sults. With a system such as ITC-irst’s, it is not pos-
sible to separate recognition performance from nor-
malization performance, since there is a single rule
base that jointly performs the two tasks—all normal-
izable timexes are presumably already recognized.
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System corrVAL corrNOVAL actTIMEX2 P R F absP absR absF
BL 859 32 1245 0.813 0.787 0.800 0.716 0.624 0.667

LLL 931 33 1245 0.882 0.853 0.867 0.774 0.676 0.722
LLP 938 33 1245 0.912 0.859 0.885 0.780 0.680 0.727
LPL 951 39 1245 0.916 0.871 0.893 0.795 0.694 0.741
LPP 987 39 1245 0.951 0.904 0.927 0.824 0.719 0.768
PLL 1008 63 1287 0.886 0.828 0.856 0.832 0.751 0.789
PPP 1097 70 1287 0.966 0.901 0.932 0.907 0.818 0.860
LLL 1285 33 1601 0.910 0.887 0.899 0.823 0.721 0.769
PLL 1362 63 1643 0.912 0.866 0.888 0.867 0.780 0.821

ITC-IRST 1365 35 1648 0.875 0.870 0.872 0.850 0.766 0.806

Table 6: Performance on VAL. (Top): TEXT-only. (Bottom): full document.

9 Conclusion

We have described a novel architecture for a timex
annotation system that eschews the complex set
of hand-crafted rules that is a hallmark of other
systems. Instead, we decouple recognition from
normalization and factor out context-dependent se-
mantic and pragmatic processing from context-
independent semantic composition. Our architec-
ture allows us to use machine learned classifiers to
make context-dependent disambiguation decisions,
which in turn allows us to use a small set of sim-
ple, context-independent rules for semantic compo-
sition. The normalization performance of this sys-
tem is competitive with the state of the art and our
overall performance is limited primarily by recog-
nition performance. Improvement in semantic and
direction classification will yield further improve-
ments in overall performance. Our other plans for
the future include experimenting with dependency
relations for semantic composition instead of lexi-
cal patterns, evaluating our temporal anchor tracking
method, and training the full system on other cor-
pora and adapting it for other languages.
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Abstract

We report results of experiments which
build and refine models of rhetorical-
semantic relations such as Cause and Con-
trast. We adopt the approach of Marcu
and Echihabi (2002), using a small set of
patterns to build relation models, and ex-
tend their work by refining the training
and classification process using parame-
ter optimization, topic segmentation and
syntactic parsing. Using human-annotated
and automatically-extracted test sets, we
find that each of these techniques results in
improved relation classification accuracy.

1 Introduction

Relations such as Cause and Contrast, which we call
rhetorical-semantic relations (RSRs), may be sig-
naled in text by cue phrases like because or how-
ever which join clauses or sentences and explicitly
express the relation of constituents which they con-
nect (Example 1). In other cases the relation may be
implicitly expressed (2).1

Example 1 Because of the recent accounting scan-
dals, there have been a spate of executive resigna-
tions.

Example 2 The administration was once again be-
set by scandal. After several key resignations ...

1The authors would like to thank the four anonymous re-
viewers for helpful comments. This work was supported by the
Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-06-C-0023. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
DARPA.

The first author performed most of the research reported in
this paper while at Columbia University.

In this paper, we examine the problem of detect-
ing such relations when they are not explicitly sig-
naled. We draw on and extend the work of Marcu
and Echihabi (2002). Our baseline model directly
implements Marcu and Echihabi’s approach, opti-
mizing a set of basic parameters such as smoothing
weights, vocabulary size and stoplisting. We then
focus on improving the quality of the automatically-
mined training examples, using topic segmenta-
tion and syntactic heuristics to filter out training
instances which may be wholly or partially in-
valid. We find that the parameter optimization and
segmentation-based filtering techniques achieve sig-
nificant improvements in classification performance.

2 Related Work

Rhetorical and discourse theory has a long tradition
in computational linguistics (Moore and Wiemer-
Hastings, 2003). While there are a number of differ-
ent relation taxonomies (Hobbs, 1979; McKeown,
1985; Mann and Thompson, 1988; Martin, 1992;
Knott and Sanders, 1998), many researchers have
found that, despite small differences, these theories
have wide agreement in terms of the core phenom-
ena for which they account (Hovy and Maier, 1993;
Moser and Moore, 1996).

Work on automatic detection of rhetorical and dis-
course relations falls into two categories. Marcu
and Echihabi (2002) use a pattern-based approach
in mining instances of RSRs such as Contrast and
Elaboration from large, unannotated corpora. We
discuss this work in detail in Section 3. Other
work uses human-annotated corpora, such as the
RST Bank (Carlson et al., 2001), used by Soricut
and Marcu (2003), the GraphBank (Wolf and Gib-
son, 2005), used by Wellner et al. (2006), or ad-
hoc annotations, used by (Girju, 2003; Baldridge
and Lascarides, 2005). In the past year, the ini-
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tial public release of the Penn Discourse TreeBank
(PDTB) (Prasad et al., 2006) has significantly ex-
panded the discourse-annotated corpora available to
researchers, using a comprehensive scheme for both
implicit and explicit relations.

Some work in RSR detection has enlisted syntac-
tic analysis as a tool. Marcu and Echihabi (2002) fil-
ter training instances based on Part-of-Speech (POS)
tags, and Soricut and Marcu (2003) use syntac-
tic features to identify sentence-internal RST struc-
ture. Lapata and Lascarides (2004) focus their
work syntactically, analyzing temporal links be-
tween main and subordinate clauses. Sporleder and
Lascarides (2005) extend Marcu and Echihabi’s ap-
proach with the addition of a number of features,
including syntactic features based on POS and ar-
gument structure, as well as lexical and other sur-
face features. They report that, when working with
sparse training data, this richer feature set, combined
with a boosting-based algorithm, achieves more ac-
curate classification than Marcu and Echihabi’s sim-
pler, word-pair based approach (we describe the lat-
ter in the next section).

3 The M&E Framework

We model two RSRs, Cause and Contrast, adopt-
ing the definitions of Marcu and Echihabi (2002)
(henceforth M&E) for their Cause-Explanation-
Evidence and Contrast relations, respectively. In
particular, we follow their intuition that in building
an automated model it is best to adopt a higher-level
view of relations (cf. (Hovy and Maier, 1993)),
collapsing the finer-grained distinctions that hold
within and across relation taxonomies.

M&E use a three-stage approach common in cor-
pus linguistics: collect a large set of class instances
(instance mining), analyze them to create a model
of differentiating features (model building), and use
this model as input to a classification step which
determines the most probable class of unknown in-
stances.

The intuition of the M&E model is to apply a set
of RSR-associated cue phrase patterns over a large
text corpus to compile a training set without the cost
of human annotation. For instance, Example 1 will
match the Cause-associated pattern “Because of W1

, W2 .”, where W1 and W2 stand for non-empty

strings containing word tokens. In the aggregate,
such instances increase the prior belief that, e.g.,
a text span containing the word scandals and one
containing resignations are in a Cause relation. A
critical point is that the cue words themselves (e.g.,
because) are discarded before extracting these word
pairs; otherwise these cue phrases themselves would
likely be the most distinguishing features learned.

More formally, M&E build up their model
through the three stages mentioned above as fol-
lows: In instance mining, for each RSR r they com-
pile an instance set Ir of (W1,W2) spans which
match a set of patterns associated with r. In
model building, features are extracted from these in-
stances; M&E extract a single feature, namely the
frequency of token pairs derived from taking the
cartesian product of W1 = {w1...wn} × W2 =
{wn+1...wm} = {(w1, wn+1)...(wn, wm)} over
each span pair instance (W1,W2) ∈ I; these pair
frequencies are tallied for each RSR into a frequency
table Fr. Then in classification, the most likely re-
lation r between two unknown-relation spans W1

and W2 can be determined by a naı̈ve Bayesian
classifier as argmaxr∈R P (r|W1,W2), where the
probability P (r|W1,W2) is simplified by assum-
ing the independence of the individual token pairs
to:

∏
(wi,wj)∈W1,W2

P ((wi, wj)|r). The frequency
counts Fr are used as maximum likelihood estima-
tors of P ((wi, wj)|r).

4 TextRels

TextRels is our implementation of the M&E frame-
work, and serves as our platform for the experiments
which follow.

For instance mining, we use a set of cue phrase
patterns derived from published lists (e.g., (Marcu,
1997; Prasad et al., 2006)) to mine the Gigaword
corpus of 4.7 million newswire documents2 for re-
lation instances. We mine instances of the Cause
and Contrast RSRs discussed earlier, as well as a
NoRel “relation”. NoRel is proposed by M&E as
a default model of same-topic text across which no
specific RSR holds; instances are extracted by tak-
ing text span pairs which are simply sentences from
the same document separated by at least three inter-
vening sentences. Table 1 lists a sample of our ex-

2distributed by the Linguistic Data Consortium
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Type Sample Patterns Instances Instances, M&E
Cause BOS Because W1 , W2 EOS

BOS W1 EOS BOS Therefore , W2 EOS.
926,654 889,946

Contrast BOS W1 , but W2 EOS
BOS W1 EOS BOS However , W2 EOS.

3,017,662 3,881,588

NoRel BOS W1 EOS (BOS EOS){3,} BOS W2 EOS 1,887,740 1,000,000

Table 1: RSR types, sample extraction patterns, number of training instances used in TextRels, and number
of training instances used by M&E. BOS and EOS are sentence beginning/end markers.

traction patterns and the total number of training in-
stances per relation; in addition, we hold out 10,000
instances of each type, which we divide evenly into
development and training sets.

For model building, we compile the training in-
stances into token-pair frequencies. We implement
several parameters which control the way these fre-
quencies are computed; we discuss these parameters
and their optimization in the next section.

For classification, we implement three binary
classifiers (for Cause vs Contrast, Cause vs NoRel
and Contrast vs NoRel) using the naïve Bayesian
framework of the M&E approach. We implement
several classification parameters, which we discuss
in the next section.

5 Parameter Optimization

Our first set of experiments examine the impact of
various parameter settings in TextRels, using classi-
fication accuracy on a development set as our heuris-
tic. We find that the following parameters have
strong impacts on classification:

• Tokenizing our training instances using stem-
ming slightly improves accuracy and also reduces
model size.

• Laplace smoothing is as accurate as Good-
Turing, but is simpler to implement. Our experi-
ments find peak performance with 0.25 λ value, i.e.
the frequency assumed for unseen pairs.

• Vocabulary size of 6,400 achieves peak perfor-
mance; tokens which are not in the most frequent
6,400 stems (computed over Gigaword) are replaced
by an UNK pseudo-token before F is computed.

• Stoplisting has a negative impact on accuracy;
we find that even the most frequent tokens contribute
useful information to the model; a stoplist size of
zero achieves peak performance.

• Minimum Frequency cutoff is imposed to dis-
card from F token pair counts with a frequency of

< 4; results degrade slightly below this value, and
discarding this long tail of rare pair counts signifi-
cantly shrinks model size.

Classif.
/

Pdtb Auto Auto-
S

M&E

TestSet Opt Seg Opt Seg Opt Seg
Cau/Con 59.1 61.1 69.8 69.7 70.3 70.6 87
Cau/NR 75.2 74.3 72.7 73.5 71.2 72.3 75
Con/NR 67.4 69.7 70.7 71.3 68.2 70.0 64

Table 2: Classifier accuracy across PDTB, Auto
and Auto-S test sets for the parameter-optimized
classifier (“Opt”) and the same classifier trained on
segment-constrained instances (“Seg”). Accuracy
from M&E is reported for reference, but we note that
they use a different test set so the comparison is not
exact. Baseline in all cases is 50%.

To evaluate the performance of our three binary
classifiers using these optimizations, we follow the
protocol of M&E. We present the classifier for, e.g.,
Cause vs NoRel with an equal number of span-pair
instances for each RSR (as in training, any pattern
text has been removed). We then determine the ac-
curacy of the classifier in predicting the actual RSR
of each instance; in all cases we use an equal num-
ber of input pairs for each RSR so random baseline
is 50 %. We carry out this evaluation over two dif-
ferent test sets.

The first set (“PDTB”) is derived from the Penn
Discourse TreeBank (Prasad et al., 2006). We ex-
tract “Implicit” relations, i.e. text spans from adja-
cent sentences between which annotators have in-
ferred semantics not marked by any surface lexi-
cal item. To extract test instances for our Cause
RSR, we take all PDTB Implicit relations marked
with “Cause” or “Consequence” semantics (344 to-
tal instances); for our Contrast RSR, we take in-
stances marked with “Contrast” semantics (293 to-
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tal instances).3 PDTB marks the two “Arguments”
of these relationship instances, i.e. the text spans to
which they apply; these are used as test (W1,W2)
span pairs for classification. We test the perfor-
mance on PDTB data using 280 randomly selected
instances each from the PDTB Cause and Contrast
sets, as well as 280 randomly selected instances
from our test set of automatically extracted NoRel
instances (while there is a NoRel relation included
in PDTB, it is too sparse to use in this testing, with
53 total examples).

The second test set (“Auto”) uses the 5,000 test
instances of each RSR type automatically extracted
in our instance mining process.

Table 2 lists the accuracy for the optimized
(“Opt”) classifier over the Auto and PDTB test sets4.
(The “Seg” columns and “Auto-S” test set are ex-
plained in the next section.)

We also list for reference the accuracy reported
by M&E; however, their training and test sets are
not the same so this comparison is inexact, al-
though their test set is extracted automatically in the
same manner as ours. In the Cause versus Contrast
case, their reported performance exceeds ours sig-
nificantly; however, in a subset of their experiments
which test Cause versus Contrast on instances from
the human annotated RSTBank corpus (Carlson et
al., 2001) where no cue phrase is present, they re-
port only 63% accuracy over a 56% baseline (the
baseline is > 50% because the number of input ex-
amples is unbalanced).

Since we also experience a drop in performance
from the automatically derived test set to the human-
annotated test set (the PDTB in our case), we fur-
ther examined this issue. Our goal was to see if the
lower accuracy on the PDTB examples is due to (1)
the inherent difficulty of identifying implicit rela-
tion spans or (2) something else, such as the corpus-
switching effect due to our model being trained and

3Note that we are using the initial PDTB release, in which
only three of 24 data sections have marked Implicit relations, so
that the number of such examples will presumably grow in the
next release.

4We do not provide pre-optimization baseline accuracy be-
cause this would be arbitrarily depend on how sub-optimally we
select values select parameter values. For instance, by using a
Vocabulary Size of 3,200 (rather than 6,400) and a Laplace λ

value of 1, the mean accuracy of the classifiers on the Auto test
set drops from 71.6 to 70.5; using a Stoplist size of 25 (rather
than 0) drops this number to 67.3.

tested on different corpora (Gigaword and PDTB,
respectively). To informally test this, we tested
against explicitly cue-phrase marked examples gath-
ered from PDTB. That is, we used the M&E-style
method for mining instances, but we gathered them
from the PDTB corpus. Interestingly, we found that
(1) appears to be the case: for the Cause vs. Contrast
(68.7%), Cause vs. NoRel (73.0%) and (Contrast vs.
NoRel (71.0%) classifiers, the performance patterns
with the Auto test set rather than the results from the
PDTB Implicit test set. This bolsters the argument
that “synthetic” implicit relations, i.e. those created
by stripping of originally present cue phrases, can-
not be treated as fully equivalent to “organic” ones
annotated by a human judge but which are not ex-
plicitly indicated by a cue phrase. Sporleder and
Lascarides (To Appear) recently investigated this is-
sue in greater detail, and indeed found that such syn-
thetic and organic instances appear to have impor-
tant differences.

6 Using Topic Segmentation

In our experiments with topic segmentation, we aug-
mented the instance mining process to take account
of topic segment boundaries. The intuition here is
that all sentence boundaries should not be treated
equally during RSR instance mining. That is, we
would like to make our patterns recognize that some
sentence boundaries indicate merely an orthographic
break without a switch in topic, while others can
separate quite distinct topics. Sometimes the latter
type are marked by paragraph boundaries, but these
are unreliable markers since they may be used quite
differently by different authors.

Instead, we take the approach of adding topic seg-
ment boundary markers to our corpus, which we can
then integrate into our RSR extraction patterns. In
the case of NoRel, our assumption in our original
patterns is that the presence of at least three inter-
vening sentences is a sufficient heuristic for finding
spans which are not joined by one of the other RSRs;
we add the constraint that sentences in a NoRel re-
lation be in distinct topical segments, we can in-
crease model quality. Conversely, for two-sentence
Cause and Contrast instances, we add the constraint
that there must not be an intervening topic segment
boundary between the two sentences.
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Before applying these segment-augmented pat-
terns, we must add boundary markers to our cor-
pus. While the concept of a topic segment can
be defined at various granularities, we take a goal-
oriented view and aim to identify segments with a
mean length of approximately four sentences, rea-
soning that these will be long enough to exclude
some candidate NoRel instances, yet short enough to
exclude a non-trivial number of Contrasts and Cause
instances. We use an automatic topic segmentation
tool, LCSeg (Galley et al., 2003) setting parame-
ters so that the derived segments are of the approx-
imate desired length. Using these parameters, LC-
Seg produces topic segments with a mean length of
3.51 sentences over Gigaword, as opposed to 1.54
sentences for paragraph boundaries. Using a sim-
ple metric that assumes “correct” segment bound-
aries always occur at paragraph boundaries, LCSeg
achieves 76% precision.

We rerun the instance mining step of TextRels
over the segmented training corpus, after adding the
segment-based constraints mentioned above to our
pattern set. Although our constraints reduce the
overall number of instances available in the corpus,
we extract for training the same number of instances
per RSR as listed in Table 1 (our non-segment-
constrained training set does not use all instances
in the corpus). Using the optimal parameter set-
tings determined in the previous section, we build
our models and classifiers based on these segment-
constrained instances.

To evaluate the classifiers built on the segment-
constrained instances, we can essentially follow the
same protocol as in our Parameter Optimization ex-
periments. However, we must choose whether to
use a held-out test set taken from the segment-
constrained instances (“Auto-S”) or the same test
set as used to evaluate our parameter optimization,
i.e. the (“Auto”) test set from unsegmented training
data. We decide to test on both. On the one hand,
segmentation is done automatically, so it is realistic
that given a “real world” document, we can compute
segment boundaries to help our classification judg-
ments. On the other hand, testing on unsegmented
input allows us to compare more directly to the num-
bers from our previous section. Further, for tasks
which would apply RSR models outside of a single-
document context (e.g., for assessing coherence of

a synthesized abstract), a test on unsegmented input
may be more relevant. Table 2 shows the results for
the “Seg” classifiers on both Auto test sets, as well
as the PDTB test set.

We observe that the performance of the classi-
fiers is indeed impacted by training on the segment-
constrained instances. On the PDTB test data, per-
formance using the segment-trained classifiers im-
proves in two of three cases, with a mean improve-
ment of 1.2%. However, because of the small size
of this set, this margin is not statistically significant.

On the automatically-extracted test data, the
segment-trained classifier is the best performer in
all three cases when using the segmented test data;
while the margin is not statistically significant for a
single classifier, the overall accurate-inaccurate im-
provement is significant (p < .05) using a Chi-
squared test. On the unsegmented test data, the
segment-trained classifiers are best in two of three
cases, but the overall accurate-inaccurate improve-
ment does not achieve statistical significance. We
conclude tentatively that a classifier trained on ex-
amples gleaned with topic-segment-augmented pat-
terns performs more accurately than our baseline
classifier.

7 Using Syntax

Whether or not we use topic segmentation to con-
strain our training instances, our patterns rely on
sentence boundaries and cue phrase anchors to de-
marcate the extents of the text spans which form
our RSR instances. However, an instance which
matches such a pattern often contains some amount
of text which is not relevant to the relation in ques-
tion. Consider:

Example 3 Wall Street investors, citing a drop in
oil prices because weakness in the automotive
sector, sold off shares in GM today.

In this case, a syntactically informed analysis
could be used to extract the constituents in the cause-
effect relationship from within the boldfaced nomi-
nal clause only, i.e. as “a drop in oil prices” and
“weakness in the automotive sector.” However, the
output of our instance mining process simply splits
the string around the cue phrase “because of” and
extracts the entire first and second parts of the sen-
tence as the constituents. Of course, this may be for
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the best; in this case there is an implicit Cause rela-
tionship between the NP headed by drop and the sold
VP which our pattern-based rules inadvertently cap-
ture; our experiments here test whether such noise is
more helpful than hurtful.

Recognizing the potential complexity of using
syntactic phenomena, we reduce the dimensions of
the problem. First, we focus on single-sentence in-
stances; this means we analyze only Cause and Con-
trast patterns, since NoRel uses only multi-sentence
patterns. Second, within the Cause and Contrast in-
stances, we narrow our investigation to the most pro-
ductive pattern of each type (in terms of training in-
stances extracted), given that different syntactic phe-
nomena may be in play for different patterns. The
two patterns we use are “W1 because W2” for Cause
(accounts for 54% of training instances) and “W1

, but W2” for Contrast (accounts for 41% of train-
ing instances). Lastly, we limit the size of our train-
ing set because of parsing time demands. We use
the Collins parser (Collins, 1996) to parse 400,000
instances each of Cause and Contrast for our fi-
nal results. Compared with our other models, this
is approximately 43% of our total Cause instances
and 13% of our total Contrast instances. For the
NoRel model, we use a randomly selected subset of
400,000 instances from our training set. For all rela-
tions, we use the non-segment-constrained instance
set as the source of these instances.

7.1 Analyzing and Classifying Syntactic Errors

To analyze the possible syntactic bases for the type
of over-capturing behavior shown in Example 3, we
create a small development set of 100 examples each
from Cause and Contrast training examples which fit
the criteria just mentioned. We then manually iden-
tify and categorize any instances of over-capturing,
labeling the relation-relevant and irrelevant spans.
We find that 75% of Cause and 58% of Contrast
examples contain at least some over-capturing; we
observe several common reasons for over-capturing
that we characterize syntactically. For example, a
matrix clause with a verb of saying should not be
part of the RSR. Using automatic parses of these in-
stances created by we then design syntactic filtering
heuristics based on a manual examination of parse
trees of several examples from our development set.

For Contrast, we find that using the coordinat-

ing conjunction (CC) analysis of but, we can use a
straightforward rule which limits the extent of RSR
spans captured to the conjuncts/children of the CC
node, e.g. by capturing only the boldfaced clauses
in the following example:

Example 4 For the past six months, management
has been revamping positioning and strategy, but
also scaling back operations.

This heuristic successfully cuts out the irrelevant
temporal relative clause, retaining the relevant VPs
which are being contrasted. Note that the heuris-
tic is not perfect; ideally the adverb also would be
filtered here, but this is more difficult to generalize
since contentful adverbials, e.g. strategically should
not be filtered out.

For the because pattern, we capture the right-
hand span as any text in child(ren) nodes of the be-
cause IN node. We extend the left-hand span only
as far as the first phrasal (e.g. VP) or finite clause
(e.g. SBAR) node above the because node. Analyz-
ing Example 3, the heuristic correctly captures the
right-hand span; however, to the left of because, the
heuristic cuts too much, and misses the key noun
drop.

7.2 Error Analysis: Evaluating the Heuristics

The first question we ask is, how well do our
heuristics work in identifying the actual correct
RSR extents? We evaluate this against the Penn
Discourse TreeBank (PDTB), restricting ourselves
to discourse-annotated but and because sentences
which match the RSR patterns which are the sub-
ject of our syntactic filtering. Since the PDTB
is annotated on the same corpus as Penn Tree-
Bank (PTB), we separately evaluate the perfor-
mance of our heuristics using gold-standard PTB
parses (“PDTB-Gold”) versus the trees generated by
Collins’ parser (“PDTB-Prs”). We extract our test
data from the PDTB data corresponding to section
23 of PTB, i.e. the standard testing section, so that
the difference between the gold-standard and real
parse trees is meaningful. Section 23 contains 60
annotated instances of but and 52 instances of be-
cause which we can use for this purpose. We define
the measurement of accuracy here in terms of word-
level precision/recall. That is, the set of words fil-
tered by our heuristics are compared to the “correct”
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Heuristic PDTB-Prs PDTB-Gold
Contrast 89.6 / 73.0 / 80.5 79.0 / 80.6 / 79.8
Cause 78.5 / 78.8 / 78.6 87.3 / 79.5 / 83.2

Table 3: Precision/Recall/F-measure of syntactic
heuristics under various data sets and settings as de-
scribed in Section 7.2.

words to cut, i.e. those which the annotated RSR ex-
tents exclude. The results of this analysis are shown
in Table 3.

We performed an analysis of our heuristics on
Section 24 of the PDTB. In that section, there are 74
relevant sentences: 20 sentences with because, and
54 sentences with but. Exactly half of all sentences
(37) have no problems in the application of the
heuristics (7 because sentences, 30 but sentences).
Among the remaining sentences, the main source of
problems is that our heuristics do not always remove
matrix clauses with verbs of saying (15 cases total, 8
of which are because sentences). For the but clauses,
our heuristics removed the subject in 12 cases where
the PDTB did not do so. Additionally, the heuristic
for but sentences does not correctly identify the sec-
ond conjunct in five cases (choosing instead a paren-
thetical, for instance).

In looking at our syntactic heuristics for the
Cause relationship, we see that they indeed elimi-
nate the most frequent source of discrepancies with
the PDTB, namely the false inclusion of a matrix
clause of saying, resulting in 15 out of 20 perfect
analyses.

We also evaluate the difference in performance
between the PDTB-Gold and PDTB-Prs perfor-
mance to determine to what extent using a parser
(as opposed to the Gold Standard) degrades the per-
formance of our heuristics. We find that in Sec-
tion 24, 13 out of 74 sentences contain a parsing
error in the relevant aspects, but the effects are typ-
ically small and result from well-known parser is-
sues, mainly attachment errors. As we can see in Ta-
ble 3, the heuristic performance using an automatic
parser degrades only slightly, and as such we can ex-
pect an automatic parser to contribute to improving
RSR classification (as indeed it does).

Pdtb Test Set Auto Test Set
U Syn P U Syn P

Cau/Con 59.6 60.5 54.5 66.3 65.8 60.8
Cau/NR 72.2 74.9 52.6 70.3 70.2 57.3
Con/NR 61.6 60.2 52.2 69.4 69.8 56.8

Table 4: Classifier accuracy for the Unfiltered (U),
Syntactically Filtered (Syn), and POS (P) models
described in Section 7.3, over PDTB and Auto test
sets. Baseline in all cases is 50%.

7.3 Classification Evaluation

We evaluate the impact of our syntactic heuristics on
classification over the Auto and PDTB test sets using
the same instance set of 400,000 training instances
per relation. However, each applies different filters
to the instances I before computing the frequencies
F (all other parameters use the same values; these
are set slightly differently than the optimized val-
ues discussed earlier because of the smaller train-
ing sets). In addition to an Unfiltered baseline, we
evaluate Filtered models obtained with our syntac-
tic heuristics for Cause and Contrast. To provide an
additional point of comparison, we also evaluate the
Part-of-Speech based filtering heuristic described by
Marcu and Echihabi, which retains only nouns and
verbs. Unlike the other filters, the POS-based filter-
ing is applied to the NoRel instances as well as the
Cause and Contrast instances. Table 4 summarizes
the results of the classifying the PDTB and Auto test
sets with these different models.

Before we examine the results, we note that the
syntactic heuristic cuts a large portion of training
data out. In terms of the total sum of frequencies in
Fcause, i.e. the word pairs extracted from all cause
instances, the syntactic filtering cuts out nearly half.

With this in mind, we see that while the syntac-
tic filtering achieves slightly lower mean accuracy as
compared to the Unfiltered baseline on the Auto test
set, the pairs it does keep appear to be used more ef-
ficiently (the differences are significant). Even with
this reduced training set, the syntactic heuristic im-
proves performance in two out of three cases on the
PDTB test set, including a 2.7 percent improvement
for the Cause vs NoRel classifier. However, due to
the small size of the PDTB test set, none of these
differences is statistically significant.

We posit that bias in the Auto set may cause this
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difference in performance across training sets; spans
in the Auto set are not true arguments of the rela-
tion in the PDTB sense, but nonetheless occur reg-
ularly with the cue phrases used in instance mining
and thus are more likely to be present in the test set.

Lastly, we observe that the POS-based filtering
described by M&E performs uniformly poorly. We
have no explanation for this at present, given that
M&E’s results with this filter appear promising.

8 Conclusion

In this paper, we analyzed the problem of learning a
model of rhetorical-semantic relations. Building on
the work of Marcu and Echihabi, we first optimized
several parameters of their model, which we found
to have significant impact on classification accuracy.
We then focused on the quality of the automatically-
mined training examples, analyzing two techniques
for data filtering. The first technique, based on au-
tomatic topic segmentation, added additional con-
straints on the instance mining patterns; the sec-
ond used syntactic heuristics to cut out irrelevant
portions of extracted training examples. While the
topic-segmentation filtering approach achieves sig-
nificant improvement and the best results overall,
our analysis of the syntactic filtering approach indi-
cates that refined heuristics and a larger set of parsed
data can further improve those results. We would
also like to experiment with combining the two ap-
proaches, i.e. by applying the syntactic heuristics
to an instance set extracted using topic segmenta-
tion constraints. We conclude that our experiments
show that these techniques can successfully refine
RSR models and improve our ability to classify un-
known relations.
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Abstract

We present a model for discourse co-
herence which combines the local entity-
based approach of (Barzilay and Lapata,
2005) and the HMM-based content model
of (Barzilay and Lee, 2004). Unlike the
mixture model of (Soricut and Marcu,
2006), we learn local and global features
jointly, providing a better theoretical ex-
planation of how they are useful. As the
local component of our model we adapt
(Barzilay and Lapata, 2005) by relaxing
independence assumptions so that it is ef-
fective when estimated generatively. Our
model performs the ordering task compet-
itively with (Soricut and Marcu, 2006),
and significantly better than either of the
models it is based on.

1 Introduction

Models of coherent discourse are central to several
tasks in natural language processing: such mod-
els have been used in text generation (Kibble and
Power, 2004) and evaluation of human-produced
text in educational applications (Miltsakaki and Ku-
kich, 2004; Higgins et al., 2004). Moreover, an ac-
curate model can reveal information about document
structure, aiding in such tasks as supervised summa-
rization (Barzilay and Lapata, 2005).

Models of coherence tend to fall into two classes.
Local models (Lapata, 2003; Barzilay and Lapata,
2005; Foltz et al., 1998) attempt to capture the gen-
eralization that adjacent sentences often have similar
content, and therefore tend to contain related words.

Models of this type are good at finding sentences
that belong near one another in the document. How-
ever, they have trouble finding the beginning or end
of the document, or recovering from sudden shifts in
topic (such as occur at paragraph boundaries). Some
local models also have trouble deciding which of a
pair of related sentences ought to come first.

In contrast, the global HMM model of Barzilay
and Lee (2004) tries to track the predictable changes
in topic between sentences. This gives it a pro-
nounced advantage in ordering sentences, since it
can learn to represent beginnings, ends and bound-
aries as separate states. However, it has no local
features; the particular words in each sentence are
generated based only on the current state of the doc-
ument. Since information can pass from sentence
to sentence only in this restricted manner, the model
sometimes fails to place sentences next to the correct
neighbors.

We attempt here to unify the two approaches by
constructing a model with both sentence-to-sentence
dependencies providing local cues, and a hidden
topic variable for global structure. Our local fea-
tures are based on the entity grid model of (Barzilay
and Lapata, 2005; Lapata and Barzilay, 2005). This
model has previously been most successful in a con-
ditional setting; to integrate it into our model, we
first relax its independence assumptions to improve
its performance when used generatively. Our global
model is an HMM like that of Barzilay and Lee
(2004), but with emission probabilities drawn from
the entity grid. We present results for two tasks,
the ordering task, on which global models usually
do well, and the discrimination task, on which lo-
cal models tend to outperform them. Our model im-
proves on purely global or local approaches on both
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tasks.
Previous work by Soricut and Marcu (2006) has

also attempted to integrate local and global fea-
tures using a mixture model, with promising results.
However, mixture models lack explanatory power;
since each of the individual component models is
known to be flawed, it is difficult to say that the com-
bination is theoretically more sound than the parts,
even if it usually works better. Moreover, since the
model we describe uses a strict subset of the fea-
tures used in the component models of (Soricut and
Marcu, 2006), we suspect that adding it to the mix-
ture would lead to still further improved results.

2 Naive Entity Grids

Entity grids, first described in (Lapata and Barzilay,
2005), are designed to capture some ideas of Cen-
tering Theory (Grosz et al., 1995), namely that ad-
jacent utterances in a locally coherent discourses are
likely to contain the same nouns, and that important
nouns often appear in syntactically important roles
such as subject or object. An entity grid represents
a document as a matrix with a column for each en-
tity, and a row for each sentence. The entryri,j de-
scribes the syntactic role of entityj in sentencei:
these roles are subject (S), object (O), or some other
role (X)1. In addition there is a special marker (-)
for nouns which do not appear at all in a given sen-
tence. Each noun appears only once in a given row
of the grid; if a noun appears multiple times, its grid
symbol describes the most important of its syntac-
tic roles: subject if possible, then object, or finally
other. An example text is figure 1, whose grid is fig-
ure 2.

Nouns are also treated as salient or non-salient,
another important concern of Centering Theory. We
condition events involving a noun on the frequency
of that noun. Unfortunately, this way of representing
salience makes our model slightly deficient, since
the model conditions on a particular noun occurring
e.g. 2 times, but assigns nonzero probabilities to
documents where it occurs 3 times. This is theo-

1Roles are determined heuristically using trees produced by
the parser of (Charniak and Johnson, 2005). Following previous
work, we slightly conflate thematic and syntactic roles, marking
the subject of a passive verb asO.

2The numeric token “1300” is removed in preprocessing,
and “Nuevo Laredo” is marked as “PROPER”.

0 [The commercial pilot]O , [sole occupant of[the airplane]X]X
, was not injured .
1 [The airplane]O was owned and operated by[a private
owner]X .
2 [Visual meteorological conditions]S prevailed for [the per-
sonal cross country flight for which[a VFR flight plan]O was
filed]X .
3 [The flight]S originated at[Nuevo Laredo , Mexico]X , at
[approximately 1300]X.

Figure 1: A section of a document, with syntactic
roles of noun phrases marked.

0 1 2 3
PLAN - - O -
AIRPLANE X O - -
CONDITION - - S -
FLIGHT - - X S
PILOT O - - -
PROPER - - - X
OWNER - X - -
OCCUPANT X - - -

Figure 2: The entity grid for figure 12.

retically quite unpleasant but in comparing different
orderings of the same document, it seems not to do
too much damage.

Properly speaking entities may be referents of
many different nouns and pronouns throughout the
discourse, and both (Lapata and Barzilay, 2005) and
(Barzilay and Lapata, 2005) present models which
use coreference resolution systems to group nouns.
We follow (Soricut and Marcu, 2006) in dropping
this component of the system, and treat each head
noun as having an individual single referent.

To model transitions in this entity grid model,
Lapata and Barzilay (2005) takes a generative ap-
proach. First, the probability of a document is de-
fined asP (D) = P (Si..Sn), the joint probability of
all the sentences. Sentences are generated in order
conditioned on all previous sentences:

P (D) =
∏

i

P (Si|S0..(i−1)). (1)

We make a Markov assumption of orderh (in our
experimentsh = 2) to shorten the history. We repre-
sent the truncated history as~Sh

i−1 = S(i−h)..S(i−1).
Each sentenceSi can be split up into a set of

nouns representing entities,Ei, and their corre-
sponding syntactic rolesRi, plus a set of words
which are not entities,Wi. The model treatsWi as
independent of the previous sentences. For any fixed
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set of sentencesSi,
∏

i P (Wi) is always constant,
and so cannot help in finding a coherent ordering.
The probability of a sentence is therefore dependent
only on the entities:

P (Si|~S
h
(i−1)) = P (Ei, Ri|~S

h
(i−1)). (2)

Next, the model assumes that each entityej ap-
pears in sentences and takes on syntactic roles in-
dependent of all the other entities. As we show
in section 3, this assumption can be problem-
atic. Once we assume this, however, we can sim-
plify P (Ei, Ri|~S

h
(i−1)) by calculating for each en-

tity whether it occurs in sentencei and if so, which
role it takes. This is equivalent to predictingri,j.
We represent the history of the specific entityej as
~r h
(i−1),j = r(i−h),j ..r(i−1),j , and write:

P (Ei, Ri|~S
h
(i−1)) ≈

∏

j

P (ri,j|~r
h
(i−1),j). (3)

For instance, in figure 2, the probability ofS3 with
horizon 1 is the product ofP (S|X) (for FLIGHT),
P (X|−) (for PROPER), and likewise for each other
entity,P (−|O), P (−|S), P (−|−)3.

Although this generative approach outperforms
several models in correlation with coherence ratings
assigned by human judges, it suffers in comparison
with later systems. Barzilay and Lapata (2005) uses
the same grid representation, but treats the transi-
tion probabilitiesP (ri,j |~ri,j) for each document as
features for input to an SVM classifier. Soricut and
Marcu (2006)’s implementation of the entity-based
model also uses discriminative training.

The generative model’s main weakness in com-
parison to these conditional models is its assump-
tion of independence between entities. In real doc-
uments, each sentence tends to contain only a few
nouns, and even fewer of them can fill roles like
subject and object. In other words, nouns compete
with each other for the available syntactic positions
in sentences; once one noun is chosen as the sub-
ject, the probability that any other will also become
a subject (of a different subclause of the same sen-
tence) is drastically lowered. Since the generative
entity grid does not take this into account, it learns
that in general, the probability of any given entity
appearing in a specific sentence is low. Thus it gen-
erates blank sentences (those without any nouns at
all) with overwhelmingly high probability.

It may not be obvious that this misallocation of
probability mass also reduces the effectiveness of
the generative entity grid in ordering fixed sets of
sentences. However, consider the case where an en-
tity has a history~r h, and then does not appear in
the next sentence. The model treats this as evidence
that entities generally do not occur immediately af-
ter ~r h– but it may also happen that the entity was
outcompeted by some other word with even more
significance.

3 Relaxed Entity Grid

In this section, we relax the troublesome assump-
tion of independence between entities, thus mov-
ing the probability distribution over documents away
from blank sentences. We begin at the same point as
above: sequential generation of sentences:P (D) =∏

i P (Si|S0..(i−1)). We similarly separate the words
into entities and non-entities, treat the non-entities as
independent of the history~S and omit them. We also
distinguish two types of entities. Let theknown set
Ki = ej : ej ∈ ~S(i−1), the set of all entities which
have appeared before sentencei. Of the entities ap-
pearing inSi, those inKi are known entities, and
those which are not arenew entities. Since each en-
tity in the document is new precisely once, we treat
these as independent and omit them from our calcu-
lations as we did the non-entities. We return to both
groups of omitted words in section 4 below when
discussing our topic-based models.

To model a sentence, then, we generate the set of
known entities it contains along with their syntac-
tic roles, given the history and the known setKi.
We truncate the history, as above, with horizonh;
note that this does not make the model Markovian,
since the known set has no horizon. Finally, we con-
sider only the portion of the history which relates to
known nouns (since all non-known nouns have the
same history- -). In all the equations below, we re-
strict Ei to known entities which actually appear in
sentencei, andRi to roles filled by known entities.
The probability of a sentence is now:

P (Si|~S
h
(i−1)) = P (Ei, Ri|~R

h
(i−1)). (4)

We make one further simplification before begin-
ning to approximate: we first generate the set of syn-
tactic slotsRi which we intend to fill with known en-
tities, and then decide which entities from the known
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set to select. Again, we assume independence from
the history, so that the contribution ofP (Ri) for any
ordering of a fixed set of sentences is constant and
we omit it:

P (Ei, Ri|~R
h
(i−1),j) = P (Ei|Ri, ~Rh

(i−1),j). (5)

EstimatingP (Ei|Ri, ~Rh
(i−1),j) proves to be dif-

ficult, since the contexts are very sparse. To con-
tinue, we make a series of approximations. First let
each role be filled individually (wherer ← e is the
boolean indicator function “noune fills role r”):

P (Ei|Ri, ~Rh
(i−1),j) ≈

∏

r∈Ri

P (r ← ej |r, ~Rh
(i−1),j).

(6)

Notice that this process can select the same nounej

to fill multiple rolesr, while the entity grid cannot
represent such an occurrence. The resulting distri-
bution is therefore slightly deficient.

Unfortunately, we are still faced with the sparse
context ~Rh

(i−1),j , the set of histories of all currently
known nouns. It is much easier to estimateP (r ←
ej |r,~r

h
(i−1),j), where we condition only on the his-

tory of the particular noun which is chosen to fill
slotr. However, in this case we do not have a proper
probability distribution: i.e. the probabilities do not
sum to 1. To overcome this difficulty we simply nor-
malize by force3:

P (r ← ej|r, ~Rh
(i−1),j) ≈ (7)

P (r ← ej |r,~r
h
(i−1),j)∑

j∈Ki
P (r ← ej|r,~r h

(i−1),j
)

The individual probabilitiesP (r ← ej |r,~r
h
(i−1),j)

are calculated by counting situations in the train-
ing documents in which a known noun has his-
tory ~r h

(i−1),j and fills slot r in the next sentence,
versus situations where the slotr exists but is
filled by some other noun. Some rare contexts are
still sparse, and so we smooth by adding a pseu-
docount of 1 for all events. Our model is ex-
pressed by equations (1),(4),(5),(6) and (7). In

3Unfortunately this estimator is not consistent (that is, given
infinite training data produced by the model, the estimated pa-
rameters do not converge to the true parameters). We are in-
vestigating maximum entropy estimation as a solution to this
problem.

figure 2, the probability ofS3 with horizon 1 is
now calculated as follows: the known set con-
tains PLAN, AIRPLANE, CONDITION, FLIGHT,
PILOT, OWNER andOCCUPANT. There is one syn-
tactic role filled by a known noun,S. The proba-
bility is then calculated asP (+|S,X) (the proba-
bility of selecting a noun with historyX to fill the
role ofS) normalized byP (+|S,O)+P (+|S,S)+
P (+|S,X) + 4× P (+|S,−).

Like Lapata and Barzilay (2005), our relaxed
model assigns low probability to sentences where
nouns with important-seeming histories do not ap-
pear. However, in our model, the penalty is less
severe if there are many competitor nouns. On the
other hand, if the sentence contains many slots, giv-
ing the noun more opportunity to fill one of them,
the penalty is proportionally greater if it does not
appear.

4 Topic-Based Model

The model we describe above is a purely local one,
and moreover it relies on a particular set of local fea-
tures which capture the way adjacent sentences tend
to share lexical choices. Its lack of any global struc-
ture makes it impossible for the model to recover at
a paragraph boundary, or to accurately guess which
sentence should begin a document. Its lack of lexi-
calization, meanwhile, renders it incapable of learn-
ing dependences between pairs of words: for in-
stance, that a sentence discussing a crash is often
followed by a casualty report.

We remedy both these problems by extending our
model of document generation. Like Barzilay and
Lee (2004), we learn an HMM in which each sen-
tence has a hidden topicqi, which is chosen con-
ditioned on the previous stateqi−1. The emission
model of each state is an instance of the relaxed en-
tity grid model as described above, but in addition
to conditioning on the role and history, we condi-
tion also on the state and on the particular set of
lexical itemslex(Ki) which may be selected to fill
the role: P (r ← ej |r, ~Rh

(i−1),j , qi, lex(Ki)). This
distribution is approximated as above by the nor-
malized value ofP (r ← ej |r,~r

h
(i−1),j , qi, lex(ej)).

However, due to our use of lexical information,
even this may be too sparse for accurate estima-
tion, so we back off by interpolating with the pre-
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Figure 3: A single time-slice of our HMM.
Wi ∼ PY (·|qi; θLM , discountLM )
Ni ∼ PY (·|qi; θNN , discountNN )
Ei ∼ EGrid(·|R, ~R2

i−1, qi, lex(Ki); θEG)
qi ∼ DP (·|qi−1)
In the equations above, only the manually set inter-
polation hyperparameters are indicated.

vious model. In each context, we introduceθEG

pseudo-observations, split fractionally according to
the backoff distribution: if we abbreviate the context
in the relaxed entity grid asC and the event ase, this
smoothing corresponds to:

P (e|C, qi, ej) =
#(e,C, qi, ej) + θEGP (e|C)

#(e,C, qi, ej) + θEG

.

This is equivalent to defining the topic-based entity
grid as a Dirichlet process with parameterθEG sam-
pling from the relaxed entity grid.

In addition, we are now in a position to gener-
ate the non-entity wordsWi and new entitiesNi in
an informative way, by conditioning on the sentence
topic qi. Since they are interrupted by the known
entities, they do not form contiguous sequences of
words, so we make a bag-of-words assumption. To
model these sets of words, we use unigram ver-
sions of the hierarchical Pitman-Yor processes of
(Teh, 2006), which implement a Bayesian version
of Kneser-Ney smoothing.

To represent the HMM itself, we adapt the non-
parametric HMM of (Beal et al., 2001). This is
a Bayesian alternative to the conventional HMM
model learned using EM, chosen mostly for conve-
nience. Our variant of it, unlike (Beal et al., 2001),
has no parameterγ to control self-transitions; our

emission model is complex enough to make it un-
necessary.

The actual number of states found by the model
depends mostly on the backoff constants, theθs
(and, for Pitman-Yor processes,discounts) chosen
for the emission models (the entity grid, non-entity
word model and new noun model), and is relatively
insensitive to particular choices of prior for the other
hyperparameters. As the backoff constants decrease,
the emission models become more dependent on the
state variableq, which leads to more states (and
eventually to memorization of the training data). If
instead the backoff rate increases, the emission mod-
els all become close to the general distribution and
the model prefers relatively few states. We train with
interpolations which generally result in around 40
states.

Once the interpolation constants are set, the
model can be trained by Gibbs sampling. We also
do inference over the remaining hyperparameters of
the model by Metropolis sampling from uninforma-
tive priors. Convergence is generally very rapid; we
obtain good results after about 10 iterations. Unlike
Barzilay and Lee (2004), we do not initialize with
an informative starting distribution.

When finding the probability of a test document,
we do not do inference over the full Bayesian model,
because the number of states, and the probability of
different transitions, can change with every new ob-
servation, making dynamic programming impossi-
ble. Beal et al. (2001) proposes an inference algo-
rithm based on particle filters, but we feel that in
this case, the effects are relatively minor, so we ap-
proximate by treating the model as a standard HMM,
using a fixed transition function based only on the
training data. This allows us to use the conventional
Viterbi algorithm. The backoff rates we choose at
training time are typically too small for optimal in-
ference in the ordering task. Before doing tests, we
set them to higher values (determined to optimize
ordering performance on held-out data) so that our
emission distributions are properly smoothed.

5 Experiments

Our experiments use the popularAIRPLANE cor-
pus, a collection of documents describing airplane
crashes taken from the database of the National
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Transportation Safety Board, used in (Barzilay and
Lee, 2004; Barzilay and Lapata, 2005; Soricut and
Marcu, 2006). We use the standard division of
the corpus into 100 training and 100 test docu-
ments; for development purposes we did 10-fold
cross-validation on the training data. TheAIRPLANE

documents have some advantages for coherence re-
search: they are short (11.5 sentences on average)
and quite formulaic, which makes it easy to find lex-
ical and structural patterns. On the other hand, they
do have some oddities. 46 of the training documents
begin with a standard preamble: “This is prelimi-
nary information, subject to change, and may con-
tain errors. Any errors in this report will be corrected
when the final report has been completed,” which
essentially gives coherence models the first two sen-
tences for free. Others, however, begin abruptly with
no introductory material whatsoever, and sometimes
without even providing references for their definite
noun phrases; one document begins: “At V1, the
DC-10-30’s number 1 engine, a General Electric
CF6-50C2, experienced a casing breach when the
2nd-stage low pressure turbine (LPT) anti-rotation
nozzle locks failed.” Even humans might have trou-
ble identifying this sentence as the beginning of a
document.

5.1 Sentence Ordering

In the sentence ordering task, (Lapata, 2003; Barzi-
lay and Lee, 2004; Barzilay and Lapata, 2005; Sori-
cut and Marcu, 2006), we view a document as an
unordered bag of sentences and try to find the or-
dering of the sentences which maximizes coherence
according to our model. This type of ordering pro-
cess has applications in natural language generation
and multi-document summarization. Unfortunately,
finding the optimal ordering according to a prob-
abilistic model with local features is NP-complete
and non-approximable (Althaus et al., 2004). More-
over, since our model is not Markovian, the relax-
ation used as a heuristic forA∗ search by Soricut
and Marcu (2006) is ineffective. We therefore use
simulated annealing to find a high-probability order-
ing, starting from a random permutation of the sen-
tences. Our search system has few Estimated Search
Errors as defined by Soricut and Marcu (2006); it
rarely proposes an ordering which has lower proba-

τ Discr. (%)
(Barzilay and Lapata, 2005) - 90
(Barzilay and Lee, 2004) .44 745

(Soricut and Marcu, 2006) .50 -6

Topic-based (relaxed) .50 94

Table 1: Results forAIRPLANE test data.

bility than the original ordering4.

To evaluate the quality of the orderings we predict
as optimal, we useKendall’s τ , a measurement of
the number of pairwise swaps needed to transform
our proposed ordering into the original document,
normalized to lie between−1 (reverse order) and1
(original order). Lapata (2006) shows that it corre-
sponds well with human judgements of coherence
and reading times. A slight problem withτ is that
it does not always distinguish between proposed or-
derings of a document which disrupt local relation-
ships at random, and orderings in which paragraph-
like units move as a whole. In longer documents, it
may be worth taking this problem into account when
selecting a metric; however, the documents in the
AIRPLANE corpus are mostly short and have little
paragraph structure, soτ is an effective metric.

5.2 Discrimination

Our second task is the discriminative test used by
(Barzilay and Lapata, 2005). In this task we gen-
erate random permutations of a test document, and
measure how often the probability of a permutation
is higher than that of the original document. This
task bears some resemblance to the task of discrim-
inating coherent from incoherent essays in (Milt-
sakaki and Kukich, 2004), and is also equivalent
in the limit to the ranking metric of (Barzilay and
Lee, 2004), which we cannot calculate because our
model does not producek-best output. As opposed
to the ordering task, which tries to measure how
close the model’s preferred orderings are to the orig-
inal, this measurement assesses howmany orderings
the model prefers. We use 20 random permutations
per document, for 2000 total tests.
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τ Discr. (%)
Naive Entity Grid .17 81
Relaxed Entity Grid .02 87
Topic-based (naive) .39 85
Topic-based (relaxed) .54 96

Table 2: Results for 10-fold cross-validation onAIR-
PLANE training data.

6 Results

Since the ordering task requires a model to propose
the complete structure for a set of sentences, it is
very dependent on global features. To perform ad-
equately, a model must be able to locate the begin-
ning and end of the document, and place intermedi-
ate sentences relative to these two points. Without
any way of doing this, our relaxed entity grid model
hasτ of approximately 0, meaning its optimal or-
derings are essentially uncorrelated with the correct
orderings7. The HMM content model of (Barzilay
and Lee, 2004), which does have global structure,
performs much better on ordering, atτ of .44. How-
ever, local features can help substantially for this
task, since models which use them are better at plac-
ing related sentences next to one another. Using both
sets of features, our topic-based model achieves state
of the art performance (τ = .5) on the ordering task,
comparable with the mixture model of (Soricut and
Marcu, 2006).

The need for good local coherence features is es-
pecially clear from the results on the discrimination
task (table 1). Permuting a document may leave ob-
vious “signposts” like the introduction and conclu-
sion in place, but it almost always splits up many
pairs of neighboring sentences, reducing local co-
herence. (Barzilay and Lee, 2004), which lacks lo-
cal features, does quite poorly on this task (74%),
while our model performs extremely well (94%).

It is also clear from the results that our relaxed en-
tity grid model (87%) improves substantially on the
generative naive entity grid (81%). When used on

40 times on test data, 3 times in cross-validation.
5Calculated on our test permutations using the code at

http://people.csail.mit.edu/regina/code.html.
6Soricut and Marcu (2006) do not report results on this task,

except to say that their implementation of the entity grid per-
forms comparably to (Barzilay and Lapata, 2005).

7Barzilay and Lapata (2005) do not reportτ scores.

its own, it performs much better on the discrimina-
tion task, which is the one for which it was designed.
(The naive entity grid has a higherτ score,.17, es-
sentially by accident. It slightly prefers to generate
infrequent nouns from the start context rather than
the context- -, which happens to produce the correct
placement for the “preliminary information” pream-
ble.) When used as the emission model for known
entities in our topic-based system, the relaxed en-
tity grid shows its improved performance even more
strongly (table 2); its results are about10% higher
than the naive version under both metrics.

Our combined model uses only entity-grid fea-
tures and unigram language models,a strict subset of
the feature set of (Soricut and Marcu, 2006). Their
mixture includes an entity grid model and a version
of the HMM of (Barzilay and Lee, 2004), which
uses n-gram language modeling. It also uses a model
of lexical generation based on the IBM-1 model for
machine translation, which produces all words in the
document conditioned on words from previous sen-
tences. In contrast, we generate only entities con-
ditioned on words from previous sentences; other
words are conditionally independent given the topic
variable. It seems likely therefore that using our
model as a component of a mixture might improve
on the state of the art result.

7 Future Work

Ordering in theAIRPLANE corpus and similar con-
strained sets of short documents is by no means a
solved problem, but the results so far show a good
deal of promise. Unfortunately, in longer and less
formulaic corpora, the models, inference algorithms
and even evaluation metrics used thus far may prove
extremely difficult to scale up. Domains with more
natural writing styles will make lexical prediction a
much more difficult problem. On the other hand,
the wider variety of grammatical constructions used
may motivate more complex syntactic features, for
instance as proposed by (Siddharthan et al., 2004) in
sentence clustering.

Finding optimal orderings is a difficult task even
for short documents, and will become exponen-
tially more challenging in longer ones. For multi-
paragraph documents, it is probably impractical to
use full-scale coherence models to find optimal or-
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derings directly. A better approach may be a coarse-
to-fine or hierarchical system which cuts up longer
documents into more manageable chunks that can be
ordered as a unit.

Multi-paragraph documents also pose a problem
for theτ metric itself. In documents with clear the-
matic divisions between their different sections, a
good ordering metric should treat transposed para-
graphs differently than transposed sentences.
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Abstract

The task of selecting and ordering infor-
mation appears in multiple contexts in text
generation and summarization. For in-
stance, methods for title generation con-
struct a headline by selecting and order-
ing words from the input text. In this pa-
per, we investigate decoding methods that
simultaneously optimize selection and or-
dering preferences. We formalize decod-
ing as a task of finding an acyclic path
in a directed weighted graph. Since the
problem is NP-hard, finding an exact so-
lution is challenging. We describe a novel
decoding method based on a randomized
color-coding algorithm. We prove bounds
on the number of color-coding iterations
necessary to guarantee any desired likeli-
hood of finding the correct solution. Our
experiments show that the randomized de-
coder is an appealing alternative to a range
of decoding algorithms for selection-and-
ordering problems, including beam search
and Integer Linear Programming.

1 Introduction

The task of selecting and ordering information ap-
pears in multiple contexts in text generation and
summarization. For instance, a typical multidocu-
ment summarization system creates a summary by
selecting a subset of input sentences and ordering
them into a coherent text. Selection and ordering at

the word level is commonly employed in lexical re-
alization. For instance, in the task of title generation,
the headline is constructed by selecting and ordering
words from the input text.

Decoding is an essential component of the
selection-and-ordering process. Given selection and
ordering preferences, the task is to find a sequence of
elements that maximally satisfies these preferences.
One possible approach for finding such a solution
is to decompose it into two tasks: first, select a set
of words based on individual selection preferences,
and then order the selected units into a well-formed
sequence. Although the modularity of this approach
is appealing, the decisions made in the selection step
cannot be retracted. Therefore, we cannot guarantee
that selected units can be ordered in a meaningful
way, and we may end up with a suboptimal output.

In this paper, we investigate decoding methods
that simultaneously optimize selection and order-
ing preferences. We formalize decoding as find-
ing a path in a directed weighted graph.1 The
vertices in the graph represent units with associ-
ated selection scores, and the edges represent pair-
wise ordering preferences. The desired solution is
the highest-weighted acyclic path of a prespecified
length. The requirement for acyclicity is essential
because in a typical selection-and-ordering problem,
a well-formed output does not include any repeated
units. For instance, a summary of multiple docu-
ments should not contain any repeated sentences.

1We assume that the scoring function is local; that is, it is
computed by combining pairwise scores. In fact, the majority
of models that are used to guide ordering (i.e., bigrams) are local
scoring functions.
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Since the problem is NP-hard, finding an exact
solution is challenging. We introduce a novel ran-
domized decoding algorithm2 based on the idea of
color-coding (Alon et al., 1995). Although the algo-
rithm is not guaranteed to find the optimal solution
on any single run, by increasing the number of runs
the algorithm can guarantee an arbitrarily high prob-
ability of success. The paper provides a theoretical
analysis that establishes the connection between the
required number of runs and the likelihood of find-
ing the correct solution.

Next, we show how to find an exact solution using
an integer linear programming (ILP) formulation.
Although ILP is NP-hard, this method is guaranteed
to compute the optimal solution. This allows us to
experimentally investigate the trade-off between the
accuracy and the efficiency of decoding algorithms
considered in the paper.

We evaluate the accuracy of the decoding algo-
rithms on the task of title generation. The decod-
ing algorithms introduced in the paper are compared
against beam search, a heuristic search algorithm
commonly used for selection-and-ordering and other
natural language processing tasks. Our experiments
show that the randomized decoder is an appealing al-
ternative to both beam search and ILP when applied
to selection-and-ordering problems.

2 Problem Formulation

In this section, we formally define the decoding task
for selection-and-ordering problems. First, we intro-
duce our graph representation and show an example
of its construction for multidocument summariza-
tion. (An additional example of graph construction
for title generation is given in Section 6.) Then, we
discuss the complexity of this task and its connec-
tion to classical NP-hard problems.

2.1 Graph Representation

We represent the set of selection units as the set of
vertices V in a weighted directed graph G. The
set of edges E represents pairwise ordering scores
between all pairs of vertices in V . We also add a
special source vertex s and sink vertex t. For each
vertex v in V , we add an edge from s to v and an

2The code is available at
http://people.csail.mit.edu/pawand/rand/

edge from v to t. We then define the set of all ver-
tices as V ∗ = V ∪ {s, t}, and the set of all edges as
E∗ = E ∪ {(s, v) ∀ v ∈ V } ∪ {(v, t) ∀ v ∈ V }.

To simplify the representation, we remove all ver-
tex weights in our graph structure and instead shift
the weight for each vertex onto its incoming edges.
For each pair of distinct vertices (v, u) ∈ V , we set
the weight of edge ev,u to be the sum of the loga-
rithms of the selection score for u and the pairwise
ordering score of (v, u).

We also enhance our graph representation by
grouping sets of vertices into equivalence classes.
We introduce these classes to control for redundancy
as required in many selection-and-ordering prob-
lems.3 For instance, in title generation, an equiva-
lence class may consist of morphological variants of
the same stem (i.e., examine and examination). Be-
cause a typical title is unlikely to contain more than
one word with the same stem, we can only select a
single representative from each class.

Our task is now to find the highest weighted
acyclic path starting at s and ending at t with k ver-
tices in between, such that no two vertices belong to
the same equivalence class.

2.2 Example: Decoding for Multidocument
Summarization

In multidocument summarization, the vertices in the
decoding graph represent sentences from input doc-
uments. The vertices may be organized into equiva-
lence classes that correspond to clusters of sentences
conveying similar information. The edges in the
graph represent the combination of the selection and
the ordering scores. The selection scores encode the
likelihood of a sentence to be extracted, while pair-
wise ordering scores capture coherence-based prece-
dence likelihood. The goal of the decoder is to find
the sequence of k non-redundant sentences that op-
timize both the selection and the ordering scores.
Finding an acyclic path with the highest weight will
achieve this goal.

3An alternative approach for redundancy control would be
to represent all the members of an equivalence class as a sin-
gle vertex in the graph. However, such an approach does not
allow us to select the best representative from the class. For in-
stance, one element in the equivalence class may have a highly
weighted incoming edge, while another may have a highly
weighted outgoing edge.
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2.3 Relation to Classical Problems

Our path-finding problem may seem to be simi-
lar to the tractable shortest paths problem. How-
ever, the requirement that the path be long makes it
more similar to the the Traveling Salesman Problem
(TSP). More precisely, our problem is an instance of
the prize collecting traveling salesman problem, in
which the salesman is required to visit k vertices at
best cost (Balas, 1989; Awerbuch et al., 1995).

Since our problem is NP-hard, we might be pes-
simistic about finding an exact solution. But our
problem has an important feature: the length k of
the path we want to find is small relative to the num-
ber of vertices n. This feature distinguishes our task
from other decoding problems, such as decoding in
machine translation (Germann et al., 2001), that are
modeled using a standard TSP formulation. In gen-
eral, the connection between n and k opens up a new
range of solutions. For example, if we wanted to
find the best length-2 path, we could simply try all
subsets of 2 vertices in the graph, in all 2 possible
orders. This is a set of only O(n2) possibilities, so
we can check all to identify the best in polynomial
time.

This approach is very limited, however: in gen-
eral, its runtime of O(nk) for paths of length k
makes it prohibitive for all but the smallest values
of k. We cannot really hope to avoid the exponential
dependence on k, because doing so would give us
a fast solution to an NP-hard problem, but there is
hope of making the dependence “less exponential.”
This is captured by the definition of fixed parameter
tractability (Downey and Fellows, 1995). A prob-
lem is fixed parameter tractable if we can make the
exponential dependence on the parameter k indepen-
dent of the polynomial dependence on the problem
size n. This is the case for our problem: as we will
describe below, an algorithm of Alon et al. can be
used to achieve a running time of roughly O(2kn2).
In other words, the path length k only exponentiates
a small constant, instead of the problem size n, while
the dependence on n is in fact quadratic.

3 Related Work

Decoding for selection-and-ordering problems is
commonly implemented using beam search (Banko
et al., 2000; Corston-Oliver et al., 2002; Jin and

Hauptmann, 2001). Being heuristic in nature, this
algorithm is not guaranteed to find an optimal so-
lution. However, its simplicity and time efficiency
make it a decoding algorithm of choice for a wide
range of NLP applications. In applications where
beam decoding does not yield sufficient accuracy,
researchers employ an alternative heuristic search,
A* (Jelinek, 1969; Germann et al., 2001). While in
some cases A* is quite effective, in other cases its
running time and memory requirements may equal
that of an exhaustive search. Time- and memory-
bounded modifications of A* (i.e., IDA-A*) do not
suffer from this limitation, but they are not guaran-
teed to find the exact solution. Nor do they pro-
vide bounds on the likelihood of finding the exact
solution. Newly introduced methods based on lo-
cal search can effectively examine large areas of a
search space (Eisner and Tromble, 2006), but they
still suffer from the same limitations.

As an alternative to heuristic search algorithms,
researchers also employ exact methods from com-
binatorial optimization, in particular integer linear
programming (Germann et al., 2001; Roth and Yih,
2004). While existing ILP solvers find the exact so-
lution eventually, the running time may be too slow
for practical applications.

Our randomized decoder represents an impor-
tant departure from previous approaches to decod-
ing selection-and-ordering problems. The theoreti-
cally established bounds on the performance of this
algorithm enable us to explicitly control the trade-
off between the quality and the efficiency of the de-
coding process. This property of our decoder sets it
apart from existing heuristic algorithms that cannot
guarantee an arbitrarily high probability of success.

4 Randomized Decoding with
Color-Coding

One might hope to solve decoding with a dynamic
program (like that for shortest paths) that grows an
optimal path one vertex at a time. The problem is
that this dynamic program may grow to include a
vertex already on the path, creating a cycle. One way
to prevent this is to remember the vertices used on
each partial path, but this creates a dynamic program
with too many states to compute efficiently.

Instead, we apply a color coding technique of
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Alon et al (1995). The basic step of the algo-
rithm consists of randomly coloring the graph ver-
tices with a set of colors of size r, and using dy-
namic programming to find the optimum length-k
path without repeated colors. (Later, we describe
how to determine the number of colors r.) Forbid-
ding repeated colors excludes cycles as required, but
remembering only colors on the path requires less
state than remembering precisely which vertices are
on the path. Since we color randomly, any single it-
eration is not guaranteed to find the optimal path; in
a given coloring, two vertices along the optimal path
may be assigned the same color, in which case the
optimal path will never be selected. Therefore, the
whole process is repeated multiple times, increasing
the likelihood of finding an optimal path.

Our algorithm is a variant of the original color-
coding algorithm (Alon et al., 1995), which was de-
veloped to detect the existence of paths of length k
in an unweighted graph. We modify the original al-
gorithm to find the highest weighted path and also
to handle equivalence classes of vertices. In addi-
tion, we provide a method for determining the opti-
mal number of colors to use for finding the highest
weighted path of length k.

We first describe the dynamic programming algo-
rithm. Next, we provide a probabilistic bound on
the likelihood of finding the optimal solution, and
present a method for determining the optimal num-
ber of colors for a given value of k.

Dynamic Programming Recall that we began
with a weighted directed graphG to which we added
artificial start and end vertices s and t. We now posit
a coloring of that graph that assigns a color cv to
each vertex v aside from s and t. Our dynamic pro-
gram returns the maximum score path of length k+2
(including the artificial vertices s and t) from s to t
with no repeated colors.

Our dynamic program grows colorful paths—
paths with at most one vertex of each color. For
a given colorful path, we define the spectrum of
a path to be the set of colors (each used exactly
once) of nodes on the interior of the path—we ex-
clude the starting vertex (which will always be s)
and the ending vertex. To implement the dynamic
program, we maintain a table q[v, S] indexed by a
path-ending vertex v and a spectrum S. For vertex
v and spectrum S, entry q[v, S] contains the value

of the maximum-score colorful path that starts at s,
terminates at v, and has spectrum S in its interior.

We initialize the table with length-one paths:
q[v, ∅] represents the path from s to v, whose spec-
trum is the empty set since there are no interior ver-
tices. Its value is set to the score of edge (s, v). We
then iterate the dynamic program k times in order
to build paths of length k + 1 starting at s. We ob-
serve that the optimum colorful path of length ` and
spectrum S from s to v must consist of an optimum
path from s to u (which will already have been found
by the dynamic program) concatenated to the edge
(u, v). When we concatenate (u, v), vertex u be-
comes an interior vertex of the path, and so its color
must not be in the preexisting path’s spectrum, but
joins the spectrum of the path we build. It follows
that

q[v, S] = max
(u,v)∈G,cu∈S,cv /∈S

q[u, S−{cu}] +w(u, v)

After k iterations, for each vertex v we will have
a list of optimal paths from s to v of length k + 1
with all possible spectra. The optimum length-k+ 2
colorful path from s to t must follow the optimum
length-k + 1 path of some spectrum to some penul-
timate vertex v and then proceed to vertex t; we find
it by iterating over all such possible spectra and all
vertices v to determine argmaxv,Sq[v, S]+w(v, t).

Amplification The algorithm of Alon et al., and
the variant we describe, are somewhat peculiar in
that the probability of finding the optimal solu-
tion in one coloring iteration is quite small. But
this can easily be dealt with using a standard tech-
nique called amplification (Motwani and Raghavan,
1995). Suppose that the algorithm succeeds with
small probability p, but that we would like it to suc-
ceed with probability 1 − δ where δ is very small.
We run the algorithm t = (1/p) ln 1/δ times. The
probability that the algorithm fails every single run
is then (1 − p)t ≤ e−pt = δ. But if the algorithm
succeeds on even one run, then we will find the op-
timum answer (by taking the best of the answers we
see).

No matter how many times we run the algo-
rithm, we cannot absolutely guarantee an optimal
answer. However, the chance of failure can easily be
driven to negligible levels—achieving, say, a one-in-
a-billion chance of failure requires only 20/p itera-
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tions by the previous analysis.
Determining the number of colors Suppose that

we use r random colors and want to achieve a given
failure probability δ. The probability that the opti-
mal path has no repeated colors is:

1 · r − 1

r
· r − 2

r
· · · r − (k − 1)

r
.

By the amplification analysis, the number of trials
needed to drive the failure probability to the desired
level will be inversely proportional to this quantity.
At the same time, the dynamic programming table
at each vertex will have size 2r (indexing on a bit
vector of colors used per path), and the runtime of
each trial will be proportional to this. Thus, the run-
ning time for the necessary number of trials Tr will
be proportional to

1 · r

r − 1
· r

r − 2
· · · r

r − (k − 1)
· 2r

What r ≥ k should we choose to minimize this
quantity? To answer, let us consider the ratio:

Tr+1

Tr
=

(
r + 1

r

)k
· r − (k − 1)

r + 1
· 2

= 2(1 + 1/r)k(1− k/(r + 1))

If this ratio is less than 1, then using r + 1 col-
ors will be faster than using r; otherwise it will be
slower. When r is very close to k, the above equa-
tion is tiny, indicating that one should increase r.
When r � k, the above equation is huge, indicating
one should decrease r. Somewhere in between, the
ratio passes through 1, indicating the optimum point
where neither increasing nor decreasing r will help.
If we write α = k/r, and consider large k, then Tr+1

Tr
converges to 2eα(1−α). Solving numerically to find
where this is equal to 1, we find α ≈ .76804, which
yields a running time proportional to approximately
(4.5)k.

In practice, rather than using an (approximate)
formula for the optimum r, one should simply plug
all values of r in the range [k, 2k] into the running-
time formula in order to determine the best; doing
so takes negligible time.

5 Decoding with Integer Linear
Programming

In this section, we show how to formulate the
selection-and-ordering problem in the ILP frame-
work. We represent each edge (i, j) from vertex i
to vertex j with an indicator variable Ii,j that is set
to 1 if the edge is selected for the optimal path and 0
otherwise. In addition, the associated weight of the
edge is represented by a constant wi,j .

The objective is then to maximize the following
sum:

max
I

∑

i∈V

∑

j∈V
wi,jIi,j (1)

This sum combines the weights of edges selected to
be on the optimal path.

To ensure that the selected edges form a valid
acyclic path starting at s and ending at t, we intro-
duce the following constraints:

Source-Sink Constraints Exactly one edge orig-
inating at source s is selected:

∑

j∈V
Is,j = 1 (2)

Exactly one edge ending at sink t is selected:
∑

i∈V
Ii,t = 1 (3)

Length Constraint Exactly k + 1 edges are se-
lected: ∑

i∈V

∑

j∈V
Ii,j = k + 1 (4)

The k + 1 selected edges connect k + 2 vertices in-
cluding s and t.

Balance Constraints Every vertex v ∈ V has in-
degree equal to its out-degree:

∑

i∈V
Ii,v =

∑

i∈V
Iv,j ∀ v ∈ V ∗ (5)

Note that with this constraint, a vertex can have at
most one outgoing and one incoming edge.

Redundancy Constraints To control for redun-
dancy, we require that at most one representative
from each equivalence class is selected. Let Z be
a set of vertices that belong to the same equivalence
class. For every equivalence class Z, we force the
total out-degree of all vertices in Z to be at most 1.
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Figure 1: A subgraph that contains a cycle, while
satisfying constraints 2 through 5.

∑

i∈Z

∑

j∈V
Ii,j ≤ 1 ∀ Z ⊆ V (6)

Acyclicity Constraints The constraints intro-
duced above do not fully prohibit the presence of
cycles in the selected subgraph. Figure 1 shows an
example of a selected subgraph that contains a cycle
while satisfying all the above constraints.

We force acyclicity with an additional set of vari-
ables. The variables fi,j are intended to number the
edges on the path from 1 to k+ 1, with the first edge
getting number fi,j = k + 1, and the last getting
number fi,j = 1. All other edges will get fi,j = 0.
To enforce this, we start by ensuring that only the
edges selected for the path (Ii,j = 1) get nonzero
f -values:

0 ≤ fi,j ≤ (k + 1) Ii,j ∀ i, j ∈ V (7)

When Ii,j = 0, this constraint forces fi,j = 0.
When Ii,j = 1, this allows 0 ≤ fi,j ≤ k+1. Now we
introduce additional variables and constraints. We
constrain demand variables dv by:

dv =
∑

i∈V
Ii,v ∀ v ∈ V ∗ − {s} (8)

The right hand side sums the number of selected
edges entering v, and will therefore be either 0 or 1.
Next we add variables av and bv constrained by the
equations:

av =
∑

i∈V
fi,v (9)

bv =
∑

i∈V
fv,i (10)

Note that av sums over f values on all edges enter-
ing v. However, by the previous constraints those
f -values can only be nonzero on the (at most one)

selected edge entering v. So, av is simply the f -
value on the selected edge entering v, if one exists,
and 0 otherwise. Similarly, bv is the f -value on the
(at most one) selected edge leaving v.

Finally, we add the constraints

av − bv = dv v 6= s (11)

bs = k + 1 (12)

at = 1 (13)

These last constraints let us argue, by induction, that
a path of length exactly k + 1 must run from s to t,
as follows. The previous constraints forced exactly
one edge leaving s, to some vertex v, to be selected.
The constraint bs = k+ 1 means that the f -value on
this edge must be k + 1. The balance constraint on
v means some edge must be selected leaving v. The
constraint av − bv = dv means this edge must have
f -value k. The argument continues the same way,
building up a path. The balance constraints mean
that the path must terminate at t, and the constraint
that at = 1 forces that termination to happen after
exactly k + 1 edges.4

For those familiar with max-flow, our program
can be understood as follows. The variables I force
a flow, of value 1, from s to t. The variables f rep-
resent a flow with supply k + 1 at s and demand dv
at v, being forced to obey “capacity constraints” that
let the flow travel only along edges with I = 1.

6 Experimental Set-Up

Task We applied our decoding algorithm to the task
of title generation. This task has been extensively
studied over the last six years (Banko et al., 2000; Jin
and Hauptmann, 2001). Title generation is a classic
selection-and-ordering problem: during title realiza-
tion, an algorithm has to take into account both the
likelihood of words appearing in the title and their
ordering preferences. In the previous approaches,
beam search has been used for decoding. Therefore,
it is natural to explore more sophisticated decoding
techniques like the ones described in this paper.

Our method for estimation of selection-and-
ordering preferences is based on the technique de-
scribed in (Banko et al., 2000). We compute the

4The network flow constraints allow us to remove the previ-
ously placed length constraint.

449



likelihood of a word in the document appearing in
the title using a maximum entropy classifier. Every
stem is represented by commonly used positional
and distributional features, such as location of the
first sentence that contains the stem and its TF*IDF.
We estimate the ordering preferences using a bigram
language model with Good-Turing smoothing.

In previous systems, the title length is either pro-
vided to a decoder as a parameter, or heuristics are
used to determine it. Since exploration of these
heuristics is not the focus of our paper, we provide
the decoder with the actual title length (as measured
by the number of content words).

Graph Construction We construct a decoding
graph in the following fashion. Every unique con-
tent word comprises a vertex in the graph. All the
morphological variants of a stem belong to the same
equivalence class. An edge (v, u) in the graph en-
codes the selection preference of u and the likeli-
hood of the transition from v to u.

Note that the graph does not contain any auxiliary
words in its vertices. We handle the insertion of aux-
iliary words by inserting additional edges. For every
auxiliary word x, we add one edge representing the
transition from v to u via x, and the selection pref-
erence of u. The auxiliary word set consists of 24
prepositions and articles extracted from the corpus.

Corpus Our corpus consists of 547 sections of a
commonly used undergraduate algorithms textbook.
The average section contains 609.2 words. A title,
on average, contains 3.7 words, among which 3.0 are
content words; the shortest and longest titles have 1
and 13 words respectively. Our training set consists
of the first 382 sections, the remaining 165 sections
are used for testing. The bigram language model is
estimated from the body text of all sections in the
corpus, consisting of 461,351 tokens.

To assess the importance of the acyclicity con-
straint, we compute the number of titles that have
repeated content words. The empirical findings sup-
port our assumption: 97.9% of the titles do not con-
tain repeated words.

Decoding Algorithms We consider three decod-
ing algorithms: our color-coding algorithm, ILP, and
beam search.5 The beam search algorithm can only

5The combination of the acyclicity and path length con-
straints require an exponential number of states for A* since
each state has to preserve the history information. This prevents

consider vertices which are not already in the path.6

To solve the ILP formulations, we employ a
Mixed Integer Programming solver lp solve which
implements the Branch-and-Bound algorithm. We
implemented the rest of the decoders in Python with
the Psyco speed-up module. We put substantial ef-
fort to optimize the performance of all of the al-
gorithms. The color-coding algorithm is imple-
mented using parallelized computation of coloring
iterations.

7 Results

Table 1 shows the performance of various decoding
algorithms considered in the paper. We first evalu-
ate each algorithm by the running times it requires
to find all the optimal solutions on the test set. Since
ILP is guaranteed to find the optimal solution, we
can use its output as a point of comparison. Table 1
lists both the average and the median running times.
For some of the decoding algorithms, the difference
between the two measurements is striking — 6,536
seconds versus 57.3 seconds for ILP. This gap can be
explained by outliers which greatly increase the av-
erage running time. For instance, in the worst case,
ILP takes an astounding 136 hours to find the opti-
mal solution. Therefore, we base our comparison on
the median running time.

The color-coding algorithm requires a median
time of 9.7 seconds to find an optimal solution com-
pared to the 57.3 seconds taken by ILP. Furthermore,
as Figure 2 shows, the algorithm converges quickly:
just eleven iterations are required to find an optimal
solution in 90% of the titles, and within 35 itera-
tions all of the solutions are found. An alternative
method for finding optimal solutions is to employ a
beam search with a large beam size. We found that
for our test set, the smallest beam size that satisfies
this condition is 1345, making it twenty-three times
slower than the randomized decoder with respect to
the median running time.

Does the decoding accuracy impact the quality of
the generated titles? We can always trade speed for
accuracy in heuristic search algorithms. As an ex-
treme, consider a beam search with a beam of size
1: while it is very fast with a median running time

us from applying A* to this problem.
6Similarly, we avoid redundancy by disallowing two vertices

from the same equivalence class to belong to the same path.
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Average (s) Median (s) ROUGE-L Optimal Solutions (%)
Beam 1 0.6 0.4 0.0234 0.0
Beam 80 28.4 19.3 0.2373 64.8
Beam 1345 368.6 224.4 0.2556 100.0
ILP 6,536.2 57.3 0.2556 100.0
Color-coding 73.8 9.7 0.2556 100.0

Table 1: Running times in seconds, ROUGE scores, and percentage of optimal solutions found for each of
the decoding algorithms.
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Figure 2: The proportion of exact solutions found
for each iteration of the color coding algorithm.

of less than one second, it is unable to find any of
the optimal solutions. The titles generated by this
method have substantially lower scores than those
produced by the optimal decoder, yielding a 0.2322
point difference in ROUGE scores. Even a larger
beam size such as 80 (as used by Banko et al. (2000))
does not match the title quality of the optimal de-
coder.

8 Conclusions

In this paper, we formalized the decoding task for
selection-and-ordering as a problem of finding the
highest-weighted acyclic path in a directed graph.
The presented decoding algorithm employs random-
ized color-coding, and can closely approximate the
ILP performance, without blowing up the running
time. The algorithm has been tested on title genera-
tion, but the decoder is not specific to this task and
can be applied to other generation and summariza-
tion applications.

9 Acknowledgements

The authors acknowledge the support of the Na-
tional Science Foundation (CAREER grant IIS-

0448168 and grant IIS-0415865). We also would
like to acknowledge the MIT NLP group and the
anonymous reviewers for valuable comments.

References
N. Alon, R. Yuster, U. Zwick. 1995. Color-coding. Jour-

nal of the ACM (JACM), 42(4):844–856.
B. Awerbuch, Y. Azar, A. Blum, S. Vempala. 1995.

Improved approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen. In Pro-
ceedings of the STOC, 277–283.

E. Balas. 1989. The prize collecting traveling salesman
problem. Networks, 19:621–636.

M. Banko, V. O. Mittal, M. J. Witbrock. 2000. Headline
generation based on statistical translation. In Proceed-
ings of the ACL, 318–325.

S. Corston-Oliver, M. Gamon, E. Ringger, R. Moore.
2002. An overview of amalgam: A machine-learned
generation module. In Proceedings of INLG, 33–40.

R. G. Downey, M. R. Fellows. 1995. Fixed-parameter
tractability and completeness II: On completeness for
W [1]. Theoretical Computer Science, 141(1–2):109–
131.

J. Eisner, R. W. Tromble. 2006. Local search with very
large-scale neighborhoods for optimal permutations
in machine translation. In Proceedings of the HLT-
NAACL Workshop on Computationally Hard Problems
and Joint Inference in Speech and Language Process-
ing.

U. Germann, M. Jahr, K. Knight, D. Marcu, K. Yamada.
2001. Fast decoding and optimal decoding for ma-
chine translation. In Proceedings of the EACL/ACL,
228–235.

F. Jelinek. 1969. A fast sequential decoding algorithm
using a stack. IBM Research Journal of Research and
Development.

R. Jin, A. G. Hauptmann. 2001. Automatic title genera-
tion for spoken broadcast news. In Proceedings of the
HLT, 1–3.

R. Motwani, P. Raghavan. 1995. Randomized Algo-
rithms. Cambridge University Press, New York, NY.

D. Roth, W. Yih. 2004. A linear programming formula-
tion for global inference in natural language tasks. In
Proceedings of the CONLL, 1–8.

451



Proceedings of NAACL HLT 2007, pages 452–459,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Multilingual Structural Projection across Interlinear Text

Fei Xia

Department of Linguistics

University of Washington

Seattle, WA 98195

fxia@u.washington.edu

William D. Lewis

Department of Linguistics

University of Washington

Seattle, WA 98195

wlewis2@u.washington.edu

Abstract

This paper explores the potential for an-
notating and enriching data for low-density
languages via the alignment and projec-
tion of syntactic structure from parsed data
for resource-rich languages such as English.
We seek to develop enriched resources for a
large number of the world’s languages, most
of which have no significant digital pres-
ence. We do this by tapping the body of
Web-based linguistic data, most of which
exists in small, analyzed chunks embedded
in scholarly papers, journal articles, Web
pages, and other online documents. By har-
vesting and enriching these data, we can
provide the means for knowledge discovery
across the resulting corpus that can lead
to building computational resources such
as grammars and transfer rules, which, in
turn, can be used as bootstraps for build-
ing additional tools and resources for the
languages represented.1

1 Introduction

Developing natural language applications is generally
dependent on the availability of annotated corpora.
Building annotated resources, however, is a signif-
icantly time consuming process involving consider-
able human effort. Although a number of projects
have been undertaken to develop annotated resources
for non-English languages, e.g., treebanks, the devel-
opment of these resources has been no small feat, and
to date have been limited to a very small number of

1We would like to thank Dan Jinguji for creating the
word alignment and source dependency structure gold
standards. Our thanks also go to three anonymous re-
viewers for their helpful comments and suggestions.

the world’s languages (e.g., Chinese, German, Ara-
bic, Korean, etc.). Some notable efforts have been
undertaken to develop automated means for creating
annotated corpora through the projection of annota-
tions (Yarowksy and Ngai, 2001; Xi and Hwa, 2005).
The resulting methods, however, can only be applied
to a small number of language pairs due mostly to
the need for sizeable parallel corpora. Unfortunately,
most languages do not have parallel corpora of suffi-
cient size, making these methods inapplicable for the
vast majority of the world’s languages.

We describe a method for bootstrapping resource
creation by tapping the wealth of multilingual data
on the Web that has been created by linguists. Of
particular note is the linguistic presentation format
of “interlinear text”, a common format used for pre-
senting language data and analysis relevant to a par-
ticular argument or investigation. Since interlin-
ear examples consist of orthographically or phoneti-
cally encoded language data aligned with an English
translation, the “database” of interlinear examples
found on the Web, when taken together, constitute a
significant multilingual, parallel corpus covering hun-
dreds to thousands of the world’s languages.

We do not propose that a database of interlin-
ear text alone is sufficient to create NLP resources
and tools, but rather that it may act as a means for
more rapidly developing such tools using less data.
We contend that such a resource allows one to de-
velop computational artifacts, such as grammars and
transfer rules, which can be used as “seed” knowledge
for building larger resources. In particular, knowing
a little about the structure of a language can help
in developing annotated corpora and tools, since a
little knowledge can go a long way in inducing accu-
rate structure and annotations (Haghighi and Klein,
2006).

Of particular relevance to MT is the issue of struc-
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tural divergence (Dorr, 1994). Many MT models im-
plicitly make the so-called direct correspondence as-
sumption (DCA) as defined in (Hwa et al., 2002).
However, to what extent that assumption holds is
tested only on a small number of language pairs us-
ing hand aligned data (Fox, 2002; Hwa et al., 2002;
Wellington et al., 2006). A larger sample of typo-
logically diverse language data can help test the as-
sumption for hundreds of languages.

We contend that the knowledge garnered from
structural projections applied to interlinear text can
bootstrap the development of resources and tools
across parallel corpora, where such corpora could be
of smaller size and the resulting tools more robust,
opening the door to the development of tools and re-
sources for a larger number of the world’s languages.
Given the imminent death of half of the world’s 6,000
languages (Krauss, 1992), the development of any

language specific tools for a larger percentage of the
world’s languages than is currently possible can aid
in both their documentation and preservation.

2 Background

The practice of presenting language data in interlin-
ear form has a long history in the field of linguistics,
going back at least to the time of the structuralists
(see (Swanton, 1912) for early examples). The mod-
ern form of interlinear data presentation started to
gel in the mid-1960s, resulting in the canonical three
line form shown in Ex (1), which we will refer to
as Interlinear Glossed Text, or IGT. The canonical
form consists of three lines: a line for the language
in question (often a sentence, which we will refer to
here as the source sentence), an English gloss line,
and an English translation.2

(1) Rhoddodd yr athro lyfr i’r bachgen ddoe
gave-3sg the teacher book to-the boy yesterday
“The teacher gave a book to the boy yesterday”
(Bailyn, 2001)

Although IGT is usually embedded in linguistics
documents as part of a larger analysis, in and of
itself it contains analysis and interesting informa-
tion about the source language. In particular, the
gloss line, which is word and morpheme aligned with
the source, contains word and morpheme transla-
tions for the source language data, and can even con-
tain grammatically salient annotations (e.g., 3sg for
Third Person Singular). Further, the reader will note

2As pointed out by a reviewer, there is a long tradi-
tion in the classical languages for using interlinear trans-
lations. So, too, in other literature bases. Our focus here
is strictly limited to IGT, the interlinear form used in the
field of linguistics.

that many words are shared between the gloss and
translation lines, allowing for the alignment between
these two lines as a intermediate step in the align-
ment between the translation and the source.

An effort is underway to collect these interlinear
snippets into an online searchable database, the pri-
mary purpose of which is to help linguists find ana-
lyzed data for languages they are interested in. We
use this resource, called ODIN, the Online Database
of INterlinear text (Lewis, 2006)3, as our primary
data source. At the time of this writing, ODIN con-
tains 36,439 instances of interlinear data for 725 of
the world’s languages.

3 The Enrichment Algorithm

Our algorithm enriches the original IGT examples by
building syntactic structures over the English data
and then projects these onto the source language
data via word alignment. The term syntactic struc-

ture in this paper refers to both phrase structure (PS)
and dependency structure (DS). The enrichment pro-
cess has three steps:

1. Parse the English translation using an off-the-
shelf parser.

2. Align the source sentence and English transla-
tion with the help of the gloss line.

3. Project the English syntactic structures to ob-
tain the source syntactic structures using word
alignment.

3.1 Parsing English sentences

There are many English parsers available to the pub-
lic, and in this experiment we used Charniak’s parser
(Charniak, 1997), which was trained on the English
Penn Treebank (Marcus et al., 1994). Figure 1(a)
shows a parse tree (in the Penn Treebank style) for
the English translation in Ex (1). Given a parse tree,
we use a head percolation table (Magerman, 1995)
to create the corresponding dependency structure.
Figure 2(a) shows the dependency structure derived
from the parse tree in Figure 1(a).

3.2 Word alignment

Because most of the 700+ languages in ODIN are
low-density languages with no on-line bilingual dic-
tionaries or large parallel corpora, aligning the source
sentence and its English translation directly would
not work well. To take advantage of the unique lay-
out of IGT examples, we propose using the gloss line
as a bridge between the other two lines; that is, we
first align the source sentence and the gloss line, and
then align the gloss line and the English translation.
The process is illustrated in Figure 3.

3The url of ODIN is http://www.csufresno.edu/odin
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Figure 2: English DS derived from English PS, and source DS projected from the English DS

The      teacher  gave    a     book  to    the    boy   yesterday  

Rhoddodd     yr    athro       lyfr     i’r    bachgen     ddoe    

 Gloss:

 Transatlion:

Source:

gave-3sg    the    teacher   book   to-the  boy   yesterday

Figure 3: Aligning source sentence and English
translation with help of the gloss line

The alignment between the source sentence and
the gloss line is trivial and our preliminary exper-
iments showed that simply using whitespace and
dashes as delimiters, and assuming a one-to-one
alignment produces almost perfect results. In con-
trast, the alignment between the gloss line and the
English translation is more complicated since align-
ment links can cross and words on one side can link
to zero or more words on the other side. We built
two aligners for this stage, as described below.

3.2.1 Statistical word aligner

We create a parallel corpus by using the gloss lines
and the translation lines of all the IGT examples for
all the languages in ODIN. We then train IBM mod-
els (Brown et al., 1993) using the GIZA++ package
(Och and Ney, 2000). In addition to the common
practice of lowercasing words and combining word

alignments from both directions, we adopt the fol-
lowing strategies to improve word alignment:

Breaking words into morphemes: Since a
multi-morpheme word in a gloss line often corre-
sponds to multiple words in the translation line, we
split each word on the gloss line into morphemes us-
ing the standard IGT morpheme delimiters (e.g., “-
”). For instance, the seven words in the gloss line of
Ex (1) become nine morphemes.

Adding (x,x) pairs: If a word x appears in the
gloss and the translation lines of the same IGT ex-
ample, it is highly likely that the two copies of the
same word should be aligned to each other. To help
GIZA++ recognize this property, we first identify
and collect all such words and then add single word
pairs (x,x) to the training data. For instance, from
Ex (1), we would add a sentence pair for each mor-
pheme (excepting -3sg which does not appear in the
translation line).

3.2.2 Heuristic word aligner

Our second word aligner is based on the assump-
tion that if two words (one on the gloss line, the other
on the translation line) have the same root form, they
are likely to be aligned to one other.We built a sim-
ple English morphological analyzer and ran it on the
two lines, and then linked the words with the same
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root form.4

3.3 Tree projection

We designed two projection algorithms: one which
projects PS and the other which projects DS, both
from the English to the source language.5

3.3.1 Projecting dependency structure

Our DS projection algorithm is similar to the pro-
jection algorithms described in (Hwa et al., 2002) and
(Quirk et al., 2005). It has four steps: First, we copy
the English DS, and remove all the unaligned English
words from the DS.6 Second, we replace each English
word in the DS with the corresponding source words.
If an English word x aligns to several source words,
we will make several copies of the node for x, one
copy for each such source word. The copies will all
be siblings in the DS.

If a source word aligns to multiple English words,
after Step 2 the source word will have several copies
in the resulting DS. In the third step, we keep only
the copy that is closest to the root and remove all the
other copies.7 In Step 4, we attach unaligned source
words to the DS using the heuristics described in
(Quirk et al., 2005). Figure 2 shows the English DS,
the source DS after Step 2, and the final DS.

3.3.2 Projecting phrase structure

Our PS projection algorithm also has four steps,
the first two being the same as those for projecting
DS. In the third step, starting from the root of the
current source PS and for each node x with more
than one child, we reorder each pair of x’s children
until they are in the same order as dictated by the
source sentence. Let yi and yj be two children of
x, and their spans be Si = [ai, bi] and Sj = [aj , bj ].
When we reorder yi and yj, there are four possible
scenarios:
(1) Si and Sj don’t overlap: we put yi before yj

if ai < aj or the opposity if ai > aj .
4When a word is repeated in both the gloss and trans-

lation, the individual occurrences are aligned individually
in left-to-right order.

5The DS projection algorithm as described does not
guarantee that the yield of the resulting source DS has
the same word order as the source sentence; however, if
needed, the algorithm can be easily modified (by mak-
ing its Step 3 similar to the Step 3 of the PS projection
algorithm) to ensure the correct word order.

6Every time we remove an internal node x from a DS,
we make x’s children depend on x’s parent directly.

7The heuristic is not as arbitrary as it sounds because
very often when a source word aligns to multiple English
words, one of the English words dominates the rest in
the DS (e.g., the node for to in Figure 2(a) dominates
the node for the). We are using the dominant word to
represent the whole set.

(2) Si is a strict subset of Sj: we remove yj

from the PS and promote its children: yj’s
children will become children of yj ’s parent.

(3) Sj is a strict subset of Si: we remove yi and
promote its children.

(4) Si and Sj overlap but neither is a strict
subset of the other: we remove both yi and
yj and promote their children. If both yi and
yj are leaf nodes with the same span, we will
merge the two nodes.8

The last step is to insert unaligned source words
into the source PS. For each unaligned source word
x, we will find its closest left and right neighbors that
are aligned to some English words, and then attach x
to the lowest common ancestor of the two neighbors.
Figure 1 shows the English PS, the source PS after
Step 2, and the final source PS. The three boxes in
1(b) mark the nodes that are removed in Step 3.

4 Experiments

We tested the feasibility of our approach on a small
set of IGT examples for seven languages: Ger-
man (GER), Korean (KKN), Hausa (HUA), Mala-
gasy (MEX), Welsh (WLS), Irish (GLI), and Yaqui
(YAQ). This set of languages was chosen because of
its typological diversity: GER and HUA are SVO
languages, KKN and YAQ are SOV, GLI and WLS
are VSO, and MEX is VOS. In addition, while Ger-
man and Korean are well-studied and have readily
accessible resources that we could use to test the ef-
fectiveness and accuracy of our methods, Yaqui, with
about 16,000 speakers, is a highly endangered lan-
guage and serves as a demonstration of our methods
for resource-poor and endangered languages.

4.1 Creating the gold standard for the test
set

The number of IGT examples in ODIN varies greatly
across the seven languages, ranging from less than
one hundred for Welsh to over seventeen hundred for
German. For each language, we randomly picked 50-
150 IGT examples from the available examples whose
English translations had at least five words.9 The
examples were manually checked and corrupted ex-
amples were thrown away. The remaining examples

8We will keep one copy and merge the POS tag of
the words. For instance, the tag IN+DT in Figure 1(c)
was created when two copies of i’r in Figure 1(b) were
merged.

9We skipped examples with very short English trans-
lations because they are unlikely to contain much in the
way of syntactic structures.
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Table 1: The size and average sentence length of the test data
GER KKN HUA MEX WLS GLI YAQ Total

# of IGT examples 104 103 77 87 53 46 68 538
# of src words 739 526 441 498 313 252 404 3173
Ave src sent leng 7.11 5.11 5.73 5.72 5.91 5.48 5.94 5.90
# of Eng words 711 735 520 646 329 278 544 3823
Ave Eng sent leng 7.41 7.14 6.75 7.43 6.21 6.04 8.01 7.11
# of speakers 128M 78M 39M 9.4M 580K 260K 16K 255.3M

formed our test data. Table 1 shows the size and av-
erage sentence lengths of the test data by language.10

The languages are sorted by number of speakers (as
derived from the Ethnologue (Gordon, 2005)).

We ran our algorithm on the test data, and the
system produced the following: an English PS, En-
glish DS, word alignment, projected source PS, and
projected source DS. We asked human annotators to
manually check the output and correct the English
DS, word alignments and projected DS structures
where necessary.11 12 In order to calculate inter-
annotator agreement, the Yaqui data and half of the
German data were each checked by two annotators,
and the disagreement between the annotators was
adjudicated and a gold standard was created. The
inter-annotator agreement (a.k.a. the F-measure of
dependency or alignment links) on English DS, gloss-
translation alignment, and projected source DS are
96.34%, 96.35%, and 91.09%, respectively. The rest
of the data were annotated by one annotator.

4.2 Word alignment results

We tested our word aligners on 70% (374 examples)
of the whole test set (538 examples), while reserving
the remaining 30% for future use.

4.2.1 Statistical word aligner

As indicated earlier, the ODIN database contains
36,439 IGT examples. We removed duplicates13 and

10There are three reasons why the sentences are so
short. First, since IGT is used to present particular lin-
guistically salient morphological or syntactic material,
sentences in IGT are only as long as needed for the
given exposé. Second, space constraints often dictate us-
ing shorter examples (i.e., they must fit on one line).
Third, the IGT extraction algorithm currently used in
ODIN does not search for the less common multi-line
(i.e., greater than three line) examples.

11The English PS and source PS were not corrected;
without a thorough linguistic study of the source lan-
guages, it is impossible to devise appropriate gold stan-
dards for their phrase structures.

12The DS structures for the English and source lan-
guage in the gold standard can be non-isomorphic.

13Duplicates are common since it is standard practice
in linguistics to copy and cite language examples from
other papers.

Table 2: The training data for GIZA++
# of sentences 28,902

# of words in gloss lines 174,765
# of morphemes in gloss lines 251,465
# of words in translation lines 217,022

Size of gloss word vocabulary 16360
Size of gloss morpheme vocabulary 14050
Size of translation word vocabulary 14029

Table 3: The word alignment results when gloss
words are not split into morphemes

Precision Recall F-measure
Gloss → trans 0.674 0.689 0.681
Trans → gloss 0.721 0.823 0.769
Intersection 0.948 0.620 0.750
Union 0.590 0.892 0.711
Refined 0.846 0.780 0.812

examples with missing lines, and used the remain-
ing 28,902 examples for GIZA++ training.14 Table
2 shows the statistics of the training data with all
words lowercased. Tables 3–5 show the performance
of the word aligner under three settings:

(1): Not splitting words in the gloss lines into mor-
phemes.

(2): Splitting words in gloss lines into morphemes.

(3): Doing (2) plus adding (x,x) sentence pairs into
the training data, where x is a word that appears
in both the gloss and translation lines of the
same IGT example.

For each setting, we trained in both directions and
combined the two alignments by taking the intersec-
tion, union, and refined as defined in (Och and Ney,
2000). The best F-score for each setting is in bold-
face. From the tables, it is clear that the third set-
ting works the best, and combining the alignments

14Interestingly, although the IGT examples in the
training data come from hundreds of languages in ODIN,
IBM Model 4 performs significantly better than Models
1 and 2 (by at least two percent points for F-measure);
therefore, all the GIZA++ results reported in the paper
are based on Model 4.
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Table 4: The word alignment results when gloss
words are split into morphemes

Precision Recall F-measure
Gloss → trans 0.746 0.889 0.811
Trans → gloss 0.797 0.863 0.829
Intersection 0.958 0.811 0.878
Union 0.659 0.941 0.775
Refined 0.918 0.900 0.909

Table 5: The word alignment results when (x,x) pairs
are added

Precision Recall F-measure
Gloss → trans 0.759 0.922 0.833
Trans → gloss 0.801 0.924 0.858
Intersection 0.956 0.885 0.919

Union 0.666 0.961 0.787
Refined 0.908 0.921 0.915

from both directions works better than either direc-
tion alone.15

4.2.2 Heuristic word aligner

The word aligner has two settings. In the first
one, the aligner aligns two words if and only if they
have the same orthographic form. In the second, it
aligns two words if and only if they have the same
root form.16 The results are shown in the first and
second rows of Table 6.

We experimented with various methods of com-
bining the two aligners, and the best one is an aug-

15For languages with hundreds of IGT examples, one
may wonder whether training GIZA++ with the data for
that language alone would outperform the system trained
with IGT examples from all the languages in ODIN. To
answer this question, we ran three experiments on the
German data (for which there are 1757 IGT examples
in ODIN after removing duplicates): (a) trained on the
(gloss, translation) pairs for all IGT data, (b) trained on
the (gloss, translation) pairs of the German data alone,
and (c) trained on the (source, translation) pairs of the
German data. The test was run against 58 IGT examples,
a subset of the German test data in Table 1. It turns out
that (a) performs much better than (b) and (c), which
justifies the approach we proposed in Section 3.2. For
instance, the F-measures for the refined alignment for
(a)-(c) are 92.5%, 90.2%, and 85.6%, respectively.

16For the second setting, we wrote a 90-line Perl appli-
cation that finds the root for each English word by using
a dozen regular expression patterns combined with a list
of 163 irregular verbs with their inflected forms.

Table 6: The performance of heuristic word aligner
Precision Recall F-measure

No morphing 0.983 0.742 0.846
With morphing 0.983 0.854 0.914
Augmented aligner 0.981 0.881 0.928

mented heuristic word aligner which links two words
if and only if they have the same root form or they
are good translations of each other according to the
translation model built by GIZA++.17 The result
is shown in the last row of Table 6. We used this
aligner for the structural projection experiment.

4.3 Projection results

We evaluated the results of the major steps in our al-
gorithm: the English DS derived from the parse trees
produced by the English parser, the word alignment
between the gloss and translation lines, and the pro-
jected source DS. We calculated the precision, recall,
and F-score of the dependency links and word align-
ment links. The F-scores are shown in Table 7.18

Both the English parser and the word aligner work
reasonably well with most F-scores well above 90%.
The F-scores for dependency links in the source DS
are lower partly due to errors in early parts of the
process (e.g., English DS and word alignment), which
propagates to this step. When we replace the auto-
matically generated English DS and word alignment
with the ones in gold standard, the F-measure of
source DS increases significantly, as shown in Table
8.

To identify the causes of the remaining errors in
the oracle results, we manually checked and classified
one third of the errors in the German data. Among
the 43 errors in the source DS, 26 (60.5%) are due
to language divergence (e.g., head switching), eight
(18.6%) are errors made by the projection heuristics,
and nine (20.9%) are due to non-exact translations
such as the one shown in Ex (2). Because language
divergence can reveal interesting typological distinc-
tions between languages, the first type of error may,
in fact, identify examples that could be of great value
to linguists and computational linguists.

(2) der Antrag des oder der Dozenten
the petition of-the.SG or of-the.PL docent.MSC
“the petition of the docent.” (Daniels, 2001)

5 Discussion

5.1 The IGT bias and knowledge discovery
from enriched data

From the enriched data, various kinds of informa-
tion can be extracted, such as grammars and transfer
rules. We extracted CFGs for the seven languages by
reading off the context-free rules from the projected

17We treat a word pair, (e,f), as a good translation if
and only if both P (e|f) and P (f |e) are high.

18The Total word alignment F-measure is higher than
0.928 as mentioned in Table 6 because the test set used
here is the superset of the one used in that section.
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Table 7: The system performance on the seven languages
GER KKN HUA MEX WLS GLI YAQ Total

English DS 94.25 89.78 96.15 95.51 91.49 93.53 93.57 93.48
Word alignment 94.91 94.20 94.71 94.26 95.65 88.11 93.64 94.03
Source DS 78.14 82.16 84.71 84.22 84.39 78.17 79.36 81.45

Table 8: The F-measure of source dependency links with perfect English DS and/or word alignment
GER KKN HUA MEX WLS GLI YAQ Total

With gold Eng DS 82.21 87.67 88.46 85.23 91.72 80.16 83.81 85.42
With gold alignment 85.77 86.15 86.07 88.44 84.98 82.40 86.27 86.00
With both 91.21 91.67 89.82 89.65 94.25 85.77 90.68 90.64

Table 9: Extracted CFGs and evidence of word order
HUA MEX GLI YAQ

Word order SVO VOS VSO SOV
# of rule types 102 129 86 115
# of rule tokens 384 466 202 295

source PS. The numbers of rule types and rule tokens
for four of the languages are listed in Table 9.

It is important to note that IGT data is somewhat
biased: examples tend to be short and are selected
for the purposes of a particular rhetorical context.
They, therefore, deviate from the “normal” usage
that one might normally expect to find in a corpus of
language data. As such, one might question whether
the information extracted from IGT would also be
skewed due to these biases.

To test the usefulness of the data for answering
typological questions, we wrote a tool that predicted
the canonical word order (e.g., SOV, SVO) of a lan-
guage using simple heuristics. It was able to pro-
duce the correct answers for all seven languages in
our sample.19 20 We suspect that the number of
IGT instances and their diversity (i.e., from multiple
documents) is crucial to overcoming the IGT bias,
and feel that the same heuristics could be applied
to a much larger sample of languages. These could
be further adapted to additional typological param-
eters beyond word order (e.g., orders of heads and
modifiers in PS). We leave this to future work.

Given syntactically enriched data, it is also possi-
ble to search for patterns that are linguistically in-
teresting. For instance, we wrote a piece of code
that automatically identified examples with crossing

19Our code simply went through all the rules in the
extracted CFGs and checked the position of the verb with
respect to its subject and object. The -SBJ and -OBJ
function tags were added to the English parse trees using
simple heuristics and were carried over to the source PS
via the projection algorithm.

20There is disagreement among linguists about Ger-
man’s underlying word order, being either SVO or SOV.
Our heuristics returned SOV.

dependencies (i.e., the ones whose DS have crossing
links). One such example from the Yaqui data is in
Ex (3), where the coordinated noun phrase kow-ta
into mis-ta “the pig and the cat” is separated by the
verb bwuise-k “grasp”. Note that the crossing depen-
dencies can only be discovered in the Yaqui data and
not in the English since none exist in the English.

(3) inepo kow-ta bwuise-k into mis-ta
1SG pig-NNOM.SG grasp-PST and cat-NNOM.SG
“I caught the pig and the cat.” (Mart́ınez Fabián,
2006)

So far, we have examined linguistically interesting
information in the source. In the future, we plan to
examine structures in both the source and English.
For instance, we plan to extract transfer rules from
the aligned source and English structures and also
calculate head/modifier crossings between languages
similar to those described in (Fox, 2002).

5.2 Tools and resource building

The information that we discover about a language
can help with the development of tools for the lan-
guage. The order of constituents, for instance, can
be used to inform prototype-driven learning strate-
gies (Haghighi and Klein, 2006), which can then
be applied to raw corpora. It is also possible that
small samples of data showing the alignment inter-
actions between source language structures and those
of English can provide essential bootstrap informa-
tion for informing machine translation systems (cf
(Quirk and Corston-Oliver, 2006)).

Proof of the utility of an enriched corpus built over
ODIN will depend crucially on its evaluation, and we
feel that an important part of our future work will be
the development of parsers that have been trained on
projected structures. These parsers can be evaluated
against human built corpora such as treebanks (obvi-
ously, only for those languages that have treebanks).
Proof will also come from linguists who will be able
to use the corpus to search for constructions of in-
terest (e.g., passives, relative clauses, etc.), and will
likely be able to do so using standard tools such as

458



tgrep.21 Crucially, linguists would be able to conduct
such searches over a very large number of languages.

6 Conclusion

In this paper we demonstrate a methodology for pro-
jecting structure from annotated English data onto
source language data. Because each IGT instance
provides an English translation and an intermedi-
ary gloss line, we are able to project full syntac-
tic structures from the automatically parsed trans-
lation. The fact that our basic methodology and
code were applied to a typologically diverse sample
of seven languages without modification suggests the
potential for application to a much larger sample,
perhaps numbering into the hundreds of languages.
The resulting enriched structures could be of great
importance to the fields of linguistics and compu-
tational linguistics. For the former, search facili-
ties could be built over the data that would allow
linguists to find syntactically marked up data for a
large variety of languages, and could even accommo-
date cross-linguistic comparisons and analyses. For
the latter, we could automatically discern grammars
and transfer rules from the aligned and marked up
data, where these computational artifacts could act
as bootstraps for the development of additional tools
and resources.
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Abstract 

This work evaluates a system that uses in-
terpolated predictions of reading difficulty 
that are based on both vocabulary and 
grammatical features.  The combined ap-
proach is compared to individual gram-
mar- and language modeling-based 
approaches.  While the vocabulary-based 
language modeling approach outper-
formed the grammar-based approach, 
grammar-based predictions can be com-
bined using confidence scores with the 
vocabulary-based predictions to produce 
more accurate predictions of reading dif-
ficulty for both first and second language 
texts.  The results also indicate that gram-
matical features may play a more impor-
tant role in second language readability 
than in first language readability. 

1 Introduction 

The REAP tutoring system (Heilman, et al. 2006), 
aims to provide authentic reading materials of the 
appropriate difficulty level, in terms of both vo-
cabulary and grammar, for English as a Second 
Language students.  An automatic measure of read-
ability that incorporated both lexical and gram-
matical features was thus needed. 

For first language (L1) learners (i.e., children 
learning their native tongue), reading level has 

been predicted using a variety of techniques, based 
on models of a student’s lexicon, grammatical sur-
face features such as sentence length (Flesch, 
1948), or combinations of such features (Schwarm 
and Ostendorf, 2005).  It was shown by Collins-
Thompson and Callan (2004) that a vocabulary-
based language modeling approach was effective at 
predicting the readability of grades 1 to 12 of Web 
documents of varying length, even with high levels 
of noise.   

Prior work on first language readability by 
Schwarm and Ostendorf (2005) incorporated 
grammatical surface features such as parse tree 
depth and average number of verb phrases.  This 
work combining grammatical and lexical features 
was promising, but it was not clear to what extent 
the grammatical features improved predictions.   

Also, discussions with L2 instructors suggest 
that a more detailed grammatical analysis of texts 
that examines features such as passive voice and 
various verb tenses can provide better features with 
which to predict reading difficulty.  One goal of 
this work is to show that the use of pedagogically 
motivated grammatical features (e.g., passive 
voice, rather than the number of words per sen-
tence) can improve readability measures based on 
lexical features alone. 

One of the differences between L1 and L2 read-
ability is the timeline and processes by which first 
and second languages are acquired.  First language 
acquisition begins at infancy, and the primary 
grammatical structures of the target language are 
acquired by age four in typically developing chil-
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dren (Bates, 2003).  That is, most grammar is ac-
quired prior to the beginning of a child’s formal 
education.  Therefore, most grammatical features 
seen at high reading levels such as high school are 
present with similar frequencies at low reading 
levels such as grades 1-3 that correspond to ele-
mentary school-age children.  It should be noted 
that sentence length is one grammar-related differ-
ence that can be observed as L1 reading level in-
creases.  Sentences are kept short in texts for low 
L1 reading levels in order to reduce the cognitive 
load on child readers.  The average sentence length 
of texts increases with the age and reading level of 
the intended audience.  This phenomenon has been 
utilized in early readability measures (Flesch, 
1948).  Vocabulary change, however, continues 
even into adulthood, and has been shown to be a 
more effective predictor of L1 readability than 
simpler measures such as sentence length (Collins-
Thompson and Callan, 2005). 

Second language learners, unlike their L1 coun-
terparts, are still very much in the process of ac-
quiring the grammar of their target language.  In 
fact, even intermediate and advanced students of 
second languages, who correspond to higher L2 
reading levels, often struggle with the grammatical 
structures of their target language.  This phenome-
non suggests that grammatical features may play a 
more important role in predicting and measuring 
L2 readability.  That is not to say, however, that 
vocabulary cannot be used to predict L2 reading 
levels.  Second language learners are learning both 
vocabulary and grammar concurrently, and reading 
materials for this population are chosen or au-
thored according to both lexical and grammatical 
complexity.  Therefore, the authors predict that a 
readability measure for texts intended for second 
language learners that incorporates both grammati-
cal and lexical features could clearly outperform a 
measure based on only one of these two types of 
features. 

This paper begins with descriptions of the lan-
guage modeling and grammar-based prediction 
systems.  A description of the experiments follows 
that covers both the evaluation metrics and corpora 
used.  Experimental results are presented, followed 
by a discussion of these results, and a summary of 
the conclusions of this work.  

2 Language Model Readability Prediction 
for First Language Texts 

Statistical language modeling exploits patterns of 
use in language.  To build a statistical model of 
text, training examples are used to collect statistics 
such as word frequency and order.  Each training 
example has a label that tells the model the ‘true’ 
category of the example.  In this approach, one 
statistical model is built for each grade level to be 
predicted. 

The statistical language modeling approach has 
several advantages over traditional readability 
formulas, which are usually based on linear regres-
sion with two or three variables.  First, a language 
modeling approach generally gives much better 
accuracy for Web documents and short passages 
(Collins-Thompson and Callan, 2004).  Second, 
language modeling provides a probability distribu-
tion across all grade models, not just a single pre-
diction.  Third, language modeling provides more 
data on the relative difficulty of each word in the 
document.  This might allow an application, for 
example, to provide more accurate vocabulary as-
sistance. 

The statistical model used for this study is 
based on a variation of the multinomial Naïve 
Bayes classifier.  For a given text passage T, the 
semantic difficulty of T relative to a specific grade 
level Gi is predicted by calculating the likelihood 
that the words of T were generated from a repre-
sentative language model of Gi.  This likelihood is 
calculated for each of a number of language mod-
els, corresponding to reading difficulty levels.  The 
reading difficulty of the passage is then estimated 
as the grade level of the language model most 
likely to have generated the passage T. 

The language models employed in this work are 
simple: they are based on unigrams and assume 
that the probability of a token is independent of the 
surrounding tokens.  A unigram language model is 
simply defined by a list of types (words) and their 
individual probabilities.  Although this is a weak 
model, it can be effectively trained from less la-
beled data than more complex models, such as bi-
gram or trigram models.  Additionally, higher 
order n-gram models might capture grammatical as 
well as lexical differences.  The relative contribu-
tions of grammatical and lexical features were thus 
better distinguished by using unigram language 
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models that more exclusively focus on lexical dif-
ferences. 

In this language modeling approach, a genera-
tive model is assumed for a passage T, in which a 
hypothetical author generates the tokens of T by: 

1. Choosing a grade language model, Gi, 
from the set G = {Gi} of 12 unigram language 
models, according to a prior probability distri-
bution P(Gi). 

2. Choosing a passage length |T| in tokens ac-
cording to a probability distribution P(|T|). 

3. Sampling |T| tokens from Gi’s multinomial 
word distribution according to the ‘naïve’ as-
sumption that each token is independent of all 
other tokens in the passage, given the language 
model Gi. 

These assumptions lead to the following expres-
sion for the probability of T being generated by 
language model Gi according to a multinomial dis-
tribution: 
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where V is the list of all types in the passage T, w is 
a type in V, and C(w) is the number of tokens with 
type w in T.  For simplicity, the factor R represents 
the contribution of the prior P(Gi), and S represents 
the contribution of the passage length |T|, given the 
grade level.   

Two further assumptions are made to simplify 
the illustration: 

1. That all grades are equally likely a priori.   

That is, 
G

i N
GP

1
)( =  where NG is the number 

of grade levels.  For example, if there are 12 
grade levels, then NG = 12.  This allows log R to 
be ignored. 

2. That all passage lengths (up to a maximum 
length M) are equally likely.  This allows log S 
to be ignored. 

These may be poor assumptions in a real appli-
cation, but they can be easily included or excluded 
in the model as desired.  The log C(w)! term can 
also be ignored because it is constant across levels.  
Under these conditions, an extremely simple form 
for the grade likelihood remains.  In order to find 
which model Gi maximizes Equation (3), the 
model which Gi that maximizes the following 
equation must be found: 
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This is straightforward to compute: for each token 
in the passage T, the log probability of the token 
according to the language model of Gi is calcu-
lated.  Summing the log probabilities of all tokens 
produces the overall likelihood of the passage, 
given the grade.  The grade level with the maxi-
mum likelihood is then chosen as the final read-
ability level prediction. 

This study employs a slightly more sophisti-
cated extension of this model, in which a sliding 
window is moved across the text, with a grade pre-
diction being made for each window.  This results 
in a distribution of grade predictions.  The grade 
level corresponding to a given percentile of this 
distribution is chosen as the prediction for the en-
tire document.  The values used in these experi-
ments for the percentile thresholds for L1 and L2 
were chosen by accuracy on held-out data. 

3 Grammatical Construction Readability 
Prediction for Second Language Texts 

The following sections describe the approach to 
predicting readability based on grammatical fea-
tures.  As with any classifier, two components are 
required to classify texts by their reading level: 
first, a definition for and method of identifying 
features; second, an algorithm for using these fea-
tures to classify a given text.  A third component, 
training data, is also necessary in this classification 
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task.  The corpus of materials used for training and 
testing is discussed in a subsequent section. 

3.1 Features for Grammar-based Prediction 

L2 learners usually learn grammatical patterns ex-
plicitly from grammar explanations in L2 text-
books, unlike their L1 counterparts who learn them 
implicitly through natural interactions.  Grammati-
cal features would therefore seem to be an essential 
component of an automatic readability measure for 
L2 learners, who must actively acquire both the 
lexicon and grammar of their target language. 

The grammar-based readability measure relies 
on being able to automatically identify grammati-
cal constructions in text.  Doing so is a multi-step 
process that begins by syntactically parsing the 
document.  The Stanford Parser (Klein and Man-
ning, 2002) was used to produce constituent struc-
ture trees.  The choice of parser is not essential to 
the approach, although the accuracy of parsing 
does play a role in successful identification of cer-
tain grammatical patterns. PCFG scores from the 
parser were also used to filter out some of the ill-
formed text present in the test corpora.  The default 
training set of Penn Treebank (Marcus et al. 1993) 
was used for the parser because the domain and 
style of those texts actually matches fairly well 
with the domain and style of the texts on which a 
reading level predictor for second language learn-
ers might be used. 

Once a document is parsed, the predictor uses 
Tgrep2 (Rohde, 2005), a tree structure searching 
tool, to identify instances of the target patterns.  A 
Tgrep2 pattern defines dominance, sisterhood, 
precedence, and other relationships between nodes 
in the parse tree for a sentence.  A pattern can also 
place constraints on the terminal symbols (e.g., 
words and punctuation), such that a pattern might 
require a form of the copula “be” to exist in a cer-
tain position in the construction.  An example of a 
TGrep2 search pattern for the progressive verb 
tense is the following: 

 
“VP < /^VB/ < (VP < VBG)” 

 
Searching for this pattern returns sentences in 

which a verb phrase (VP) dominates an auxiliary 
verb (whose symbol begins with VB) as well as 
another verb phrase, which in turn dominates a 
verb in gerund form (VBG).  An example of a 

matching sentence is, “The student was reading a 
book,” shown in Figure 2. 

 
Figure 2: The parse tree for an example sentence 
that matches a pattern for progressive verb tense. 
 
A set of 22 relevant grammatical constructions 
were identified from grammar textbooks for three 
different ESL levels (Fuchs et al., 2005).  These 
grammar textbooks had different authors and pub-
lishers than the ones used in the evaluation corpora 
in order to minimize the chance of experimental 
results not generalizing beyond the specific materi-
als employed in this study.  The ESL levels corre-
spond to the low-intermediate (hereafter, level 3), 
high-intermediate (level 4), and advanced (level 5) 
courses at the University of Pittsburgh’s English 
Language Institute.  The constructions identified in 
these grammar textbooks were then implemented 
in the form of Tgrep2 patterns.   

 
Feature  Lowest Level Highest Level 

Passive Voice 0.11 0.71 
Past Participle 0.28 1.63 
Perfect Tense 0.01 0.33 
Relative Clause 0.54 0.60 
Continuous 
Tense 

0.19 0.27 

Modal 0.80 1.44 
Table 1: The rates of occurrence per 100 words of 
a few of the features used by the grammar-based 
predictor.  Rates are shown for the lowest (2) and 
highest (5) levels in the L2 corpus. 

 
The rate of occurrence of constructions was 

calculated on a per word basis.  A per-word rather 

a book 

The student 

S 

VP 
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NP 
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NP 
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than a per-sentence measure was chosen because a 
per-sentence measure would depend too greatly on 
sentence length, which also varies by level.  It was 
also desirable to avoid having sentence length con-
founded with other features.  Table 1 shows that 
the rates of occurrence of certain constructions be-
come more frequent as level increases.  This sys-
tematic variation across levels is the basis for the 
grammar-based readability predictions. 

A second feature set was defined that consisted 
of 12 grammatical features that could easily be 
identified without computationally intensive syn-
tactic parsing.  These features included sentence 
length, the various verb forms in English, includ-
ing the present, progressive, past, perfect, continu-
ous tenses, as well as part of speech labels for 
words.  The goal of using a second feature set was 
to examine how dependent prediction quality was 
on a specific set of features, as well as to test the 
extent to which the output of syntactic parsing 
might improve prediction accuracy. 

3.2 Algorithm for Grammatical Feature-
based Classification 

A k-Nearest Neighbor (kNN) algorithm is used for 
classification based on the grammatical features 
described above.  The kNN algorithm is an in-
stance-based learning technique originally devel-
oped by Cover and Hart (1967) by which a test 
instance is classified according to the classifica-
tions of a given number (k) of training instances 
closest to it.  Distance is defined in this work as the 
Euclidean distance of feature vectors.  Mitchell 
(1997) provides more details on the kNN algo-
rithm.  This algorithm was chosen because it has 
been shown to be effective in text classification 
tasks when compared to other popular methods 
(Yang 1999).  A k value of 12 was chosen because 
it provided the best performance on held-out data. 

Additionally, it is straightforward to calculate 
a confidence measure with which kNN predictions 
can be combined with predictions from other clas-
sifiers—in this case with predictions from the uni-
gram language modeling-based approach described 
above.  A confidence measure was important in 
this task because it provided a means with which to 
combine the grammar-based predictions with the 
predictions from the language modeling-based 
predictor while maintaining separate models for 
each type of feature.  These separate models were 

maintained to better determine the relative contri-
butions of grammatical and lexical features. 

A static linear interpolation of predictions us-
ing the two approaches led to only minimal reduc-
tions of prediction error, likely because predictions 
from the poorer performing grammar-based classi-
fier were always given the same weight.  However, 
with the confidence measures, predictions from the 
grammar-based classifier could be given more 
weight when the confidence measure was high, and 
less weight when the measure was low and the 
predictions were likely to be inaccurate.  The case-
dependent interpolation of prediction values al-
lowed for the effective combination of language 
modeling- and grammar-based predictions.  

The confidence measure employed is the pro-
portion of the k most similar training examples, or 
nearest neighbors, that agree with the final label 
chosen for a given test document.  For example, if 
seven of ten neighbors have the same label, then 
the confidence score will be 0.6.  The interpolated 
readability prediction value is calculated as fol-
lows: 

 
LI = LLM + CkNN * LGR, 

 
where LLM is the language model-based prediction, 
LGR is the grammar-based prediction from the kNN 
algorithm, and CkNN is the confidence value for the 
kNN prediction.  The language modeling approach 
is treated as a black box, but it would likely be 
beneficial to have confidence measures for it as 
well. 

4 Descriptions of Experiments 

This section describes the experiments used to test 
the hypothesis that grammar-based features can 
improve readability measures for English, espe-
cially for second language texts.  The measures 
and cross-validation setup are described.  A de-
scription of the evaluation corpora of labeled first 
and second language texts follows. 

4.1 Experimental Setup 

Two measurements were used in evaluating the 
effectiveness of the reading level predictions.  
First, the correlation coefficient evaluated whether 
the trends of prediction values matched the trends 
for human-labeled texts.  Second, the mean 
squared error of prediction values provided a 
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measure of how correct each of the predictors was 
on average,  penalizing more severe errors more 
heavily.  Mean square error was used rather than 
simple accuracy (i.e., number correct divided by 
sample size) because the task of readability predic-
tion is more akin to regression than classification.  
Evaluation measures such as accuracy, precision, 
and recall are thus less meaningful for readability 
prediction tasks because they do not capture the 
fact that an error of 4 levels is more costly than an 
error of a single level. 

A nine-fold cross-validation was employed.  
The data was first split into ten sets.  One set was 
used as held-out data for selecting the parameter k 
for the kNN algorithm and the percentile value for 
the language modeling predictor, and then the re-
maining nine were used to evaluate the quality of 
predictions.  Each of these nine was in turn se-
lected as the test set, and the other eight were used 
as training data. 

4.2 Corpora of Labeled Texts 

Two corpora of labeled texts were used in the 
evaluation.  The first corpus was from a set of texts 
gathered from the Web for a prior evaluation of the 
language modeling approach.  The 362 texts had 
been assigned L1 levels (1-12) by grade school 
teachers, and consisted of approximately 250,000 
words.  For more details on the L1 corpus, see 
(Collins-Thompson and Callan, 2005). 

The second corpora consisted of textbook mate-
rials (Adelson-Goldstein and Howard, 2004, for 
level 2; Ediger and Pavlik, 2000, for levels 3 and 4; 
Silberstein, 2002, for level 5) from a series of Eng-
lish as a Second Language reading courses at the 
English Language Institute at the University of 
Pittsburgh.  The four reading practice textbooks 
that constitute this corpus were from separate au-
thors and publishers than the grammar textbooks 
used to select and define grammatical features.  
The reading textbooks in the corpus are used in 
courses intended for beginning (level 2) through 
advanced (level 5) students.  The textbooks were 
scanned into electronic format, and divided into 
fifty roughly equally sized files.  This second lan-
guage corpus consisted of approximately 200,000 
words. 

Although the sources and formats of the two 
corpora were different, they share a number of 
characteristics.  Their size was roughly equal. The 

documents in both were also fairly but not per-
fectly evenly distributed across the levels.  Both 
corpora also contained a significant amount of 
noise which made accurate prediction of reading 
level more challenging.  The L1 corpus was from 
the Web, and therefore contained navigation 
menus, links, and the like.  The texts in the L2 cor-
pus also contained significant levels of noise due to 
the inclusion of directions preceding readings, ex-
ercises and questions following readings, as well as 
labels on figures and charts.  The scanned files 
were not hand-corrected in this study, in part to test 
that the measures are robust to noise, which is pre-
sent in the Web documents for which the readabil-
ity measures are employed in the REAP tutoring 
system.  

The grammar-based prediction seems to be 
more significantly negatively affected by the noise 
in the two corpora because the features rely more 
on dependencies between different words in the 
text.  For example, if a word happened to be part of 
an image caption rather than a well-formed sen-
tence, the unigram language modeling approach 
would only be affected for that word, but the 
grammar-based approach might be affected for 
features spanning an entire clause or sentence. 

5 Results of Experiments 

The results show that for both the first and sec-
ond language corpora, the language modeling 
(LM) approach alone produced more accurate pre-
dictions than the grammar-based approach alone.  
The mean squared error values (Table 2) were 
lower, and the correlation coefficients (Table 3) 
were higher for the LM predictor than the gram-
mar-based predictor.   

The results also indicate that while grammar-
based predictions are not as accurate as the vo-
cabulary-based scores, they can be combined with 
vocabulary-based scores to produce more accurate 
interpolated scores.  The interpolated predictions 
combined by using the kNN confidence measure 
were slightly and in most tests significantly more 
accurate in terms of mean squared error than the 
predictions from either single measure.   Interpola-
tion using the first set of grammatical features led 
to 7% and 22% reductions in mean squared error 
on the L1 and L2 corpora, respectively.  These re-
sults were verified using a one-tailed paired t-test 
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of the squared error values of the predictions, and 
significance levels are indicated in Table 2. 

 
Mean Squared Error Values 

Test Set (Num. Levels) L1(12) L2(4) 
Language Modeling 5.02 0.51 
Grammar 10.27 1.08 
Interpolation 4.65* 0.40** 
Grammar2 (feature set #2) 12.77 1.26 
Interp2. (feature set #2) 4.73 0.43* 

Table 2.  Comparison of Mean Squared Error of 
predictions compared to human labels for different 
methods.  Interpolated values are significantly bet-
ter compared to language modeling predictions 
where indicated (* = p<0.05, ** = p<0.01). 

 
Correlation Coefficients 

Test Set (Num. Levels) L1(12) L2(4) 
Language Modeling 0.71 0.80 
Grammar 0.46 0.55 
Interpolation 0.72 0.83 
Grammar2 (feature set #2) 0.34 0.48 
Interp2. (feature set #2) 0.72 0.81 

Table 3.  Comparison of Correlation Coefficients 
of prediction values to human labels for different 
prediction methods. 
 

The trends were similar for both sets of gram-
matical features.  However, the first set of features 
that included complex syntactic constructs led to 
better performance than the second set, which in-
cluded only verb tenses, part of speech labels, and 
sentence length.  Therefore, when syntactic parsing 
is not feasible because of corpora size, it seems 
that grammatical features requiring only part-of-
speech tagging and word counts may still improve 
readability predictions.  This is practically impor-
tant because parsing can be too computationally 
intensive for large corpora. 

All prediction methods performed better, in 
terms of correlations, on the L2 corpus than on the 
L1 corpus.  The L2 corpus is somewhat smaller in 
size and should, if only on the basis of training ma-
terial available to the prediction algorithms, actu-
ally be more difficult to predict than the L1 corpus.  
To ensure that the range of levels was not causing 
the four-level L2 corpus to have higher predictions 
than the twelve-level L1 corpus, the L1 corpus was 

also divided into four bins (grades 1-3, 4-6, 7-9, 
10-12).  The accuracy of predictions for the binned 
version of the L1 corpus was not substantially dif-
ferent than for the 12-level version. 

6 Discussion 

In the experimental tests, the LM approach was 
more effective for measuring both L1 and L2 read-
ability.  There are several potential causes of this 
effect.  First, the language modeling approach can 
utilize all the words as they appear in the text as 
features, while the grammatical features were cho-
sen and defined manually.  As a result, the LM 
approach can make measurements on a text for as 
many features as there are words in its lexicon.  
Additionally, the noise present in the corpora likely 
affected the grammar-based approach dispropor-
tionately more because that method relies on accu-
rate parsing of relationships between words. 

Additionally, English is a morphologically im-
poverished language compared to most languages.  
Text classification, information retrieval, and many 
other human language technology tasks can be ac-
complished for English without accounting for 
grammatical features such as morphological inflec-
tions.  For example, an information retrieval sys-
tem can perform reasonably well in English 
without performing stemming, which does not 
greatly increase performance except when queries 
and documents are short (Krovetz, 1993). 

However, most languages have a rich morphol-
ogy by which a single root form may have thou-
sands or perhaps millions of inflected or derived 
forms.  Language technologies must account for 
morphological features in such languages or the 
vocabulary grows so large that it becomes unman-
ageable.  Lee (2004), for example, showed that 
morphological analysis can improve the quality of 
statistical machine translation for Arabic.  Thus it 
seems that grammatical features could contribute 
even more to measures of readability for texts in 
other languages. 

That said, the use of grammatical features ap-
pears to play a more important role in readability 
measures for L2 than for L1.  When interpolated 
with grammar-based scores, the reduction of mean 
squared error over the language modeling approach 
for L1 was only 7%, while for L2 the reduction or 
squared error was 22%.  An evaluation on corpora 
with less noise would likely bring out these differ-
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ences further and show grammar to be an even 
more important factor in second language readabil-
ity.  This result is consistent with the fact that sec-
ond language learners are still in the process of 
acquiring the basic grammatical constructs of their 
target language. 

7 Conclusion 

The results of this work suggest that grammatical 
features can play a role in predicting reading diffi-
culty levels for both first and second language texts 
in English.  Although a vocabulary-based language 
modeling approach outperformed the grammar-
based predictor, an interpolated measure using 
confidence scores for the grammar-based predic-
tions showed improvement over both individual 
measures.  Also, grammar appears to play a more 
important role in second language readability than 
in first language readability.  Ongoing work aims 
to improve grammar-based readability by reducing 
noise in training data, automatically creating larger 
grammar feature sets, and applying more sophisti-
cated modeling techniques. 
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Abstract

This paper introduces the use of speech
translation technology for a new type of
voice-interactive Computer Aided Lan-
guage Learning (CALL) application. We
describe a computer game we have devel-
oped, in which the system presents sen-
tences in a student’s native language to
elicit spoken translations in the target new
language. A critical technology is an al-
gorithm to automatically verify the ap-
propriateness of the student’s translation
using linguistic analysis. Evaluation re-
sults are presented on the system’s abil-
ity to match human judgment of the cor-
rectness of a student’s translation, for a set
of 1115 utterances collected from 9 learn-
ers of Mandarin Chinese translating flight
domain sentences. We also demonstrate
the effective use of context information to
improve both recognition performance on
non-native speech as well as the system’s
accuracy in judging the translation quality.

1 Introduction

It is widely recognized that one of the best ways
to learn a foreign language is through spoken di-
alogue with native speakers (Ehsani and Knodt,
1998). However, this is not a practical method in the
classroom setting. A potential solution to this prob-
lem is to rely on computer spoken dialogue systems
to role play a tutor and/or a conversational partner.

Ideally, a voice-interactive system can provide the
learner with endless opportunities for practice and
feedback. However, while a number of dialogue sys-
tems have been developed (or adapted) for language
learning purposes (Seneff et al., 2004; Johnson et
al., 2004), the issues of speech understanding of the
accented and disfluent utterances of a foreign lan-
guage student typically lead to unacceptable perfor-
mance (Eskenazi, 1999).

A relatively successful application of speech pro-
cessing technology is in the area of pronunciation
training (Eskenazi, 1999; Witt, 1999; Hardison,
2004). In this case, a learner repeats words or sen-
tences prompted by the computer, and receives feed-
back on the segmental and suprasegmental quality
of their speech. While such systems can be useful,
they do not help the student learn how to formulate
sentences within the language on their own.

In this paper, we introduce a novel speech trans-
lation game which aims to provide a fun and reli-
able environment for language learners to gain pro-
ficiency in communication. Our application is com-
plementary to pronunciation training in that we pro-
vide the opportunity for the students to practice ex-
pressing themselves in the new language. While
we don’t explicitly evaluate their pronunciations, we
provide implicit feedback in that they must speak
well enough for the speech recognizer to success-
fully process their utterances. The translation exer-
cise can also serve as a preparation stage in which
students can practice relevant vocabulary and sen-
tence constructs, in order to prepare themselves for
the more challenging task of interacting with a dia-
logue system in the same domain.
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System: (greet and prompt user) Welcome! You are playing at level four. Okay, here’s your first sentence to
translate: The return date is Tuesday October 25.

User: (translate with error) fan3 hui2 ri4 qi1 shi4 si4 yue4 er4 shi2 wu3 hao4 xing1 qi1 er4.
System: (paraphrase in Chinese) fan3 hui2 ri4 qi1 si4 yue4 er4 shi2 wu3 hao4 xing1 qi1 er4.
System: (paraphrase in English) The return date is Tuesday April 25.

User: (repeat date) shi2 yue4 er4 shi2 wu3 hao4.
System: (paraphrase in Chinese) shi2 yue4 er4 shi2 wu3 hao4.
System: (paraphrase in English) October 25.
System: (respond to user) “Great! You successfully translated the sentence in separate fragments. Let’s move

on to the next sentence: I need to fly to Hong Kong the day after tomorrow.
User: (click on the help button)

System: (repeat English prompt) I need to fly to Hong Kong the day after tomorrow.
System: (offer example translation) wo3 xu1 yao4 hou4 tian1 fei1 xiang1 gang3.

User: (imitate the translation) wo3 xu1 yao4 hou4 tian1 fei1 xiang1 gang3.
... ...

System: (respond to user) You translated nine out of ten sentences. You took on average 1.6 turns per sentence.
You have advanced to level five. Would you like to play another round?

Figure 1: Example interaction between a user and the system.

Our prototype centers on the task of translating
phrases and sentences from English into Chinese, in
the flight reservation domain. As illustrated by the
example dialogue in Figure 1, the system role plays
a language tutor interacting with a Mandarin learner.
The system prompts the student with randomly gen-
erated English sentences to elicit spoken Chinese
translations from the learner. The system para-
phrases each user utterance in both languages, to im-
plicitly inform the user of the system’s internal un-
derstanding, and judges whether the student has suc-
ceeded in the task. The system keeps track of how
many turns a user takes to complete all the sentences
in a game session, and rewards good performance by
advancing the student towards higher difficulty lev-
els. A convenient “help” button allows the student to
request a translation of the current game sentence,
to help them overcome gaps in their knowledge of
the linguistic constructs or the vocabulary. The stu-
dent can also type any English sentences within the
domain to obtain a reference translation. The sys-
tem utilizes an interlingua-based bidirectional trans-
lation capability, described in detail in (Wang and
Seneff, 2006; Seneff et al., 2006). Both Chinese and
English sentences are parsed into a common mean-
ing representation, which we loosely refer to as an
“interlingua,” from which paraphrases in both lan-
guages can be automatically generated using formal
generation rules.

The key to a successful tutoring system lies in
its ability to provide immediate and pertinent feed-
back on the student’s performance, similar to a hu-

man tutor. A central focus of this paper is to ad-
dress the challenging problem of automatically as-
sessing the appropriateness of a student’s transla-
tion. At first glance, our task appears to share much
in common with machine translation (MT) evalua-
tion (Hovy et al., 2002). Indeed, both are trying to
assess the quality of the translation output, whether
it is produced by a computer or by a foreign lan-
guage student. Nevertheless, there also exist sev-
eral fundamental distinctions. Automatic MT eval-
uation methods, as represented by the well-known
Bleu metric (Papineni et al., 2001), assume the avail-
ability of human reference translations. The algo-
rithms typically compare MT outputs with reference
translations with the goal of producing a quality in-
dicator (on a numeric scale) that correlates with hu-
man judgement. In contrast, our algorithm operates
in the absence of human generated reference trans-
lations1 . Furthermore, our application requires the
evaluation algorithm to make accept/reject decisions
on each individual translation, in the same way as a
language tutor determines whether a translation is
acceptable or not. While our task is more demand-
ing, it is made possible by operating in restricted do-
mains.

The remainder of the paper is organized as fol-
lows. In Section 2, we present an interlingua-based
approach for verifying the correctness of the stu-
dent’s spoken translation. Section 3 describes the

1We employ a grammar of recursive rewrite rules to generate
a very large number of English prompt sentences. It would be
too costly and time-consuming to generate human translations
to cover this space.
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evaluation framework, followed by results and dis-
cussions in Section 4. Finally, we discuss future
plans for extending our work.

2 Methodology

The two most important aspects in the human eval-
uation of translation quality are fluency and fi-
delity (Hovy et al., 2002). In our case, we con-
sider a student’s translation to be acceptable if it is
well-formed (high fluency) and conveys the same
meaning as the input sentence (high fidelity). We
designed our interlingua-based evaluation algorithm
following these two principles. The algorithm uses
parsability to verify fluency. Fidelity is examined
by extracting and comparing semantic information
from the translation pairs. In the following, we begin
by describing the basic steps involved in our transla-
tion verification algorithm. We then discuss differ-
ent strategies for integrating with the speech recog-
nition system.

2.1 Parsing

Our framework depends strongly on an ability to
parse both the English and Chinese sentences into a
common interlingual meaning representation. Pars-
ing is critical both for producing the two paraphrases
of the student’s utterance and for judging the qual-
ity of their provided translation. Both English and
Chinese grammars are needed to analyze the source
and target sides of each translation pair. The gram-
mars have been carefully constructed so that mean-
ing representations derived from both languages are
as similar as feasible.

We utilized a parser (Seneff, 1992) that is based
on an enhanced probabilistic context-free gram-
mar (PCFG), which captures dependencies beyond
context-free rules by conditioning on the external
left-context parse categories when predicting the
first child of each parent node. While we use a spe-
cific grammar for analyzing flight domain sentences,
we emphasize domain portability of the grammar by
using mainly syntactic information in the majority of
the parse tree rules. Semantics are introduced near
the terminals, mostly involving adjectives, verbs,
nouns and proper noun classes. Rules for general
semantic concepts such as dates and times are orga-
nized into sub-grammars that are easily embedded

into any domain. We have successfully applied the
same strategy in developing both the Chinese and
English grammars. Once a parse tree is obtained, se-
lected parse categories are extracted to form a hier-
archical meaning representation encoding both syn-
tactic and semantic information.

2.2 Semantic Information Comparison

In principle, we can directly compare the meaning
representations derived from the source and target
sides of the translation pair to determine their equiv-
alence. In practice, the meaning representation still
captures too much language-specific detail, which
makes the comparison prone to failure. Even the
pair of English utterances, “How much is the second
flight?” and “What is the price of the second flight?”
have essentially the same meaning, but would not
produce identical meaning representations. Across
languages, this situation becomes much worse.

We adopted two complementary strategies to in-
crease the chance of a match between the English
prompt and the student translation. First, the English
prompt is translated into a reference Chinese trans-
lation using the existing interlingua translation capa-
bility. This extra step aims at reducing discrepancies
caused by syntactic structure differences between
the two languages. Secondly, we abstract from the
original meaning representation into a simple en-
coding of key-value (KV) pairs. This is accom-
plished using a language generation system (Baptist
and Seneff, 2000), with generation rules determin-
ing what information to extract from the original hi-
erarchical meaning representation. Figure 2 shows
a couple of examples of the KV representation that
we used for scoring.

Another important role of the KV generation step
is to bring in a flexible mechanism for defining
equivalence, which is a tricky task even for human
evaluators. For example, while it is somewhat ob-
vious that “(1) Give me flights leaving around nine
p m” is equivalent to “(2) Give me flights depart-
ing around nine p m,” it is unclear whether these
two sentences are equivalent to “(3) Give me flights
around nine p m” or even “(4) I would like to leave
around nine p m.” From a pragmatic point of view,
the same speaker intention can be inferred from the
four sentences. On the other hand, it can be ar-
gued that (1) and (2) are completely interchangeable
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{c eform
:topic "fare"
:airline_name "united"
:trace "how much" }

lian2 he2 hang2 kong1 de5 piao4 jia4 shi4 duo1 shao3?
(What is the fare on United airlines?)

{c eform
:topic "flight"
:source "paris"
:departure_time {c eform

:clock_hour 9
:xm "a m" }}

shang4 wu3 jiu3 dian3 cong2 ba1 li2 chu1 fa1 de5 ban1 ji1.
(Flights from Paris leaving at nine o’clock in the morning.)

Figure 2: Frame representation of the key-value in-
formation for two example Chinese sentences.

while (3) and (4) could not substitute for (1) or (2)
in some circumstances. Criteria for equivalence can
be controlled by what is extracted from the mean-
ing representation. If only a departure time
key is generated for the sentences, then all four sen-
tences will be equivalent. However, if more infor-
mation is preserved in the KV pairs, for example, a
topic key with value flight, then sentence (4)
will not be considered as equivalent to sentences (1)-
(3). Considering that our intended application is lan-
guage tutoring, we lean towards a stricter criterion
for defining equivalence. The KV generation rules
are developed manually, guided by human-rated de-
velopment data. The KV inventory includes over 80
unique keys.

Once the KV pairs are obtained from the prompt
(reference) and the student translation (hypothesis),
a recursive procedure is applied to compare all the
keys in the reference and hypothesis KV frames.
Mismatches are tabulated into substitutions (differ-
ent values for the same key), deletions (extra keys in
the reference), and insertions (extra keys in the hy-
pothesis). A perfect match is achieved if there are
no mismatch errors. Figure 3 summarizes the proce-
dure to evaluate students’ spoken translations.

Partial match for a good student translation is a
common problem caused by speech recognition er-
rors, particularly on dates and times. It is natural
for the student to just repeat the “incorrect” piece
after noticing the error in the system’s paraphrases.
Hence, in the tutoring application, we added a sub-

match mode to the comparison algorithm, which
works in a divide-and-conquer manner. All match-
ing KV pairs in each turn are checked off from the
reference, and a subsequent submatch succeeds once
there are no remaining KV pairs unaccounted for.
One limitation of the incremental comparison algo-
rithm is that it ignores insertion errors. The tutoring
system provides a special reply message when a sen-
tence is translated via partial matches accomplished
over a series of utterances, to distinguish from the
case of a perfect match in a single turn, as illustrated
in the example dialogue.

2.3 Integration with Speech Recognition

A user’s utterance is first processed by the speech
recognizer to produce word hypotheses. The
recognizer is configured from a segment-based
speech recognition system (Glass, 2003), using Chi-
nese acoustic models trained on native speakers’
data (Wang et al., 2000a; Wang et al., 2000b). Tone
features are ignored in the acoustic models; how-
ever, the language model implicitly captures some
tone constraints. This is preferred over modeling
tone explicitly, considering that non-native speak-
ers typically make many tone errors. The language
model was initially trained on Chinese translations
of English sentences generated from the templates
used in the game, and later augmented with addi-
tional data collected from users. The recognizer can
output multiple hypotheses in the form of an N-best
list. The parser is able to convert the N-best list into
a lattice, and re-select a best hypothesis based on a
combination of recognition and parsing scores.

Poor recognition on non-native speech is a ma-
jor performance issue for CALL application. In our
domain, dates, times, and flight numbers are particu-
larly challenging entities for the recognizer. Recog-
nition error typically results in false rejection, caus-
ing frustration to the user. Since the system has
explicit knowledge of the sentence the student is
trying to produce, it should be feasible to exploit
this knowledge to improve speech understanding. A
plausible strategy is to dynamically adjust the rec-
ognizer’s language model in anticipation of what
the user is likely to say, as exemplified by dialogue
context dependent language models (Solsona et al.,
2002).

In theory, we could use the automatically gener-
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Figure 3: Schematic of procedure to evaluate students’ spoken translations.

ated reference translation to explicitly bias the lan-
guage model. However, one has to take care not to
bias towards the correct response so strongly that the
student is allowed to make mistakes with impunity.
Furthermore, this strategy would not generalize to
cover all the possible legitimate translations a stu-
dent might produce for that prompt. Instead, we de-
vised a simple strategy that overcomes these issues.
We select a preferred hypothesis from the N-best list
if its KV representation matches the reference. Thus
the student has to speak well enough for a correct an-
swer to appear somewhere in the N -best list, with-
out any manipulations of the recognizer’s language
model. If the parser fails to find a perfect match in
the N-best list, it will choose the hypothesis with the
best score, or fall back to the recognizer’s top hy-
pothesis if no parse theory could succeed.

3 Evaluation Framework

Given a translation pair, the goal of our algorithm is
to make the same accept/reject decision as a human
evaluator. Hence, we can evaluate our algorithm in
a classification framework. In this section, we first
present the data collection and labeling effort. We
then describe a baseline system based on a variant
of the Bleu metric. Finally we briefly describe the
metrics we used to evaluate our algorithms.

3.1 Data Collection and Labeling

During the course of developing a prototype game
system, two developers and two student testers inter-
acted extensively with the system. A total of 2527
Chinese waveforms, recorded during this process,
became development data for finding gaps in the
interlingua-based matching method and for tuning
parameters for the baseline method.

For evaluation, we use 1115 utterances collected

from 9 users with varying degrees of Chinese expo-
sure. These subjects were asked to play the transla-
tion game over the Web and fill out a survey after-
wards. They came from a rich background of Chi-
nese exposure, include advanced “heritage” speak-
ers of Chinese (including dialects such as Cantonese
and Shanghainese), as well as novices who just
completed two semesters of a college-level Chinese
class.

The speech waveforms recorded from the interac-
tions were manually transcribed with orthography,
gender, and speaker information. The transcriber
was instructed to transcribe spontaneous speech ef-
fects, such as false starts and filled pauses. However,
tonal mispronunciations are completely ignored, and
segmental errors are largely ignored to the extent
that they do not result in a different syllable.

The translation pairs (the English prompt and the
orthographic transcription of the student translation)
were rated independently by two bilingual speakers
to provide reference labels for evaluating the verifi-
cation algorithm. The two raters, both native in Chi-
nese and fluent in English, labelled each translation
with either an “accept” or a “reject” label. Transla-
tions can be rejected because of bad language usage
(including false starts) or because of mismatches in
meaning. One labeller rated both development and
test data, while the second labeller only rated the test
data. The interlabeller agreement on the test data has
a kappa score (Uebersax, 1998) of 0.85. The subset
of data for which there was disagreement were rela-
belled by the two raters jointly to reach a consensus.

3.2 Baseline

The Bleu metric has been widely accepted as an
effective means to automatically evaluate the qual-
ity of machine translation outputs (Papineni et al.,
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2001). An interesting question is whether it would
be useful for the purpose of assessing the appro-
priateness of translations produced by non-native
speakers at a sentence by sentence granularity level.
We developed a simple baseline algorithm using the
NIST score, which is a slight variation of Bleu2.
Given an English prompt, the interlingua-based ma-
chine translation system first produces a reference
translation. The student’s translation is then com-
pared against the machine output to obtain a NIST
score. The translation is accepted if the score ex-
ceeds a certain threshold optimized on the develop-
ment data.

Figure 4 plots the Receiver Operating Character-
istics (ROC) curve of the baseline algorithm, ob-
tained by varying the NIST score acceptance thresh-
old. Each point on the curve represents a tradeoff
between accepting an erroneous translation (False
Accept) and rejecting a good one (False Reject). As
shown in the plot, the NIST score based ROC curve
is far from reaching the ideal top-left corner. For
language tutoring purposes, it is desirable to oper-
ate in the low false acceptance region. However, a
20% false acceptance rate will result in the system
rejecting over 35% of correct student translations.
The operating point that minimizes overall classifi-
cation error turns out to be biased towards leniency,
falsely accepting over 60% of translations that are
rejected by human raters. The resulting minimum
error rate on development data transcripts is 23.0%,
with a NIST score threshold of 3.16. The thresh-
old for automatic speech recognition (ASR) outputs
was optimized separately using the 1-best hypothe-
ses of utterances in the development data. The opti-
mal threshold on ASR outputs is 1.60, resulting in a
classification error rate of 24.1%. The majority clas-
sifier, corresponding to the (1, 1) point on the curve,
translates into a 31.6% error rate on the development
data.

3.3 Evaluation Metrics

We evaluated the overall system performance on test
data using human decisions as ground truth. Al-

2We determined empirically that the NIST score works
slightly better than the Bleu score in our application. The
scores are computed using the NIST MT scoring tool from:
ftp://jaguar.ncsl.nist.gov/mt
/resources/mteval-v11b.pl
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Figure 4: ROC curve by changing acceptance
threshold on the NIST score on transcriptions of de-
velopment data.

though we can not generate an ROC curve for our
proposed algorithm (because it is a non-parametric
method), we plot its performance along with the
ROC curve of the baseline system for a more thor-
ough comparison.

We evaluated the different ASR integration strate-
gies (1-best hypothesis, 10-best hypotheses, using
contextual constraints from reference KV) based on
sentence classification error rates as well as speech
recognition performance.

4 Results and Discussions

Table 1 summarizes the false accept, false reject, and
overall classification error rates on unseen test data.
With manual transcripts as inputs, the baseline al-
gorithm using the NIST score achieved a classifica-
tion error rate of 19.3%, as compared with 25.0%
for the trivial case of always accepting the user sen-
tence (Majority classifier). The KV-based algorithm
achieved a much better performance, with only a
7.1% classification error rate. This translates into
a kappa score of 0.86, which is slightly above the
level of agreement initially achieved by the two la-
bellers. Note that the performance difference com-
pared to the baseline system is mostly attributed to a
large reduction in the “False Accept” category.

Interestingly, the NIST method degrades only
slightly when it is applied to the speech recognition
1-best output rather than the transcript. However,
this result is deceptive, as it is now even more bi-
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False False Classification
Transcript Reject Accept Error

Majority 0.0% 100% 25.0%
NIST 8.0% 54.5% 19.6%
KV 7.3% 6.8% 7.2%

False False Classification
ASR Reject Accept Error

NIST 4.2% 77.1% 22.4%
KV 1-best 32.1% 4.3% 25.1%
KV 10-best 27.0% 7.2% 22.1%
KV Context 13.5% 14.7% 13.8%

Table 1: Classification results for various evaluation
systems, on both transcripts and automatic speech
recognition (ASR) outputs. Note that the “KV Con-
text” condition favors a hypothesis that matches the
prompt KV.

ased towards a “False Accept” strategy, causing over
three quarters of the students’ erroneous utterances
to be accepted. The KV method is much more sus-
ceptible to speech recognition error because of its
deep linguistic analysis. For instance, any recog-
nition errors causing a parse failure will result in
a “reject” decision, which explains the high error
rate when only the 1-best hypothesis is used. How-
ever, the KV algorithm can improve substantially by
searching the full N-best list (N = 10) for a plau-
sible analysis. When contextual information (KV
Context) is used, our simple strategy of favoring the
hypothesis matching the reference KV reduces the
classification error rate dramatically.

A plot of the receiver operating characteristics of
these methods in Figure 5 reveals a clear picture of
the performance differences. All of the KV points
are clustered in the upper left corner of the plot,
above the ROC curve of the NIST-based method.
The NIST-score based classifier (represented by the
square marker on the ROC curve) is heavily biased
towards making the acceptance decision (the major-
ity class). In contrast, the KV method operates in the
low “False Accept” area. It achieves a much lower
false rejection rate when compared with the NIST
method operating at an equivalent false acceptance
point.

Although the classification error rate clearly im-
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Figure 5: Comparison of ROC of different methods.

Syllable Sentence
ER(%) RR(%) ER(%) RR(%)

1-best 11.6 - 40.4 -
10-best 10.7 7.8 38.7 4.2
Context 8.7 25.0 30.0 25.7

Table 2: Comparison of speech recognition per-
formance in syllable error rates and sentence error
rates, for three different strategies of utterance selec-
tion from an N -best list. (ER stands for error rate,
RR stands for relative reduction.)

proves when the KV method makes use of the N-
best list and incorporates contextual constraints, the
ROC plot seems to suggest that the error reduction
might simply be attributed to a shift in the operat-
ing point: the improvements are caused by a bias
towards making the majority class decision. We use
improvements in speech recognition to demonstrate
that this is not the case (at least not entirely). Table 2
summarizes the syllable and sentence error rates on
the test data, for the three configurations discussed
previously (1-best, 10-best, and Context). By using
a tighter integration with the parser with contextual
constraints, we greatly improved speech recognition
performance, marked by reductions of syllable and
sentence error rates by 25% and 25.7% respectively.

5 Conclusions and Future Work

In this paper, we have presented an algorithm for au-
tomatically assessing spoken translations produced
by language learners. The evaluation results demon-
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strated that our method involving deep linguistic
analysis of the translation pair can achieve high con-
sistency with human decisions, and our strategy of
incorporating contextual constraints is effective at
improving speech recognition on non-native speech.
While our solution is domain specific, we emphasize
domain portability in the linguistic analysis mod-
ules, so that similar capabilities in other domains can
be quickly developed even in the absence of train-
ing data. Our interlingua framework also makes the
methodology agnostic to the direction of source and
target languages. A similar application for native
Mandarin speakers learning English could be instan-
tiated by using the same components for linguistic
analysis.

A major challenge in our problem is in determin-
ing equivalence between the meanings of a transla-
tion pair. While our approach of using a rule-based
generation system gives the developer great flexibil-
ity in deriving an appropriate KV representation, the
comparison algorithm is somewhat primitive: it re-
lies entirely on the generation rules to produce the
right KV representation. In future work, we plan
to apply machine learning techniques to this prob-
lem. With the data we have collected and labelled
(and the effort is ongoing), it becomes feasible to
examine the use of data-driven methods. As alluded
to in our evaluation methodology, we can cast the
problem into a classification framework. Lexical,
n-gram, and alignment based features can be ex-
tracted from the translation pairs, which can be fur-
ther enhanced by features obtained from deep lin-
guistic analysis. This will relieve the burden on the
semantic analysis component, and improve the over-
all portability of our approach.

We also plan to expand our application to many
other domains appropriate for language learning,
and test the effectiveness of the translation game as
a means for language learning.
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Abstract

Assessing learning progress is a critical
step in language learning applications and
experiments. In word learning, for exam-
ple, one important type of assessment is
a definition production test, in which sub-
jects are asked to produce a short defini-
tion of the word being learned. In current
practice, each free response is manually
scored according to how well its mean-
ing matches the target definition. Manual
scoring is not only time-consuming, but
also limited in its flexibility and ability to
detect partial learning effects.

This study describes an effective auto-
matic method for scoring free responses
to definition production tests. The algo-
rithm compares the text of the free re-
sponse to the text of a reference definition
using a statistical model of text semantic
similarity that uses Markov chains on a
graph of individual word relations. The
model can take advantage of both corpus-
and knowledge-based resources. Evalu-
ated on a new corpus of human-judged
free responses, our method achieved sig-
nificant improvements over random and
cosine baselines in both rank correlation
and label error.

1 Introduction

Human language technologies are playing an in-
creasingly important role in the science and prac-

tice of language learning. For example, intelligent
Computer Assisted Language Learning (CALL) sys-
tems are being developed that can automatically tai-
lor lessons and questions to the needs of individual
students (Heilman et al., 2006). One critical task
that language tutors, word learning experiments, and
related applications have in common is assessing the
learning progress of the student or experiment sub-
ject during the course of the session.

When the task is learning new vocabulary, a vari-
ety of tests have been developed to measure word
learning progress. Some tests, such as multiple-
choice selection of a correct synonym or cloze com-
pletion, are relatively passive. In production tests,
on the other hand, students are asked to write or say
a short phrase or sentence that uses the word being
learned, called thetarget word, in a specified way.

In one important type of production test, called a
definition productiontest, the subject is asked to de-
scribe the meaning of the target word, as they under-
stand it at that point in the session. The use of such
tests has typically required a teacher or researcher
to manually score each response by judging its sim-
ilarity in meaning to the reference definition of the
target word. The resulting scores can then be used
to analyze how a person’s learning of the word re-
sponded to different stimuli, such as seeing the word
used in context. A sample target word and its ref-
erence definition, along with examples of human-
judged responses, are given in Sections 3.3 and 4.1.

However, manual scoring of the definition re-
sponses has several drawbacks. First, it is time-
consuming and must be done by trained experts.
Moreover, if the researcher wanted to test a new hy-
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pothesis by examining the responses with respect to
a different but related definition, the entire set of re-
sponses would have to be manually re-scored against
the new target. Second, manual scoring can often
be limited in its ability to detect when partial learn-
ing has taken place. This is due to the basic trade-
off between the sophistication of the graded scoring
scale, and the ease and consistency with which hu-
man judges can use the scale. For example, it may
be that the subject did not learn the complete mean-
ing of a particular target word, butdid learn that this
target word had negative connotations. The usual
binary or ternary score would provide no or little
indication of such effects. Finally, because manual
scoring almost always must be done off-line after the
end of the session, it presents an obstacle to our goal
of creating learning systems that can adapt quickly,
within a single learning session.

This study describes an effective automated
method for assessing word learning by scoring free
responses to definition production tests. The method
is flexible: it can be used to analyze a response with
respect to whatever reference target(s) the teacher or
researcher chooses. Such a test represents a pow-
erful new tool for language learning research. It is
also a compelling application of human language
technologies research on semantic similarity, and
we review related work for that area in Section 2.
Our probabilistic model for computing text seman-
tic similarity, described in Section 3, can use both
corpus-based and knowledge-based resources. In
Section 4 we describe a new dataset of human def-
inition judgments and use it to measure the effec-
tiveness of the model against other measures of text
similarity. Finally, in Section 5 we discuss further
directions and applications of our work.

2 Related Work

The problem of judging a subject response against a
target definition is a type of text similarity problem.
Moreover, it is a textsemanticsimilarity task, since
we require more than measuring direct word overlap
between the two text fragments. For example, if the
definition of the target wordameliorateis to improve
somethingand the subject response ismake it better,
the response clearly indicates that the subject knows
the meaning of the word, and thus should receive a

high score, even though the response and the target
definition have no words in common.

Because most responses are short (1 – 10 words)
our task falls somewhere between word-word simi-
larity and passage similarity. There is a broad field
of existing work in estimating the semantic similar-
ity of individual words. This field may be roughly
divided into two groups. First, there are corpus-
based measures, which use statistics or models de-
rived from a large training collection. These require
little or no human effort to construct, but are limited
in the richness of the features they can reliably repre-
sent. Second, there are knowledge-based measures,
which rely on specialized resources such as dictio-
naries, thesauri, experimental data, WordNet, and so
on. Knowledge-based measures tend to be comple-
mentary to a corpus-based approach and emphasize
precision in favor of recall. This is discussed further,
along with a good general summary of text semantic
similarity work, by (Mihalcea et al., 2006).

Because of the fundamental nature of the se-
mantic similarity problem, there are close connec-
tions with other areas of human language tech-
nologies such as information retrieval (Salton and
Lesk, 1971), text alignment in machine transla-
tion (Jayaraman and Lavie, 2005), text summariza-
tion (Mani and Maybury, 1999), and textual co-
herence (Foltz et al., 1998). Educational applica-
tions include automated scoring of essays, surveyed
in (Valenti et al., 2003), and assessment of short-
answer free-response items (Burstein et al., 1999).

As we describe in Section 3, we use a graph to
model relations between words to perform a kind
of semantic smoothingon the language models of
the subject response and target definition before
comparing them. Several types of relation, such
as synonymy and co-occurrence, may be combined
to model the interactions between terms. (Cao
et al., 2005) also formulated a term dependency
model combining multiple term relations in a lan-
guage modeling framework, applied to information
retrieval. Our graph-based approach may be viewed
as a probabilistic variation on thespreading activa-
tion concept, originally proposed for word-word se-
mantic similarity by (Quillian, 1967).

Finally, (Mihalcea et al., 2006) describe a text se-
mantic similarity measure that combines word-word
similarities between the passages being compared.
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Due to limitations in the knowledge-based similarity
measures used, semantic similarity is only estimated
between words with the same part-of-speech. Our
graph-based approach can relate words of different
types and does not have this limitation. (Mihalcea
et al., 2006) also evaluate their method in terms of
paraphrase recognition using binary judgments. We
view our task as somewhat different than paraphrase
recognition. First, our task is not symmetric: we do
not expect the target definition to be a paraphrase
of the subject’s free response. Second, because we
seek sensitive measures of learning, we want to dis-
tinguish a range of semantic differences beyond a
binary yes/no decision.

3 Statistical Text Similarity Model

We start by describing relations between pairs of
terms using a general probability distribution. These
pairs can then combine into a graph, which we can
apply to define a semantic distance between terms.

3.1 Relations between individual words

One way to model word-to-word relationships is us-
ing a mixture of links, where each link defines a par-
ticular type of relationship. In a graph, this may be
represented by a pair of nodes being joined by mul-
tiple weighted edges, with each edge correspond-
ing to a different link type. Our link-based model
is partially based on one defined by (Toutanova et
al., 2004) for prepositional attachment. We allow
directed edges because some relationships such as
hypernyms may be asymmetric. The following are
examples of different types of links.

1. Stemming: Two words are based on common
morphology. Example:stemand stemming.
We used Porter stemming (Porter, 1980).

2. Synonyms and near-synonyms: Two words
share practically all aspects of meaning.
Example: quaff and drink. Our synonyms
came from WordNet (Miller, 1995).

3. Co-occurrence. Both words tend to appear to-
gether in the same contexts.
Example:politicsandelection.

4. Hyper- and hyponyms: Relations such as “X
is a kind ofY ”, as obtained from Wordnet or

other thesaurus-like resources.
Example:airplaneandtransportation.

5. Free association: A relation defined by the fact
that a person is likely to give one word as a free-
association response to the other.
Example:disasterandfear. Our data was ob-
tained from the Univ. of South Florida associa-
tion database (Nelson et al., 1998).

We denote link functions usingλ1, . . . , λm to
summarize different types of interactions between
words. Eachλm(wi, wj) represents a specific type
of lexical or semantic relation or constraint between
wi and wj . For each linkλm, we also define a
weightγm that gives the strength of the relationship
betweenwi andwj for that link.

Our goal is to predict the likelihood of a target
definitionD given a test responseR consisting of
terms{w0 . . . wk} drawn from a common vocabu-
laryV. We are thus interested in the conditional dis-
tribution p(D | R). We start by defining a simple
model that can combine the link functions in a gen-
eral purpose way to produce the conditional distribu-
tion p(wi|wj) given arbitrary termswi andwj . We
use a log-linear model of the general form

p(wi|wj) =
1
Z

exp
L∑

m=0

γm(i)λm(wi, wj) (1)

In the next sections we show how to combine the
estimate of individual pairsp(wi|wj) into a larger
graph of term relations, which will enable us to cal-
culate the desiredp(D | R).

3.2 Combining term relations using graphs

Graphs provide one rich model for representing mul-
tiple word relationships. They can be directed or
undirected, and typically use nodes of words, with
word labels at the vertices, and edges denoting word
relationships. In this model, the dependency be-
tween two words represents a single inference step
in which the label of the destination word is inferred
from the source word. Multiple inference steps may
then be chained together to perform longer-range in-
ference about word relations. In this way, we can in-
fer the similarity of two terms without requiring di-
rect evidence for the relations between that specific
pair. Using the link functions defined in Section 3.1,
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we imagine a generative process where an authorA
creates a short text ofN words as follows.

Step 0: Choose an initial wordw0 with probabil-
ity P (w0|A). (If we have already generatedN
words, stop.)

Stepi: Given we have chosenwi−1, then with prob-
ability 1−α output the wordwi−1 and reset the
process to step 0. Otherwise, with probability
α, sample a new wordwi according to the dis-
tribution:

P (wi|wi−1) =
1
Z

exp
L∑

m=0

γm(i)λm(wi, wi−1)

(2)
whereZ is the normalization quantity.

This conditional probability may be interpreted
as a mixture model in which a particular link type
λm(.) is chosen with probabilityγm(i) at timestep
i. Note that the mixture is allowed to change at each
timestep. For simplicity, we limit the number of
such changes by grouping the timesteps of the walk
into three stages: early, middle and final. The func-
tion Γ(i) defines how timestepi maps to stages,
wheres ∈ {0, 1, 2}, and we now refer toγm(s) in-
stead ofγm(i).

Suppose we have a definitionD consisting of
terms{di}. For each link typeλm(.) we define a
transition matrixC(D,m) based on the definition
D. The reasonD influences the transition matrix
is that some link types, such as proximity and co-
occurrence, are context-specific. Each stages has
an overall transition matrixC(D, s) as the mixture
of the individualC(D,m), as follows.

C(D, s) =
M∑
m=1

γm(s)C(D,m) (3)

Combining the stages overk steps into a single
transition matrix, which we denoteCk, we have

Ck =
k∏
i=0

C(D,Γ(i)) (4)

We denote the(i, j) entry of a matrixAk by Aki,j .
Then for a particular termdi, the probability that a
chain reachesdi afterk steps, starting at wordw is

Pk(di|w) = (1− α)αkCkw,di (5)

where we identifyw anddi with their corresponding
indices into the vocabularyV. The overall probabil-
ity p(di|w) of generating a definition termdi given
a wordw is therefore

P (di|w) =
∞∑
k=0

Pk(di|w) = (1−α)(
∞∑
k=0

αkCk)w,di

(6)
The walk continuation probabilityα can be

viewed as a penalty for long chains of inference. In
practice, to perform the random walk steps we re-
place the infinite sum of Eq. 6 with a small number
of steps (up to 5) on a sparse representation of the
adjacency graph. We obtained effective link weights
γm(i) empirically using held-out data. For simplic-
ity we assume that the sameα is used across all link
types, but further improvement may be possible by
extending the model to use link-specific decaysαm.
Fine-tuning these parameter estimation methods is a
subject of future work.

3.3 Using the model for definition scoring

In our study the reference definition for the target
word consisted of the target word, a rare synonym,
a more frequent synonym, and a short glossary-like
definition phrase. For example, the reference defini-
tion for abscondwas

abscond; absquatulate; escape; to leave quickly
and secretly and hide oneself, often to avoid arrest

or prosecution.

In general, we define the score of a responseR
with respect to a definitionD as the probability
that the definition is generated by the response, or
p(D|R). Equivalently, we can score bylog p(D|R)
since thelog function is monotonic. So making the
simplifying assumption that the termsdi ∈ D are
exchangable (the bag-of-words assumption), and
taking logarithms, we have:

log p(D|R) = log
∏
di∈D

p(di|R)

=
∑
di∈D

log[(1− α)(
m∑
k=0

αkCk)R,di ]

(7)

Suppose that the response to be scored isrun from
the cops. In practical terms, Eq. 7 means that for our

479



example, we “light up” the nodes in the graph cor-
responding torun, from, theandcopsby assigning
some initial probability, and the graph is then “run”
using the transition matrixC according to Eq. 7. In
this study, the initial node probabilities are set to val-
ues proportional to theidf values of the correspond-
ing term, so thatP (di) = idf(di)P

idf(di)
. After m steps,

the probabilities at the nodes for each term in the
reference definitionR are read off, and their log-
arithms summed. Similar to an AND calculation,
we calculate a product of sums over the graph, so
that responses reflecting multiple aspects of the tar-
get definition are rewarded more highly than a very
strong prediction for only a single definition term.

4 Evaluation

We first describe our corpus of gold standard human
judgments. We then explain the different text sim-
ilarity methods and baselines we computed on the
corpus responses. Finally, we give an analysis and
discussion of the results.

4.1 Corpus

We obtained a set of 734 responses to definition pro-
duction tests from a word learning experiment at the
University of Pittsburgh (Bolger et al., 2006). In
total, 72 target words, selected by the same group,
were used in the experiment. In this experiment,
subjects were asked to learn the meaning of target
words after seeing them used in a series of context
sentences. We set aside 70 responses for training,
leaving 664 responses in the final test dataset.

Each response instance was coded using the scale
shown in Table 1, and a sample set of subject re-
sponses and scores is shown in Table 2. The target
word was treated as having several key aspects of
meaning. The coders were instructed to judge a re-
sponse according to how well it covered the various
aspects of the target definition. If the response cov-
ered all aspects of the target definition, but also in-
cluded extra irrelevant information, this was treated
as a partial match at the discretion of the coders.

We obtained three codings of the final dataset.
The first two codings were obtained using an in-
dependent group, the QDAP Center at the Univer-
sity of Pittsburgh. Initially, five human coders, with
varying degrees of general coding experience, were

Score Meaning
0 Completely wrong
1 Some partial aspect is correct
2 One major aspect, or more than one

minor aspect, is correct
3 Covers all aspects correctly

Table 1: Scale for human definition judgements.

Response Human
Score

depart secretly 3
quietly make away, escape 3

to flee, run away 2
flee 2

to get away with 1
to steal or take 0

Table 2: Examples of human scores of responses for
the target wordabscond.

trained by the authors using one set of 10 example
instances and two training sessions of 30 instances
each. Between the two training sessions, one of the
authors met with the coders to discuss the ratings
and refine the rating guidelines. After training, the
authors selected the two coders who had the best
inter-coder agreement on the 60 training instances.
These two coders then labeled the final test set of
664 instances. Our third coding was obtained from
an initial coding created by an expert in the Univer-
sity of Pittsburgh Psychology department and then
adjusted by one of the authors to resolve a small
number of internal inconsistencies, such as when the
same response to the same target had been given a
different score.

Inter-coder agreement was measured using lin-
ear weighted kappa, a standard technique for or-
dinal scales. Weighted kappa scores for all three
coder pairs are shown in Table 3. Overall, agree-
ment ranged from moderate (0.64) to good (0.72).

4.2 Baseline Methods

We computed three baselines as reference points for
lower and upper performance bounds.

Random. The response items were assigned la-
bels randomly.
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Coder pair Weighted
Kappa

1, 2 0.68
2, 3 0.64
1, 3 0.72

Table 3: Weighted kappa inter-rater reliability for
three human coders on our definition response
dataset (664 items).

Method Spearman Rank
Correlation

Random 0.3661
Cosine 0.4731
LSA 0.4868

Markov 0.6111
LSA + Markov 0.6365

Human 0.8744

Table 4: Ability of methods to match human ranking
of responses, as measured by Spearman rank corre-
lation (corrected for ties).

Human choice of label. We include a method
that, given an item and a human label from one of the
coders, simply returns a label of the same item from
a different coder, with results repeated and averaged
over all coders. This gives an indication of an upper
bound based on human performance.

Cosine similarity using tf.idf weighting. Cosine
similarity is a widely-used text similarity method
for tasks where the passages being compared of-
ten have significant direct word overlap. We repre-
sent response items and reference definitions as vec-
tors of terms usingtf.idf weighting, a standard tech-
nique from information retrieval (Salton and Buck-
ley, 1997) that combines term frequency (tf) with
term specificity (idf). A good summary of arguments
for usingidf can be found in (Robertson, 2004). To
computeidf, we used frequencies from a standard
100-million-word corpus of written and spoken En-
glish 1. We included a minimal semantic similar-
ity component by applying Porter stemming (Porter,
1980) on terms.

1The British National Corpus (Burnage and Dunlop, 1992),
using American spelling conversion.

4.3 Methods

In addition to the baseline methods, we also ran the
following three algorithms over the responses.

Markov chains (“Markov”). This is the method
described in Section 3. A maximum of 5 random
walk steps were used, with a walk continuation
probability of 0.8. Each walk step used a mixture of
synonym, stem, co-occurrence, and free-association
links. The link weights were trained on a small set
of held-out data.

Latent Semantic Analysis (LSA). LSA (Lan-
dauer et al., 1998) is a corpus-based unsupervised
technique that uses dimensionality reduction to clus-
ter terms according to multi-order co-occurrence re-
lations. In these experiments, we obtained LSA-
based similarity scores between responses and target
definitions using the software running on the Univer-
sity of Colorado LSA Web site (LSA site, 2006). We
used the pairwise text passage comparison facility,
using the maximum 300 latent factors and a general
English corpus (Grade 1 – first-year college).

Although LSA and the Markov chain approach
are based on different principles, we chose to ap-
ply LSA to this new response-scoring task and cor-
pus because LSA has been widely used as a text se-
mantic similarity measure for other tasks and shown
good performance (Foltz et al., 1998).

LSA+Markov. To test the effectiveness of com-
bining two different – and possibly complemen-
tary – approaches to response scoring, we created
a normalized, weighted linear combination of the
LSA and Markov scores, with the model combina-
tion weight being derived from cross-validation on a
held-out dataset.

4.4 Results

We measured the effectiveness of each scoring
method from two perspectives: ranking quality, and
label accuracy.

First, we measured how well each scoring method
was able to rank response items by similarity to the
target definition. To do this, we calculated the Spear-
man Rank Correlation (corrected for ties) between
the ranking based on the scoring method and the
ranking based on the human-assigned scores, aver-
aged over all sets of target word responses.

Table 4 summarizes the ranking results. For
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Method Label error (RMS)
Top 1 Top 3

Random 1.4954 1.6643
Cosine 0.8194 1.0540
LSA 0.8009 0.9965

Markov 0.7222 0.7968
LSA + Markov 1.1111 1.0650

Human 0.1944 0.4167

Table 5: Root mean squared error (RMSE) of la-
bel(s) for top-ranked item, and top-three items for
all 77 words in the dataset.

overall quality of ranking, the Markov method had
significantly better performance than the other au-
tomated methods (p < 2.38e−5). LSA gave a
small, but not significant, improvement in overall
rank quality over the cosine baseline.2 The sim-
ple combination of LSA and Markov resulted in a
slightly higher but statistically insignificant differ-
ence (p < 0.253).

Second, we examined the ability of each method
to find the most accurate responses – that is, the re-
sponses with the highest human label on average –
for a given target word. To do this, we calculated the
Root Mean Squared Error (RMSE) of the label as-
signed to the top item, and the top three items. The
results are shown in Table 5. For top-item detec-
tion, our Markov model had the lowest RMS error
(0.7222) of the automated methods, but the differ-
ences from Cosine and LSA were not statistically
significant, while differences for all three from Ran-
dom and Human baselines were significant. For
the top three items, the difference between Markov
(0.7968) and LSA (0.9965) was significant at the
p < 0.03 level.

Comparing the overall rank accuracy with top-
item accuracy, the combined LSA + Markov method
was significantly worse at finding the three best-
quality responses (RMSE of 1.0650) than Markov
(0.7968) or LSA (0.9965) alone. The reasons for
this require further study.

2All statistical significance results reported here used the
Wilcoxon Signed-Ranks test.

5 Discussion

Even though definition scoring may seem more
straightforward than other automated learning as-
sessment problems, human performance was still
significantly above the best automated methods in
our study, for both ranking and label accuracy. There
are certain additions to our model which seem likely
to result in further improvement.

One of the most important is the ability to identify
phrases or colloquial expressions. Given the short
length of a response, these seem critical to handle
properly. For example,to get away with something
is commonly understood to meansecretly guilty, not
a physical action. Yet the near-identical phraseto
get away from somethingmeans something very dif-
ferent when phrases and idioms are considered.

Despite the gap between human and automated
performance, the current level of accuracy of the
Markov chain approach has already led to some
promising early results in word learning research.
For example, in a separate study of incremental
word learning (Frishkoff et al., 2006), we used our
measure to track increments in word knowledge
across multiple trials. Each trial consisted of a sin-
gle passage that was eithersupportive– containing
clues to the meaning of unfamiliar words – or not
supportive. In this separate study, broad learning ef-
fects identified by our measure were consistent with
effects found using manually-scored pre- and post-
tests. Our automated method also revealed a pre-
viously unknown interaction between trial spacing,
the proportion of supportive contexts per word, and
reader skill.

In future applications, we envision using our auto-
mated measure to allow a form of feedback for intel-
ligent language tutors, so that the system can auto-
matically adapt its behavior based on the student’s
test responses. With some adjustments, the same
scoring model described in this study may also be
applied to the problem of finding supportive contexts
for students.

6 Conclusions

We presented results for both automated and hu-
man performance of an important task for language
learning applications: scoring definition responses.
We described a probabilistic model of text seman-
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tic similarity that uses Markov chains on a graph of
term relations to perform a kind of semantic smooth-
ing. This model incorporated both corpus-based and
knowledge-based resources to compute text seman-
tic similarity. We measured the effectiveness of both
our method and LSA compared to cosine and ran-
dom baselines, using a new corpus of human judg-
ments on definition responses from a language learn-
ing experiment. Our method outperformed thetf.idf
cosine similarity baseline in ranking quality and in
ability to find high-scoring definitions. Because
LSA and our Markov chain method are based on
different approaches and resources, it is difficult to
draw definitive conclusions about performance dif-
ferences between the two methods.

Looking beyond definition scoring, we believe au-
tomated methods for assessing word learning have
great potential as a new scientific tool for language
learning researchers, and as a key component of in-
telligent tutoring systems that can adapt to students.
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Abstract

We compare two pivot strategies for
phrase-based statistical machine transla-
tion (SMT), namelyphrase translation
and sentence translation. The phrase
translation strategy means that we di-
rectly construct a phrase translation ta-
ble (phrase-table) of the source and tar-
get language pair from two phrase-tables;
one constructed from the source language
and English and one constructed from En-
glish and the target language. We then use
that phrase-table in a phrase-based SMT
system. The sentence translation strat-
egy means that we first translate a source
language sentence inton English sen-
tences and then translate thesen sentences
into target language sentences separately.
Then, we select the highest scoring sen-
tence from these target sentences. We con-
ducted controlled experiments using the
Europarl corpus to evaluate the perfor-
mance of these pivot strategies as com-
pared to directly trained SMT systems.
The phrase translation strategy signifi-
cantly outperformed the sentence transla-
tion strategy. Its relative performance was
0.92 to 0.97 compared to directly trained
SMT systems.

1 Introduction

The rapid and steady progress in corpus-based ma-
chine translation (Nagao, 1981; Brown et al., 1993)

has been supported by large parallel corpora such
as the Arabic-English and Chinese-English paral-
lel corpora distributed by the Linguistic Data Con-
sortium and the Europarl corpus (Koehn, 2005),
which consists of 11 European languages. How-
ever, large parallel corpora do not exist for many
language pairs. For example, there are no pub-
licly available Arabic-Chinese large-scale parallel
corpora even though there are Arabic-English and
Chinese-English parallel corpora.

Much work has been done to overcome the lack
of parallel corpora. For example, Resnik and Smith
(2003) propose mining the web to collect parallel
corpora for low-density language pairs. Utiyama
and Isahara (2003) extract Japanese-English parallel
sentences from a noisy-parallel corpus. Munteanu
and Marcu (2005) extract parallel sentences from
large Chinese, Arabic, and English non-parallel
newspaper corpora.

Researchers can also make the best use of exist-
ing (small) parallel corpora. For example, Nießen
and Ney (2004) use morpho-syntactic information to
take into account the interdependencies of inflected
forms of the same lemma in order to reduce the
amount of bilingual data necessary to sufficiently
cover the vocabulary in translation. Callison-Burch
et al. (2006a) use paraphrases to deal with unknown
source language phrases to improve coverage and
translation quality.

In this paper, we focus on situations where no par-
allel corpus is available (except a few hundred paral-
lel sentences for tuning parameters). To tackle these
extremely scarce training data situations, we pro-
pose using a pivot language (English) to bridge the
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source and target languages in translation. We first
translate source language sentences or phrases into
English and then translate those English sentences
or phrases into the target language, as described in
Section 3. We thus assume that there is a parallel
corpus consisting of the source language and En-
glish as well as one consisting of English and the tar-
get language. Selecting English as a pivot language
is a reasonable pragmatic choice because English is
included in parallel corpora more often than other
languages are, though any language can be used as a
pivot language.

In Section 2, we describe a phrase-based statisti-
cal machine translation (SMT) system that was used
to develop the pivot methods described in Section
3. This is the shared task baseline system for the
2006 NAACL/HLT workshop on statistical machine
translation (Koehn and Monz, 2006) and consists of
the Pharaoh decoder (Koehn, 2004), SRILM (Stol-
cke, 2002), GIZA++ (Och and Ney, 2003), mkcls
(Och, 1999), Carmel,1 and a phrase model training
code.

2 Phrase-based SMT

We use a phrase-based SMT system, Pharaoh,
(Koehn et al., 2003; Koehn, 2004), which is based
on a log-linear formulation (Och and Ney, 2002). It
is a state-of-the-art SMT system with freely avail-
able software, as described in the introduction.
The system segments the source sentence into so-
called phrases (a number of sequences of consecu-
tive words). Each phrase is translated into a target
language phrase. Phrases may be reordered.

Let f be a source sentence (e.g, French) ande be a
target sentence (e.g., English), the SMT system out-
puts an̂e that satisfies

ê = arg max
e

Pr(e|f) (1)

= arg max
e

M∑

m=1

λmhm(e, f) (2)

wherehm(e, f) is a feature function andλm is a
weight. The system uses a total of eight feature
functions: a trigram language model probability of
the target language, two phrase translation probabil-
ities (both directions), two lexical translation prob-

1http://www.isi.edu/licensed-sw/carmel/

abilities (both directions), a word penalty, a phrase
penalty, and a linear reordering penalty. For details
on these feature functions, please refer to (Koehn et
al., 2003; Koehn, 2004; Koehn et al., 2005). To set
the weights,λm, we carried out minimum error rate
training (Och, 2003) using BLEU (Papineni et al.,
2002) as the objective function.

3 Pivot methods

We use the phrase-based SMT system described in
the previous section to develop pivot methods. We
use Englishe as the pivot language. We use French
f and Germang as examples of the source and target
languages in this section.

We describe two types of pivot strategies, namely
phrase translationandsentence translation.

The phrase translation strategy means that we di-
rectly construct a French-German phrase translation
table (phrase-table for short) from a French-English
phrase-table and an English-German phrase-table.
We assume that these French-English and English-
German tables are built using the phrase model train-
ing code in the baseline system described in the
introduction. That is, phrases are heuristically ex-
tracted from word-level alignments produced by do-
ing GIZA++ training on the corresponding parallel
corpora (Koehn et al., 2003).

The sentence translation strategy means that we
first translate a French sentence inton English sen-
tences and translate thesen sentences into German
separately. Then, we select the highest scoring sen-
tence from the German sentences.

3.1 Phrase translation strategy

The phrase translation strategy is based on the fact
that the phrase-based SMT system needs a phrase-
table and a language model for translation. Usually,
we have the language model of a target language.
Consequently, we only need to construct a phrase-
table to train the phrase-based SMT system.

We assume that we have a French-English phrase-
table TFE and an English-German phrase-table
TEG. From these tables, we construct a French-
German phrase-tableTFG, which requires estimat-
ing four feature functions; phrase translation prob-
abilities for both directions,φ(f̄ |ḡ) andφ(ḡ|f̄) and
lexical translation probabilities for both directions,

485



pw(f̄ |ḡ) andpw(ḡ|f̄), wheref̄ andḡ are French and
German phrases that are parts of phrase translation
pairs inTFE andTEG, respectively.2

We estimate these probabilities using the proba-
bilities available inTFE andTEG as follows.3

φ(f̄ |ḡ) =
∑

ē∈TFE∩TEG

φ(f̄ |ē)φ(ē|ḡ) (3)

φ(ḡ|f̄) =
∑

ē∈TFE∩TEG

φ(ḡ|ē)φ(ē|f̄) (4)

pw(f̄ |ḡ) =
∑

ē∈TFE∩TEG

pw(f̄ |ē)pw(ē|ḡ) (5)

pw(ḡ|f̄) =
∑

ē∈TFE∩TEG

pw(ḡ|ē)pw(ē|f̄) (6)

whereē ∈ TFE∩TEG means that the English phrase
ē is included in bothTFE andTEG as part of phrase
translation pairs. φ(f̄ |ē) and φ(ē|f̄) are phrase
translation probabilities forTFE and φ(ē|ḡ) and
φ(ḡ|ē) are those forTEG. pw(f̄ |ē) andpw(ē|f̄) are
lexical translation probabilities forTFE andpw(ē|ḡ)
andpw(ḡ|ē) are those forTEG.

The definitions of the phrase and lexical transla-
tion probabilities are as follows (Koehn et al., 2003).

φ(f̄ |ē) =
count(f̄ , ē)∑
f̄ ′ count(f̄ ′, ē)

(7)

where count(f̄ , ē) gives the total number of times
the phrasēf is aligned with the phrasēe in the par-
allel corpus. Eq. 7 means thatφ(f̄ |ē) is calculated
using maximum likelihood estimation.

The definition of the lexical translation probabil-
ity is

pw(f̄ |ē) = max
a

pw(f̄ |ē,a) (8)

pw(f̄ |ē,a) =
n∏

i=1

Ew(fi|ē,a) (9)

Ew(fi|ē,a) =
1

|{j|(i, j) ∈ a}|
∑

∀(i,j)∈a

w(fi|ej)

(10)
2Feature functions scores are calculated using these proba-

bilities. For example, for a translation probability of a French
sentencef = f̄1 . . . f̄K and a German sentenceg = ḡ1 . . . ḡK ,
h(g, f) = log

∏K

i=1
φ(f̄i|ḡi), where K is the number of

phrases.
3Wang et al. (2006) use essentially the same definition to

induce the translation probability of the source and target lan-
guage word alignment that is bridged by an intermediate lan-
guage. Callison-Burch et al. (2006a) use a similar definition for
a paraphrase probability.

w(f |e) =
count(f, e)∑
f ′ count(f ′, e)

(11)

where count(f, e) gives the total number of times
the wordf is aligned with the worde in the par-
allel corpus. Thus,w(f |e) is the maximum likeli-
hood estimation of the word translation probability
of f givene. Ew(fi|ē,a) is calculated from a word
alignmenta between a phrase pair̄f = f1f2 . . . fn

andē = e1e2 . . . em wherefi is connected to several
(|{j|(i, j) ∈ a}|) English words. Thus,Ew(fi|ē,a)
is the average (or mixture) ofw(fi|ej). This means
that Ew(fi|ē,a) is an estimation of the probabil-
ity of fi in a. Consequently,pw(f̄ |ē,a) estimates
the probability off̄ given ē anda using the prod-
uct of the probabilitiesEw(fi|ē,a). This assumes
that the probability offi is independent given̄e and
a. pw(f̄ |ē) takes the highestpw(f̄ |ē,a) if there
are multiple alignmentsa. This discussion, which
is partly based on Section 4.1.2 of (Och and Ney,
2004), means that the lexical translation probability
pw(f̄ |ē) is another probability estimated using the
word translation probabilityw(f |e).

The justification of Eqs. 3–6 is straightforward.
From the discussion above, we know that the prob-
abilities, φ(f̄ |ē), φ(ē|f̄), φ(ḡ|ē), φ(ē|ḡ), pw(f̄ |ē),
pw(ē|f̄), pw(ḡ|ē), andpw(ē|ḡ) are probabilities in
the ordinary sense. Thus, we can deriveφ(f̄ |ḡ),
φ(ḡ|f̄), pw(f̄ |ḡ), and pw(ḡ|f̄) by assuming that
these probabilities are independent given an English
phrasēe (e.g.,φ(f̄ |ḡ, ē) = φ(f̄ |ē)).

We construct aTFG that consists of all French-
German phrases whose phrase and lexical transla-
tion probabilities as defined in Eqs. 3–6 are greater
than 0. We use the termPhraseTransto denote SMT
systems that use the phrase translation strategy de-
scribed above.

3.2 Sentence translation strategy

The sentence translation strategy uses two inde-
pendently trained SMT systems. We first trans-
late a French sentencef into n English sentences
e1, e2, ..., en using a French-English SMT system.
Eachei (i = 1 . . . n) has the eight scores calcu-
lated from the eight feature functions described in
Section 2. We denote these scoreshe

i1, h
e
i2, . . . h

e
i8.

Second, we translate eachei into n German sen-
tencesgi1,gi2, . . . ,gin using an English-German
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SMT system. Eachgij (j = 1 . . . n) has the eight
scores, which are denoted ashg

ij1, h
g
ij2, . . . , h

g
ij8.

This situation is depicted as

f → ei (he
i1, h

e
i2, . . . , h

e
i8)

→ gij (hg
ij1, h

g
ij2, . . . , h

g
ij8)

We define the score ofgij , S(gij), as

S(gij) =
8∑

m=1

(λe
mhe

im + λg
mhg

ijm) (12)

whereλe
m and λg

m are weights set by performing
minimum error rate training4 as described in Section
2. We select the highest scoring German sentence

ĝ = arg max
gij

S(gij) (13)

as the translation of the French sentencef .
A drawback of this strategy is that translation

speed is aboutO(n) times slower than those of the
component SMT systems. This is because we have
to run the English-German SMT systemn times for
a French sentence. Consequently, we cannot setn
very high. When we usedn = 15 in the experi-
ments described in Section 4, it took more than two
days to translate 3064 test sentences on a 3.06GHz
LINUX machine.

Note that whenn = 1, the above strategy pro-
duces the same translation with the simple sequen-
tial method that we first translate a French sentence
into an English sentence and then translate that sen-
tence into a German sentence.

We use the termsSntTrans15andSntTrans1to de-
note SMT systems that use the sentence translation
strategy withn = 15 andn = 1, respectively.

4 Experiments

We conducted controlled experiments using the
Europarl corpus. For each language pair de-
scribed below, the Europarl corpus provides three

4We use a reranking strategy for the sentence translation
strategy. We first obtainn2 German sentences for each French
sentence by applying two independently trained French-English
and English-German SMT systems. Each of the translated Ger-
man sentences has the sixteen scores as described above. The
weights in Eq. 12 are tuned against reference German sentences
by performing minimum error rate training. These weights are
in general different from those of the original French-English
and English-German SMT systems.

types of parallel corpora; the source language–
English, English–the target language, and the source
language–the target language. This means that we
can directly train an SMT system using the source
and target language parallel corpus as well as pivot
SMT systems using English as the pivot language.
We use the termDirect to denote directly trained
SMT systems. For each language pair, we com-
pare four SMT systems;Direct, PhraseTrans, Snt-
Trans15, andSntTrans1.5

4.1 Training, tuning and testing SMT systems

We used the training data for the shared task of
the SMT workshop (Koehn and Monz, 2006) to
train our SMT systems. It consists of three paral-
lel corpora: French-English, Spanish-English, and
German-English.

We used these three corpora to extract a set of
sentences that were aligned to each other across all
four languages. For that purpose, we used English
as the pivot. For each distinct English sentence, we
extracted the corresponding French, Spanish, and
German sentences. When an English sentence oc-
curred multiple times, we extracted the most fre-
quent translation. For example, because “Resump-
tion of the session” was translated into “Wiederauf-
nahme der Sitzungsperiode” 120 times and “Wieder-
aufnahme der Sitzung” once, we extracted “Wieder-
aufnahme der Sitzungsperiode” as its translation.
Consequently, we extracted 585,830 sentences for
each language. From these corpora, we constructed
the training parallel corpora for all language pairs.

We followed the instruction of the shared task
baseline system to train our SMT systems.6 We
used the trigram language models provided with the
shared task. We did minimum error rate training on
the first 500 sentences in the shared task develop-
ment data to tune our SMT systems and used the

5As discussed in the introduction, we intend to use the pivot
strategies in a situation where a very limited amount of parallel
text is available. The use of the Europarl corpus is not an accu-
rate simulation of the intended situation because it enables us to
use a relatively large parallel corpus for direct training. How-
ever, it is necessary to evaluate the performance of the pivot
strategies against that ofDirect SMT systems under controlled
experiments in order to determine how much the pivot strate-
gies can be improved. This is a first step toward the use of pivot
methods in situations where training data is extremely scarce.

6The parameters for the Pharaoh decoder were “-dl 4 -b 0.03
-s 100”. The maximum phrase length was 7.
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3064 test sentences for each language as our test set.
Our evaluation metric was %BLEU scores, as cal-

culated by the script provided along with the shared
task.7 We lowercased the training, development and
test sentences.

4.2 Results

Table 1 compares the BLEU scores of the four SMT
systems;Direct, PhraseTrans, SntTrans15, andSnt-
Trans1for each language pair. The columns SE and
ET list the BLEU scores of theDirect SMT sys-
tems trained on the source language–English and
English–the target language parallel corpora. The
numbers in the parentheses are the relative scores
of the pivot SMT systems, which were obtained
by dividing their BLEU scores by that of the cor-
respondingDirect system. For example, for the
Spanish–French language pair, the BLEU score of
the Direct SMT system was 35.78, that of the
PhraseTransSMT system was 32.90, and the rela-
tive performance was0.92 = (32.90/35.78). For
the SntTrans15SMT system, the BLEU score was
29.49 and the relative performance was0.82 =
(29.49/35.78).

The BLEU scores of theDirect SMT systems
were higher than those of thePhraseTransSMT sys-
tems for all six source-target language pairs. The
PhraseTransSMT systems performed better than
the SntTrans15SMT systems for all pairs. The
SntTrans15SMT systems were better than theSnt-
Trans1 SMT systems for four pairs. According
to the sign test, under the null hypothesis that the
BLEU scores of two systems are equivalent, finding
one system obtaining better BLEU scores on all six
language pairs is statistically significant at the 5 %
level. Obtaining four better scores is not statistically
significant. Thus, Table 1 indicates

Direct > PhraseTrans> SntTrans15∼ SntTrans1

where “>” and “∼” means that the differences of
the BLEU scores of the corresponding SMT systems
are statistically significant and insignificant, respec-
tively.

7Callison-Burch et al. (2006b) show that in general a higher
BLEU score is not necessarily indicative of better translation
quality. However, they also suggest that the use of BLEU is
appropriate for comparing systems that use similar translation
strategies, which is the case with our experiments.

As expected, theDirect SMT systems outper-
formed the other systems. We regard the BLEU
scores of theDirect systems as the upperbound. The
SntTrans15SMT systems did not significantly out-
perform theSntTrans1SMT systems. We think that
this is becausen = 15 was not large enough to cover
good translation candidates.8 Selecting the highest
scoring translation from a small pool did not always
lead to better performance. To improve the perfor-
mance of the sentence translation strategy, we need
to use a largen. However, this is not practical be-
cause of the slow translation speed, as discussed in
Section 3.2.

ThePhraseTransSMT systems significantly out-
performed theSntTrans15and SntTrans1systems.
That is, the phrase translation strategy is better
than the sentence translation strategy. Since the
phrase-tables constructed using the phrase transla-
tion strategy can be integrated into the Pharaoh de-
coder as well as the directly extracted phrase-tables,
thePhraseTransSMT systems can fully exploit the
power of the decoder. This led to better performance
even when the induced phrase-tables were noisy, as
described below.

The relative performance of thePhraseTrans
SMT systems compared to theDirect SMT systems
was 0.92 to 0.97. These are very promising re-
sults. To show how these systems translated the
test sentences, we translated some outputs of the
Spanish-FrenchDirect andPhraseTransSMT sys-
tems into English using the French-EnglishDirect
system. These are shown in Table 3 with the refer-
ence English sentences.

The relative performance seems to be related to
the BLEU scores for theDirect SMT systems. It
was relatively high (0.95 to 0.97) for the difficult (in
terms of BLEU) language pairs but relatively low
(0.92) for the easy language pairs; Spanish–French
and French–Spanish. There is a lot of room for
improvement for the relatively easy language pairs.
This relationship is stronger than the relationship be-
tween the BLEU scores for SE/ET and those for the
PhraseTranssystems, where no clear trend exists.

Table 2 shows the number of phrases stored in the
phrase-tables. TheDirect SMT systems had 7.3 to

8A typical reranking approach to SMT (Och et al., 2004)
uses a 1000–best list.
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Source–Target Direct PhraseTrans SntTrans15 SntTrans1 SE ET
Spanish–French 35.78 > 32.90 (0.92) > 29.49 (0.82) > 29.16 (0.81) 29.31 28.80
French–Spanish 34.16 > 31.49 (0.92) > 28.41 (0.83) > 27.99 (0.82) 27.59 29.07
German–French 23.37 > 22.47 (0.96) > 22.03 (0.94) > 21.64 (0.93) 22.40 28.80
French–German 15.27 > 14.51 (0.95) > 14.03 (0.92) < 14.21 (0.93) 27.59 15.81
German–Spanish 22.34 > 21.76 (0.97) > 21.36 (0.96) > 20.97 (0.94) 22.40 29.07
Spanish–German 15.50 > 15.11 (0.97) > 14.46 (0.93) < 14.61 (0.94) 29.31 15.81

Table 1: BLEU scores and relative performance

No. of phrases (“M” means106)
Direct PhraseTrans common

R P

S–F 18.2M 190.8M 6.3M 34.7 3.3
F–S 18.2M 186.8M 6.3M 34.7 3.4
G–F 7.3M 174.9M 3.1M 43.2 1.8
F–G 7.3M 168.2M 3.1M 43.2 1.9
G–S 7.5M 179.6M 3.3M 44.1 1.9
S–G 7.6M 176.6M 3.3M 44.1 1.9

“S”, “F”, and “G” are the acronyms of Spanish, French, and
German, respectively. “X–Y” means that “X” is the source lan-
guage and “Y” is the target language.

Table 2: Statistics for the phrase-tables

18.2 million phrases, and thePhraseTranssystems
had 168.2 to 190.8 million phrases. The numbers of
phrases stored in thePhraseTranssystems were very
large compared to those ofDirect systems.9 How-
ever, this does not cause a computational problem in
decoding because those phrases that do not appear in
source sentences are filtered so that only the relevant
phrases are used during decoding.

The figures in thecommoncolumn are the number
of phrases common to theDirect andPhraseTrans
systems. R (recall) and P (precision) are defined as
follows.

R =
No. of common phrases× 100
No. of phrases inDirect system

9In Table 2, thePhraseTranssystems have more than 10x
as many phrases as theDirect systems. This can be explained
as follows. Letfi be thefanout of an English phrasei, i.e.,
fi is the number of phrase pairs containing the English phrase
i in a phrase-table, then the size of the phrase-table iss1 =∑n

i=1
fi, wheren is the number of distinct English phrases.

When we combine two phrase-tables, the size of the combined
phrase table is roughlys2 =

∑n

i=1
f2

i . Thus, the relative size

of the combined phrase table is roughlyr = s2
s1

= E(f2)
E(f)

,

whereE(f) = s1
n

and E(f2) = s2
n

are the averages over
fi and f2

i , respectively. As an example, we calculated these
averages for the German-English phrase table.E(f) was 1.5,
E(f2) was 43.7, andr was28.9. This shows that even if an
average fanout is small, the size of a combined phrase table can
be very large.

P =
No. of common phrases× 100

No. of phrases inPhraseTranssystem

Recall was reasonably high. However, the upper
bound of recall was 100 percent because we used
a multilingual corpus whose sentences were aligned
to each other across all four languages, as described
in Section 4.1. Thus, there is a lot of room for im-
provement with respect to recall. Precision, on the
other hand, was very low. However, translation per-
formance was not significantly affected by this low
precision, as is shown in Table 1. This indicates that
recall is more important than precision in building
phrase-tables.

5 Related work

Pivot languages have been used in rule-based ma-
chine translation systems. Boitet (1988) discusses
the pros and cons of the pivot approaches in multi-
lingual machine translation. Schubert (1988) argues
that a pivot language needs to be a natural language,
due to the inherent lack of expressiveness of artifi-
cial languages.

Pivot-based methods have also been used in other
related areas, such as translation lexicon induc-
tion (Schafer and Yarowsky, 2002), word alignment
(Wang et al., 2006), and cross language information
retrieval (Gollins and Sanderson, 2001). The trans-
lation disambiguation techniques used in these stud-
ies could be used for improving the quality of phrase
translation tables.

In contrast to these, very little work has been
done on pivot-based methods for SMT. Kauers et
al. (2002) used an artificial interlingua for spoken
language translation. Gispert and Mariño (2006)
created an English-Catalan parallel corpus by auto-
matically translating the Spanish part of an English-
Spanish parallel corpus into Catalan with a Spanish-
Catalan SMT system. They then directly trained an
SMT system on the English-Catalan corpus. They
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showed that this direct training method is superior
to the sentence translation strategy (SntTrans1) in
translating Catalan into English but is inferior to
it in the opposite translation direction (in terms of
the BLEU score). In contrast, we have shown that
the phrase translation strategy consistently outper-
formed the sentence translation strategy in the con-
trolled experiments.

6 Conclusion

We have compared two types of pivot strategies,
namelyphrase translationandsentence translation.
The phrase translation strategy directly constructs a
phrase translation table from a source language and
English phrase-table and a target language and En-
glish phrase-table. It then uses this phrase table in
a phrase-based SMT system. The sentence transla-
tion strategy first translates a source language sen-
tence inton English sentences and translates thesen
sentences into target language sentences separately.
Then, it selects the highest scoring sentence from the
target language sentences.

We conducted controlled experiments using the
Europarl corpus to compare the performance of
these two strategies to that of directly trained SMT
systems. The experiments showed that the perfor-
mance of the phrase translation strategy was statis-
tically significantly better than that of the sentence
translation strategy and that its relative performance
compared to the directly trained SMT systems was
0.92 to 0.97. These are very promising results.

Although we used the Europarl corpus for con-
trolled experiments, we intend to use the pivot strate-
gies in situations where very limited amount of par-
allel corpora are available for a source and target lan-
guage but where relatively large parallel corpora are
available for the source language–English and the
target language–English. In future work, we will
further investigate the pivot strategies described in
this paper to confirm that the phrase translation strat-
egy is better than the sentence translation strategy in
the intended situation as well as with the Europarl
corpus.10

10As a first step towards real situations, we conducted addi-
tional experiments. We divided the training corpora in Section
4 into two halves. We used the first 292915 sentences to train
source-English SMT systems and the remaining 292915 ones
to train English-target SMT systems. Based on these source-
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Ref i hope with all my heart , and i must say this quite emphatically , that an opportunity will arise when this
document can be incorporated into the treaties at some point in the future .

Dir i hope with conviction , and put great emphasis , that again is a serious possibility of including this in the treaties .
PT i hope with conviction , and i very much , insisted that never be a serious possibility of including this in the

treaties .
Ref should this fail to materialise , we should not be surprised if public opinion proves sceptical about europe , or even

rejects it .
Dir otherwise , we must not be surprised by the scepticism , even the rejection of europe in the public .
PT otherwise , we must not be surprised by the scepticism , and even the rejection of europe in the public .
Ref the intergovernmental conference - to address a third subject - on the reform of the european institutions is also of

decisive significance for us in parliament .
Dir the intergovernmental conference - and this i turn to the third issue on the reform of the european institutions is of

enormous importance for the european parliament .
PT the intergovernmental conference - and this brings me to the third issue - on the reform of the european institutions

has enormous importance for the european parliament .
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Abstract

In phrase-based statistical machine transla-
tion, the phrase-table requires a large amount
of memory. We will present an efficient repre-
sentation with two key properties: on-demand
loading and a prefix tree structure for the
source phrases.

We will show that this representation scales
well to large data tasks and that we are able
to store hundreds of millions of phrase pairs
in the phrase-table. For the large Chinese–
English NIST task, the memory requirements
of the phrase-table are reduced to less than
20 MB using the new representation with no
loss in translation quality and speed. Addi-
tionally, the new representation is not limited
to a specific test set, which is important for
online or real-time machine translation.

One problem in speech translation is the
matching of phrases in the input word graph
and the phrase-table. We will describe a novel
algorithm that effectively solves this com-
binatorial problem exploiting the prefix tree
data structure of the phrase-table. This algo-
rithm enables the use of significantly larger
input word graphs in a more efficient way re-
sulting in improved translation quality.

1 Introduction

In phrase-based statistical machine translation, a
huge number of source and target phrase pairs
is memorized in the so-called phrase-table. For
medium sized tasks and phrase lengths, these

phrase-tables already require several GBs of mem-
ory or even do not fit at all. If the source text, which
is to be translated, is known in advance, a common
trick is to filter the phrase-table and keep a phrase
pair only if the source phrase occurs in the text. This
filtering is a time-consuming task, as we have to
go over the whole phrase-table. Furthermore, we
have to repeat this filtering step whenever we want
to translate a new source text.

To address these problems, we will use an ef-
ficient representation of the phrase-table with two
key properties: on-demand loading and a prefix tree
structure for the source phrases. The prefix tree
structure exploits the redundancy among the source
phrases. Using on-demand loading, we will load
only a small fraction of the overall phrase-table into
memory. The majority will remain on disk.

The on-demand loading is employed on a per sen-
tence basis, i.e. we load only the phrase pairs that
are required for one sentence into memory. There-
fore, the memory requirements are low, e.g. less than
20 MB for the Chin.-Eng. NIST task. Another ad-
vantage of the on-demand loading is that we are able
to translate new source sentences without filtering.

A potential problem is that this on-demand load-
ing might be too slow. To overcome this, we use a
binary format which is a memory map of the internal
representation used during decoding. Additionally,
we load coherent chunks of the tree structure instead
of individual phrases, i.e. we have only few disk ac-
cess operations. In our experiments, the on-demand
loading is not slower than the traditional approach.

As pointed out in (Mathias and Byrne, 2006),
one problem in speech translation is that we have
to match the phrases of our phrase-table against a
word graph representing the alternative ASR tran-
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scriptions. We will present a phrase matching algo-
rithm that effectively solves this combinatorial prob-
lem exploiting the prefix tree data structure of the
phrase-table. This algorithm enables the use of sig-
nificantly larger input word graphs in a more effi-
cient way resulting in improved translation quality.

The remaining part is structured as follows: we
will first discuss related work in Sec. 2. Then, in
Sec. 3, we will describe the phrase-table represen-
tation. Afterwards, we will present applications in
speech translation and online MT in Sec. 4 and 5,
respectively. Experimental results will be presented
in Sec. 6 followed by the conclusions in Sec. 7.

2 Related Work

(Callison-Burch et al., 2005) and (Zhang and Vogel,
2005) presented data structures for a compact rep-
resentation of the word-aligned bilingual data, such
that on-the-fly extraction of long phrases is possi-
ble. The motivation in (Callison-Burch et al., 2005)
is that there are some long source phrases in the
test data that also occur in the training data. How-
ever, the more interesting question is if these long
phrases really help to improve the translation qual-
ity. We have investigated this and our results are in
line with (Koehn et al., 2003) showing that the trans-
lation quality does not improve if we utilize phrases
beyond a certain length. Furthermore, the suffix ar-
ray data structure of (Callison-Burch et al., 2005) re-
quires a fair amount of memory, about 2 GB in their
example, whereas our implementation will use only
a tiny amount of memory, e.g. less than 20 MB for
the large Chinese-English NIST task.

3 Efficient Phrase-table Representation

In this section, we will describe the proposed rep-
resentation of the phrase-table. A prefix tree, also
called trie, is an ordered tree data structure used to
store an associative array where the keys are symbol
sequences. In the case of phrase-based MT, the keys
are source phrases, i.e. sequences of source words
and the associated values are the possible transla-
tions of these source phrases. In a prefix tree, all
descendants of any node have a common prefix,
namely the source phrase associated with that node.
The root node is associated with the empty phrase.

The prefix tree data structure is quite common in
automatic speech translation. There, the lexicon, i.e.
the mapping of phoneme sequences to words, is usu-
ally organized as a prefix tree (Ney et al., 1992).

We convert the list of source phrases into a pre-
fix tree and, thus, exploit that many of them share
the same prefix. This is illustrated in Fig. 1 (left).
Within each node of the tree, we store a sorted ar-
ray of possible successor words along with pointers
to the corresponding successor nodes. Additionally,
we store a pointer to the possible translations.

One property of the tree structure is that we can
efficiently access the successor words of a given pre-
fix. This will be a key point to achieve an efficient
phrase matching algorithm in Sec. 4. When looking
for a specific successor word, we perform a binary
search in the sorted array. Alternatively, we could
use hashing to speed up this lookup. We have chosen
an array representation as this can be read very fast
from disk. Additionally, with the exception of the
root node, the branching factor of the tree is small,
i.e. the potential benefit from hashing is limited. At
the root node, however, the branching factor is close
to the vocabulary size of the source language, which
can be large. As we store the words internally as in-
tegers and virtually all words occur as the first word
of some phrase, we can use the integers directly as
the position in the array of the root node. Hence, the
search for the successors at the root node is a simple
table lookup with direct access, i.e. in O(1).

If not filtered for a specific test set, the phrase-
table becomes huge even for medium-sized tasks.
Therefore, we store the tree structure on disk
and load only the required parts into memory on-
demand. This is illustrated in Fig. 1 (right). Here,
we show the matching phrases for the source sen-
tence ’c a a c’, where the matching phrases are set in
bold and the phrases that are loaded into memory are
set in italics. The dashed part of the tree structure is
not loaded into memory. Note that some nodes of the
tree are loaded even if there is no matching phrase in
that node. These are required to actually verify that
there is no matching phrase. An example is the ’bc’
node in the lower right part of the figure. This node
is loaded to check if the phrase ’c a a’ occurs in the
phrase-table. The translations, however, are loaded
only for matching source phrases.

In the following sections, we will describe appli-
cations of this phrase-table representation for speech
translation and online MT.

4 Speech Translation

In speech translation, the input to the MT system is
not a sentence, but a word graph representing alter-

493



a b a c
a a b b
a b b c
a b c c
b c a
b a c a b
b a a c a c
b a b

a

b

c

a

b

a

b

c

a

c

a

b

c

b

c

a b a c
a a b b
a b b c
a b c c
b c a
b a c a b
b a a c a c
b a b

a

b

c

a

b

a

b

c

a

c

a

b

c

b

c

Figure 1: Illustration of the prefix tree. Left: list of source phrases and the corresponding prefix tree. Right:
list of matching source phrases for sentence ’c a a c’ (bold phrases match, phrases in italics are loaded in
memory) and the corresponding partially loaded prefix tree (the dashed part is not in memory).
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native ASR transcriptions. As pointed out in (Math-
ias and Byrne, 2006), one problem in speech trans-
lation is that we have to match the phrases of our
phrase-table against the input word graph. This re-
sults in a combinatorial problem as the number of
phrases in a word graph increases exponentially with
the phrase length.

4.1 Problem Definition
In this section, we will introduce the notation and
state the problem of matching source phrases of
an input graph G and the phrase-table, represented
as prefix tree T . The input graph G has nodes
1, ..., j, ..., J . The outgoing edges of a graph node
j are numbered with 1, ..., n, ..., Nj , i.e. an edge in
the input graph is identified by a pair (j, n). The
source word labeling the nth outgoing edge of graph
node j is denoted as fG

j,n and the successor node of
this edge is denoted as sG

j,n ∈ {1, ..., J}. This nota-
tion is illustrated in Fig. 2.

We use a similar notation for the prefix tree T with
nodes 1, ..., k, ..., K. The outgoing edges of a tree

node k are numbered with 1, ...,m, ...,Mk, i.e. an
edge in the prefix tree is identified by a pair (k, m).
The source word labeling the mth outgoing edge of
tree node k is denoted as fT

k,m and the successor
node of this edge is denoted as sT

k,m ∈ {1, ...,K}.
Due to the tree structure, the successor nodes of a
tree node k are all distinct:

sT
k,m = sT

k,m′ ⇔ m = m′ (1)

Let k0 denote the root node of the prefix tree and
let f̃k denote the prefix that leads to tree node k.
Furthermore, we define E(k) as the set of possible
translations of the source phrase f̃k. These are the
entries of the phrase-table, i.e.

E(k) =
{

ẽ
∣∣∣ p(ẽ|f̃k) > 0

}
(2)

We will need similar symbols for the input graph.
Therefore, we define F (j′, j) as the set of source
phrases of all paths from graph node j′ to node j, or
formally:

F (j′, j) =
{

f̃
∣∣∣ ∃(ji, ni)I

i=1 : f̃ = fG
j1,n1

, ..., fG
jI ,nI

∧ j1 = j′ ∧
∧I−1

i=1 sG
ji,ni

= ji+1 ∧ sjI ,nI = j

}
Here, the conditions ensure that the edge sequence
(ji, ni)I

i=1 is a proper path from node j′ to node j
in the input graph and that the corresponding source
phrase is f̃ = fG

j1,n1
, ..., fG

jI ,nI
. This definition can

be expressed in a recursive way; the idea is to extend
the phrases of the predecessor nodes by one word:

F (j′, j) =
⋃

(j′′,n):sG
j′′,n=j

{
f̃fG

j′′,n

∣∣∣f̃ ∈ F (j′, j′′)
}

(3)
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Here, the set is expressed as a union over all in-
bound edges (j′′, n) of node j. We concatenate each
source phrase f̃ that ends at the start node of such
an edge, i.e. f̃ ∈ F (j′, j′′), with the corresponding
edge label fG

j′′,n. Additionally, we define E(j′, j)
as the set of possible translations of all paths from
graph node j′ to graph node j, or formally:

E(j′, j) =
{

ẽ
∣∣∣ ∃f̃ ∈ F (j′, j) : p(ẽ|f̃) > 0

}
(4)

=
⋃

k:f̃k∈F (j′,j)

E(k) (5)

=
⋃

(j′′,n):sG
j′′,n=j

⋃
k:f̃k∈F (j′,j′′)
m:fG

j′′,n
=fT

k,m

E(sT
k,m) (6)

Here, the definition was first rewritten using Eq. 2
and then using Eq. 3. Again, the set is expressed
recursively as a union over the inbound edges. For
each inbound edge (j′′, n), the inner union verifies
that there exists a corresponding edge (k, m) in the
prefix tree with the same label, i.e. fG

j′′,n = fT
k,m.

Our goal is to find all non-empty sets of trans-
lation options E(j′, j). The naive approach would
be to enumerate all paths in the input graph from
node j′ to node j, then lookup the corresponding
source phrase in the phrase-table and add the trans-
lations, if there are any, to the set of translation
options E(j′, j). This solution has some obvious
weaknesses: the number of paths between two nodes
is typically huge and the majority of the correspond-
ing source phrases do not occur in the phrase-table.

We omitted the probabilities for notational conve-
nience. The extensions are straightforward. Note
that we store only the target phrases ẽ in the set
of possible translations E(j′, j) and not the source
phrases f̃ . This is based on the assumption that the
models which are conditioned on the source phrase
f̃ are independent of the context outside the phrase
pair (f̃ , ẽ). This assumption holds for the standard
phrase and word translation models. Thus, we have
to keep only the target phrase with the highest prob-
ability. It might be violated by lexicalized distor-
tion models (dependent on the configuration); in that
case we have to store the source phrase along with
the target phrase and the probability, which is again
straightforward.

4.2 Algorithm
The algorithm for matching the source phrases of the
input graph G and the prefix tree T is presented in

Figure 3: Algorithm phrase-match for match-
ing source phrases of input graph G and prefix tree
T . Input: graph G, prefix tree T , translation options
E(k) for all tree nodes k; output: translation options
E(j′, j) for all graph nodes j′ and j.

0 FOR j′ = 1 TO J DO
1 stack.push(j′, k0)
2 WHILE not stack.empty() DO
3 (j, k) = stack.pop()
4 E(j′, j) = E(j′, j) ∪ E(k)
5 FOR n = 1 TO Nj DO
6 IF (fG

j,n = ε)
7 THEN stack.push(sG

j,n, k)
8 ELSE IF (∃m : fG

j,n = fT
k,m)

9 THEN stack.push(sG
j,n, sT

k,m)

Fig. 3. Starting from a graph node j′, we explore the
part of the graph which corresponds to known source
phrase prefixes and generate the sets E(j′, j) incre-
mentally based on Eq. 6. The intermediate states
are represented as pairs (j, k) meaning that there ex-
ists a path in the input graph from node j′ to node j
which is labeled with the source phrase f̃k, i.e. the
source phrase that leads to node k in the prefix tree.
These intermediate states are stored on a stack. After
the initialization in line 1, the main loop starts. We
take one item from the stack and update the transla-
tion options E(j′, j) in line 4. Then, we loop over
all outgoing edges of the current graph node j. For
each edge, we first check if the edge is labeled with
an ε in line 6. In this special case, we go to the suc-
cessor node in the input graph sG

j,n, but remain in the
current node k of the prefix tree. In the regular case,
i.e. the graph edge label is a regular word, we check
in line 8 if the current prefix tree node k has an out-
going edge labeled with that word. If such an edge
is found, we put a new state on the stack with the
two successor nodes in the input graph sG

j,n and the
prefix tree sT

k,m, respectively.

4.3 Computational Complexity

In this section, we will analyze the computational
complexity of the algorithm. The computational
complexity of lines 5-9 is in O(Nj log Mk), i.e. it
depends on the branching factors of the input graph
and the prefix tree. Both are typically small. An ex-
ception is the branching factor of the root node k0 of
the prefix tree, which can be rather large, typically it
is the vocabulary size of the source language. But,
as described in Sec. 3, we can access the successor
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nodes of the root node of the prefix tree in O(1), i.e.
in constant time. So, if we are at the root node of the
prefix tree, the computational complexity of lines 5-
9 is inO(Nj). Using hashing at the interior nodes of
the prefix tree would result in a constant time lookup
at these nodes as well. Nevertheless, the sorted ar-
ray implementation that we chose has the advantage
of faster loading from disk which seems to be more
important in practice.

An alternative interpretation of lines 5-9 is that we
have to compute the intersection of the two sets fG

j

and fT
k , with

fG
j =

{
fG

j,n

∣∣ n = 1, ..., Nj

}
(7)

fT
k =

{
fT

k,m

∣∣ m = 1, ...,Mk

}
. (8)

Assuming both sets are sorted, this could be done in
linear time, i.e. in O(Nj + Mk). In our case, only
the edges in the prefix tree are sorted. Obviously, we
could sort the edges in the input graph and then ap-
ply the linear algorithm, resulting in an overall com-
plexity of O(Nj log Nj + Mk). As the algorithm
visits nodes multiple times, we could do even better
by sorting all edges of the graph during the initial-
ization. Then, we could always apply the linear time
method. On the other hand, it is unclear if this pays
off in practice and an experimental comparison has
to be done which we will leave for future work.

The overall complexity of the algorithm depends
on how many phrases of the input graph occur in the
phrase-table. In the worst case, i.e. if all phrases oc-
cur in the phrase-table, the described algorithm is
not more efficient than the naive algorithm which
simply enumerates all phrases. Nevertheless, this
does not happen in practice and we observe an ex-
ponential speed up compared to the naive algorithm,
as will be shown in Sec. 6.3.

5 Online Machine Translation
Beside speech translation, the presented phrase-
table data structure has other interesting applica-
tions. One of them is online MT, i.e. an MT sys-
tem that is able to translate unseen sentences with-
out significant delay. These online MT systems are
typically required if there is some interaction with
human users, e.g. if the MT system acts as an in-
terpreter in a conversation, or in real-time systems.
This situation is different from the usual research
environment where typically a fair amount of time
is spent to prepare the MT system to translate a cer-
tain set of source sentences. In the research scenario,

Table 1: NIST task: corpus statistics.
Chinese English

Train Sentence pairs 7 M
Running words 199 M 213 M
Vocabulary size 222 K 351 K

Test 2002 Sentences 878 3 512
Running words 25 K 105 K

2005 Sentences 1 082 4 328
Running words 33 K 148 K

this preparation usually pays off as the same set of
sentences is translated multiple times. In contrast,
an online MT system translates each sentence just
once. One of the more time-consuming parts of this
preparation is the filtering of the phrase-table. Us-
ing the on-demand loading technique we described
in Sec. 3, we can avoid the filtering step and di-
rectly translate the source sentence. An additional
advantage is that we load only small parts of the full
phrase-table into memory. This reduces the mem-
ory requirements significantly, e.g. for the Chinese–
English NIST task, the memory requirement of the
phrase-table is reduced to less than 20 MB using on-
demand loading. This makes the MT system usable
on devices with limited hardware resources.

6 Experimental Results

6.1 Translation System
For the experiments, we use a state-of-the-art
phrase-based statistical machine translation system
as described in (Zens and Ney, 2004). We use a
log-linear combination of several models: a four-
gram language model, phrase-based and word-based
translation models, word, phrase and distortion
penalty and a lexicalized distortion model. The
model scaling factors are optimized using minimum
error rate training (Och, 2003).

6.2 Empirical Analysis for a Large Data Task
In this section, we present an empirical analysis of
the described data structure for the large data track
of the Chinese-English NIST task. The corpus statis-
tics are shown in Tab. 1.

The translation quality is measured using two ac-
curacy measures: the BLEU and the NIST score.
Additionally, we use the two error rates: the word
error rate (WER) and the position-independent word
error rate (PER). These evaluation criteria are com-
puted with respect to four reference translations.

In Tab. 2, we present the translation quality as a
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Table 2: NIST task: translation quality as a function of the maximum source phrase length.
src NIST 2002 set (dev) NIST 2005 set (test)
len WER[%] PER[%] BLEU[%] NIST WER[%] PER[%] BLEU[%] NIST
1 71.9 46.8 27.07 8.37 78.0 49.0 23.11 7.62
2 62.4 41.2 34.36 9.39 68.5 42.2 30.32 8.74
3 62.0 41.1 34.89 9.33 67.7 42.1 30.90 8.74
4 61.7 41.1 35.05 9.27 67.6 41.9 30.99 8.75
5 61.8 41.2 34.95 9.25 67.6 41.9 30.93 8.72
∞ 61.8 41.2 34.99 9.25 67.5 41.8 30.90 8.73

Table 3: NIST task: phrase-table statistics.
src number of distinct avg. tgt
len src phrases src-tgt pairs candidates
1 221 505 17 456 415 78.8
2 5 000 041 39 436 617 7.9
3 20 649 699 58 503 904 2.8
4 31 383 549 58 436 271 1.9
5 32 679 145 51 255 866 1.6

total 89 933 939 225 089 073 2.5

function of the maximum source phrase length. We
observe a large improvement when going beyond
length 1, but this flattens out very fast. Using phrases
of lengths larger than 4 or 5 does not result in fur-
ther improvement. Note that the minor differences
in the evaluation results for length 4 and beyond are
merely statistical noise. Even a length limit of 3, as
proposed by (Koehn et al., 2003), would result in
almost optimal translation quality. In the following
experiments on this task, we will use a limit of 5 for
the source phrase length.

In Tab. 3, we present statistics about the extracted
phrase pairs for the Chinese–English NIST task as
a function of the source phrase length, in this case
for length 1-5. The phrases are not limited to a spe-
cific test set. We show the number of distinct source
phrases, the number of distinct source-target phrase
pairs and the average number of target phrases (or
translation candidates) per source phrase. In the ex-
periments, we limit the number of translation can-
didates per source phrase to 200. We store a to-
tal of almost 90 million distinct source phrases and
more than 225 million distinct source-target phrase
pairs in the described data structure. Obviously, it
would be infeasible to load this huge phrase-table
completely into memory. Nevertheless, using on-
demand loading, we are able to utilize all these
phrase pairs with minimal memory usage.

In Fig. 4, we show the memory usage of the de-
scribed phrase-table data structure per sentence for
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Figure 4: NIST task: phrase-table memory usage
per sentence (sorted).

the NIST 2002 test set. The sentences were sorted
according to the memory usage. The maximum
amount of memory for the phrase-table is 19 MB;
for more than 95% of the sentences no more than
15 MB are required. Storing all phrase pairs for this
test set in memory requires about 1.7 GB of mem-
ory, i.e. using the described data structures, we not
only avoid the limitation to a specific test set, but we
also reduce the memory requirements by about two
orders of a magnitude.

Another important aspect that should be consid-
ered is translation speed. In our experiments, the
described data structure is not slower than the tradi-
tional approach. We attribute this to the fact that we
use a binary format that is a memory map of the data
structure used internally and that we load the data in
rather large, coherent chunks. Additionally, there is
virtually no initialization time for the phrase-table
which decreases the overhead of parallelization and
therefore speeds up the development cycle.

6.3 Speech Translation
The experiments for speech translation were con-
ducted on the European Parliament Plenary Sessions
(EPPS) task. This is a Spanish-English speech-to-
speech translation task collected within the TC-Star
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Table 4: EPPS task: corpus statistics.
Train Spanish English
Sentence pairs 1.2 M
Running words 31 M 30 M
Vocabulary size 140 K 94 K
Test confusion networks Full Pruned
Sentences 1 071
Avg. length 23.6
Avg. / max. depth 2.7 / 136 1.3 / 11
Avg. number of paths 1075 264 K

project. The training corpus statistics are presented
in Tab. 4. The phrase-tables for this task were kindly
provided by ITC-IRST.

We evaluate the phrase-match algorithm in
the context of confusion network (CN) decoding
(Bertoldi and Federico, 2005), which is one ap-
proach to speech translation. CNs (Mangu et al.,
2000) are interesting for MT because the reordering
can be done similar to single best input. For more
details on CN decoding, please refer to (Bertoldi et
al., 2007). Note that the phrase-match algo-
rithm is not limited to CNs, but can work on arbi-
trary word graphs.

Statistics of the CNs are also presented in Tab. 4.
We distinguish between the full CNs and pruned
CNs. The pruning parameters were chosen such that
the resulting CNs are similar in size to the largest
ones in (Bertoldi and Federico, 2005). The average
depth of the full CNs, i.e. the average number of al-
ternatives per position, is about 2.7 words whereas
the maximum is as high as 136 alternatives.

In Fig. 5, we present the average number of
phrase-table look-ups for the full EPPS CNs as a
function of the source phrase length. The curve ’CN
total’ represents the total number of source phrases
in the CNs for a given length. This is the number
of phrase-table look-ups using the naive algorithm.
Note the exponential growth with increasing phrase
length. Therefore, the naive algorithm is only appli-
cable for very short phrases and heavily pruned CNs,
as e.g. in (Bertoldi and Federico, 2005).

The curve ’CN explored’ is the number of phrase-
table look-ups using the phrase-match algo-
rithm described in Fig. 3. We do not observe the
exponential explosion as for the naive algorithm.
Thus, the presented algorithm effectively solves the
combinatorial problem of matching phrases of the
input CNs and the phrase-table. For comparison,
we plotted also the number of look-ups using the
phrase-match algorithm in the case of single-
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Figure 5: EPPS task: avg. number of phrase-table
look-ups per sentence as a function of the source
phrase length.

Table 5: EPPS task: translation quality and time for
different input conditions (CN=confusion network,
time in seconds per sentence).

Input type BLEU[%] Time [sec]
Single best 37.6 2.7
CN pruned 38.5 4.8

full 38.9 9.2

best input, labeled ’single-best explored’. The maxi-
mum phrase length for these experiments is seven.
For CN input, this length can be exceeded as the
CNs may contain ε-transitions.

In Tab. 5, we present the translation results and
the translation times for different input conditions.
We observe a significant improvement in translation
quality as more ASR alternatives are taken into ac-
count. The best results are achieved for the full
CNs. On the other hand, the decoding time in-
creases only moderately. Using the new algorithm,
the ratio of the time for decoding the CNs and the
time for decoding the single best input is 3.4 for the
full CNs and 1.8 for the pruned CNs. In previous
work (Bertoldi and Federico, 2005), the ratio for the
pruned CNs was about 25 and the full CNs could not
be handled.

To summarize, the presented algorithm has two
main advantages for speech translation: first, it
enables us to utilize large CNs, which was pro-
hibitively expensive beforehand and second, the ef-
ficiency is improved significantly.

Whereas the previous approaches required care-
ful pruning of the CNs, we are able to utilize the un-
pruned CNs. Experiments on other tasks have shown
that even larger CNs are unproblematic.
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7 Conclusions

We proposed an efficient phrase-table data structure
which has two key properties:

1. On-demand loading.
We are able to store hundreds of millions of
phrase pairs and require only a very small
amount of memory during decoding, e.g. less
than 20 MB for the Chinese-English NIST task.
This enables us to run the MT system on devices
with limited hardware resources or alternatively
to utilize the freed memory for other models. Ad-
ditionally, the usual phrase-table filtering is obso-
lete, which is important for online MT systems.

2. Prefix tree data structure.
Utilizing the prefix tree structure enables us to ef-
ficiently match source phrases against the phrase-
table. This is especially important for speech
translation where the input is a graph represent-
ing a huge number of alternative sentences. Us-
ing the novel algorithm, we are able to handle
large CNs, which was prohibitively expensive
beforehand. This results in more efficient decod-
ing and improved translation quality.

We have shown that this data structure scales very
well to large data tasks like the Chinese-English
NIST task. The implementation of the described
data structure as well as the phrase-match al-
gorithm for confusion networks is available as open
source software in the MOSES toolkit1.

Not only standard phrase-based systems can ben-
efit from this data structure. It should be rather
straightforward to apply this data structure as well as
the phrase-match algorithm to the hierarchical
approach of (Chiang, 2005). As the number of rules
in this approach is typically larger than the number
of phrases in a standard phrase-based system, the
gains should be even larger.

The language model is another model with high
memory requirements. It would be interesting to in-
vestigate if the described techniques and data struc-
tures are applicable for reducing the memory re-
quirements of language models.

Some aspects of the phrase-match algorithm
are similar to the composition of finite-state au-
tomata. An efficient implementation of on-demand
loading (not only on-demand computation) for a

1http://www.statmt.org/moses

finite-state toolkit would make the whole range of
finite-state operations applicable to large data tasks.
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Abstract

We present an efficient, novel two-pass
approach to mitigate the computational
impact resulting from online intersection
of an n-gram language model (LM) and
a probabilistic synchronous context-free
grammar (PSCFG) for statistical machine
translation. In first pass CYK-style decod-
ing, we consider first-best chart item ap-
proximations, generating a hypergraph of
sentence spanning target language deriva-
tions. In the second stage, we instantiate
specific alternative derivations from this
hypergraph, using the LM to drive this
search process, recovering from search er-
rors made in the first pass. Model search
errors in our approach are comparable to
those made by the state-of-the-art “Cube
Pruning” approach in (Chiang, 2007) un-
der comparable pruning conditions evalu-
ated on both hierarchical and syntax-based
grammars.

1 Introduction

Syntax-driven (Galley et al., 2006) and hierarchi-
cal translation models (Chiang, 2005) take advan-
tage of probabilistic synchronous context free gram-
mars (PSCFGs) to represent structured, lexical re-
ordering constraints during the decoding process.
These models extend the domain of locality (over
phrase-based models) during decoding, represent-
ing a significantly larger search space of possible

translation derivations. While PSCFG models are
often induced with the goal of producing grammati-
cally correct target translations as an implicit syntax-
structured language model, we acknowledge the
value of n-gram language models (LM) in phrase-
based approaches.

Integrating n-gram LMs into PSCFGs based de-
coding can be viewed as online intersection of the
PSCFG grammar with the finite state machine rep-
resented by the n-gram LM, dramatically increasing
the effective number of nonterminals in the decoding
grammar, rendering the decoding process essentially
infeasible without severe, beam-based lossy prun-
ing. The alternative, simply decoding without the
n-gram LM and rescoring N-best alternative transla-
tions, results in substantially more search errors, as
shown in (Zollmann and Venugopal, 2006).

Our two-pass approach involves fast, approximate
synchronous parsing in a first stage, followed by a
second, detailed exploration through the resulting
hypergraph of sentence spanning derivations, using
the n-gram LM to drive that search. This achieves
search errors comparable to a strong “Cube Pruning”
(Chiang, 2007), single-pass baseline. The first pass
corresponds to a severe parameterization of Cube
Pruning considering only the first-best (LM inte-
grated) chart item in each cell while maintaining un-
explored alternatives for second-pass consideration.
Our second stage allows the integration of long dis-
tance and flexible history n-gram LMs to drive the
search process, rather than simply using such mod-
els for hypothesis rescoring.

We begin by discussing the PSCFG model for
statistical machine translation, motivating the need
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for effective n-gram LM integration during decod-
ing. We then present our two-pass approach and
discuss Cube Pruning as a state-of-the-art baseline.
We present results in the form of search error analy-
sis and translation quality as measured by the BLEU
score (Papineni et al., 2002) on the IWSLT 06 text
translation task (Eck and Hori, 2005)1, comparing
Cube Pruning with our two-pass approach.

2 Synchronous Parsing for SMT

Probabilistic Synchronous Context Free Grammar
(PSCFG) approaches to statistical machine transla-
tion use a source terminal set (source vocabulary)
TS , a target terminal set (target vocabulary) TT and
a shared nonterminal set N and induce rules of the
form

X → 〈γ, α,∼, w〉

where (i) X ∈ N is a nonterminal, (ii) γ ∈ (N ∪
TS)∗ is a sequence of nonterminals and source ter-
minals, (iii) α ∈ (N ∪TT )∗ is a sequence of nonter-
minals and target terminals, (iv) the number cnt(γ)
of nonterminal occurrences in γ is equal to the num-
ber cnt(α) of nonterminal occurrences in α, (v)
∼: {1, . . . , cnt(γ)} → {1, . . . , cnt(α)} is a one-to-
one mapping from nonterminal occurrences in γ to
nonterminal occurrences in α, and (vi) w ∈ [0,∞)
is a non-negative real-valued weight assigned to the
rule. We will assume ∼ to be implicitly defined by
indexing the NT occurrences in γ from left to right
starting with 1, and by indexing the NT occurrences
in α by the indices of their corresponding counter-
parts in γ. Syntax-oriented PSCFG approaches typ-
ically ignore source structure, instead focussing on
generating syntactically well formed target deriva-
tions. (Galley et al., 2006) use syntactic constituents
for the PSCFG nonterminal set and (Zollmann and
Venugopal, 2006) take advantage of CCG (Steed-
man, 1999) categories, while (Chiang, 2005) uses
a single generic nonterminal. PSCFG derivations
function analogously to CFG derivations. Given
a source sentence f , the translation task under a
PSCFG grammar can be expressed as

1While IWSLT represents a limited resource translation task
(120K sentences of training data for Chinese-English), the prob-
lem of efficient n-gram LM integration is still critically impor-
tant to efficient decoding, and our contributions can be expected
to have an even more significant impact when decoding with
grammars induced from larger corpora.

ê = arg max
{e | ∃D. src(D)=f,tgt(D)=e}

P (D)

where tgt(D) refers to the target terminal symbols
generated by the derivation D and src(D) refers to
the source terminal symbols spanned by D. The
score (also laxly called probability, since we never
need to compute the partition function) of a deriva-
tion D under a log-linear model, referring to the
rules r used in D, is:

P (D) =
1
Z

PLM (tgt(D))λLM ×
∏

i

∏
r∈D

φi(r)λi

where φi refers to features defined on each rule,
and PLM is a g-gram LM probability applied to the
target terminal symbols generated by the derivation
D. Introducing the LM feature defines dependen-
cies across adjacent rules used in each derivation,
and requires modifications to the decoding strategy.
Viewing the LM as a finite-state machine, the de-
coding process involves performing an intersection
between the PSCFG grammar and the g-gram LM
(Bar-Hillel et al., 1964). We present our work under
the construction in (Wu, 1996), following notation
from (Chiang, 2007), extending the formal descrip-
tion to reflect grammars with an arbitrary number of
nonterminals in each rule.

2.1 Decoding Strategies
In Figure 1, we reproduce the decoding algorithm
from (Chiang, 2007) that applies a PSCFG to
translate a source sentence in the same notation (as
a deductive proof system (Shieber et al., 1995)),
generalized to handle more than two non-terminal
pairs. Chart items [X, i, j, e] : w span j − i words
in the source sentence f1 · · · fn, starting at position
i + 1, and have weight w (equivalent to P (D)), and
e ∈ (TT ∪ {?})∗ is a sequence of target terminals,
with possible elided parts, marked by ?. Functions
p, q whose domain is TT ∪ {?} are defined in
(Chiang, 2007) and are repeated here for clarity.

p(a1 · · · am) =
Y

g≤i≤m,?/∈ai−g+1···ai−1

PLM (ai|ai−g+1 · · · ai−1)

q(a1 · · · am) =

(
a1 · · · ag−1 ? am−g+2 · · · am if m ≥ g

a1 · · · am else

The function q elides elements from a target lan-
guage terminal sequence, leaving the leftmost and
rightmost g − 1 words, replacing the elided words
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X → 〈γ, α〉 : w
(X → 〈γ, α, w〉) ∈ G

X → 〈f j
i+1, α〉 : w

[X, i, j; q(α)] : wp(α)

Z → 〈f i1
i+1(X

1)1f
i2
j1+1 · · · (X

m−1)m−1f
im
jm−1+1(X

m)mf j
jm+1, α〉 : w

ˆ
X1, i1, j1; e1

˜
: w1 · · · [Xm, im, jm; em] : wm

[Z, i, j, q(α′)] : ww1 · · ·wmp(α′) (where α′ = α [e1/(X1)1, . . . , em/(Xm)m])

Goal item:
ˆ
S, 0, n; 〈s〉g−1 ? 〈\s〉g−1˜

Figure 1. CYK parsing with integrated g-gram LM. The inference rules are explored in ascending order of j − i. Here
α [e/Yi] is the string α where the NT occurrence Yi is replaced by e. Functions q and p are explained in the text.

with a single ? symbol. The function p returns g-
gram LM probabilities for target terminal sequences,
where the ? delineates context boundaries, prevent-
ing the calculation from spanning this boundary. We
add a distinguished start nonterminal S to gener-
ate sentences spanning target translations beginning
with g − 1 〈s〉 symbols and ending with g − 1 〈\s〉
symbols. This can e.g. be achieved by adding for
each nonterminal X a PSCFG rule

S → 〈X, 〈s〉g−1X〈\s〉g−1, 1〉

We are only searching for the derivation of highest
probability, so we can discard identical chart items
that have lower weight. Since chart items are de-
fined by their left-hand side nonterminal production,
span, and the LM contexts e, we can safely discard
these identical items since q has retained all context
that could possibly impact the LM calculation. This
process is commonly referred to as item recombina-
tion. Backpointers to antecedent cells are typically
retained to allow N -Best extraction using an algo-
rithm such as (Huang and Chiang, 2005).

The impact of g-gram LM intersection during de-
coding is apparent in the final deduction step. Gen-
erating the set of consequent Z chart items involves
combining m previously produced chart cells. Since
each of these chart cells with given source span [i, j]
is identified by nonterminal symbol X and LM con-
text e, we have at worst |N | ∗ |TT |2(g−1) such chart
cells in a span. The runtime of this algorithm is thus

O
(

n3
[
|N ||TT |2(g−1)

]K
)

where K is the maximum number of NT pairs per
rule and n the source sentence length. Without se-
vere pruning, this runtime is prohibitive for even the

smallest induced grammars. Traditional pruning ap-
proaches that limit the number of consequents after
they are produced are not effective since they first re-
quire that the cost of each consequent be computed
(which requires calls to the g-gram LM).

Restrictions to the grammar afford alternative de-
coding strategies to reduce the runtime cost of syn-
chronous parsing. (Zhang et al., 2006) “binarize”
grammars into CNF normal form, while (Watan-
abe et al., 2006) allow only Griebach-Normal form
grammars. (Wellington et al., 2006) argue that these
restrictions reduce our ability to model translation
equivalence effectively. We take an agnostic view
on the issue; directly addressing the question of effi-
cient LM intersection rather than grammar construc-
tion.

3 Two-pass LM Intersection

We propose a two-pass solution to the problem of
online g-gram LM intersection. A naive two-pass
approach would simply ignore the LM interactions
during parsing, extract a set of N derivations from
the sentence spanning hypergraph and rescore these
derivations with the g-gram LM. In practice, this ap-
proach performs poorly (Chiang, 2007; Zollmann
and Venugopal, 2006). While parsing time is dra-
matically reduced (and N -best extraction time is
negligible), N is typically significantly less than the
complete number of possible derivations and sub-
stantial search errors remain. We propose an ap-
proach that builds upon the concept of a second pass
but uses the g-gram LM to search for alternative,
better translations.
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3.1 First pass: parsing

We begin by relaxing the criterion that determines
when two chart items are equivalent during parsing.
We consider two chart items to be equivalent (and
therefore candidates for recombination) if they have
matching left-hand side nonterminals, and span. We
no longer require them to have the same LM con-
text e. We do however propagate the e, w for the
chart item with highest score, causing the algorithm
to still compute LM probabilities during parsing. As
a point of notation, we refer to such a chart item by
annotating its e, w as e1, w1, and we refer to them
as approximate items (since they have made a first-
best approximation for the purposes of LM calcula-
tion). These approximate items labeled with e1, w1

are used in consequent parse calculations.
The parsing algorithm under this approximation

stays unchanged, but parsing time is dramatically re-
duced. The runtime complexity of this algorithm is
now O

(
n3|N |K

)
at the cost of significant search

errors (since we ignored most LM contexts that we
encountered).

This relaxation is different from approaches that
do not use the LM during parsing. The sentence
spanning item does have LM probabilities associ-
ated with it (but potentially valuable chart items
were not considered during parsing). Like in tra-
ditional parsing, we retain the recombined items in
the cell to allow us to explore new derivations in a
second stage.

3.2 Second pass: hypergraph search

The goal item of the parsing step represents a sen-
tence spanning hypergraph of alternative deriva-
tions. Exploring alternatives from this hyper-
graph and updating LM probabilities can now reveal
derivations with higher scores that were not consid-
ered in the first pass. Exploring the whole space of
alternative derivations in this hypergraph is clearly
infeasible. We propose a g-gram LM driven heuris-
tic search “H.Search” of this space that allows the g-
gram LM to decide which section of the hypergraph
to explore. By construction, traversing a particular
derivation item from the parse chart in target-side
left-to-right, depth-first order yields the correctly or-
dered sequence of target terminals that is the transla-
tion represented by this item. Now consider a partial

traversal of the item in that order, where we gener-
ate only the first M target terminals, leaving the rest
of the item in its original backpointer form. We in-
formally define our second pass algorithm based on
these partial derivation items.

Consider a simple example, where we have parsed
a source sentence, and arrived at a sentence spanning
item obtained from a rule with the following target
side:

NP2 VP3 PP1

and that the item’s best-score estimate is w. A par-
tial traversal of this item would replace NP2 with
one of the translations available in the chart cell un-
derlying NP2 (called “unwinding”), and recalculate
the weights associated with this item, taking into
account the alternative target terminals. Assuming
“the nice man” was the target side of the best scoring
item in NP2, the respective traversal would main-
tain the same weight. An alternative item at NP2

might yield “a nice man”. This partial traversal rep-
resents a possible item that we did not consider dur-
ing parsing, and recalculating LM probabilities for
this new item (based on approximate items VP3 and
PP1) yields weight w2:

the nice man VP3 PP1 : w1 = w

a nice man VP3 PP1 : w2

Alternative derivation items that obtain a higher
score than the best-score estimates represent recov-
ery from search errors. Our algorithm is based on
the premise that these items should be traversed fur-
ther, with the LM continuing to score newly gener-
ated target words. These partially traversed items
are placed on an agenda (sorted by score). At each
step of the second pass search, we select those items
from the agenda that are within a search beam of Z
from the best item, and perform the unwind opera-
tion on each of these items. Since we unwind partial
items from left-to-right the g-gram LM is able to in-
fluence the search through the space of alternative
derivations.

Applying the g-gram LM on partial items with
leading only-terminal symbols allows the integra-
tion of high- / flexible-order LMs during this sec-
ond stage process, and has the advantage of explor-
ing only those alternatives that participate in sen-
tence spanning, high scoring (considering both LM
and translation model scores) derivations. While
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we do not evaluate such models here, we note that
H.Search was developed specifically for the integra-
tion of such models during search.

We further note that partial items that have gen-
erated translations that differ only in the word po-
sitions up to g − 1 words before the first nonter-
minal site can be recombined (for the same rea-
sons as during LM intersected parsing). For exam-
ple, when considering a 3-gram LM, the two par-
tial items above can be recombined into one equiv-
alence class, since partial item LM costs resulting
from these items would only depend on ‘nice man’,
but not on ‘a’ vs. ‘the’. Even if two partial items
are candidates for recombination due to their termi-
nal words, they must also have identical backpoint-
ers (representing a set of approximate parse deci-
sions for the rest of the sentence, in our example
VP3PP1 ). Items that are filed into existing equiv-
alence classes with a lower score are not put onto
the agenda, while those that are better, or have cre-
ated new equivalence classes are scheduled onto the
agenda. For each newly created partial derivation,
we also add a backpointer to the “parent” partial
derivation that was unwound to create it.

This equivalence classing operation transforms
the original left-hand side NT based hypergraph into
an (ordinary) graph of partial items. Each equiva-
lence class is a node in this new graph, and recom-
bined items are the edges. Thus, N -best extraction
can now be performed on this graph. We use the
extraction method from (Huang and Chiang, 2005).

The expensive portion of our algorithm lies in the
unwinding step, in which we generate a new par-
tial item for each alternative at the non-terminal site
that we are “unwinding”. For each new partial item,
we factor out LM estimates and rule weights that
were used to score the parent item, and factor in
the LM probabilities and rule weights of the alter-
native choice that we are considering. In addition,
we must also update the new item’s LM estimates
for the remaining non-terminal and terminal sym-
bols that depend on this new left context of termi-
nals. Fortunately, the number of LM calculations
per new item is constant, i.e., does not dependent on
the length of the partial derivation, or how unwound
it is. Only (g − 1) ∗ 2 LM probabilities have to be
re-evaluated per partial item. We now define this
“unwind-recombine” algorithm formally.

3.2.1 The unwind-recombine algorithm

Going back to the first-pass parsing algorithm
(Figure 1), remember that each application of a
grammar rule containing nonterminals corresponds
to an application of the third inference rule of the
algorithm. We can assign chart items C created by
the third inference rule a back-pointer (BP) target
side as follows: When applying the third inference
rule, each nonterminal occurrence (Xk)k in the cor-
responding Z → 〈λ, α〉 grammar rule corresponds
to a chart cell [Xk, ik, jk] used as an antecedent for
the inference rule. We assign a BP target side for C
by replacing NT occurrences in α (from the rule that
created C) with backpointers to their corresponding
antecedent chart cells. Further we define the distin-
guished backpointer PS as the pointer to the goal
cell [S, 0, n] : w∗.

The deductive program for our second-pass al-
gorithm is presented in Figure 2. It makes use of
two kind of items. The first, {P → α; e1} : w,
links a backpointer P to a BP target side, storing
current-item vs. best-item correction terms in form
of an LM context e1 and a relative score w. The
second item form [[e;α]] in this algorithm corre-
sponds to partial left-to-right traversal states as de-
scribed above, where e is the LM context of the tra-
versed and unwound translation part, and α the part
that is yet to be traversed and whose backpointers
are still to be unwound. The first deduction rule
presents the logical axioms, creating BP items for
each backpointer used in a NT inference rule appli-
cation during the first-pass parsing step. The sec-
ond deduction rule represents the unwinding step
as discussed in the example above. These deduc-
tions govern a search for derivations through the hy-
pergraph that is driven by updates of rule weights
and LM probabilities when unwinding non-first-best
hypotheses. The functions p and q are as defined
in Section 2, except that the domain of q is ex-
tended to BP target sides by first replacing each
back-pointer with its corresponding chart cell’s LM
context and then applying the original q on the re-
sulting sequence of target-terminals and ? symbols.2

Note that w′, which was computed by the first de-
duction rule, adjusts the current hypothesis’ weight

2Note also that p(〈s〉g−1 ?〈\s〉g−1) = 1 as the product over
the empty set is one.
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{P → α; e1} : w′/w
(P back-points to 1st-pass cell [X, i, j; e1] : w; α and w′ are BP-target-side and weight of one of that cell’s items)

[[e; Pαend]] : w
˘
P → αlexαmid; e1

¯
: w′

[[q(eαlex); αmidαend]] : ww′p[eq(αlexαmid)]p[q(eαlexαmid)q(αend)]/p(ee1)/p[q(ee1)q(αend)]

„
αlex contains no BPs and

αmid = P ′α′ or αmid = ε

«

Figure 2. Left-to-right LM driven hypergraph search of the sentence spanning hypergraph; ε denotes the empty word.
Non-logical (Start) axiom: [[ε; PS ]] : w∗; Goal item: [[〈s〉g−1 ? 〈\s〉g−1; ε]] : w

that is based on the first-best instance of P to the
actually chosen instance’s weight. Further, the ra-
tio p(eq(αlexαmid))/p(ee1) adjusts the LM prob-
abilities of P ’s instantiation given its left context,
and p[q(eαlexαmid)q(αend)]/p[q(ee1)q(αend)] ad-
justs the LM probabilities of the g − 1 words right
of P .

4 Alternative Approaches

We evaluate our two pass hypergraph search
“H.Search” against the strong single pass Cube
Pruning (CP) baseline as mentioned in (Chiang,
2005) and detailed in (Chiang, 2007). In the latter
work, the author shows that CP clearly outperforms
both the naive single pass solution of severe prun-
ing as well as the naive two-pass rescoring approach.
Thus, we focus on comparing our approach to CP.

CP is an optimization to the intersected LM pars-
ing algorithm presented in Figure 1. It addresses
the creation of the

∏K
k=1 | [Xk, ik, jk, ∗] | chart items

when generating consequent items. CP amounts to
an early termination condition when generating the
set of possible consequents. Instead of generating
all consequents, and then pruning away the poor per-
formers, CP uses the K-Best extraction approach of
(Huang and Chiang, 2005) to select the best K con-
sequents only, at the cost of potential search errors.
CP’s termination condition can be defined in terms
of an absolute number of consequents to generate, or
by terminating the generation process when a newly
generated item is worse (by β) than the current best
item for the same left-hand side and span. To sim-
ulate comparable pruning criteria we parameterize
each method with soft-threshold based criteria only
(β for CP and Z for H.Search) since counter based
limits like K have different effects in CP (selecting
e labeled items) vs H.Search (selecting rules since
items are not labeled with e).

5 Experimental Framework

We present results on the IWSLT 2006 Chinese to
English translation task, based on the Full BTEC
corpus of travel expressions with 120K parallel sen-
tences (906K source words and 1.2m target words).
The evaluation test set contains 500 sentences with
an average length of 10.3 source words.

Grammar rules were induced with the syntax-
based SMT system “SAMT” described in (Zoll-
mann and Venugopal, 2006), which requires ini-
tial phrase alignments that we generated with
“GIZA++” (Koehn et al., 2003), and syntactic parse
trees of the target training sentences, generated by
the Stanford Parser (D. Klein, 2003) pre-trained on
the Penn Treebank. All these systems are freely
available on the web.

We experiment with 2 grammars, one syntax-
based (3688 nonterminals, 0.3m rules), and one
purely hierarchical (1 generic nonterminal, 0.05m
rules) as in (Chiang, 2005). The large number of
nonterminals in the syntax based systems is due to
the CCG extension over the original 75 Penn Tree-
bank nonterminals. Parameters λ used to calculate
P (D) are trained using MER training (Och, 2003)
on development data.

6 Comparison of Approaches

We evaluate each approach by considering both
search errors made on the development data for a
fixed set of model parameters, and the BLEU metric
to judge translation quality.

6.1 Search Error Analysis

While it is common to evaluate MT quality using the
BLEU score, we would like to evaluate search errors
made as a function of “effort” made by each algo-
rithm to produce a first-best translation. We con-
sider two metrics of effort made by each algorithm.
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We first evaluate search errors as a function of novel
queries made to the g-gram LM (since LM calls tend
to be the dominant component of runtime in large
MT systems). We consider novel queries as those
that have not already been queried for a particular
sentence, since the repeated calls are typically effi-
ciently cached in memory and do not affect runtime
significantly. Our goal is to develop techniques that
can achieve low search error with the fewest novel
queries to the g-gram LM.

To appreciate the practical impact of each algo-
rithm, we also measure search errors as a function of
the number of seconds required to translate a fixed
unseen test set. This second metric is more sensitive
to implementation and, as it turned out, even com-
piler memory management decisions.

We define search errors based on the weight of
the best sentence spanning item. Treating weights as
negative log probabilities (costs), we accumulate the
value of the lowest cost derivation for each sentence
in the testing data as we vary pruning settings ap-
propriate to each method. Search errors are reduced
when we are able to lower this accumulated model
cost. We prefer approaches that yield low model cost
with the least number of LM calls or number of sec-
onds spent decoding.

It is important to note that model cost
(− log(P (D))) is a function of the parameters
λ which have been trained using MER training. The
parameters used for these experiments were trained
with the CP approach; in practice we find that either
approach is effective for MER training.

6.2 Results
Figure 3 and Figure 4 plot model cost as a function
of LM cache misses for the IWSLT Hierarchical and
Syntax based systems, while Figure 5 plots decod-
ing time. The plots are based on accumulated model
cost, decoding time and LM cache misses over the
IWSLT Test 06 set. For H.Search, we vary the beam
parameter Z for a fixed value of β = 5 during pars-
ing while for CP, we vary β. We also limit the total
number of items on the agenda at any time to 1000
for H.Search as a memory consideration. We plot
each method until we see no change in BLEU score
for that method. BLEU scores for each parameter
setting are also noted on the plots.

For both the hierarchical and syntax based gram-

mars we see that the H.Search method achieves a
given model cost ‘earlier’ in terms of novel LM
calls for most of the plotted region, but ultimately
fails to achieve the same lowest model cost as the
CP method.3 While the search beam of Z mit-
igates the impact of the estimated scores during
H.Search’s second pass, the score is still not an ad-
missible heuristic for error-free search. We suspect
that simple methods to “underestimate” the score of
a partial derivation’s remaining nonterminals could
bridge this gap in search error. BLEU scores in
the regions of lowest model cost tend to be reason-
ably stable and reflect comparable translation per-
formance for both methods.

Under both H.Search and CP, the hierarchical
grammar ultimately achieves a BLEU score of
19.1%, while the syntactic grammar’s score is ap-
proximately 1.5 points higher at 20.7%. The hierar-
chical grammar demonstrates a greater variance of
BLEU score for both CP and H.Search compared
to the syntax-based grammar. The use of syntac-
tic structure serves as an additional model of target
language fluency, and can explain the fact that syn-
tax based translation quality is more robust to differ-
ences in the number of g-gram LM options explored.

Decoding time plots shows a similar result,
but with diminished relative improvement for the
H.Search method. Profiling analysis of the H.Search
method shows that significant time is spent simply
on allocating and deallocating memory for partial
derivations on top of the scoring times for these
items. We expect to be able to reduce this overhead
significantly in future work.

7 Conclusion

We presented an novel two-pass decoding approach
for PSCFG-based machine translation that achieves
search errors comparable to the state of the art Cube
Pruning method. By maintaining comparable, sen-
tence spanning derivations we allow easy integration
of high or flexible order LMs as well as sentence
level syntactic features during the search process.
We plan to evaluate the impact of these more power-
ful models in future work. We also hope to address
the question of how much search error is tolerable to

3Analysis of total LM calls made by each method (not pre-
sented here) shows the H.Search makes significantly fewer (1/2)
total LM calls than CP to achieve each model cost.
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IWSLT hierarchical grammar and
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BLEU scores for varied pruning pa-
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run MER training and still generate parameters that
generalize well to test data. This point is particularly
relevant to evaluate the use of search error analysis.
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Abstract

We propose to use a statistical phrase-
based machine translation system in a
post-editing task: the system takes as in-
put raw machine translation output (from
a commercial rule-based MT system), and
produces post-edited target-language text.
We report on experiments that were per-
formed on data collected in precisely such
a setting: pairs of raw MT output and
their manually post-edited versions. In our
evaluation, the output of our automatic
post-editing (APE) system is not only bet-
ter quality than the rule-based MT (both
in terms of the BLEU and TER metrics),
it is also better than the output of a state-
of-the-art phrase-based MT system used
in standalone translation mode. These re-
sults indicate that automatic post-editing
constitutes a simple and efficient way of
combining rule-based and statistical MT
technologies.

1 Introduction
The quality of machine translation (MT) is gener-
ally considered insufficient for use in the field with-
out a significant amount of human correction. In the
translation world, the term post-editing is often used
to refer to the process of manually correcting MT
output. While the conventional wisdom is that post-
editing MT is usually not cost-efficient compared to
full human translation, there appear to be situations

where it is appropriate and even profitable. Unfortu-
nately, there are few reports in the literature about
such experiences (but see Allen (2004) for exam-
ples).

One of the characteristics of the post-editing task,
as opposed to the revision of human translation for
example, is its partly repetitive nature. Most MT
systems invariably produce the same output when
confronted with the same input; in particular, this
means that they tend to make the same mistakes over
and over again, which the post-editors must correct
repeatedly. Batch corrections are sometimes pos-
sible when multiple occurrences of the same mis-
take appear in the same document, but when it is
repeated over several documents, or equivalently,
when the output of the same machine translation
system is handled by multiple post-editors, then the
opportunities for factoring corrections become much
more complex. MT users typically try to reduce
the post-editing load by customizing their MT sys-
tems. However, in Rule-based Machine Translation
(RBMT), which still constitutes the bulk of the cur-
rent commercial offering, customization is usually
restricted to the development of “user dictionaries”.
Not only is this time-consuming and expensive, it
can only fix a subset of the MT system’s problems.

The advent of Statistical Machine Translation,
and most recently phrase-based approaches (PBMT,
see Marcu and Wong (2002), Koehn et al. (2003))
into the commercial arena seems to hold the promise
of a solution to this problem: because the MT sys-
tem learns directly from existing translations, it can
be automatically customized to new domains and
tasks. However, the success of this operation cru-
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cially depends on the amount of training data avail-
able. Moreover, the current state of the technology
is still insufficient for consistently producing human
readable translations.

This state of affairs has prompted some to ex-
amine the possibility of automating the post-editing
process itself, at least as far as “repetitive errors” are
concerned. Allen and Hogan (2000) sketch the out-
line of such an automated post-editing (APE) sys-
tem, which would automatically learn post-editing
rules from a tri-parallel corpus of source, raw MT
and post-edited text. Elming (2006) suggests using
tranformation-based learning to automatically ac-
quire error-correcting rules from such data; however,
the proposed method only applies to lexical choice
errors. Knight and Chander (1994) also argue in fa-
vor of using a separate APE module, which is then
portable across multiple MT systems and language
pairs, and suggest that the post-editing task could be
performed using statistical machine translation tech-
niques. To the best of our knowledge, however, this
idea has never been implemented.

In this paper, we explore the idea of using a
PBMT system as an automated post-editor. The un-
derlying intuition is simple: if we collect a paral-
lel corpus of raw machine-translation output, along
with its human-post-edited counterpart, we can train
the system to translate from the former into the lat-
ter. In section 2, we present the case study that mo-
tivates our work and the associated data. In section
3, we describe the phrase-based post-editing model
that we use for improving the output of the auto-
matic translation system. In section 4, we illus-
trate this on a dataset of moderate size containing
job ads and their translation. With less than 500k
words of training material, the phrase-based MT
system already outperforms the rule-based MT base-
line. However, a phrase-based post-editing model
trained on the output of that baseline outperforms
both by a fairly consistent margin. The resulting
BLEU score increases by up to 50% (relative) and
the TER is cut by one third.

2 Background

2.1 Context
The Canadian government’s department of Human
Resources and Social Development (HRSDC) main-

tains a web site called Job Bank,1 where poten-
tial employers can post ads for open positions in
Canada. Over one million ads are posted on Job
Bank every year, totalling more than 180 million
words. By virtue of Canada’s Official Language Act,
HRSDC is under legal obligation to post all ads in
both French and English. In practice, this means
that ads submitted in English must be translated into
French, and vice-versa.

To address this task, the department has put to-
gether a complex setup, involving text databases,
translation memories, machine translation and hu-
man post-editing. Employers submit ads to the Job
Bank website by means of HTML forms containing
“free text” data fields. Some employers do period-
ical postings of identical ads; the department there-
fore maintains a database of previously posted ads,
along with their translations, and new ads are sys-
tematically checked against this database. The trans-
lation of one third of all ads posted on the Job Bank
is actually recuperated this way. Also, employers
will often post ads which, while not entirely identi-
cal, still contain identical sentences. The department
therefore also maintains a translation memory of in-
dividual sentence pairs from previously posted ads;
another third of all text is typically found verbatim
in this way.

The remaining text is submitted to machine trans-
lation, and the output is post-edited by human ex-
perts. Overall, only a third of all submitted text re-
quires human intervention. This is nevertheless very
labour-intensive, as the department tries to ensure
that ads are posted at most 24 hours after submis-
sion. The Job Bank currently employs as many as
20 post-editors working full-time, most of whom are
junior translators.

2.2 The Data
HRSDC kindly provided us with a sample of data
from the Job Bank. This corpus consists in a collec-
tion of parallel “blocks” of textual data. Each block
contains three parts: the source language text, as
submitted by the employer, its machine-translation,
produced by a commercial rule-based MT system,
and its final post-edited version, as posted on the
website.

1http://www.jobbank.gc.ca
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The entire corpus contains less than one million
words in each language. This corresponds to the
data processed in less than a week by the Job Bank.
Basic statistics are given in Table 1 (see Section 4.1).
Most blocks contain only one sentence, but some
blocks may contain many sentences. The longest
block contains 401 tokens over several sentences.
Overall, blocks are quite short: the median number
of tokens per source block is only 9 for French-to-
English and 7 for English-to-French. As a conse-
quence, no effort was made to segment the blocks
further for processing.

We evaluated the quality of the Machine Transla-
tion contained in the corpus using the Translation
Edit Rate (TER, cf. Snover et al. (2006)). The
TER counts the number of edit operations, including
phrasal shifts, needed to change a hypothesis trans-
lation into an adequate and fluent sentence, and nor-
malised by the length of the final sentence. Note
that this closely corresponds to the post-editing op-
eration performed on the Job Bank application. This
motivates the choice of TER as the main metric in
our case, although we also report BLEU scores in
our experiments. Note that the emphasis of our work
is on reducing the post-edition effort, which is well
estimated by TER. It is not directly on quality so the
question of which metric better estimates translation
quality is not so relevant here.

The global TER (over all blocks) are 58.77%
for French-to-English and 53.33% for English-to-
French. This means that more than half the words
have to be post-edited in some way (delete / substi-
tute / insert / shift). This apparently harsh result is
somewhat mitigated by two factors.

First, the distribution of the block-based TER2

shows a large disparity in performance, cf. Figure 1.
About 12% of blocks have a TER higher than 100%:
this is because the TER normalises on the length of
the references, and if the raw MT output is longer
than its post-edited counterpart, then the number of
edit operations may be larger than that length.3 At
the other end of the spectrum, it is also clear that
many blocks have low TER. In fact more than 10%

2Contrary to BLEU or NIST, the TER naturally decomposes
into block-based scores.

3A side effect of the normalisation is that larger TER are
measured on small sentences, e.g. 3 errors for 2 reference
words.
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Figure 1: Distribution of TER on 39005 blocks from
the French-English corpus (thresholded at 150%).

have a TER of 0. The global score therefore hides a
large range of performance.

The second factor is that the TER measures the
distance to an adequate and fluent result. A high
TER does not mean that the raw MT output is not
understandable. However, many edit operations may
be needed to make it fluent.

3 Phrase-based Post-editing

Translation post-editing can be viewed as a simple
transformation process, which takes as input raw
target-language text coming from a MT system, and
produces as output target-language text in which “er-
rors” have been corrected. While the automation
of this process can be envisaged in many differ-
ent ways, the task is not conceptually very differ-
ent from the translation task itself. Therefore, there
doesn’t seem to be any good reason why a machine
translation system could not handle the post-editing
task. In particular, given such data as described in
Section 2.2, the idea of using a statistical MT system
for post-editing is appealing. Portage is precisely
such a system, which we describe here.

Portage is a phrase-based, statistical machine
translation system, developed at the National Re-
search Council of Canada (NRC) (Sadat et al.,
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2005). A version of the Portage system is made
available by the NRC to Canadian universities for
research and education purposes. Like other SMT
systems, it learns to translate from existing parallel
corpora.

The system translates text in three main phases:
preprocessing of raw data into tokens; decoding to
produce one or more translation hypotheses; and
error-driven rescoring to choose the best final hy-
pothesis. For languages such as French and English,
the first of these phases (tokenization) is mostly a
straightforward process; we do not describe it any
further here.

Decoding is the central phase in SMT, involv-
ing a search for the hypotheses t that have high-
est probabilities of being translations of the cur-
rent source sentence s according to a model for
P (t|s). Portage implements a dynamic program-
ming beam search decoding algorithm similar to that
of Koehn (2004), in which translation hypotheses
are constructed by combining in various ways the
target-language part of phrase pairs whose source-
language part matches the input. These phrase pairs
come from large phrase tables constructed by col-
lecting matching pairs of contiguous text segments
from word-aligned bilingual corpora.

Portage’s model for P (t|s) is a log-linear com-
bination of four main components: one or more n-
gram target-language models, one or more phrase
translation models, a distortion (word-reordering)
model, and a sentence-length feature. The phrase-
based translation model is similar to that of Koehn,
with the exception that phrase probability estimates
P (s̃|t̃) are smoothed using the Good-Turing tech-
nique (Foster et al., 2006). The distortion model is
also very similar to Koehn’s, with the exception of a
final cost to account for sentence endings.

Feature function weights in the loglinear model
are set using Och’s minium error rate algorithm
(Och, 2003). This is essentially an iterative two-step
process: for a given set of source sentences, generate
n-best translation hypotheses, that are representative
of the entire decoding search space; then, apply a
variant of Powell’s algorithm to find weights that op-
timize the BLEU score over these hypotheses, com-
pared to reference translations. This process is re-
peated until the set of translations stabilizes, i.e. no
new translations are produced at the decoding step.

To improve raw output from decoding, Portage re-
lies on a rescoring strategy: given a list of n-best
translations from the decoder, the system reorders
this list, this time using a more elaborate loglinear
model, incorporating more feature functions, in ad-
dition to those of the decoding model: these typ-
ically include IBM-1 and IBM-2 model probabili-
ties (Brown et al., 1993) and an IBM-1-based fea-
ture function designed to detect whether any word
in one language appears to have been left without
satisfactory translation in the other language; all of
these feature functions can be used in both language
directions, i.e. source-to-target and target-to-source.

In the experiments reported in the next section,
the Portage system is used both as a translation and
as an APE system. While we can think of a number
of modifications to such a system to better adapt it
to the post-editing task (some of which are discussed
later on), we have done no such modifications to the
system. In fact, whether the system is used for trans-
lation or post-editing, we have used exactly the same
translation model configuration and training proce-
dure.

4 Evaluation
4.1 Data and experimental setting
The corpus described in section 2.2 is available for
two language pairs: English-to-French and French-
to-English.4 In each direction, each block is avail-
able in three versions (or slices): the original text
(or source), the output of the commercial rule-based
MT system (or baseline) and the final, post-edited
version (or reference).

In each direction (French-to-English and English-
to-French), we held out two subsets of approxi-
mately 1000 randomly picked blocks. The valida-
tion set is used for testing the impact of various high-
level choices such as pre-processing, or for obtain-
ing preliminary results based on which we setup new
experiments. The test set is used only once, in order
to obtain the final experimental results reported here.

The rest of the data constitutes the training set,
which is split in two. We sampled a subset of
1000 blocks as train-2, which is used for optimiz-

4Note that, in a post-editing context, translation direction is
crucially important. It is not possible to use the same corpus in
both directions.
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English-to-French French-to-English
Corpus words: words:

blocks source baseline reference blocks source baseline reference
train-1 28577 310k 382k 410k 36005 485k 501k 456k
train-2 1000 11k 14k 14k 1000 13k 14k 12k
validation 881 10k 13k 13k 966 13k 14k 12k
test 899 10k 12k 13k 953 13k 13k 12k

Table 1: Data and split used in our experiments, (in thousand words). ’baseline’ is the output of the com-
mercial rule-based MT system and ’reference’ is the final, post-edited text.

ing the log-linear model parameters used for decod-
ing and rescoring. The rest is the train-1 set, used
for estimating IBM translation models, constructing
phrasetables and estimating a target language model.

The composition of the various sets is detailed in
Table 1. All data was tokenized and lowercased;
all evaluations were performed independent of case.
Note that the validation and test sets were originally
made out of 1000 blocks sampled randomly from
the data. These sets turned out to contain blocks
identical to blocks from the training sets. Consider-
ing that these would normally have been handled by
the translation memory component (see the HRSDC
workflow description in Section 2.1), we removed
those blocks for which the source part was already
found in the training set (in either train-1 or train-2),
hence their smaller sizes.

In order to check the sensitivity of experimental
results to the choice of the train-2 set, we did a
run of preliminary experiments using different sub-
sets of 1000 blocks. The experimental results were
nearly identical and highly consistent, showing that
the choice of a particular train-2 subset has no in-
fluence on our conclusions. In the experiments re-
ported below, we therefore use a single identical
train-2 set.

We initially performed two sets of experiments
on this data. The first was intended to compare the
performance of the Portage PBMT system as an al-
ternative to the commercial rule-based MT system
on this type of data. In these experiments, English-
to-French and French-to-English translation systems
were trained on the source and reference (manually
post-edited target language) slices of the training set.
In addition to the target language model estimated
on the train-1 data, we used an external contribution,

Language TER BLEU
English-to-French

Baseline 53.5 32.9
Portage translation 53.7 36.0
Baseline + Portage APE 47.3 41.6

French-to-English
Baseline 59.3 31.2
Portage translation 43.9 41.0
Baseline + Portage APE 41.0 44.9

Table 2: Experimental Results: For TER, lower (er-
ror) is better, while for BLEU, higher (score) is bet-
ter. Best results are in bold.

a trigram target language model trained on a fairly
large quantity of data from the Canadian Hansard.

The goal of the second set of experiments was to
assess the potential of the Portage technology in au-
tomatic post-editing mode. Again, we built systems
for both language directions, but this time using the
existing rule-based MT output as source and the ref-
erence as target. Apart from the use of different
source data, the training procedure and system con-
figurations of the translation and post-editing sys-
tems were in all points identical.

4.2 Experimental results
The results of both experiments are presented in Ta-
ble 2. Results are reported both in terms of the TER
and BLEU metrics; Baseline refers to the commer-
cial rule-based MT output.

The first observation from these results is that,
while the performance of Portage in translation
mode is approximately equivalent to that of the base-
line system when translating into French, its perfor-
mance is much better than the baseline when trans-
lating into English. Two factors possibly contribute
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to this result: first, the fact that the baseline system
itself performs better when translating into French;
second, and possibly more importantly, the fact that
we had access to less training data for English-to-
French translation.

The second observation is that when Portage is
used in automatic post-editing mode, on top of the
baseline MT system, it achieves better quality than
either of the two translation systems used on its own.
This appears to be true regardless of the translation
direction or metric. This is an extremely interesting
result, especially in light of how little data was actu-
ally available to train the post-editing system.

One aspect of statistical MT systems is that, con-
trary to rule-based systems, their performance (usu-
ally) increases as more training data is available. In
order to quantify this effect in our setting, we have
computed learning curves by training the Portage
translation and Portage APE systems on subsets of
the training data of increasing sizes. We start with
as little as 1000 blocks, which corresponds to around
10-15k words.

Figure 2 (next page) compares the learning rates
of the two competing approaches (Portage transla-
tion vs. Portage APE). Both approaches display very
steady learning rates (note the logarithmic scale for
training data size). These graphs strongly suggest
that both systems would continue to improve given
more training data. The most impressive aspect is
how little data is necessary to improve upon the
baseline, especially when translating into English:
as little as 8000 blocks (around 100k words) for di-
rect translation and 2000 blocks (around 25k words)
for automatic post-editing. This suggests that such
a post-editing setup might be worth implementing
even for specialized domains with very small vol-
umes of data.

4.3 Extensions
Given the encouraging results of the Portage APE
approach in the above experiments, we were curi-
ous to see whether a Portage+Portage combination
might be as successful: after all, if Portage was good
at correcting some other system’s output, could it
not manage to correct the output of another Portage
translator?

We tested this in two settings. First, we actu-
ally use the output of the Portage translation sys-

Language TER BLEU
English-to-French

Portage Job Bank 53.7 36.0
+ Portage APE 53.7 36.2
Portage Hansard 76.9 13.0
+ Portage APE 64.6 26.2

French-to-English
Portage Job Bank 43.9 41.0
+ Portage APE 43.9 41.4
Portage Hansard 80.1 14.0
+ Portage APE 57.7 28.6

Table 3: Portage translation - Portage APE system
combination experimental results.

tem obtained above, i.e. trained on the same data.
In our second experiment, we use the output of
a Portage translator trained on different domain
data (the Canadian Hansard), but with much larger
amounts of training material (over 85 million words
per language). In both sets of experiments, the
Portage APE system was trained as previously, but
using Portage translations of the Job Bank data as
input text.

The results of both experiments are presented in
Table 3. The first observation in these results is that
there is nothing to be gained from post-editing when
both the translation and APE systems are trained on
the same data sets (Portage Job Bank + Portage APE
experiments). In other words, the translation system
is apparently already making the best possible use of
the training data, and additional layers do not help
(but nor do they hurt, interestingly).

However, when the translation system has been
trained using distinct data (Portage Hansard +
Portage APE experiments), post-editing makes a
large difference, comparable to that observed with
the rule-based MT output provided with the Job
Bank data. In this case, however, the Portage trans-
lation system behaves very poorly in spite of the im-
portant size of the training set for this system, much
worse in fact than the “baseline” system. This high-
lights the fact that both the Job Bank and Hansard
data are very much domain-specific, and that access
to appropriate training material is crucial for phrase-
based translation technology.

In this context, combining two phrase-based sys-
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Figure 2: TER and BLEU scores of the phrase-based post-editing models as the amount of training data
increases (log scale). The horizontal lines correspond to the performance of the baseline system (rule-based
translation).

tems as done here can be seen as a way of adapting
an existing MT system to a new text domain; the
APE system then acts as an “adapter”, so to speak.
Note however that, in our experiments, this setup
doesn’t perform as well as a single Portage transla-
tion system, trained directly and exclusively on the
Job Bank data.

Such an adaptation strategy should be contrasted
with one in which the translation models of the
old and new domains are “merged” to create a new
translation system. As mentioned earlier, Portage
allows using multiple phrase translation tables and
language models concurrently. For example, in the
current context, we can extract phrase tables and lan-
guage models from the Job Bank data, as when train-
ing the “Portage Job Bank” translation system, and
then build a Portage translation model using both the
Hansard and Job Bank model components. Loglin-
ear model parameters are then optimized on the Job
Bank data, so as to find the model weights that best
fit the new domain.

In a straightforward implementation of this idea,
we obtained performances almost identical to those
of the Portage translation system trained solely on
Job Bank data. Upon closer examination of the

model parameters, we observed that Hansard model
components (language model, phrase tables, IBM
translation models) were systematically attributed
negligeable weights. Again, the amount of training
material for the new domain may be critical in chos-
ing between alternative adaptation mechanisms.

5 Conclusions and Future Work

We have proposed using a phrase-based MT sys-
tem to automatically post-edit the output of an-
other MT system, and have tested this idea with
the Portage MT system on the Job Bank data set, a
corpus of manually post-edited French-English ma-
chine translations. In our experiments, not only does
phrase-based APE significantly improve the quality
of the output translations, this approach outperforms
a standalone phrase-based translation system.

While these results are very encouraging, the
learning curves of Figure 2 suggest that the output
quality of the PBMT systems increases faster than
that of the APE systems as more data is used for
training. So while the combination strategy clearly
performs better with limited amounts of training
data, there is reason to believe that, given sufficient
training data, it would eventually be outperformed
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by a direct phrase-based translation strategy. Of
course, this remains to be verified empirically, some-
thing which will obviously require more data than is
currently available to us. But this sort of behavior
is expectable: while both types of system improve
as more training data is used, inevitably some de-
tails of the source text will be lost by the front-end
MT system, which the APE system will never be
able to retrieve.5 Ultimately, the APE system will
be weighted down by the inherent limitations of the
front-end MT system.

One way around this problem would be to modify
the APE system so that it not only uses the base-
line MT output, but also the source-language input.
In the Portage system, this could be achieved, for
example, by introducing feature functions into the
log-linear model that relate target-language phrases
with the source-language text. This is one research
avenue that we are currently exploring.

Alternatively, we could combine these two in-
puts differently within Portage: for example, use
the source-language text as the primary input, and
use the raw MT output as a secondary source. In
this perspective, if we have multiple MT systems
available, nothing precludes using all of them as
providers of secondary inputs. In such a setting, the
phrase-based system becomes a sort of combination
MT system. We intend to explore such alternatives
in the near future as well.
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the Job Bank team at HRSDC for preparing data that
was essential to this project.

References
Jeffrey Allen and Christofer Hogan. 2000. Toward

the development of a post-editing module for Ma-
chine Translation raw output: a new productivity tool
for processing controlled language. In Third Inter-

5As a trivial example, imagine an MT system that “deletes”
out-of-vocabulary words.

national Controlled Language Applications Workshop
(CLAW2000), Washington, USA.

Jeffrey Allen. 2004. Case study: Implementing MT for
the translation of pre-sales marketing and post-sales
software deployment documentation. In Proceedings
of AMTA-2004, pages 1–6, Washington, USA.

Peter F Brown, Stephen A Della Pietra, Vincent J Della
Pietra, and Robert L Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19(2):263–311.

Jakob Elming. 2006. Transformation-based corrections
of rule-based MT. In Proceedings of the EAMT 11th
Annual Conference, Oslo, Norway.

George Foster, Roland Kuhn, and Howard Johnson.
2006. Phrasetable Smoothing for Statistical Machine
Translation. In Proceedings of EMNLP 2006, pages
53–61, Sydney, Australia.

Kevin Knight and Ishwar Chander. 1994. Automated
Postediting of Documents. In Proceedings of National
Conference on Artificial Intelligence, pages 779–784,
Seattle, USA.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical Phrase-Based Translation. In Proceed-
ings of HLT-NAACL 2003, pages 127–133, Edmonton,
Canada.

Philipp Koehn. 2004. Pharaoh: a Beam Search De-
coder for Phrase-Based Statistical Machine Transla-
tion Models. In Proceedings of AMTA 2004, pages
115–124, Washington, USA.

Daniel Marcu and William Wong. 2002. A Phrase-
Based, Joint Probability Model for Statistical Ma-
chine Translation. In Proceedings of EMNLP 2002,
Philadelphia, USA.

Franz Josef Och. 2003. Minimum error rate training
in Statistical Machine Translation. In Proceedings of
ACL-2003, pages 160–167, Sapporo, Japan.

Fatiha Sadat, Howard Johnson, Akakpo Agbago, George
Foster, Roland Kuhn, Joel Martin, and Aaron Tikuisis.
2005. PORTAGE: A Phrase-Based Machine Trans-
lation System. In Proceedings of the ACL Workshop
on Building and Using Parallel Texts, pages 129–132,
Ann Arbor, USA.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Proceedings of AMTA-2006, Cambridge,
USA.

515



Proceedings of NAACL HLT 2007, pages 516–523,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Automatic Answer Typing for How-Questions

Christopher Pinchak and Shane Bergsma
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada�
pinchak,bergsma � @cs.ualberta.ca

Abstract

We introduce an answer typing strategy
specific to quantifiable how questions. Us-
ing the web as a data source, we auto-
matically collect answer units appropri-
ate to a given how-question type. Exper-
imental results show answer typing with
these units outperforms traditional fixed-
category answer typing and other strate-
gies based on the occurrences of numeri-
cal entities in text.

1 Introduction

Question answering (QA) systems are emerging as
a viable means of obtaining specific information in
the face of large availability. Answer typing is an
important part of QA because it allows the system
to greatly reduce the number of potential answers,
using general knowledge of the answer form for a
specific question. For example, for what, where, and
who questions like “What is the capital of Canada?”,
answer typing can filter the phrases which might be
proposed as candidate answers, perhaps only identi-
fying those textual entities known to be cities.

We focus on answer typing for how-questions, a
subset of questions which have received little spe-
cific attention in the QA community. Rather than
seeking an open-ended noun or verb phrase, how-
questions often seek a numerical measurement ex-
pressed in terms of a certain kind of unit, as in the
following example:

Example 1: “How heavy is a grizzly bear?”

An answer typing system might expect answers to
include units like kilograms, pounds, or tons. Enti-
ties with inappropriate units, such as feet, meters, or
honey pots, would be excluded as candidate answers.

We specifically handle the subset of how-
questions that we call how-adjective questions; that
is, questions of the form “How adjective...?” such
as Example 1. In particular, we do not address “how
many” questions, which usually specify the units di-
rectly following many, nor “how much” questions,
which generally seek a monetary value.

Hand-crafting a comprehensive list of units ap-
propriate to many different adjectives is time-
consuming and likely to miss important units. For
example, an annotator might miss gigabytes for a
measure of “how large.” Instead of compiling a list
manually, we propose a means of automatically gen-
erating lists of appropriate units for a number of real-
world questions.

How-adjective questions represent a significant
portion of queries sent to search engines; of the
35 million queries in the AOL search query data
set (Pass et al., 2006), over 11,000 are of the form
“how adjective...” – close to one in every three thou-
sand queries. Of those 11,000 queries, 152 different
adjectives are used, ranging from the expected “how
old” and “how far” to the obscure “how orwellian.”

This high proportion of queries is especially strik-
ing given that search engines provide little sup-
port for answering how-adjective questions. Indeed,
most IR systems work by keyword matching. En-
tering Example 1 into a search engine returns doc-
uments discussing the grizzly’s “heavy fur,” “heavy,
shaggy coat” and “heavy stout body.” When faced
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with such results, a smart search engine user knows
to inject answer units into their query to refine their
search, perhaps querying “grizzly pounds.” They
may also convert their adjective (heavy) to a related
concept (weight), for the query “grizzly weight.”

Similarly, our approach discovers unit types by
first converting the adjective to a related concept, us-
ing information in a structured ontology. For exam-
ple, “big” can be used to obtain “size,” and “tall” can
derive “height.” We then use an online search engine
to automatically find units appropriate to the con-
cept, given the assumption that the concept is explic-
itly measured in terms of specific units, e.g., height
can be measured in feet, weight can be measured in
pounds, and size can be measured in gigabytes.

By automatically extracting units, we do not re-
quire a set of prior questions with associated an-
swers. Instead, we use actual questions as a source
of realistic adjectives only. This is important be-
cause while large sets of existing questions can be
obtained (Li and Roth, 2002), there are many fewer
questions with available answers.

Our experiments demonstrate that how-question-
specific unit lists consistently achieve higher answer
identification performance than fixed-type, general-
purpose answer typing (which propose all numeri-
cal entities as answer candidates). Furthermore, our
precomputed, automatically-generated unit lists are
shown to consistently achieve better performance
than baseline systems which derive unit lists at run-
time from documents relevant to the answer query,
even when such documents are gathered using per-
fect knowledge of the answer distribution.

The outline of the paper is as follows. In Section 2
we outline related work. In Section 3 we provide the
framework of our answer-typing model. Section 4
describes the implementation details of the model.
Section 5 describes our experimental methodology,
while Section 6 shows the benefits of using auto-
matic how-question answer-typing. We conclude
with possible directions of future research opened
by this novel problem formulation.

2 Previous Work

Answer typing is an important component of any
QA system, but varies greatly in the approach
taken (Prager et al., 2003; Harabagiu et al., 2005).

Basically, answer typing provides a means of filter-
ing answer candidates as either appropriate or in-
appropriate to the question. For example, Li and
Roth (2002) assign one of fifty possible types to a
question based on features present in the question.
Answer candidates can then be selected from text
by finding entities whose type matches that of the
input question. Similarly, Ittycheriah et al. (2000)
assign one of the MUC named-entity types to each
input question. In these fixed-category approaches,
how-questions are assigned a fixed type in the same
manner as other questions. For how-questions, this
corresponds to a numerical type. However, retriev-
ing all numerical entities will provide lower answer
identification precision than a system that only pro-
vides those specified with the expected answer units.

Pinchak and Lin (2006) propose a dynamic an-
swer typing system which computes a unique score
for the appropriateness of any word to a particu-
lar question. Unfortunately, their question context-
mapping is limited to what, where, and who ques-
tions, and thus is not defined for how-questions.

Wu et al. (2005) handle how-questions differently
than other questions. They use special hand-crafted
rules to assign a particular answer target during the
answer typing phase. In this way, they take advan-
tage of the structure inherent in how-questions rather
than just treating them as general queries. However,
manually hand-crafting types is costly, and would
have to be repeated if the system was moved to a
new language or a new query domain. Our auto-
matic approach does not suffer from this drawback.

Light et al. (2001) showed that for a small fixed
set of answer types, multiple words tagged with
the same type will exist even with perfect passage
retrieval, sentence retrieval, and type assignment.
For example, Example 1 may be answered with a
sentence such as “bears range in weight from the
smaller black bear at 400 pounds to the gigantic griz-
zly at over 1200 pounds” in which two answers have
appropriate units but only one of which is correct.
We provide results in Section 6 confirming the lim-
its of answer typing at narrowing answer focus, us-
ing varying levels of perfect information.

Our approach makes use of the web as a large
corpus of useful information. Exploiting the vast
amount of data on the web is part of a growing trend
in Natural Language Processing (Keller and Lapata,
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2003). Indeed, many QA systems have been devel-
oped using the web (to varying degrees) to assist in
finding a correct answer (Brill et al., 2001; Cucerzan
and Agichtein, 2005; Radev et al., 2001), as the web
is the largest available corpus even if its information
can be difficult to harness. Rather than relying on
the web to find the answer to a question, we rely on it
as a source of information on appropriate units only.
Should the domain of the question answering system
change from general factoid questions, units may be
extracted from a smaller, domain-specific corpus.

3 Model Framework

The objective of our model is to create a list of rel-
evant units for an adjective that may be found in a
how-question. We wish to create these lists a pri-
ori and off-line so that they are applicable to future
questions. Although the model described here can
be applied on-line at the time of question answering,
the resources and time required make off-line gener-
ation of unit lists the preferred approach.

We wish to automatically learn a mapping ������ ���
in which

�
is a set of adjectives derived

from how-questions and
�	�

is a set of lists of units
associated with these adjectives. For example, an
element of this mapping might be:

high 
 ��� �
feet, meter, foot, inches, ... ��
 ��

which assigns height measurements to “how high”
questions. Inducing this mapping means establish-
ing a connection, or co-occurrence, between each
adjective � and its units

�	�
. In the following sub-

sections, we show how to establish this connection.

3.1 Using WordNet for Adjective Expansion

In common documents, such as news articles or
web pages, the co-occurrence of an adjective and
its units may be unlikely. For example, the co-
occurrence between “heavy” and “pounds” may
not be as prevalent as the co-occurrence between
“weight” and “pounds.” We therefore propose us-
ing WordNet (Fellbaum, 1998) to expand the how-
adjective � to a set of related concepts the adjective
may be used to describe. We denote a related con-
cept of � as � . In the above example, “heavy” can be
used to describe a “weight.” Two useful WordNet re-
lations are the attribute relation, in which the adjec-
tive is an attribute of the concept, and in cases where

no attribute exists, the derivationally-related words.
“Heavy” is an attribute of “weight” whereas the
derivationally-related form is “heaviness,” a plausi-
ble but less useful concept. Next we describe how
the particular co-occurrence of the related concept �
and unit � is obtained.

3.2 Using Google to Obtain Counts

We selected the Google search engine as a source
of co-occurrence data due to the large number of in-
dexed documents from which co-occurrence counts
can be derived. To further enhance the quality of
co-occurrence data, we search on the specific phrase
“ � is measured in” in which � is one of the related
concepts of � . This allows for the simultaneous dis-
covery of unknown units and the retrieval of their
co-occurrence counts.

Sentences in which the pattern occurs are parsed
using Minipar (Lin, 1998b) so that we can obtain
the word related to “measured” via the preposi-
tional in relation. This allows us to handle senten-
tial constructions that may intervene between “mea-
sured” and a meaningful unit. For each unit � that
is related to “measured” via in, we increment the
co-occurrence count ����������� , thereby collecting fre-
quency counts for each � with � .

The pattern’s precision prevents incidental co-
occurrence between a related concept and some unit
that may occur simply because of the general topic
of the document. For example, “size is measured
in” matches “Size is measured in gigabytes, and per-
formance is measured in milliseconds”. In this ex-
ample, the co-occurrence count ��� gigabytes � size �
would be incremented by one, whereas there is no
co-occurrence between “size” and “milliseconds.”
Due to the large amount of data available to Google,
we can afford to restrict ourselves to a single pattern
and still expect to find meaningful units.

To gather the co-occurrence counts between an
adjective � and a unit � , we first expand � to the
set of related concepts � � and then compute:

�������������! "$#&%(' ���������)� (1)

These frequencies can then be used by the scoring
functions described in the following section.
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3.3 Filtering the Unit List

For a given adjective � and a particular unit �
with co-occurrence ����������� , we define two impor-
tant statistics:

� ����� � � � ��������� ������ #	� ������
������ (2)

� � ��� � �	� ��������� �� � � # � ��������� 
 � (3)

The first equation measures the likelihood of a
unit � being an answer unit for a how-question with
the given adjective � . The second equation mea-
sures, for a given unit � , how likely a how question
with adjective � asked the question answered by � .
The second measure is particularly useful in cases
where a unit � co-occurs with a number of differ-
ent adjectives. These units are inherently less useful
for answer typing. For example, if the word “terms”
occurs on the unit list of adjectives such as “high,”
“long,” and “heavy,” it may indicate that “terms”
is not an appropriate measure for any of these con-
cepts, but rather just a word likely to co-occur with
nouns that can be measured.

We propose using the measures
� ����� � � and� ����� � � � � ��� � � to score and rank our how-adjective

unit lists.
� � ��� � � alone showed inferior perfor-

mance on the development set and so will not be
further considered.

� ���� ��� � � ��� � � approximates
the standard ��� - ��� � measure (Salton and Buckley,
1988).

� ���� ��� is the term frequency ��� in the unit
list and

� � ��� � � is the inverse document frequency
��� � of the unit over all unit lists. Using these mea-
sures, we can create a unit list for an adjective � as

��� � � � ������ �	� ������������� � (4)

in which ���� ��� ��������� is the score of unit � with ad-
jective � (either

� ���� ��� or
� ���� ��� � � ��� � � ) and � is

some threshold imposed to deal with the amount of
noise present in the co-occurrence data. This thresh-
old allows us to vary the required strength of the as-
sociation between the unit and the question in or-
der to consider the unit as appropriate to the how-
adjective. In Section 6, we demonstrate this flexi-
bility by showing how answer identification preci-
sion and recall can be traded off as desired by the
given application. The value ���� ��� ��������� can also

be passed to downstream modules of the question
answering process (such as the answer extractor),
which may then exploit the association value di-
rectly.

4 Implementation Details

4.1 Automatic How-Adjective Discovery

An initial step in implementing answer typing for
how-adjective questions is to decide which adjec-
tives would benefit from types. WordNet gives a
set of all adjectives, but providing answer type units
for all these adjectives is unnecessary and poten-
tially misleading. Many adjectives would clearly
never occur in a how-adjective query (i.e., “how ve-
hicular...?”), and even some that do, like the “how
orwellian” query mentioned above, are difficult to
quantify. For these, a simple search with keyword
matching as in typical information retrieval would
be preferable.

We have a two-stage process for identifying unit-
typable how-adjectives. First, we examine the AOL
query data (Pass et al., 2006) and extract as candi-
dates all 152 adjectives that occur with the pattern
“how adjective is/are/was/were.” Second, we fil-
ter adjectives that do not have a related concept in
WordNet (Section 3.1). We built unit lists for the
104 adjectives that remained.

Given that both the query database and WordNet
may lack information, it is important to consider the
coverage of actual how-adjective questions that unit
lists collected this way may have. Reassuringly, ex-
periments have shown 100% coverage of the 96 ad-
jectives in our development and test question set,
taken from the TREC QA corpus (see Section 5).

4.2 Similar Word Expansion

Unfortunately, we found that search results obtained
using the pattern described in Section 3.2 do not pro-
duce a wide variety of units. Web pages often do
not use a slang term when mentioning the unit of
measurement; a search for “size is measured in gigs”
on Google returns zero pages. Also, searching with
Google’s API and obtaining relevant documents can
be time consuming, and we must limit the number
of pages considered. Thus, there is strong motiva-
tion to expand the list of units obtained from Google
by automatically considering similar units.
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We gather similar units from an automatically-
constructed thesaurus of distributionally similar
words (Lin, 1998a). The similar word expansion can
add a term like gigs as a unit for size by virtue of its
association with gigabytes, which is on the original
list.

Unit similarity can be thought of as a mapping
� � � � � � in which

�
is a set of units and

� �
is sets of related units. If � is an element of

��
for

a particular adjective � , the mapping � ��� �
gives

us a way to add new words to the unit list for � .
For example, the similar word list for “gigabytes”
might be

�
GB, megabytes, kilobytes, KB, byte, GHz,

gigs... � , which can all be added to the unit list for
the adjective “large.”

After expanding each element of the unit list
� �

for adjective � , we have a new set of units � � :
� � � � ��� � � � � � (5)

where � � ��� ����� � #	� ' � � .
For each � 
 � �

there is an associated score� �����	� � 
�
 � ���� that measures how similar � is to� . We define the score of units that do not co-occur
on similar word lists to be zero and the similarity of
two identical units to be one. We can then use these
scores to assign estimated co-occurrence counts for
any unit � in the expanded unit list � � :

���������� � �  � #	�)' � ������� � ����������� (6)

If a unit � 
 ��� also occurs in the set of expanded
similar units for another another unit � 
 
 � �

, that
is, � 
 � � �

, then the original co-occurrence fre-
quency of � and � , � ������� � ����������� , will be boosted
by the similarity-weighted frequency of � on the ex-
panded unit list of � 
 , � ������� 
 � ����� 
 ����� .
4.3 Selection of Answer Candidates

For a given how-adjective question and a document
of interest, we use a two-stage process to identify
the entities in the document that are suitable answers
for the question. First, the named entity recognizer
of Minipar is used to identify all numerical entities
in text, labeled as NUM. Minipar labels times, dates,
monetary amounts, and address numbers with types
other than NUM and so we can correctly exclude
these from consideration. We then inspect the con-
text of all NUM entities to see if a unit exists on the

pre-computed unit list for the given how-adjective.
Textual entities that pass both stages of our identifi-
cation process are considered as candidate answers.

5 Experiments

This section presents experiments comparing our
how-adjective answer typing approach to alterna-
tive schemes on an answer identification task. We
compare our two unit ranking functions

� ����� � � and� ����� � � � � ��� � � (Section 3.3) and test the merits of
using the similar unit expansion (Section 4.2).

5.1 Evaluation Questions

The clearest way to test a QA system is to evalu-
ate it on a large set of questions. Although our an-
swer typing system is not capable of fully answer-
ing questions, we will make use of the how-adjective
questions from TREC 2002-2005 (Vorhees, 2002) as
a set of test data. We take eight of the questions as a
development set (used for preliminary investigations
of scoring functions – no parameters can be set on
the development set specifically) and 86 of the ques-
tions as a final, unseen test set. Seventeen different
adjectives occur in the test questions.

5.2 Evaluation Methodology

We evaluate our system with an approach we call
Answer-Identification Precision Recall (AIPR). For
a particular scoring threshold (Section 3.3), each ad-
jective has a corresponding unit list, which is used to
extract answer candidates from documents (Section
4.3). To ensure the performance of the IR-engine is
not an issue in evaluation, we only use documents
judged to contain the correct answer by TREC.

Answer-identification precision corresponds to
the number of correct answers among the candi-
date answers extracted by our system. Answer-
identification recall is the number of correct answers
extracted among the total number of correct answers
in the answer documents.

A plot of AIPR allows the designer of a particular
QA system to decide on the optimum PR-tradeoff
for the answer typing task. If other stages of QA
rely on a large number of candidates, a high recall
value may be desired so no potential answers are
missed. If answer typing is used as a means of boost-
ing already-likely answers, high precision may in-
stead be favoured.
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5.3 Comparison Systems

This section describes the various systems we com-
pare with our approach. Recall that perfect AIPR
performance is not possible with typing alone (Sec-
tion 2, (Light et al., 2001)), and thus we pro-
vide some of our comparison systems with varying
amounts of perfect answer information in order to
establish the highest performance possible in differ-
ent scenarios on the given dataset.

Query-specific Oracle: The best possible system
creates a unit list for each specific how-question in-
dividually. This list is created using only those units
in the answer pattern of the TREC-provided judge-
ment for this specific question.

Adjective-specific Oracle: This system is de-
signed, like ours, to provide a unit list for each how-
adjective, rather than for a specific question. The
unit list for a particular adjective contains all the
units from all the test set answers of how-adjective
questions containing that adjective. It is optimal in
the sense it will identify every correct answer for
each how-adjective, but only contains those units
necessary for this identification.

Fixed-Category: This system gives the perfor-
mance of a general-purpose, fixed-category answer
typing approach applied to how-questions. In a
fixed-category approach, all how-questions are clas-
sified as seeking numerical answers, and thus all nu-
merical answers are returned as answer candidates.

IR-Document Inferred: Here we infer question
units from documents believed to be relevant to the
question. An IR system (TREC’s PRISE) is given
a how-adjective question, and returns a set of doc-
uments for that query. Every numerical digit in the
documents can be considered a possible answer to
the question, and the units associated with those val-
ues can be collected as the unit list, ranked (and
thresholded) by frequency. We remove units that oc-
cur in a list of 527 stopwords, and filter numerical
modifiers like “hundred, thousand, million, etc.”

Answer-Document Inferred: This approach is
identical to the IR-Document Inferred approach,
except the documents are only those documents
judged by TREC to contain the answer. In this way
the Answer-Document Inferred approach provides
somewhat of an upper bound on Document Inferred
unit typing, by assuming perfect document retrieval.
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Figure 1: Microaveraged AIPR with different scor-
ing functions, unit lists.

Inferring the answer units from the set of rele-
vant documents is similar in spirit to (Daumé III and
Marcu, 2006). In one of their experiments in query-
focused summarization, they show competitive sum-
marization performance without even providing the
query, as the query model is inferred solely from
the commonality in relevant documents. In our case,
good performance will also be possible if the actual
answers have the highest commonality among the
numerical values in the relevant documents.

6 Results

The microaveraged Answer-Identification Precision
Recall over all question-answer pairs is plotted in
Figures 1 and 2. Macroaveraged results are similar.

For our own automatic answer typing approaches,
our first observation is the benefit of ranking with� ����� � � � � ��� � � as opposed to

� ����� � � (Figure 1).
Over most of the recall range, both the unexpanded
(automatic) unit lists and the expanded unit lists
improve in precision by a few percent when using
both probabilistic scoring statistics. Secondly, note
that both systems using the expanded unit lists can
achieve almost 20% higher maximum recall than the
unexpanded unit list systems. This provides strong
justification for the small overhead of looking up
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similar words for items on our unit list.
We next examine the AIPR performance of our

comparison systems versus our best-performing au-
tomatic unit typing approach (Figure 2). The query-
specific oracle is able to achieve the highest perfor-
mance because of perfect knowledge of the units ap-
propriate to a given question. However, its preci-
sion is only 42.2%. That is, the answer identifica-
tion accuracy is limited because the correct answer
shares its units with other numerical entities in the
answer documents. Slightly worse, the adjective-
specific oracle is limited to 34.2% precision. Un-
like the query-specific oracle, if the question is “how
long did WWII last?”, the entities with the irrele-
vant units “meters” and “kilometers” must also be
proposed as candidate answers because they occur
in answers to other “how long” questions. This ora-
cle thus provides a more appropriate upper bound on
automatic unit-typing performance as our automatic
approaches also build unit lists for adjectives rather
than questions. Note again that unit lists for adjec-
tives can be generated off-line whereas unit lists for
specific questions need the query before processing.

In terms of recall, both upper-bound systems top
out at around 78% (with our expanded systems
reaching close to this at about 72%). At first, this
number seems fairly disappointing: if how-adjective
questions only have answer units in 78% of the
cases, perhaps our typing approach is not entirely
appropriate. On inspecting the actual misses, how-
ever, we find that 10 of the 16 missed questions cor-
respond to “how old” questions. These are often
answered without units (e.g. “at age 52.”). Higher
recall would be possible if the system defaults to ex-
tracting all numerical entities for “how old” ques-
tions. On the remaining questions, high recall can
indeed be obtained.

Also of note is the clear disadvantage of using the
standard fixed-category approach to how-question
answer typing (Figure 2). Its precision runs at just
under 5%, about a quarter of the lowest precision of
any of our unit-list approaches at any recall value.
However, fixed-category typing does achieve high
recall, roughly 96%, missing only numerical entities
unrecognized by Minipar. This high recall is possi-
ble because fixed-category typing does not miss an-
swers for “how old” questions.

Both inferred approaches also perform worse than
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Figure 2: Microaveraged AIPR of our approach ver-
sus comparison systems.

our system (Figure 2). Thus inferring units from
relevant documents does not seem promising, as
even the unrealistic approach of inferring only from
known answer documents cannot achieve as high in
answer-identification precision. Also, realistically
using IR-retrieved documents has universally lower
AIPR. As expected, answer-document inferred re-
call plateaus at the same spot as the oracle systems,
as it also requires a unit after each numerical en-
tity (hurting it, again, on the “how old” questions).
Despite their lower performance, note that these in-
ferred approaches are completely orthogonal to our
offline automatic answer-typing, so a future pos-
sibility remains to combine both kinds of systems
within a unified framework.

7 Conclusions and Future Work

Although it is difficult to evaluate the impact of our
approach until it is integrated into a full QA-system,
we have clearly demonstrated the advantages of au-
tomatic answer typing for how-questions. We have
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shown the improvements possible by ranking with
different co-occurrence statistics, and the benefit of
expanding unit lists with similar words. Experi-
mental results show our approaches achieve superior
AIPR performance over all realistic baselines.

In addition to proposing a competitive system, we
believe we have established a framework and eval-
uation methodology that may be of use to other re-
searchers. For example, although manual typing re-
mains an option, our approach can at least provide
a good set of candidate units to consider. Further-
more, a similar-word database can expand the list
obtained by manual typing. Finally, users may also
wish to rank the manual types in some way, and thus
configure the system for a particular level of answer-
identification precision/recall.

Our success with these unit lists has encouraged
two main directions of future work. First, we plan
to move to a discriminative approach to combin-
ing scores and weighting unit features using a small
labeled set. Secondly, we will look at incorporat-
ing units into the information retrieval process. Our
motivating example in Section 1 retrieved irrelevant
documents when given to a search engine, and this
seems to be a general trend in how-question IR. Less
than 60% of the TREC how-questions have a unit
of the correct type anywhere in the top ten docu-
ments returned by the PRISE IR engine, and less
than half correspondingly had a correct answer in
the top ten at all. Making the information retrieval
process aware of the desired answer types will be an
important future direction of QA research.
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Abstract

This paper describes a probabilistic an-
swer selection framework for question an-
swering. In contrast with previous work
using individual resources such as ontolo-
gies and the Web to validate answer can-
didates, our work focuses on developing
a unified framework that not only uses
multiple resources for validating answer
candidates, but also considers evidence of
similarity among answer candidates in or-
der to boost the ranking of the correct an-
swer. This framework has been used to se-
lect answers from candidates generated by
four different answer extraction methods.
An extensive set of empirical results based
on TREC factoid questions demonstrates
the effectiveness of the unified framework.

1 Introduction

Question answering aims at finding exact answers
to a user’s natural language question from a large
collection of documents. Most QA systems com-
bine information retrieval with extraction techniques
to identify a set of likely candidates and then uti-
lize some selection strategy to generate the final
answers (Prager et al., 2000; Clarke et al., 2001;
Harabagiu et al., 2001). Since answer extractors
may be based on imprecise empirical methods, the
selection process can be very challenging, as it often
entails identifying correct answer(s) amongst many
incorrect ones.

Question

Question 
Analysis

Query

Document
Retrieval

Corpus

Docs

Answer
Extraction

Answer
candidates

Answer
Selection

Answer

Shanghai

FT942-20160.5Taiwan
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WSJ920110-00130.65Hong Kong

AP880603-02680.7Beijing

Document 
extracted

ScoreAnswer 
candidates

Which city in China has the 
largest number of foreign 
financial companies?

Figure 1: A traditional QA pipeline architecture

Figure 1 shows a traditional QA architecture with
an example question. Given the question “Which
city in China has the largest number of foreign fi-
nancial companies?”, the answer extraction com-
ponent produces a ranked list of five answer can-
didates. Due to imprecision in answer extraction,
an incorrect answer (“Beijing”) was ranked at the
top position. The correct answer (“Shanghai”) was
extracted from two documents with different confi-
dence scores and ranked at the third and the fifth po-
sitions. In order to select “Shanghai” as the final
answer, we need to address two issues:

• Answer Validation. How do we identify correct
answer(s) amongst incorrect ones? Validating
an answer may involve searching for facts in
a knowledge base, e.g.IS-A(Shanghai,
city) , IS-IN(Shanghai, China) .

• Answer Similarity. How do we exploit evi-
dence of similarity among answer candidates?
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For example, when there are redundant an-
swers (“Shanghai”, as above) or several an-
swers which represent a single instance (e.g.
“Clinton, Bill” and “William Jefferson Clin-
ton”) in the candidate list, how much should we
boost the answer candidate scores?

To address the first issue, several answer selec-
tion approaches have used semantic resources. One
of the most common approaches relies on Word-
Net, CYC and gazetteers for answer validation or
answer reranking; answer candidates are pruned
or discounted if they are not found within a re-
source’s hierarchy corresponding to the expected an-
swer type (Xu et al., 2003; Moldovan et al., 2003;
Prager et al., 2004). In addition, the Web has been
used for answer reranking by exploiting search en-
gine results produced by queries containing the an-
swer candidate and question keywords (Magnini et
al., 2002), and Wikipedia’s structured information
has been used for answer type checking (Buscaldi
and Rosso, 2006).

To use more than one resource for answer
type checking of location questions, Schlobach
et al. (2004) combined WordNet with geographi-
cal databases. However, in their experiments the
combination actually hurt performance because of
the increased semantic ambiguity that accompanies
broader coverage of location names. This demon-
strates that the method used to combine potential
answers may matter as much as the choice of re-
sources.

To address the second issue we must determine
how to detect and exploit answer similarity. As an-
swer candidates are extracted from different docu-
ments, they may contain identical, similar or com-
plementary text snippets. For example, the United
States may be represented by the strings “U.S.”,
“United States” or “USA” in different documents. It
is important to detect this type of similarity and ex-
ploit it to boost answer confidence, especially for list
questions that require a set of unique answers. One
approach is to incorporate answer clustering (Kwok
et al., 2001; Nyberg et al., 2003; Jijkoun et al.,
2006). For example, we might merge “April 1912”
and “14 Apr 1912” into a cluster and then choose
one answer as the cluster head. However, clustering
raises new issues: how to choose the cluster head

and how to calculate the scores of the clustered an-
swers.

Although many QA systems individually address
these issues in answer selection, there has been lit-
tle research on generating a generalized probabilistic
framework that allows any validation and similarity
features to be easily incorporated.

In this paper we describe a probabilistic answer
selection framework to address the two issues. The
framework uses logistic regression to estimate the
probability that an answer candidate is correct given
multiple answer validation features and answer sim-
ilarity features. Experimental results on TREC
factoid questions (Voorhees, 2004) show that our
framework significantly improved answer selection
performance for four different extraction techniques,
when compared to default selection using the indi-
vidual candidate scores produced by each extractor.

This paper is organized as follows: Section 2 de-
scribes our answer selection framework and Section
3 lists the features that generate similarity and va-
lidity scores for factoid questions. In Section 4, we
describe the experimental methodology and the re-
sults. Section 5 describes how we intend to extend
our framework to handle complex questions. Finally
Section 6 concludes with suggestions for future re-
search.

2 Method

Answer validation is based on an estimate of the
probability P (correct(Ai)|Ai, Q), where Q is a
question andAi is an answer candidate to the ques-
tion. Answer similarity is is based on an estimate
of the probabilityP (correct(Ai)|Ai, Aj), where Aj
is similar to Ai. Since both probabilities influ-
ence answer selection performance, it is important
to combine them in a unified framework and es-
timate the probability of an answer candidate as:
P (correct(Ai)|Q,A1, ..., An).

In this paper, we propose a proba-
bilistic framework that directly estimates
P (correct(Ai)|Q,A1, ..., An) using multiple
answer validation features and answer similarity
features. The framework was implemented with
logistic regression, which is a statistical machine
learning technique used to predict the probability
of a binary variable from input variables. Logistic
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P (correct(Ai)|Q,A1, ..., An) (1)

≈ P (correct(Ai)|val1(Ai), ..., valK1(Ai), sim1(Ai), ..., simK2(Ai))

=
exp(α0 +

K1∑
k=1

βkvalk(Ai) +
K2∑
k=1

λksimk(Ai))

1 + exp(α0 +
K1∑
k=1

βkvalk(Ai) +
K2∑
k=1

λksimk(Ai))

where, simk(Ai) =
N∑

j=1(j 6=i)

sim′k(Ai, Aj).

~α, ~β,~λ = argmax
~α,~β,~λ

R∑
j=1

Nj∑
i=1

logP (correct(Ai)|val1(Ai), ..., valK1(Ai), sim1(Ai), ..., simK2(Ai)) (2)

regression has been successfully employed in many
applications including multilingual document merg-
ing (Si and Callan, 2005). In our previous work (Ko
et al., 2006), we showed that logistic regression
performed well in merging three resources to vali-
date answers to location and proper name questions.
We extended this approach to combine multiple
similarity features with multiple answer validation
features. The extended framework estimates the
probability that an answer candidate is correct given
the degree of answer correctness and the amount
of supporting evidence provided in a set of answer
candidates (Equation 1).

In Equation 1, each valk(Ai) is a feature function
used to produce an answer validity score for an an-
swer candidate Ai. Each sim′k(Ai, Aj) is a similar-
ity function used to calculate an answer similarity
between Ai and Aj . K1 and K2 are the number of
answer validation and answer similarity features, re-
spectively. N is the number of answer candidates.

To incorporate multiple similarity features, each
simk(Ai) is obtained from an individual similarity
metric. For example, if Levenshtein distance is used
as one similarity metric, simk(Ai) is calculated by
summing N-1 Levenshtein distances between one
answer candidate and all other candidates. As some
string similarity metrics (e.g. Levenshtein distance)
produce a number between 0 and 1 (where 1 means
two strings are identical and 0 means they are differ-

ent), similarity scores less than some threshold value
are ignored.

The parametersα, β, λwere estimated from train-
ing data by maximizing the log likelihood as shown
in Equation 2, where R is the number of training
questions and Nj is the number of answer candidates
for each question Qj . For parameter estimation, we
used the Quasi-Newton algorithm (Minka, 2003).

To select correct answers, the initial answer candi-
date set is reranked according to the estimated prob-
ability of each candidate. For factoid questions, the
top answer is selected as the final answer to the ques-
tion. As logistic regression can be used for binary
classification with a default threshold of 0.5, we can
also use the framework to classify incorrect answers:
if the probability of an answer candidate is lower
than 0.5, it is considered to be a wrong answer and
is filtered out of the answer list. This is useful in
deciding whether or not a valid answer exists in the
corpus, an important aspect of the TREC QA evalu-
ation (Voorhees, 2004).

3 Feature Representation

This section details the features used to generate an-
swer validity scores and answer similarity scores for
our answer selection framework.
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3.1 Answer Validation Features

Each answer validation feature produces a validity
score which predicts whether or not an answer can-
didate is a correct answer for the question. This task
can be done by exploiting external QA resources
such as the Web, databases, and ontologies. For fac-
toid questions, we used gazetteers and WordNet in a
knowledge-based approach; we also used Wikipedia
and Google in a data-driven approach.

3.1.1 Knowledge-based Features

In order to generate answer validity scores using
gazetteers and WordNet, we reused the algorithms
described in our previous work (Ko et al., 2006).

Gazetteers: Gazetteers provide geographic
information, which allows us to identify
strings as instances of countries, their cities,
continents, capitals, etc. For answer selec-
tion, we used three gazetteer resources: the
Tipster Gazetteer, the CIA World Factbook
(https://www.cia.gov/cia/publications/factbook/inde
x.html) and information about the US states pro-
vided by 50states.com (http://www.50states.com).
These resources were used to assign an answer
validity score between -1 and 1 to each candidate
(Figure 2). A score of 0 means the gazetteers did
not contribute to the answer selection process for
that candidate. For some numeric questions, range
checking was added to validate numeric questions
similarly to Prager et al. (2004). For example, given
the question“How many people live in Chile?”,
if an answer candidate is within± 10% of the
population stated in the CIA World Factbook, it
receives a score of 1.0. If it is in the range of 20%,
its score is 0.5. If it significantly differs by more
than 20%, it receives a score of -1.0. The threshold
may vary based on when the document was written
and when the census was taken1.

WordNet: The WordNet lexical database includes
English words organized in synonym sets, called
synsets(Fellbaum, 1998). We used WordNet in or-
der to produce an answer validity score between -1
and 1, following the algorithm in Figure 3. A score

1The ranges used here were found to work effectively, but
were not explicitly validated or tuned.

 
 
  

1)  If the answer candidate directly matches the gazetteer 
answer for the question, its gazetteer score is 1.0. (e.g. 
Given the question “What continent is Togo on?”, the 
candidate “Africa” receives a score of 1.0.) 

2)  If the answer candidate occurs in the gazetteer within 
the subcategory of the expected answer type, its score 
is 0.5. (e.g., Given the question “Which city in China 
has the largest number of foreign financial 
companies?”, the candidates “Shanghai” and “Boston” 
receive a score of 0.5 because they are both cities.) 

3)  If the answer candidate is not the correct semantic 
type, its score is -1. (e.g., Given the question “Which 
city in China has the largest number of foreign 
financial companies?”, the candidate “Taiwan” 
receives a score of -1 because it is not a city.) 

4) Otherwise, the score is 0.0. 

Figure 2: Validity scoring with gazetteers.

 
 
 
 
 
 
 
 
 
 
 

1)  If the answer candidate directly matches WordNet, its 
WordNet score is 1.0. (e.g. Given the question “What is 
the capital of Uruguay?”, the candidate “Montevideo” 
receives a score of 1.0.) 

2)  If the answer candidate’s hypernyms include a 
subcategory of the expected answer type, its score is 
0.5. (e.g., Given the question “Who wrote the book 
‘Song of Solomon’?", the candidate “Mark Twain” 
receives a score of 0.5 because its hypernyms include 
“writer”.) 

3)  If the answer candidate is not the correct semantic 
type, this candidate receives a score of -1. (e.g., Given 
the question “What state is Niagara Falls located in?”, 
the candidate “Toronto” gets a score of -1 because it is 
not a state.) 

4) Otherwise, the score is 0.0. 

Figure 3: Validity scoring with WordNet.

of 0 means that WordNet does not contribute to the
answer selection process for a candidate.

3.1.2 Data-driven Features

Wikipedia and Google were used in a data-driven
approach to generate answer validity scores.

Wikipedia : Wikipedia (http://www.wikipedia.org)
is a multilingual free on-line encyclopedia. Fig-
ure 4 shows the algorithm used to generate an
answer validity score from Wikipedia. If there
is a Wikipedia document whose title matches an
answer candidate, the document is analyzed to
obtain the term frequency (tf) and the inverse term
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For each answer candidate Ai,
1. Initialize the Wikipedia score: ws(Ai) = 0
2. Search for a Wikipedia document whose title is Ai
3. If a document is found, calculate tf.idf score of Ai in the 

retrieved Wikipedia document
ws(Ai) = (1+log(tf)) × (1+log(idf))

4. If not, for each question keyword Kj ,
4.1. Search for a Wikipedia document that includes Kj
4.2. If a document is found, calculate tf.idf score of Ai 

ws(Ai) += (1+log(tf)) × (1+log(idf))

Figure 4: Validity scoring with Wikipedia

1)1(2)()(
−+×= dscsscs

For each answer candidate Ai,
1. Initialize the Google score: gs(Ai) = 0
2. For each snippet s:
2.1. Initialize the snippet co-occurrence score: cs(s) = 1
2.2. For each question keyword k in s: 

2.2.1 Compute distance d, the minimum number of 
words between k and the answer candidate 

2.2.2 Update the snippet co-occurrence score:

2.3. gs(Ai) = gs(Ai) + cs(s)
3. Normalize the Google score (dividing it by a constant C )

Figure 5: Validity scoring with Google

frequency (idf) of the candidate, from which a
tf.idf score is calculated. When there is no matched
document, each question keyword is also processed
as a back-off strategy, and the answer validity score
is calculated by summing the tf.idf scores. To
calculate word frequency, the TREC Web Corpus
(http://ir.dcs.gla.ac.uk/testcollections/wt10g.html)
was used as a large background corpus.

Google: Following Magnini et al. (2002), we used
Google to generate a numeric score. A query con-
sisting of an answer candidate and question key-
words was sent to the Google search engine. To
calculate a score, the top 10 text snippets returned
by Google were then analyzed using the algorithm
in Figure 5.

3.2 Answer Similarity Features

We calculate the similarity between two answer can-
didates using multiple string distance metrics and a
list of synonyms.

3.2.1 String Distance Metrics

There are several different string distance metrics
to calculate the similarity of short strings. We used
five popular string distance metrics: Levenshtein,
Jaccard, Jaro, Jaro-Winkler, and Cosine similarity.

3.2.2 Synonyms

Synonyms can be used as another metric to calcu-
late answer similarity. We defined a binary similar-
ity score for synonyms.

sim(Ai, Aj) =
{

1, if Ai is a synonym of Aj
0, otherwise

To get a list of synonyms, we used three knowl-
edge bases: WordNet, Wikipedia and the CIA World
Factbook. WordNet includes synonyms for English
words. Wikipedia redirection is used to obtain an-
other set of synonyms. For example, “Calif.” is redi-
rected to “California” in Wikipedia, and “William
Jefferson Clinton” is redirected to “Bill Clinton”.

The CIA World Factbook includes five different
names for a country: conventional long form, con-
ventional short form, local long form, local short
form and former name. For example, the conven-
tional long form of Egypt is “Arab Republic of
Egypt”, the conventional short form is “Egypt”, the
local short form is “Misr”, the local long form is
“Jumhuriyat Misr al-Arabiyah” and the former name
is “United Arab Republic (with Syria)”. All are con-
sidered to be synonyms of “Egypt”.

In addition, manually generated rules are used to
obtain synonyms for different types of answer can-
didates (Nyberg et al., 2003):

• Dates are converted into the ISO 8601 date for-
mat (YYYY-MM-DD) (e.g., “April 12 1914”
and “12th Apr. 1914” are converted into “1914-
04-12” and considered as synonyms).

• Temporal expressions are converted into the
HH:MM:SS format (e.g., “six thirty five p.m.”
and “6:35 pm” are converted into “18:35:xx”
and considered as synonyms).

• Numeric expression are converted into sci-
entific notation (e.g, “one million” and
“1,000,000” are converted into “1e+06” and
considered as synonyms).
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• Representative entities are converted into the
represented entity when the expected answer
type isCOUNTRY(e.g., “the Egyptian govern-
ment” is changed to “Egypt” and “Clinton ad-
ministration” is changed to “U.S.”).

4 Experiment

This section describes the experiments we used
to evaluate our answer selection framework. The
JAVELIN QA system (Nyberg et al., 2006) was used
as a testbed for the evaluation.

4.1 Experimental Setup

A total of 1760 factoid questions from the TREC8-
12 QA evaluations served as a dataset, with 5-fold
cross validation.

To better understand how the performance of our
framework varies for different extraction techniques,
we tested it with four JAVELIN answer extraction
modules: FST, LIGHTv1, LIGHTv2 and SVM (Ny-
berg et al., 2006). FST is an answer extractor based
on finite state transducers that incorporate a set of
extraction patterns (both manually-created and gen-
eralized patterns). LIGHTv1 is an extractor that se-
lects answer candidates using a non-linear distance
heuristic between the keywords and an answer can-
didate. LIGHTv2 is another extractor based on a
different distance heuristic, originally developed as
part of a multilingual QA system. SVM is an extrac-
tor that uses Support Vector Machines to discrimi-
nate between correct and incorrect answers.

Answer selection performance was measured by
average accuracy: the number of correct top answers
divided by the number of questions where at least
one correct answer exists in the candidate list pro-
vided by an extractor. The baseline was calculated
with the answer candidate scores provided by each
individual extractor; the answer with the best extrac-
tor score was chosen, and no validation or similarity
processing was performed. For Wikipedia, we used
a version downloaded in Nov. 2005, which con-
tained 1,811,554 articles.

4.2 Results and Analysis

We first analyzed the average accuracy when us-
ing individual validation features. Figure 6 shows
the effect of the individual answer validation fea-
tures on different extraction outputs. The combina-
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Figure 6: Average accuracy of individual answer
validation features (GZ: gazetteers, WN: WordNet,
WIKI: Wikipedia, GL: Google, ALL: combination
of all features).

tion of all features significantly improved the per-
formance when compared to answer selection using
a single feature. Comparing the data-driven features
with the knowledge-based features, the data-driven
features (such as Wikipedia and Google) increased
performance more than the knowledge-based fea-
tures (such as gazetteers and WordNet); our intuition
is that the knowledge-based features covered fewer
questions. The biggest improvement was found with
candidates produced by the SVM extractor: a 242%
improvement over the baseline. It was mostly be-
cause SVM tended to produce several answer can-
didates with the same or very similar confidence
scores, but our framework could select the correct
answer among many incorrect ones by exploiting
answer validation features.

Table 1 shows the effect of individual similarity
features on different extractors when using 0.3 and
0.5 as a similarity threshold, respectively. When
comparing five different string similarity features
(Levenshtein, Jaro, Jaro-Winkler, Jaccard and Co-
sine similarity), Levenshtein and Jaccard tended to
perform better than the others. When comparing
synonym features with string similarity features,
synonyms performed slightly better.

We also analyzed answer selection performance
when combining all six similarity features (“All” in
Table 1). Combining all similarity features did not
improve the performance except for the FST extrac-
tor, because including five string similarity features
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Similarity FST LIGHTv1 LIGHTv2 SVM
feature 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

Levenshtein 0.728 0.728 0.471 0.455 0.399 0.400 0.381 0.383
Jaro 0.708 0.705 0.422 0.440 0.373 0.378 0.274 0.282

Jaro-Winkler 0.701 0.705 0.426 0.442 0.374 0.379 0.277 0.275
Jaccard 0.738 0.738 0.438 0.448 0.452 0.448 0.382 0.390
Cosine 0.738 0.738 0.436 0.435 0.418 0.422 0.380 0.378

Synonyms 0.745 0.745 0.458 0.458 0.442 0.442 0.412 0.412
Lev+Syn 0.748 0.751 0.460 0.466 0.445 0.448 0.420 0.412
Jac+Syn 0.742 0.742 0.456 0.465 0.440 0.445 0.396 0.396

All 0.755 0.755 0.405 0.425 0.435 0.431 0.303 0.302

Table 1: Average accuracy using individual similarity features under different thresholds: 0.3 and 0.5
(“Lev+Syn”: the combination of Levenshtein with synonyms, “Jac+Syn”: the combination of Jaccard and
synonyms, “All”: the combination of all similarity metrics)

Baseline Sim Val All
FST 0.658 0.751 0.855 0.877

LIGHTv1 0.394 0.466 0.612 0.628
LIGHTv2 0.343 0.448 0.578 0.582

SVM 0.169 0.420 0.578 0.586

Table 2: Average accuracy of individual features
(Sim: merging similarity features, Val: merging val-
idation features, ALL: combination of all features).

provided too much redundancy to the logistic regres-
sion. We also compared the combination of Leven-
shtein with synonyms and the combination of Jac-
card with synonyms, and then chose Levenshtein
and synonyms as the two best similarity features in
our framework.

We also analyzed the degree to which the average
accuracy was affected by answer similarity and val-
idation features. Table 2 compares the average ac-
curacy using the baseline, the answer similarity fea-
tures, the answer validation features and all feature
combinations. As can be seen, the similarity fea-
tures significantly improved performance, so we can
conclude that exploiting answer similarity improves
answer selection performance. The validation fea-
tures also significantly improved the performance.

When combining both sets of features together,
the answer selection performance increased for all
four extractors: an average of 102% over the base-
line, 30% over the similarity features and 1.82%
over the validation features. Adding the similarity

features to the validation features generated small
but consistent improvement in all configurations.
We expect more performance gain from similar-
ity features when merging similar answers returned
from all four extractors.

5 Extensions for Complex Questions

Although we conducted our experiments on fac-
toid questions, our framework can be easily ex-
tended to handle complex questions, which require
longer answers representing facts or relations (e.g.,
“What is the relationship between Alan Greenspan
and Robert Rubin?”). As answer candidates are
long text snippets, different features should be used
for answer selection. Possible validation features
include question keyword inclusion and predicate
structure match (Nyberg et al., 2005). For exam-
ple, given the question“Did Egypt sell Scud mis-
siles to Syria?”, the key predicate from the ques-
tion is Sell(Egypt, Syria, Scud missile). If there is
a sentence which contains the predicate structure
Buy(Syria, Scud missile, Egypt), we can calculate
the predicate structure distance and use it as a val-
idation feature. For answer similarity, we intend to
explore novelty detection approaches evaluated in
Allan et al. (2003).

6 Conclusion

In this paper, we described our answer selection
framework for estimating the probability that an an-
swer candidate is correct given multiple answer vali-
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dation and similarity features. We conducted a series
of experiments to evaluate the performance of the
framework and analyzed the effect of individual val-
idation and similarity features. Empirical results on
TREC questions show that our framework improved
answer selection performance in the JAVELIN QA
system by an average of 102% over the baseline,
30% over the similarity features alone and 1.82%
over the validation features alone.

We plan to improve our framework by adding reg-
ularization and selecting the final answers among
candidates returned from all extractors. As our
current framework is based on the assumption that
each answer is independent, we are building another
probabilistic framework which does not require any
independence assumption, and uses an undirected
graphical model to estimate the joint probability of
all answer candidates.
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Abstract

This paper addresses the task of provid-
ing extended responses to questions re-
garding specialized topics. This task is an
amalgam of information retrieval, topical
summarization, and Information Extrac-
tion (IE). We present an approach which
draws on methods from each of these ar-
eas, and compare the effectiveness of this
approach with a query-focused summa-
rization approach. The two systems are
evaluated in the context of the prosecution
queries like those in the DARPA GALE
distillation evaluation.

1 Introduction

As question-answering systems advance from han-
dling factoid questions to more complex requests,
they must be able to determine how much informa-
tion to include while making sure that the informa-
tion selected is indeed relevant. Unlike factoid ques-
tions, there is no clear criterion that defines the kind
of phrase that answers the question; instead, there
may be many phrases that could make up an answer
and it is often unclear in advance, how many. As
system developers, our goal is to yield high recall
without sacrificing precision.

In response to questions about particular events of
interest that can be enumerated in advance, it is pos-
sible to perform a deeper semantic analysis focusing
on the entities, relations, and sub-events of interest.

On the other hand, the deeper analysis may be error-
ful and will also not always provide complete cov-
erage of the information relevant to the query. The
challenge, therefore, is to blend a shallower, robust
approach with the deeper approach in an effective
way.

In this paper, we show how this can be achieved
through a synergistic combination of information re-
trieval and information extraction. We interleave in-
formation retrieval (IR) and response generation, us-
ing IR in high precision mode in the first stage to
return a small number of documents that are highly
likely to be relevant. Information extraction of enti-
ties and events within these documents is then used
to pinpoint highly relevant sentences and associated
words are selected to revise the query for a sec-
ond pass of retrieval, improving recall. As part of
this process, we approximate the relevant context by
measuring the proximity of the target name in the
query and extracted events.

Our approach has been evaluated in the frame-
work of the DARPA GALE1 program. One of the
GALE evaluations involves responding to questions
based on a set of question templates, ranging from
broad questions like “Provide information on X”,
where X is an organization, to questions focused on
particular classes of events. For the experiments pre-
sented here, we used the GALE program’s prosecu-
tion class of questions. These are given in the fol-
lowing form: “Describe the prosecution of X for Y,”
where X is a person and Y is a crime or charge. Our
results show that we are able to achieve higher accu-

1Global Autonomous Language Exploitation
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racy with a system that exploits the justice events
identified by IE than with an approach based on
query-focused summarization alone.

In the following sections, we first describe the
task and then review related work in question-
answering. Section 3 details our procedure for find-
ing answers as well as performing the information
retrieval and information extraction tasks. Section 4
compares the results of the two approaches. Finally,
we present our conclusion and plans for future work.

1.1 The Task

The language of the question immediately raises the
question of what is meant by prosecution. Unlike a
question such as “When was X born?”, which is ex-
pected to be answered by a clear, concrete phrase,
the prosecution question asks for a much greater
range of material. The answer is in no way limited
to the statements and activities of the prosecuting at-
torney, although these would certainly be part of a
comprehensive answer.

In the GALE relevance guidelines2 , the answer
can include many facets of the case:

• Descriptions of the accused’s involvement in
the crime.

• Descriptions of the activities, motivations, and
involvement in the crime.

• Descriptions of the person as long as they are
related to the trial.

• Information about the defense of the suspect.

• Information about the sentencing of the person.

• Information about similar cases involving the
person.

• Information about the arrest of the person and
statements made by him or her.

• Reactions of people involved in the trial, as
well as statements by officials or reactions by
the general public.

2BAE Systems Advanced Information Technologies, “Rele-
vance Guidelines for Distillation Evaluation for GALE: Global
Autonomous Language Exploitation”, Version 2.2, January 25,
2007

The guidelines also provide a catchall instruction
to “include reported information believed to be rele-
vant to the case, but deemed inadmissible in a court
of law.”

It is easy to see that the use of a few search terms
alone will be insufficient to locate a comprehensive
answer.

We took a broad view of the question type and
consider that any information about the investiga-
tion, accusation, pursuit, capture, trial and punish-
ment of the individual, whether a person or organi-
zation, would be desireable in the answer.

1.2 Overview

The first step in our procedure sends a query tai-
lored to this question type to the IR system to ob-
tain a small number of high-quality documents with
which we can determine what name variations are
used in the corpus and estimate how many docu-
ments contain references to the individual. In the
future we will expand the type of information we
want to glean from this small set of documents. A
secondary search is issued to find additional docu-
ments that refer to the individual, or individuals.

Once we have the complete document retrieval,
the foundation for finding these types of events
lies in the Proteus information extraction compo-
nent (Grishman et al., 2005). We employ an IE sys-
tem trained for the tasks of the 2005 Automatic Con-
tent Extraction evaluation, which include entity and
event extraction. ACE defines a number of general
event types, including justice events, which cover in-
dictments, accusations, arrests, trials, and sentenc-
ings. The union of all these specific categories gives
us many of the salient events in a criminal justice
case from beginning to end. The program uses the
events, as well as the entities, to help identify the
passages that respond to the question.

The selection of sentences is based on the as-
sumption that the co-occurrence of the target indi-
vidual and a judicial event indicates that the target
is indeed involved in the event, but these two do not
necesssarily occur in the same sentence.

2 Related Work

A large body of work in question-answering has fol-
lowed from the opening of the Text Retrieval Con-
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ference’s Q&A track in 1999. The task started as a
group of factoid questions and expanded from there
into more sophisticated problems. TREC provides
a unique testbed of question-answer pairs for re-
searchers and this data has been influential in fur-
thering progress.

In TREC 2006, there was a new secondary task
called “complex, interactive Question Answering,”
(Dang et al., 2006) which is quite close to the GALE
problem, though it incorporated interaction to im-
prove results. Questions are posed in a canonical
form plus a narrative elaborating on the kind of in-
formation requested. An example question (from the
TREC guidelines) asks, “What evidence is there for
transport of [drugs] from [Bonaire] to the [United
States]?” Our task is most similar to the fully-
automatic baseline runs of the track, which typically
took the form of passage retrieval with query ex-
pansion (Oard et al., 2006) or synonym processing
(Katz et al., 2006), and not the deeper processing
employed in this work.

Within the broader QA task, the other question
type is closest to the requirements in GALE, but it
is too open ended. In TREC, the input for other
questions is the name or description of the target,
and the response is supposed to be all information
that did not fit in the answers to the previous ques-
tions. While a few GALE questions have similar in-
put, most, including the prosecution questions, pro-
vide more detail about the topic in question.

A number of systems have used techniques in-
spired by information extraction. One of the top sys-
tems in the other questions category at the 2004 and
2005 evaluations generated lexical-syntactic pat-
terns and semantic patterns (Schone et al., 2004).
But they build these patterns from the question. In
our task, we took advantage of the structured ques-
tion format to make use of extensive work on the
semantics of selected domains. In this way we
hope to determine whether we can obtain better per-
formance by adding more sophisticated knowledge
about these domains. The Language Computer Cor-
poration (LCC) has long experimented with incorpo-
rating information extraction techniques. Recently,
in its system for the other type questions at TREC
2005, LCC developed search patterns for 33 target
classes (Harabagiu et al., 2005). These patterns were
learned with features from WordNet, stemming and

named entity recognition.
More and more systems are exploiting the size

and redundancy of the Web to help find answers.
Some obtain answers from the Web and then
project the answer back to the test corpus to find
a supporting document (Voorhees and Dang, 2005).
LCC used “web boosting features” to add to key
words (Harabagiu et al., 2005). Rather than go to
the Web and enhance the question terms, we made
a beginning at examining the corpus for specific bits
of information, in this prototype, to determine alter-
native realizations of names.

3 Implementation

As stated above, the system takes a query in the
XML format required by the GALE program. The
query templates allow users to amplify their requests
by specifying a timeframe for the information and/or
a locale. In addition, there are provisions for en-
tering synonyms or alternate terms for either of the
main arguments, i.e. the accused and the crime, and
for related but less important terms.

Since this system is a prototype written especially
for the GALE evaluation in July 2006, we paid close
attention to the way example questions were given,
as well as to the evaluation corpus, which consisted
of more than 600,000 short news articles. The goal
in GALE was to offer comprehensive results to the
user, providing all snippets, or segments of texts,
that responded to the information request. This re-
quired us to develop a strategy that balanced pre-
cision against recall. A system that reported only
high-confidence answers was in danger of having no
answers or far fewer answers than other systems,
while a system that allowed lower confidence an-
swers risked producing answers with a great deal of
irrelevant material. Another way to look at this bal-
ancing act was that it was necessary for a system to
know when to quit. For this reason, we sought to
obtain a good estimate of the number of documents
we wanted to scan for answers.

Answer selection focused first on the name of the
suspect, which was always given in the query tem-
plate. In many of the training cases, the suspect was
in the news only because of a criminal charge against
him; and in most, the charge specified was the only
accusation reported in the news. Both location and
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date constraints seemed to be largely superfluous,
and so we ignored these. But we did have a mecha-
nism for obtaining supplementary answers keyed to
the brief description of the crime and other related
words

The first step in the process is to request a seed
collection of 10 documents from the IR system.
This number was established experimentally. The
IR query combines terms tailored to the prosecution
template and the specific template parameters for a
particular question. The 10 documents returned are
then examined to produce a list of name variations
that substantially match the name as rendered in the
query template. The IR system is then asked for the
number of times that the name appears in the cor-
pus. This figure is adjusted by the frequency per
document in the seed collection and a new query is
submitted, set to obtain the N documents in which
we expect to find the target’s name.

3.1 Information Retrieval

The goal of the information retrieval component of
the system was to locate relevant documents that the
summarization system could then use to construct an
answer. All search, whether high-precision or high-
recall, was performed using the Indri retrieval sys-
tem 3 (Strohman et al., 2005).

Indri provides a powerful query language that
is used here to combine numerous aspects of the
query. The Indri query regarding Saddam Hus-
sein’s prosecution for crimes against humanity in-
cludes the following components: source restric-
tions, prosecution-related words, mentions of Sad-
dam Hussein, justice events, dependence model
phrases (Metzler and Croft, 2005) regarding the
crime, and a location constraint.

The first part of the query located references to
prosecutions by looking for the keywords prosecu-
tion, defense, trial, sentence, crime, guilty, or ac-
cuse, all of which were determined on training data
to occur in descriptions of prosecutions. These
words were important to have in documents for them
to be considered relevant, but the individual’s name
and the description of the crime were far more im-
portant (by a factor of almost 19 to 1).

The more heavily weighted part of the query,
3http://lemurproject.org/indri

then, was a “justice event” marker found using in-
formation extraction (Section 3.2) and the more de-
tailed description of that event based on phrases ex-
tracted from the crime (here crimes against human-
ity). Those phrases give more probability of rele-
vance to documents that use more terms from the
crime. It also included a location constraint (here,
Iraq) that boosted documents referring to that lo-
cation. And it captured user-provided equivalent
words such as Saddam Hussein being a synonym for
former President of Iraq.

The most complex part of the query handled ref-
erences to the individual. The extraction system had
annotated all person names throughout the corpus.
We used the IR system to index all names across
all documents and used Indri to retrieve any name
forms that matched the individual. As a result, we
were able to find references to Saddam, Hussein,
and so on. This task could have also been accom-
plished with cross-document coreference technol-
ogy but our approach appeared to compensate for
incorrectly translated names slightly better than the
coreference system we had available at the time. For
example, Present rust Hussein was one odd form
that was matched by our simple approach.

The final query looked like the following:
#filreq( #syn( #1(AFA).source ... #1(XIE).source )

#weight(
0.05 #combine( prosecution defense trial sentence

crime guilty accuse )
0.95 #combine(

#any:justice
#weight(1.0 #combine(humanity against crimes)

1.0 #combine(
#1(against humanity)
#1(crimes against)
#1(crimes against humanity))

1.0 #combine
#uw8(against humanity)
#uw8(crimes humanity)
#uw8(crimes against)
#uw12(crimes against humanity)))

Iraq

#syn( #1(saddam hussein)
#1(former president iraq))

#syn( #equals( entity 126180 ) ...))))

The actual query is much longer because it con-
tains 100 possible entities and numerous sources.
The processing is described in more detail else-
where (Kumaran and Allan, 2007).

3.2 Information Extraction

The Proteus system produces the full range of anno-
tations as specified for the ACE 2005 evaluation, in-
cluding entities, values, time expressions, relations,
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and events. We focus here on the two annotations,
entities and events, most relevant to our question-
answering task. The general performance on entity
and event detection in news articles is within a few
percentage points of the top-ranking systems from
the evaluation.

The extraction engine identifies seven semantic
classes of entities mentioned in a document, of
which the most frequent are persons, organizations,
and GPE’s (geo-political entities – roughly, regions
with a government). Each entity will have one or
more mentions in the document; these mentions in-
clude names, nouns and noun phrases, and pro-
nouns. Text processing begins with an HMM-based
named entity tagger, which identifies and classifies
the names in the document. Nominal and pronomi-
nal mentions are identified either with a chunker or
a full Penn-Treebank parser. A rule-based coref-
erence component identifies coreference relations,
forming entities from the mentions. Finally, a se-
mantic classifier assigns a class to each entity based
on the type of the first named mention (if the entity
includes a named mention) or the head of the first
nominal mention (using statistics gathered from the
ACE training corpus).

The ACE annotation guidelines specify 33 differ-
ent event subtypes, organized into 8 major types.
One of the major types is justice events, which in-
clude arrest, charge, trial, appeal, acquit, convict,
sentence, fine, execute, release, pardon, sue, and ex-
tradite subtypes. In parallel to entities, the event
tagger first identifies individual event mentions and
then uses event coreference to form events. For the
ACE evaluation, an annotated corpus of approxi-
mately 300,000 words is used to train the event tag-
ger.

For each event mention in the corpus, we collect
the trigger word (the main word indicating the event)
and a pattern recording the path from the trigger
to each event argument. These paths are recorded
in two forms: as the sequence of heads of maxi-
mal constituents between the trigger and the argu-
ment, and as the sequence of predicate-argument re-
lations connecting the trigger to the argument4 . In

4These predicate argument relations are based on a repre-
sentation called GLARF (Grammatical-Logical Argument Rep-
resentation Framework), which incorporates deep syntactic re-
lations and the argument roles from PropBank and NomBank.

addition, a set of maximum-entropy classifiers are
trained: to distinguish events from non-events, to
classify events by type and subtype, to distinguish
arguments from non-arguments, and to classify ar-
guments by argument role. In tagging new data, we
first match the context of each instance of a trig-
ger word against the collected patterns, thus iden-
tifying some arguments. The argument classifier is
then used to collect additional arguments within the
sentence. Finally, the event classifier (which uses
the proposed arguments as features) is used to re-
ject unlikely events. The patterns provide somewhat
more precise matching, while the argument classi-
fiers improve recall, yielding a tagger with better
performance than either strategy separately.

3.3 Answer Generation

Once the final batch of documents is received,
the answer generator module selects candidate pas-
sages. The names, with alternate renderings, are lo-
cated through the entity mentions by the IE system.
All sentences that contain a justice event and that
fall within a mention of a target by no more than
n sentences, where n is a settable parameter, which
was put at 5 for this evaluation, form the core of the
system’s answer.

The tactic takes the place of topic segmentation,
which we used for other question types in GALE
that did not have the benefit of the sophisticated
event recognition offered by the IE system. Segmen-
tation is used to give users sufficient context in the
answer without needing a means of identifying dif-
ficult definite nominal resolution cases that are not
handled by extraction.

In order to increase recall, in keeping with the
need for a comprehensive answer in the GALE eval-
uation, we added sentences that contain the name of
the target in documents that have justice events and
sentences that contain words describing the crime.
However, we imposed a limitation on the growth of
the answer size. When the target individual is well-
known, he or she will be mentioned in numerous
contexts, reducing the likelihood that this additional
mention will be relevant. Thus, when the size of the
answer grew too rapidly, we stopped including these
additional sentences, and produced sentences only
from the justice events. The threshold for triggering
this shift was 200 sentences.
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3.4 Summarization

As a state-of-the-art baseline, we used a generic
multidocument summarization system that has been
tested in numerous contexts. It is, indeed, the
backup answer generator for several question types,
including the prosecution questions, in our GALE
system, and has been been tested in the topic-based
tasks of the 2005 and 2006 Document Understand-
ing Conferences.

A topic statement is formed by collapsing the
template arguments into one list, e.g., “saddam hus-
sein crimes against humanity prosecution”, and the
answer generation module proceeds by using a hy-
brid approach that combines top-down strategies
based on syntactic patterns, alongside a suite of
summarization methods which guide content in a
bottom-up manner that clusters and combines the
candidate sentences (Blair-Goldensohn and McKe-
own, 2006).

4 Evaluation

The results of our evaluation are shown in Table 1.
We increased the number of test questions over the
number used in the official GALE evaluation and we
used only previously unseen questions. Documents
for the baseline system were selected without use of
the event annotations from Proteus.

We paired the 25 questions for judges, so that both
the system’s answer and the baseline answer were
assigned to the same person. We provided explicit
instructions on the handling on implicit references,
allowing the judges to use the context of the ques-
tion and other answer sentences to determine if a
sentence was relevant – following the practice of the
GALE evaluation.

Our judges were randomly assigned questions
and asked whether the snippets, which in our case
were individual sentences, were relevant or not;
they could respond Relevant, Not Relevant or Don’t
Know. In cases where references were unclear, the
judges were asked to choose Don’t Know and these
were removed from the scoring.5

5In the GALE evaluation, the snippets are broken down by
hand into nuggets – discrete pieces of information – and the
answers are scored on that basis. However, we scored our re-
sponses on the basis of snippets (sentences) only, as it is much
more efficient, and therefore more feasible to repeat in the fu-
ture.

Our system using IE event detection and en-
tity tracking outperformed the summarization-based
baseline, with average precision of 68% compared
with 57%. Moreover, the specialized system sus-
tained that level of precision although it returned a
much larger number of snippets, totaling 2,086 over
the 25 questions, compared with 363 for the base-
line system. We computed a relative recall score, us-
ing the union of the sentences found by the systems
and judged relevant as the ground truth. For recall,
the specialized system scored an average 89% ver-
sus 17% for the baseline system. Computing an F-
measure weighting precision and recall equally, the
specialized system outperformed the baseline sys-
tem 75% to 23%. The difference in relative recall
and F-measure are both statisticaly significant under
a two-tailed, paired t-test, with p < 0.001.

5 Conclusion and Future Work

Our results show that the specialized system statis-
tically outperforms the baseline, a well-tested query
focused summarization approach, on precision. The
specialized system produced a much larger answer
on average (Table 1). Moreover, our answer gener-
ator seemed to adapt well to information in the cor-
pus. Of the six cases where it returned fewer than
10 sentences, the baseline found no additional sen-
tences four times (Questions B006, B011, B015 and
B022). We regard this as an important property in
the question-answering task.

A major challenge is to ascertain whether the
mention of the target is indeed involved in the rec-
ognized justice event. Our event recognition system
was developed within the ACE program and only
seeks to assigns roles within the local context of a
single sentence. We currently use a threshold to con-
sider whether an entity mention is reliable, but we
will experiment with ways to measure the likelihood
that a particular sentence is about the prosecution or
some other issue. We are planning to obtain vari-
ous pieces of information from additional secondary
queries to the search engine. Within the GALE pro-
gram, we are limited to the defined corpus, but in the
general case, we could add more varied resources.

In addition, we are working to produce answers
using text generation, to bring more sophisticated
summarization techniques to make a better presen-
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QID System with IE Baseline System
Precision Recall F-meas Count Precision Recall F-meas Count

B001 0.728 0.905 0.807 92 0.818 0.122 0.212 11
B002 0.713 0.906 0.798 108 0.889 0.188 0.311 18
B003 0.770 0.942 0.848 148 0.875 0.058 0.109 8
B004 0.930 0.879 0.904 86 1.000 0.154 0.267 14
B005 0.706 0.923 0.800 34 0.400 0.231 0.293 15
B006 1.000 1.000 1.000 3 0.000 0.000 0.000 17
B007 0.507 1.000 0.673 73 0.421 0.216 0.286 19
B008 0.791 0.909 0.846 201 0.889 0.091 0.166 18
B009 0.759 0.960 0.848 158 0.941 0.128 0.225 17
B010 1.000 0.828 0.906 24 0.500 0.276 0.356 16
B011 0.500 1.000 0.667 6 0.000 0.000 0.000 18
B012 0.338 0.714 0.459 74 0.765 0.371 0.500 17
B013 0.375 0.900 0.529 120 0.700 0.280 0.400 20
B014 0.571 0.800 0.667 7 0.062 0.200 0.095 16
B015 0.500 1.000 0.667 2 0.000 0.000 0.000 10
B016 1.000 0.500 0.667 5 0.375 0.600 0.462 16
B017 1.000 1.000 1.000 13 0.125 0.077 0.095 7
B018 0.724 0.993 0.837 199 0.875 0.048 0.092 8
B019 0.617 0.954 0.749 201 0.684 0.100 0.174 19
B020 0.923 0.727 0.814 26 0.800 0.364 0.500 15
B021 0.562 0.968 0.711 162 0.818 0.096 0.171 11
B022 0.667 1.000 0.800 6 0.000 0.000 0.000 18
B023 0.684 0.950 0.795 196 0.778 0.050 0.093 9
B024 0.117 0.636 0.197 60 0.714 0.455 0.556 7
B025 0.610 0.943 0.741 82 0.722 0.245 0.366 18
Aver 0.684 0.893 0.749 83 0.566 0.174 0.229 14

Table 1: The table compares results of our answer generator combining the Indri and the Proteus ACE sys-
tem, against the focused-summarization baseline. This experiment is over 25 previously unseen questions.
The differences between the two systems are statistically significant (p < 0.001) for recall and f-measure by
a two-tailed, paired t-test. A big difference between the two systems is that the answer generator produces
a total of 2,086 answer sentences while sustaining an average precision of 0.684. In only three cases, does
the precision fall below 0.5. In contrast, the baseline system produced only 362, one-sixth the number of
answer sentences. While its average precision was not significantly worse than the answer-generator’s, its
precision varied widely, failing to find any correct sentences four times.
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tation than an unordered list of sentences.
Finally, we will look into applying the techniques

used here on other topics. The first test would rea-
sonably be Conflict events, for which the ACE pro-
gram has training data. But ultimately, we would
like to adapt our system to arbitrary topic areas.
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Abstract 
In this paper, we present a new string pat-
tern matching-based passage ranking al-
gorithm for extending traditional text-
based QA toward videoQA. Users interact 
with our videoQA system through natural 
language questions, while our system re-
turns passage fragments with correspond-
ing video clips as answers. We collect 
75.6 hours videos and 253 Chinese ques-
tions for evaluation. The experimental re-
sults showed that our method 
outperformed six top-performed ranking 
models. It is 10.16% better than the sec-
ond best method (language model) in rela-
tively MRR score and 6.12% in precision 
rate. Besides, we also show that the use of 
a trained Chinese word segmentation tool 
did decrease the overall videoQA per-
formance where most ranking algorithms 
dropped at least 10% in relatively MRR, 
precision, and answer pattern recall rates. 

1 Introduction 

With the drastic growth of video sources, effective 
indexing and retrieving video contents has recently 
been addressed. The well-known Informedia pro-
ject (Wactlar, 2000) and TREC-VID track (Over et 
al., 2005) are the two famous examples. Although 
text-based question answering (QA) has become a 
key research issue in past decade, to support mul-
timedia such as video, it is still beginning.  

Over the past five years, several video QA stud-
ies had investigated. Lin et al. (2001) presented an 
earlier work on combining videoOCR and term 
weighting models. Yang et al. (2003) proposed a 
complex videoQA approach by employing abun-
dant external knowledge such as, Web, WordNet, 
shallow parsers, named entity taggers, and human-

made rules. They adopted the term-weighting 
method (Pasca, and Harabagiu, 2001) to rank the 
video segments by weighting the pre-defined key-
words. Cao and Nunamaker (2004) developed a 
lexical pattern matching-based ranking method for 
a domain-specific videoQA. In the same year, Wu 
et al. (2004) designed a cross-language (English-
to-Chinese) video question answering system 
based on extracting pre-defined named entity 
words in captions. On the other hand, Zhang and 
Nunamaker (2004) made use of the simple TFIDF 
term weighting schema to retrieve the manual-
segmented clips for video caption word retrieval. 
They also manually developed the ontology to im-
prove system performance. 

In this paper, we present a new string pattern 
matching-based passage ranking algorithm for 
video question answering. We consider that the 
passage is able to answer questions and also suit-
able for videos because itself forms a very natural 
unit. Lin et al. (2003) showed that users prefer pas-
sage-level answers over short answer phrases since 
it contains rich context information. Our method 
makes use of the string pattern searching in the 
suffix trees to find common subsequences between 
a passage and question. The proposed term weight-
ing schema is then designed to compute passage 
score. In addition, to avoid generating over-length 
subsequence, we also present two algorithms for 
re-tokenization and weighting. 

2 The Framework of our VideoQA System 

An overview of the proposed videoQA system can 
be shown in Figure 1. The video processing com-
ponent recognizes the input video as an OCR docu-
ment at the first stage. Second, each three 
consecutive sentences were grouped into a passage.  
We tokenized the Chinese words with three 
grained sizes: unigram, bigram, and trigram. Simi-
larly, the input question is also tokenized to uni-
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gram, bigram, and trigram level of words. To re-
duce most irrelevant passages, we adopted the BM-
25 ranking model (Robertson et al., 2000) to re-
trieve top-1000 passages as the “input passages”. 
Finally, the proposed passage ranking algorithm 
retrieved top-N passages as answers in response to 
the question. In the following parts, we briefly in-
troduce the employed videoOCR approach. Section 
2.2 presents the sentence and passage segmentation 
schemes. The proposed ranking algorithms will be 
described in Section 3. 
 

 
Figure1: System Architecture of the proposed 

videoQA system 

2.1 Video Processing 

Our video processing takes a video and recognizes 
the closed captions as texts. An example of the 
input and output associated with the whole video 
processing component can be seen in Figure 2. The 
videoOCR technique consists of four important 
steps: text detection, binarization, frame tracking, 
and OCR. The goal of text detection is to locate the 
text area precisely. In this paper, we employ the 
edge-based filtering (Lyu et al., 2005) and slightly 
modify the coarse-to-fine top-down block segmen-
tation methods (Lienhart and Wernicke, 2002) to 
find each text component in a frame. The former 
removes most non-edge areas with global and local 
thresholding strategy (Fan et al., 2001) while the 
latter incrementally segments and refines text 
blocks using horizontal and vertical projection pro-
files. 

The next steps are text binarization and frame 
tracking. As we know, the main constituent of 
video is a sequence of image frames. A text com-
ponent almost appears more than once. To remove 
redundancy, we count the proportion of overlap-
ping edge pixels between two consecutive frames. 
If the portion is above 70%, then the two frames 

were considered as containing the same text com-
ponents. We then merge the two frames by averag-
ing the gray-intensity for each pixel in the same 
text component. For the binarization stage, we em-
ploy the Lyu’s text extraction algorithm (Lyu et al., 
2005) to binarize text pixels for the text compo-
nents. Unlike previous approaches (Lin et al., 2001; 
Chang et al., 2005), this method does not need to 
assume the text is in either bright or dark color (but 
assume the text color is stable). At the end of this 
step, the output text components are prepared for 
OCR. 

The target of OCR is to identify the binarized 
text image to the ASCII text. In this paper, we de-
veloped a naïve OCR system based on nearest 
neighbor classification algorithms and clustering 
techniques (Chang et al., 2005). We also adopted 
the word re-ranking methods (Lin et al., 2001, 
strategy 3) to improve the OCR errors. 

 

 
Figure 2: Text extraction results of an input image 

2.2 Sentence and Passage Segmentation 

In this paper, we treat all words appear in the same 
frame as a sentence and group every three consecu-
tive sentences as a passage. Usually, words that 
occur in the same frame provide a sufficient and 
complete description. We thus consider these 
words as a sentence unit for sentence segmentation. 
An example of a sentence can be found in Figure 2. 
The sentence of this frame is the cascading of the 
two text lines, i.e. “speed-up to 17.5 thousand 
miles per hour in less than six minutes” For each 
OCR document we grouped every three continuous 
sentences with one previous sentence overlapping 
to represent a passage. Subsequently, we tokenized 
Chinese word with unigram, bigram, and trigram 
levels. 

Searching answers in the whole video collection 
is impractical since most of them are irrelevant to 
the question. By means of text retrieval technology, 
the search space can be largely reduced and limited 
in a small set of relevant document. The document 
retrieval methods have been developed well and 
successfully been applied for retrieving relevant 
passages for question answering (Tellex et al., 
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2003). We replicated the Okapi BM-25 (Robertson 
et al., 2000), which is the effective and efficient 
retrieval algorithms to find the related segmented 
passages. For each input question, the top-1000 
relevant passages are input to our ranking model. 

3 The Algorithm 

Tellex et al. (2003) compared seven passage re-
trieval models for text QA except for several ad-
hoc approaches that needed either human-
generated patterns or inference ontology which 
were not available. In their experiments, they 
showed that the density-based methods (Lee et al., 
2001) achieved the best results, while the BM-25 
(Robertson, 2000) reached slightly worse retrieval 
result than the density-based approaches, which 
adopted named entity taggers, thesaurus, and 
WordNet. Cui et al. (2005) showed that their fuzzy 
relation syntactic matching method outperformed 
the density-based methods. But the limitation is 
that it required a dependency parser, thesaurus, and 
training data. In many Asian languages like Chi-
nese, Japanese, parsing is more difficult since it is 
necessary to resolve the word segmentation prob-
lem before part-of-speech (POS) tagging, and pars-
ing (Fung et al., 2004). This does not only make 
the parsing task harder but also required to train a 
high-performance word segmentor. The situation is 
even worse when text contains a number of OCR 
error words. In addition, to develop a thesaurus and 
labeled training set for QA is far time-consuming. 
In comparison to Cui’s method, the term weight-
ing-based retrieval models are much less cost, 
portable and more practical. Furthermore, the OCR 
document is not like traditional text articles that 
have been human-typed well where some words 
were error predicted, unrecognizable, and false-
alarm. These unexpected words deeply affect the 
performance of Chinese word segmentation, and 
further for parsing. In our experiments (see Table 2 
and Table 3), we also showed that the use of a 
well-trained high-performance Chinese word seg-
mentation tool gave the worse result than using the 
unigram-level of Chinese word (13.95% and 
13.92% relative precision and recall rates dropped 
for language model method). 

To alleviate this problem, we treat the atomic 
Chinese unigram as word and present a weighted 
string pattern matching algorithm. Our solution is 
to integrate the suffix tree for finding, and encod-

ing important subsequence information in trees. 
Nevertheless, it is known that the suffix tree con-
struction and pattern searching can be accom-
plished in linear time (Ukkonen, 1995). Before 
introducing our method, we give the following no-
tations. 
passage P = PW1, PW2, …, PWT 
question Q = QW1, QW2, …, QWT’ 
a common subsequence for passage  

xixkkki == −++ |Sub| if    PW,...,PW,PWSub P
11

P  
a common subsequence for question  

yjylllj == −++ |Sub| if QW,...,QW,QWSub Q
11

Q  
A common subsequence represents a continuous 

string matching between P and Q. We further im-
pose two symbols on a subsequence. For example, 
Subi

P means i-th matched continuous string (com-
mon subsequence) in the passage, while Subj

Q in-
dicates the j-th matched continuous string in the 
question. The common subsequences can be ex-
tracted through the suffix tree building and pattern 
searching. For example, to extract the set of Subi

P, 
we firstly build the suffix tree of P and incremen-
tally insert substring of Q and label the matched 
common string between P and Q. Similarly, one 
can apply a similar approach to generate the set of 
Subj

Q. By extracting all subsequences for P and Q, 
we then compute the following score (see equation 
(1)) to rank passages. 

P) Q,QW_Weight() -(1
P) (Q,QW_Density  ore(P)Passage_Sc

×
+×=

λ
λ                   (1) 

The first term of equation (1) “QW_Density(Q, 
P)” estimates the question word density degree in 
the passage P, while “QW_Weight(Q, P)” meas-
ures the matched question word weights in P. λ is a 
parameter, which is used to adjust the importance 
of the QW_Density(Q, P). Both the two estima-
tions make use of the subsequence information for 
P and Q. In the following parts, we introduce the 
computation of QW_Density(Q,P) and 
QW_Weight(Q, P) separately. The time complex-
ity analysis of our method is then discussed in the 
tail of this section. 

The QW_Density(Q, P) is designed for quantify-
ing “how dense the matched question words in the 
passage P”. It also takes the term weight into ac-
count. By means of extracting common subse-
quence in the question, the set of Subj

Q can be used 
to measures the question word density. At the be-
ginning, we define equation (2) for weighting a 
subsequence Subj

Q. 
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)Sub(DP)Sub(length)Weight(Sub QQQ 1
jjj ×= α                 (2) 

Where length(Subj
Q) is merely the length of QSub j  

i.e., the number of words in Subj
Q. α1 is a parameter 

that controls the weight of length for Subj
Q. In this 

paper, we consider the long subsequence match is 
useful. A long N-gram is usually much less am-
biguous than its individual unigram. The second 
term in equation (2) estimates the “discriminative 
power” (DP) of the subsequence. Some high-
frequent and common words should be given less 
weight. To measure the DP score, we extend the 
BM-25 (Robertson et al., 2000) term weighting 
schema. Equation (3), (4), and (5) list our DP scor-
ing functions. 

)Q ,Sub(TF
)Q ,Sub(TF)1(

)P ,SubTF(
)P ,Sub(TF)1(

')Sub(DP Q
3

Q
3

Q

Q
1Q

j

j

j

j
j k

k
K

k
W

+

×+
×

+

×+
×=

  (3) 

)
5.0)Sub(PF

5.0)Sub(PF
log(' Q

Q

+

+−
=

j

jPN
W                                       (4) 

|)P(|AVG
|P|)1( ×+−= bbK                                             (5) 

31  , , kbk  are constants, which empirically set as 1.2, 
0.75, 500 respectively (Robertson et al., 2000). 

)P ,Sub(TF and )Q ,Sub(TF QQ
jj  represent the term 

frequency of Subj
Q in question Q and passage P. 

Equation (4) computes the inverse “passage fre-
quency” (PF) of Subj

Q as against to the traditional 
inverse “document frequency” (DF) where Np is 
the total number of passages. The collected Dis-
covery video is a small but “long” OCR document 
set, which results the estimation of DF value unre-
liable. On the contrary, a passage is more coherent 
than a long document, thus we replace the DF es-
timation with PF score. It is worth to note that 
some Subj

Q might be too long to be further re-
tokenized into finer grained size. We therefore 
propose two algorithms to 1): re-tokenize an input 
subsequence, and 2): compute the DP score for a 
subsequence. Figure 3, and Figure 4 list the pro-
posed two algorithms. 

The proposed algorithm 1, and 2 can be used to 
compute and tokenize the DP score of not only 
Subj

Q for question but also Subj
P for passage. As 

seeing in Figure 4, it requires DP information for 
different length of N-gram. As noted in Section 2.2, 
the unigram, bigram, and trigram level of words 
had been stored in indexed files for efficient re-
trieving and computing DP score at this step. By 
applying algorithm 1 for the set of Subj

Q, we can 
obtain all retokenized subsequences (TSubj). We 

then use the re-tokenized subsequences to compute 
the final density score. Equation (6) lists the 
QW_Density scoring function. 

∑
−

= +

++
=

1_

1 1

1
2)TSub,TSub(dist

)TSub(Weight)TSub(WeightP)(Q,QW_Density
CNTT

i ii

ii
α

  (6) 

1)_in_PTSub,(TSubce_betweenmin_distan
)TSub,TSub(dist

1

1

+
=

+

+

ii

ii                (7) 

T_CNT is the total number of retokenized subse-
quences in Q, which can be extracted through ap-
plying algorithm 1 for all Subj

Q. Equation (7) 
merely counts the minimum number of words be-
tween two neighboring TSubi, and TSubi+1 in the 
passage. α2 is the parameter that controls the im-
pact of distance measurement.  
 

Algorithm 1: Retokenizing_a_subsequence 
Input: 

A subsequence Subj
Q where startj is the position of first word in 

question and endj is the position of last word in question 
Output: 

A set of retokenized subsequence { ,.....TSub,TSub 21
} 

Nt: the number of retokenized subsequence 
Algorithm: 

Initially, we set Nt := 1; TSub1:=QWstartj; 
if (Subj

Q≠ψ) 
{     /*** from the start to the end positions in the string ***/ 

for ( k := startj+1 to endj)  
{ 

/***Check the two question words is bigram in the passage***/
if (bigram(QWk-1,QWk) is_found_in_passage)  

add QWk into TSubNt; 
Otherwise 
{      Nt ++; 

;QW:TSub kNt
=  

} /*** End otherwise***/  
} /*** End for ***/ 

} /*** End if ***/ 
else 

Nt := 0; 
Figure 3: An algorithm for retokenizing subsequence 

 
Algorithm 2: Copmuting_DP_score 
Input: 

A subsequence  Subj
Q where startj is the position of first word 

of Subj
Q in question endj is the position of last word of Subj

Q in 
question 

Output: 
The score of DP(Subj

Q)  
Algorithm: 

head := startj; 
tail := endj; 
Max_score := 0; 
for (k := head ~ tail) 
{     let WORD := QWk, QWk+1,…, QWtail; 

/*** look-up WORD in the index files  ***/ 
compute DP(WORD) using equation (3); 
if (DP(WORD) > Max_score)  

Max_score := DP(WORD); 
} /*** End for ***/  
DP(WORD) := Max_score; 

Figure 4: An algorithm for computing DP score for a 
subsequence 
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The density scoring can be thought as measuring 
“how much information the passage preserves in 
response to the question”. On the contrary, the 
QW_Weight (second term in equation (1)) aims to 
estimate “how much content information the pas-
sage has given the question”. To achieve this, we 
further take the other extracted common subse-
quences, i.e., Subj

P into account. By means of the 
same term weighting schema for the set of Subj

P, 
the QW_Weight is then produced. Equation (8) 
gives the overall QW_Weight measurement. 

∑

∑

=

=

×

==

CNTS

i
ii

CNTS

i
i

_

1

PP

_

1

P

))Sub(DP)Sub((length

)Weight(SubP)Q,QW_Weight(

1α

                           (8) 

where the DP score of the input subsequence can 
be obtained via the algorithm 2 (Figure 5). S_CNT 
is the number of subsequence in P. The parameter 
α1 is also set as equal as equation (2).  

In addition, the neighboring contexts of a sen-
tence, which contains high QW_Density score 
might include the answers. Hence, we stress on 
either head or tail fragments of the passage. In 
other words, the passage score is determined by 
computing equation (1) for head and tail parts of 
passage. We thus extend equation (1) as follows. 

⎪
⎩

⎪
⎨

⎧

==
==

+=+=

×+×
×+×=

1211

221121

322211321

22

11

S  P  P n,       the          S    :sentence 1 has P if else
S  P and S  P  then,          S ,S  :sentences 2 has P if else

SS  P and SS  P ,      thenS ,S ,S         :sentences 3 has P if
)}P Q,QW_Weight() -(1)P (Q,QW_Density                                         

 ),P Q,QW_Weight() -(1)P (Q,QW_Density max{ ore(P)Passage_Sc
λλ
λλ

 
Instead of estimating the whole passage, the two 

divided parts: P1, and P2 are used. We select the 
maximum passage score from either head (P1) or 
tail (P2) part. When the passage contains only one 
sentence, then this sentence is indispensable to be 
used for estimation.  

Now we turn to analyze the time complexity of 
our algorithm. It is known that the suffix tree con-
struction costs is linear time (assume it requires 
O(T), T: the passage length for passage and O(T’), 
T’: the question length for question). Assume the 
search time for a pattern in the suffix trees is at 
most O(hlogm) where h is the tree height, and m is 
the number of branch nodes. To generate the sets 
of Subj

Q and Subj
P, it involves in building suffix 

trees and incrementally searching substrings, i.e., 
O((T+T’)+(T+T’)(hlogm)). Intuitively, both algo-
rithm 1, and algorithm 2 are linear time algorithms, 
which depends on the length of “common” subse-
quence, i.e., at most O(min(T, T’)). Consequently, 

the overall time complexity of our method for 
computing a passage is O((T+T’)(1+hlogm)+ 
min(T, T’)). 

4 Experiments 

4.1 Evaluation 

We should carefully select the use of videoQA col-
lection for evaluation. Unfortunately, there is no 
benchmark corpus for this task. Thus, we develop 
an annotated collection by following the similar 
tasks as TREC, CLEF, and NTCIR. The Discovery 
videos are one of the popular raw video sources 
and widely evaluated in many literatures (Lin et al., 
2001; Wu et al., 2004; Lee et al., 2005). Totally, 
75.6 hours of Discovery videos (93 video names) 
were used. Table 1 lists the statistics of the Dis-
covery films.  

The questions were created in two different 
ways: one set (about 73) was collected from previ-
ous studies (Lin et al., 2001; Wu et al., 2004) 
which came from the “Project: Assignment of Dis-
covery”; while the other was derived from a real 
log from users. Video collections are difficult to be 
general-purpose since hundreds hours of videos 
might take tens of hundreds GB storage space. 
Therefore, general questions are quite difficult to 
be found in the video database. Hence, we provide 
a list of short introductions collected from the 
cover-page of the videos and enable users to 
browse the descriptions. Users were then asked for 
the system with limited to the collected video top-
ics. We finally filter the (1) keyword-like queries 
(2) non-Chinese and (3) un-supported questions. 
Finally, there were 253 questions for evaluation. 

For the answer assessment, we followed the 
TREC-QA track (Voorhees, 2001) and NTCIR to 
annotate answers in the pool that collected from 
the outputs of different passage retrieval methods. 
Unlike traditional text QA task, most of the OCR 
sentences contain a number of OCR error words. 
Furthermore, some sentence did include the answer 
string but error recognized as different words. Thus, 
instead of annotating the recognized transcripts, we 
used the corresponding video frames for evaluation 
because users can directly find the answers in the 
retrieved video clips and recognized text. Among 
253 questions, 56 of which did not have an answer, 
while 368 passage&frame segments (i.e., answer 
patterns) in the pool were labeled as answers. On 
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averagely, there are 1.45 labeled answers for each 
question. 

The MRR (Voorhees, 2001) score, precision and 
pattern-recall are used for evaluation. We measure 
the MRR scores for both top1 and top5 ranks, and 
precision and pattern-recall rates for top5 retrieved 
answers. 
 

Table 1: Statistics of the collected Discovery videos 
# of videos # of sentence # of words # of passages 

93 49950 746276 25001 
AVG # of 
words per 
sentence 

AVG # of 
words per 
passage 

AVG # of 
sentences 

per passage 

AVG # of words 
per video 

14.94 48.78 537.09 8024.47 

4.2 Results 

In this paper, we employed six top-performed yet 
portable ranking models, TFIDF, BM-25 (Robert-
son et al., 2000), INQUERY, language model 
(Zhai and Lafferty, 2001), cosine, and density-
based (Lee et al., 2001) approaches for compari-
son1. For the language model, the Jelinek-Mercer 
smoothing method was employed with the parame-
ter settings λ=0.5 which was selected via several 
trials. In our preliminary experiments, we found 
that the query term expansion does not improve but 
decrease the overall ranking performance for all 
the ranking models. Thus, we only compare with 
the “pure” retrieval performance without pseudo-
feedback. 

The system performance was evaluated through 
the returned passages. We set α1=1.25, α2= 0.25, 
and λ=0.8 which were observed via the following 
parameter validations. More detail parameter ex-
periments are presented and discussed later. Table 
2 lists the overall videoQA results with different 
ranking models.  

Among all ranking models, the proposed method 
achieves the best system performance. Our ap-
proach produced 0.596 and 0.654 MRR scores 
when evaluating the top1 and top5 passages and 
the precision rate achieves 0.208. Compared to the 
second best method (language model), our method 
is 10.16% better in relatively percentage in terms 
of MRR(top1) score. For the MRR(top5) score, our 
method is 7.39 relative percentage better. In terms 
of the non-answered questions, our method also 
covers the most questions (253-69=184) compared 

                                                           
1 For the TFIDF/BM-25/INQUERY/Language Model approaches 
were performed using the Lemur toolkit 

to the other ranking models. Overall, the experi-
ment shows that the proposed weighted string pat-
tern matching algorithm outperforms the other six 
methods in terms of MRR, non-answered question 
numbers, precision and pattern recall rates.  

 
Table 2: Overall videoQA performance with differ-
ent ranking models (using unigram Chinese word) 

Word-Level MRR 
(Top1)

MRR 
(Top5)

Non-answered 
Questions Precision Pattern 

Recall
TFIDF 0.498 0.572 81 0.189 0.649
BM-25 0.501 0.581 78 0.186 0.638
Language Model 0.541 0.609 74 0.196 0.671
INQUERY 0.505 0.583 78 0.188 0.644
Cosine 0.418 0.489 102 0.151 0.519
Density 0.323 0.421 102 0.137 0.471
Our Method 0.596 0.654 69 0.208 0.711

 
Table 3: Overall videoQA performance with differ-
ent ranking models using word segmentation tools 

Word-Level MRR 
(Top1)

MRR 
(Top5)

Non-answered 
Questions Precision Pattern 

Recall
TFIDF 0.509 0.567 89 0.145 0.597
BM-25 0.438 0.500 104 0.159 0.543
Language Model 0.486 0.551 89 0.172 0.589
INQUERY 0.430 0.503 97 0.164 0.562
Cosine 0.403 0.480 100 0.158 0.548
Density 0.304 0.380 125 0.133 0.451
Our Method 0.509 0.561 89 0.181 0.608

 
Next, we evaluate the performance with adopt-

ing a trained Chinese word segmentation tool in-
stead of unigram level of word. In this paper, we 
employed the Chinese word segmentation tool (Wu 
et al., 2006) that achieved about 0.93-0.96 re-
call/precision rates in the SIGHAN-3 word seg-
mentation task (Levow, 2006). Table 3 lists the 
overall experimental results with the adopted word 
segmentation tool. In comparison to unigram 
grained level (Table 2), it is shown that the use of 
word segmentation tool does not improve the 
videoQA result for most top-performed ranking 
models, BM-25, language model, INQUERY, and 
our method. For example, our method is relatively 
17.92% and 16.57% worse in MRR(Top1) and 
MRR(Top5) scores. In terms of precision and pat-
tern-recall rates, it drops 14.91, and 16.94 relative 
percentages, respectively. For the TFIDF method, 
the MRR score is almost the same as previous re-
sult whereas it decreased 30.34%, and 8.71% pre-
cision and pattern-recall rates. On averagely, the 
four models, BM-25, language model, INQUERY, 
and our method dropped at least relatively 10% in 
MRR, precision, and pattern-recall rates. In this 
experiment, our ranking algorithm also achieved 
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the best results in terms of precision and pattern 
recall rates while marginally worse than the TFIDF 
for the MRR(top5) score. 

There are three parameters: λ, α1, α2, in our rank-
ing algorithm. λ controls the weight of the 
QW_Density(Q, P), while α1, and α2 were set for 
the power of subsequence length and the distance 
measurement. We randomly select 100 questions 
for parameter validations. Firstly, we tried to verify 
the optimal α1 via different settings of the remain-
ing two parameters. The best α1 is then set to verify 
α2 via various λ values. The optimal λ is subse-
quently confirmed through the observed α1 and α2 
values. Figure 5, 6, 7 show the performance 
evaluations of different settings for the three pa-
rameters. 

As shown in Figure 5, the optimal settings of 
(α1=1.25) is obtained when and α2=0.25, and 
λ=0.75. When α1 is set more than 1.5, our method 
quickly decreased. In this experiment, we also 
found that large α2 negatively affects the perform-
ance. The small α2 values often lead to better rank-
ing performance. Thus, in the next experiment, we 
limited the α2 value in 0.0~3.0. As seeing in Figure 
6, again the abnormal high or zero α2 values give 
the poor results. This implies the over-weight and 
no-weight on the distance measurement (equation 
(7)) is not useful. Instead, a small α2 value yields to 
improve the performance. In our experiment, 

α2=0.25 is quite effective. Finally, in Figure 7, we 
can see that both taking the QW_Density, and 
QW_Weight into account gives better ranking re-
sult, especially QW_Density. This experiment in-
dicates that the combination of QW_Density and 
QW_Weight is better than its individual term 
weighting strategy. When λ=0.8, the best ranking 
result (MRR = 0.700) is reached. 

Next, we address on the impact of different 
number of initial retrieved passages using BM-25 
ranking models. Due to the length limitation of this 
paper, we did not present the experiments over all 
the compared ranking models, while we left the 
further results at our web site2. For the three pa-
rameters, we select the optimal settings derived 
from previous experimental results, i.e., λ=0.8, 
α1=1.25, α2=0.25. Figure 8 shows the experimental 
results with different number of initial retrieved 
passages. When employing exactly five initial re-
trieved passages, it can be viewed as the re-ranking 
improvement over the BM-25 ranking model. As 
seeing in Figure 8, our method does improve the 
conventional BM-25 ranking approach (MRR 
score 0.690 v.s. 0.627) with relatively 10.04% 
MRR value. The best system performance is 
MRR=0.700 when there are merely 20 initial re-
trieved passages. The ranking result converges 
when retrieving more than 40 passages. Besides, 
                                                           
2 http://140.115.112.118/bcbb/TVQS2/ 

Figure 5: Experimental results with different 
settings of parameter α1 using MRR evaluation 
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Figure 6: Verify parameter α2 with α1=1.25, and 
variant λ 
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Figure 7: Verify parameter λ in the two vali-
dation sets with α1=1.25 and α2=0.25
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we also continue the experiments using only top-
20 retrieved passages on the actual 253 testing 
questions. The ranking performance is then further 
enhanced from MRR=0.654 to 0.663 with 1.37% 
relatively improved. 

5 Conclusion 
More and more users are interested in searching for 
answers in videos, while existing question answer-
ing systems do not support multimedia accessing. 
This paper presents a weighted string pattern 
matching-based passage ranking algorithm for ex-
tending text QA toward video question answering. 
We compare our method with six top-performed 
ranking models and show that our method outper-
forms the second best approach (language model) 
in relatively 10.16 % MRR score, and 6.12% pre-
cision rates.  

In the future, we plan to integrate the other use-
ful features in videos to support multi-model-based 
multimedia question answering. The video-demo 
version of our videoQA system can be found at the 
web site (http://140.115.112.118/bcbb/TVQS2/).  
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Abstract

PropBank has been widely used as train-
ing data for Semantic Role Labeling.
However, because this training data is
taken from the WSJ, the resulting machine
learning models tend to overfit on idiosyn-
crasies of that text’s style, and do not port
well to other genres. In addition, since
PropBank was designed on a verb-by-verb
basis, the argument labels Arg2 - Arg5 get
used for very diverse argument roles with
inconsistent training instances. For exam-
ple, the verb “make” uses Arg2 for the
“Material” argument; but the verb “multi-
ply” uses Arg2 for the “Extent” argument.
As a result, it can be difficult for auto-
matic classifiers to learn to distinguish ar-
guments Arg2-Arg5. We have created a
mapping between PropBank and VerbNet
that provides a VerbNet thematic role la-
bel for each verb-specific PropBank label.
Since VerbNet uses argument labels that
are more consistent across verbs, we are
able to demonstrate that these new labels
are easier to learn.

1 Introduction

Correctly identifying semantic entities and success-
fully disambiguating the relations between them and
their predicates is an important and necessary step
for successful natural language processing applica-
tions, such as text summarization, question answer-

ing, and machine translation. For example, in or-
der to determine that question (1a) is answered by
sentence (1b), but not by sentence (1c), we must de-
termine the relationships between the relevant verbs
(eat and feed) and their arguments.

(1) a. What do lobsters like to eat?
b. Recent studies have shown that lobsters pri-

marily feed on live fish, dig for clams, sea
urchins, and feed on algae and eel-grass.

c. In the early 20th century, Mainers would
only eat lobsters because the fish they
caught was too valuable to eat themselves.

An important part of this task is Semantic Role
Labeling (SRL), where the goal is to locate the con-
stituents which are arguments of a given verb, and to
assign them appropriate semantic roles that describe
how they relate to the verb. Many researchers have
investigated applying machine learning to corpus
specifically annotated with this task in mind, Prop-
Bank, since 2000 (Chen and Rambow, 2003; Gildea
and Hockenmaier, 2003; Hacioglu et al., 2003; Mos-
chitti, 2004; Yi and Palmer, 2004; Pradhan et al.,
2005b; Punyakanok et al., 2005; Toutanova et al.,
2005). For two years, the CoNLL workshop has
made this problem the shared task (Carreras and
Márquez, 2005). However, there is still little con-
sensus in the linguistic and NLP communities about
what set of role labels are most appropriate. The
Proposition Bank (PropBank) corpus (Palmer et al.,
2005) avoids this issue by using theory-agnostic la-
bels (Arg0, Arg1, . . . , Arg5), and by defining those
labels to have verb-specific meanings. Under this
scheme, PropBank can avoid making any claims
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about how any one verb’s arguments relate to other
verbs’ arguments, or about general distinctions be-
tween verb arguments and adjuncts.

However, there are several limitations to this ap-
proach. The first is that it can be difficult to make
inferences and generalizations based on role labels
that are only meaningful with respect to a single
verb. Since each role label is verb-specific, we can
not confidently determine when two different verbs’
arguments have the same role; and since no encoded
meaning is associated with each tag, we can not
make generalizations across verb classes. In con-
trast, the use of a shared set of role labels, such as
thematic roles, would facilitate both inferencing and
generalization.

The second issue with PropBank’s verb-specific
approach is that it can make training automatic se-
mantic role labeling (SRL) systems more difficult.
A vast amount of data would be needed to train the
verb-specific models that are theoretically mandated
by PropBank’s design. Instead, researchers typically
build a single model for the numbered arguments
(Arg0, Arg1, . . . , Arg5). This approach works sur-
prisingly well, mainly because an explicit effort was
made to use arguments Arg0 and Arg1 consistently
across different verbs; and because those two argu-
ment labels account for 85% of all arguments. How-
ever, this approach causes the system to conflate
different argument types, especially with the highly
overloaded arguments Arg2-Arg5. As a result, these
argument labels are quite difficult to learn.

A final difficulty with PropBank’s current ap-
proach is that it limits SRL system robustness in
the face of verb senses, verbs or verb constructions
that were not included in the training data, and the
training data is all Wall Street Journal corpora. If
a PropBank-trained SRL system encounters a novel
verb or verb usage, then there is no way for it to
know which role labels are used for which argument
types, since role labels are defined so specifically.
This is especially problematic for Arg2-5. Similarly,
PropBank-trained SRL systems can have difficulty
generalizing when a known verb is encountered in
a novel construction. These problems can happen
quite frequently if the training data comes from a
different genre than the test data. This issue is re-
flected in the relatively poor performance of most
state-of-the-art SRL systems when tested on a novel

genre, the Brown corpus, during CoNLL 2005. For
example, the SRL system described in (Pradhan et
al., 2005b; Pradhan et al., 2005a) achieves an F-
score of 81% when tested on the same genre as it
is trained on (WSJ); but that score drops to 68.5%
when the same system is tested on a different genre
(the Brown corpus). DARPA-GALE is funding an
ongoing effort to PropBank additional genres, but
better techniques for generalizing the semantic role
labeling task are still needed.

In this paper, we demonstrate an increase in the
generality of our semantic role labeling based on a
mapping that has been developed between PropBank
and another lexical resource, VerbNet. By taking ad-
vantage of VerbNet’s more consistent set of labels,
we can generate more useful role label annotations
with a resulting improvement in SRL performance
on novel genres.

2 Background

2.1 PropBank

PropBank (Palmer et al., 2005) is an annotation of
one million words of the Wall Street Journal por-
tion of the Penn Treebank II (Marcus et al., 1994)
with predicate-argument structures for verbs, using
semantic role labels for each verb argument. In or-
der to remain theory neutral, and to increase anno-
tation speed, role labels were defined on a per-verb-
sense basis. Although the same tags were used for
all verbs, (namely Arg0, Arg1, ..., Arg5), these tags
are meant to have a verb-specific meaning.

Thus, the use of a given argument label should
be consistent across different uses of that verb, in-
cluding syntactic alternations. For example, the
Arg1 (underlined) in “John broke the window” is the
same window that is annotated as the Arg1 in “The
window broke”, even though it is the syntactic sub-
ject in one sentence and the syntactic object in the
other. However, there is no guarantee that an argu-
ment label will be used consistently across different
verbs. For example, the Arg2 label is used to des-
ignate the destination of the verb “bring;” but the
extent of the verb “rise.” Generally, the arguments
are simply listed in the order of their prominence
for each verb. However, an explicit effort was made
when PropBank was created to use Arg0 for argu-
ments that fulfill Dowty’s criteria for “prototypical
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agent,” and Arg1 for arguments that fulfill the cri-
teria for “prototypical patient.” (Dowty, 1991) As
a result, these two argument labels are significantly
more consistent across verbs than the other three.
But nevertheless, there are still some inter-verb in-
consistencies for even Arg0 and Arg1.

2.2 VerbNet

VerbNet (Schuler, 2005) consists of hierarchically
arranged verb classes, inspired by and extended
from classes of Levin 1993 (Levin, 1993). Each
class and subclass is characterized extensionally by
its set of verbs, and intensionally by a list of the
arguments of those verbs and syntactic and seman-
tic information about the verbs. The argument list
consists of thematic roles (23 in total) and pos-
sible selectional restrictions on the arguments ex-
pressed using binary predicates. The syntactic infor-
mation maps the list of thematic arguments to deep-
syntactic arguments (i.e., normalized for voice alter-
nations, and transformations). The semantic predi-
cates describe the participants during various stages
of the event described by the syntactic frame.

The same thematic role can occur in different
classes, where it will appear in different predicates,
providing a class-specific interpretation of the role.
VerbNet has been extended from the original Levin
classes, and now covers 4526 senses for 3769 verbs.
A primary emphasis for VerbNet is the grouping of
verbs into classes that have a coherent syntactic and
semantic characterization, that will eventually facil-
itate the acquisition of new class members based on
observable syntactic and semantic behavior. The hi-
erarchical structure and small number of thematic
roles is aimed at supporting generalizations.

2.3 Mapping PropBank to VerbNet

Because PropBank includes a large corpus of man-
ually annotated predicate-argument data, it can be
used to train supervised machine learning algo-
rithms, which can in turn provide PropBank-style
annotations for novel or unseen text. However, as
we discussed in the introduction, PropBank’s verb-
specific role labels are somewhat problematic. Fur-
thermore, PropBank lacks much of the information
that is contained in VerbNet, including information
about selectional restrictions, verb semantics, and
inter-verb relationships.

We have therefore created a mapping between
VerbNet and PropBank (Loper et al., 2007), which
will allow us to use the machine learning tech-
niques that have been developed for PropBank anno-
tations to generate more semantically abstract Verb-
Net representations. Additionally, the mapping can
be used to translate PropBank-style numbered ar-
guments (Arg0. . . Arg5) to VerbNet thematic roles
(Agent, Patient, Theme, etc.), which should allow us
to overcome the verb-specific nature of PropBank.

The mapping between VerbNet and PropBank
consists of two parts: a lexical mapping and an in-
stance classifier. The lexical mapping is responsible
for specifying the potential mappings between Prop-
Bank and VerbNet for a given word; but it does not
specify which of those mappings should be used for
any given occurrence of the word. That is the job
of the instance classifier, which looks at the word
in context, and decides which of the mappings is
most appropriate. In essence, the instance classi-
fier is performing word sense disambiguation, de-
ciding which lexeme from each database is correct
for a given occurrence of a word. In order to train
the instance classifier, we semi-automatically anno-
tated each verb in the PropBank corpus with Verb-
Net class information.1 This mapped corpus was
then used to build the instance classifier. More de-
tails about the mapping, and how it was created, can
be found in (Loper et al., 2007).

3 Analysis of the Mapping

In order to confirm our belief that PropBank roles
Arg0 and Arg1 are relatively coherent, while roles
Arg2-5 are much more overloaded, we performed
a preliminary analysis of how argument roles were
mapped. Figure 1 shows how often each PropBank
role was mapped to each VerbNet thematic role, cal-
culated as a fraction of instances in the mapped cor-
pus. From this figure, we can see that Arg0 maps to
agent-like roles, such as “agent” and “experiencer,”
over 94% of the time; and Arg1 maps to patient-
like roles, including “theme,” “topic,” and “patient,”
over 82% of the time. In contrast, arguments Arg2-5
get mapped to a much broader variety of roles. It is
also worth noting that the sample size for arguments

1Excepting verbs whose senses are not present in VerbNet
(24.5% of instances).
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Arg3-5 is quite small in comparison with arguments
Arg0-2, suggesting that any automatically built clas-
sifier for arguments Arg3-5 will suffer severe sparse
data problems for those arguments.

4 Training a SRL system with VerbNet
Roles to Achieve Robustness

An important issue for state-of-the-art automatic
SRL systems is robustness: although they receive
high performance scores when tested on the Wall
Street Journal (WSJ) corpus, that performance drops
significantly when the same systems are tested on a
corpus from another genre. This performance drop
reflects the fact that the WSJ corpus is highly spe-
cialized, and tends to use genre-specific word senses
for many verbs. The 2005 CoNLL shared task has
addressed this issue of robustness by evaluating par-
ticipating systems on a test set extracted from the
Brown corpus, which is very different from the WSJ
corpus that was used for training. The results sug-
gest that there is much work to be done in order to
improve system robustness.

One of the reasons that current SRL systems have
difficulty deciding which role label to assign to a
given argument is that role labels are defined on a
per-verb basis. This is less problematic for Arg0
and Arg1, where a conscious effort was made to be
consistent across verbs; but is a significant problem
for Args[2-5], which tend to have very verb-specific
meanings. This problem is exacerbated even fur-
ther on novel genres, where SRL systems are more
likely to encounter unseen verbs and uses of argu-
ments that were not encountered in the training data.

4.1 Addressing Current SRL Problems via
Lexical Mappings

By exploiting the mapping between PropBank and
VerbNet, we can transform the data to make it more
consistent, and to expand the size and variety of the
training data. In particular, we can use the map-
ping to transform the verb-specific PropBank role
labels into the more general thematic role labels that
are used by VerbNet. Unlike the PropBank labels,
the VerbNet labels are defined consistently across
verbs; and therefore it should be easier for statisti-
cal SRL systems to model them. Furthermore, since
the VerbNet role labels are significantly less verb-

Arg0 (45,579)
Agent 85.4%
Experiencer 7.2%
Theme 2.1%
Cause 1.9%
Actor1 1.8%
Theme1 0.8%
Patient1 0.2%
Location 0.2%
Theme2 0.2%
Product 0.1%
Patient 0.0%
Attribute 0.0%

Arg1 (59,884)
Theme 47.0%
Topic 23.0%
Patient 10.8%
Product 2.9%
Predicate 2.5%
Patient1 2.4%
Stimulus 2.0%
Experiencer 1.9%
Cause 1.8%
Destination 0.9%
Theme2 0.7%
Location 0.7%
Source 0.7%
Theme1 0.6%
Actor2 0.6%
Recipient 0.5%
Agent 0.4%
Attribute 0.2%
Asset 0.2%
Patient2 0.2%
Material 0.2%
Beneficiary 0.0%

Arg2 (11,077)
Recipient 22.3%
Extent 14.7%
Predicate 13.4%
Destination 8.6%
Attribute 7.6%
Location 6.5%
Theme 5.5%
Patient2 5.3%
Source 5.2%
Topic 3.1%
Theme2 2.5%
Product 1.5%
Cause 1.2%
Material 0.8%
Instrument 0.6%
Beneficiary 0.5%
Experiencer 0.3%
Actor2 0.2%
Asset 0.0%
Theme1 0.0%

Arg3 (609)
Asset 38.6%
Source 25.1%
Beneficiary 10.7%
Cause 9.7%
Predicate 9.0%
Location 2.0%
Material 1.8%
Theme1 1.6%
Theme 0.8%
Destination 0.3%
Instrument 0.3%

Arg4 (18)
Beneficiary 61.1%
Product 33.3%
Location 5.6%

Arg5 (17)
Location 100.0%

Figure 1: The frequency with which each PropBank
numbered argument is mapped to each VerbNet the-
matic role in the mapped corpus. The numbers
next to each PropBank argument reflects the num-
ber of occurrences of that numbered argument in the
mapped corpus.
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dependent than the PropBank roles, the SRL’s mod-
els should generalize better to novel verbs, and to
novel uses of known verbs.

5 SRL Experiments on Linked Lexical
Resources

In order to verify the feasibility of performing se-
mantic role labeling with VerbNet thematic roles, we
re-trained our existing SRL system, which originally
used PropBank role labels, with a new label set that
makes use of VerbNet thematic role information.

5.1 The SRL System

Our SRL system is a Maximum Entropy based
pipelined system which consists of four compo-
nents: Pre-processing, Argument Identification, Ar-
gument Classification, and Post Processing. The
Pre-processing component pipes a sentence through
a syntactic parser and filters out constituents which
are unlikely to be semantic arguments based on a
constituents location in the parse tree. The Argu-
ment Identification component is a binary MaxEnt
classifier, which tags candidate constituents as ar-
guments or non-arguments. The Argument Classifi-
cation component is a multi-class MaxEnt classifier
which assigns a semantic role to each constituent.
The Post Processing component further selects the
final arguments based on global constraints. Our ex-
periments mainly focused on changes to the Argu-
ment Classification stage of the SRL pipeline, and
in particular, on changes to the set of output tags.
For more information on our SRL system, see (Yi
and Palmer, 2004; Yi and Palmer, 2005).

The evaluation of SRL systems is typically ex-
pressed by precision, recall and the F1-measure.
Precision is the number of correct arguments pre-
dicted by a system divided by the total number of
arguments proposed. Recall is the number of cor-
rect arguments divided by the number of the total
number of arguments in the Gold Standard Data. F1
computes the harmonic mean of precision and recall.

5.2 SRL Experiments on Mapped VerbNet
Thematic Roles

Since PropBank arguments Arg0 and Arg1 are al-
ready quite coherent, we left them as-is in the new
label set. But since arguments Arg2-Arg5 are highly

Group 1 Group 2 Group 3 Group 4 Group 5
Recipient Extent Predicate Patient2 Instrument
Destination Asset Attribute Product Cause
Location Theme Experiencer
Source Theme1 Actor2
Material Theme2
Beneficiary Topic

Figure 2: Thematic Role Groupings for the exper-
iments on linked lexical resources; and for Arg2 in
the experiments on arguments with different verb in-
dependency.

overloaded, we replaced them by mapping them
to their corresponding VerbNet thematic role. We
found that mapping directly to individual role labels
created a significant sparse data problem, since the
number of output tags was increased from 6 to 23.
We therefore grouped the VerbNet thematic roles
into five coherent groups of similar thematic roles,
shown in Figure 2.2 Our new tag set therefore in-
cluded the following tags: Arg0 (agent); Arg1 (pa-
tient); Group1 (goal); Group2 (extent); Group3
(predicate/attrib); Group4 (product); and Group5
(instrument/cause).

Training our SRL system using these thematic
role groups, we obtained performance similar to the
original SRL system. However, it is important to
note that these performance figures are not directly
comparable, since the two systems are performing
different tasks: The Original system labels Arg0-
5,ArgA and ArgM and the Mapped system labels
Arg0, Arg1, ArgA, ArgM and Group1-5. In partic-
ular, the role labels generated by the original system
are verb-specific, while the role labels generated by
the new system are less verb-dependent.

5.2.1 Results
For our testing and training, we used the portion

of Penn Treebank II that is covered by the mapping,
and where at least one of Arg2-5 is used. Training
was performed using sections 2-21 of the Treebank
(10,783 instances of argument); and testing was per-
formed on section 23 (859 instances). Table 1 dis-
plays the performance score for the SRL system us-
ing the augmented tag set (“Mapped”). The per-
formance score of the original system (“Original”)
is also listed, for reference; however, as was dis-

2Karin Kipper assisted in creating the groupings.
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System Precision Recall F1
Original 90.65 85.43 87.97
Mapped 88.85 84.56 86.65

Table 1: Overall SRL System performance using the
PropBank tag set (“Original”) and the augmented
tag set (“Mapped”)

System Precision Recall F1
Original 97.60 83.67 90.10
Mapped 91.70 82.86 87.06

Table 2: SRL System performance evaluated on only
Arg2-5 (Original) or Group1-5 (Mapped).

cussed above, these results are not directly compara-
ble because the two systems are performing different
tasks.

The results indicate that the performance drops
when we train on the new argument labels, espe-
cially on precision when we evaluate the systems
on only Arg2-5/Group1-5 (see Table 2). However,
it is premature to conclude that there is no benefit
from the VerbNet thematic role labels. Firstly, we
have very few mapped Arg3-5 instances (less than
1,000 instances); secondly, we lack test data gen-
erated from a genre other than WSJ to allow us to
evaluate the robustness (generality) of SRL trained
on the new argument labels.

We therefore redesigned our experiments by lim-
iting the scope to mapped instances of Arg1 and
Arg2. By doing this, we should be able to accom-
plish the following: 1) we can map new argument la-
bels back to the original PropBank labels; therefore
we can directly compare results; 2) With the ability
of testing our systems on other test data, we can eval-
uate the influence of the mapping on SRL robust-
ness; 3) We can validate our original hypothesis that
the behavior of Arg1 is primarily verb-independent
while Arg2 is more verb-specific.

5.3 SRL Experiments on Arguments with
Different Verb Independency

We conducted two further sets of experiments: one
to test the effect of the mapping on learning Arg2;
and one to test the effect on learning Arg1. Since
Arg2 is used in very verb-dependent ways, we ex-
pect that mapping it to VerbNet role labels will in-

Group 1 Group 2 Group 3 Group 4 Group 5
Theme Source Patient Agent Topic
Theme1 Location Product Actor2
Theme2 Destination Patient1 Experiencer Group 6
Predicate Recipient Patient2 Cause Asset
Stimulus Beneficiary
Attribute Material

Figure 3: Thematic Role Groupings for Arg1 in the
experiments on arguments with different verb inde-
pendency.

crease our performance. However, since a conscious
effort was made to keep the meaning of Arg1 consis-
tent across verbs, we expect that mapping it to Verb-
Net labels will provide less of an improvement.

Each experiment compares two SRL systems: one
trained using the original PropBank role labels; the
other trained with the argument role under consid-
eration (Arg1 or Arg2) subdivided based on which
VerbNet role label it maps to. In order to prevent
the training data from these subdivided labels from
becoming too sparse (which would impair system
performance) we grouped similar thematic roles to-
gether. For Arg2, we used the same groupings as the
previous experiment, shown in Figure 2. The argu-
ment role groupings we used for Arg1 are shown in
Figure 3.

The training data for both experiments is the por-
tion of Penn Treebank II (sections 02-21) that is cov-
ered by the mapping. We evaluated each experi-
mental system using two test sets: section 23 of the
Penn Treebank II, which represents the same genre
as the training data; and the PropBank-ed portion of
the Brown corpus, which represents a very different
genre.

5.3.1 Results and Discussion
Table 3 describes the results of SRL overall per-

formance tested on the WSJ corpus Section 23; Ta-
ble 4 demonstrates the SRL overall system perfor-
mance tested on the Brown corpus. Systems Arg1-
Original and Arg2-Original are trained using the
original PropBank labels, and show the baseline
performance of our SRL system. Systems Arg1-
Mapped and Arg2-Mapped are trained using Prop-
Bank labels augmented with VerbNet thematic role
groups. In order to allow comparison between the
system using the original PropBank labels and the
systems that augmented those labels with VerbNet
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System Precision Recall F1
Arg1-Original 89.24 77.32 82.85
Arg1-Mapped 90.00 76.35 82.61
Arg2-Original 73.04 57.44 64.31
Arg2-Mapped 84.11 60.55 70.41

Table 3: SRL System Performance on Arg1 Map-
ping and Arg2 Mapping, tested using the WSJ cor-
pus (section 23). This represents performance on the
same genre as the training corpus.

System Precision Recall F1
Arg1-Original 86.01 71.46 78.07
Arg1-Mapped 88.24 71.15 78.78
Arg2-Original 66.74 52.22 58.59
Arg2-Mapped 81.45 58.45 68.06

Table 4: SRL System Performance on Arg1 Map-
ping and Arg2 Mapping, tested using the PropBank-
ed Brown corpus. This represents performance on a
different genre from the training corpus.

thematic role groups, system performance was eval-
uated based solely on the PropBank role label that
was assigned.

We had hypothesized that with the use of thematic
roles, we would be able to create a more consis-
tent training data set which would result in an im-
provement in system performance. In addition, the
thematic roles would behave more consistently than
the overloaded Args[2-5] across verbs, which should
enhance robustness. However, since in practice we
are also increasing the number of argument labels
an SRL system needs to tag, the system might suf-
fer from data sparseness. Our hope is that the en-
hancement gained from the mapping will outweigh
the loss due to data sparseness.

From Table 3 and Table 4 we see the F1 scores of
Arg1-Original and Arg1-Mapped are statistically in-
different both on the WSJ corpus and the Brown cor-
pus. These results confirm the observation that Arg1
in the PropBank behaves fairly verb-independently
so that the VerbNet mapping does not provide much
benefit. The increase of precision due to a more co-
herent training data set is compensated for by the
loss of recall due to data sparseness.

The results of the Arg2 experiments tell a differ-

Confusion ARG2-Original
Matrix ARG1 ARG2 ARGM

ARG2- ARG0 53 50 -
Mapped ARG1 - 716 -

ARG2 1 - 2
ARG3 - 1 -
ARGM 1 482 -

233 ARG2-Mapped arguments are not labeled by ARG2-
Original

Table 5: Confusion matrix on the 1,539 instances
which ARG2-Mapped tags correctly and ARG2-
Original fails to predict.

ent story. Both precision and recall are improved
significantly, which demonstrates that the Arg2 label
in the PropBank is quite overloaded. The Arg2 map-
ping improves the overall results (F1) on the WSJ
by 6% and on the Brown corpus by almost 10%. As
a more diverse corpus, the Brown corpus provides
many more opportunities for generalizing to new us-
ages. Our new SRL system handles these cases more
robustly, demonstrating the consistency and useful-
ness of the thematic role categories.

5.4 Improved Argument Distinction via
Mapping

The ARG2-Mapped system generalizes well both
on the WSJ corpus and the Brown corpus. In or-
der to explore the improved robustness brought by
the mapping, we extracted and observed the 1,539
instances to which the system ARG2-Mapped as-
signed the correct semantic role label, but which the
system ARG2-Original failed to predict. From the
confusion matrix depicted in Table 5, we discover
the following:

The mapping makes ARG2 more clearly defined,
and as a result there is a better distinction be-
tween ARG2 and other argument labels: Among
the 1,539 instances that ARG2-Original didn’t tag
correctly, 233 instances are not assigned an argu-
ment label, and 1,252 instances ARG2-Original con-
fuse the ARG2 label with another argument label:
the system ARG2-Original assigned the ARG2 la-
bel to 50 ARG0’s, 716 ARG1’s, 1 ARG3 and 482
ARGM’s, and assigned other argument labels to 3
ARG2’s.
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6 Conclusions

In conclusion, we have described a mapping from
the annotated PropBank corpus to VerbNet verb
classes with associated thematic role labels. We hy-
pothesized that these labels would be more verb-
independent and less overloaded than the PropBank
Args2-5, and would therefore provide more consis-
tent training instances which would generalize better
to new genres. Our preliminary experiments confirm
this hypothesis, with a 6% performance improve-
ment on the WSJ and a 10% performance improve-
ment on the Brown corpus for Arg2.

In future work, we will map the PropBank-ed
Brown corpus to VerbNet as well, which will allow
much more thorough testing of our hypothesis. We
will also examine back-off to verb class membership
as a technique for improving performance on out of
vocabulary verbs. Finally, we plan to explore the ef-
fect of different thematic role groupings on system
performance.
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Abstract

Most research on semantic role labeling
(SRL) has been focused on training and
evaluating on the same corpus in order
to develop the technology. This strategy,
while appropriate for initiating research,
can lead to over-training to the particular
corpus. The work presented in this pa-
per focuses on analyzing the robustness
of an SRL system when trained on one
genre of data and used to label a different
genre. Our state-of-the-art semantic role
labeling system, while performing well on
WSJ test data, shows significant perfor-
mance degradation when applied to data
from the Brown corpus. We present a se-
ries of experiments designed to investigate
the source of this lack of portability. These
experiments are based on comparisons of
performance using PropBanked WSJ data
and PropBanked Brown corpus data. Our
results indicate that while syntactic parses
and argument identification port relatively
well to a new genre, argument classifica-
tion does not. Our analysis of the reasons
for this is presented and generally point
to the nature of the more lexical/semantic
features dominating the classification task
and general structural features dominating
the argument identification task.

1 Introduction

Automatic, accurate and wide-coverage techniques
that can annotate naturally occurring text with se-
mantic argument structure play a key role in NLP
applications such as Information Extraction (Sur-
deanu et al., 2003; Harabagiu et al., 2005), Question
Answering (Narayanan and Harabagiu, 2004) and
Machine Translation (Boas, 2002; Chen and Fung,
2004). Semantic Role Labeling (SRL) is the pro-
cess of producing such a markup. When presented
with a sentence, a parser should, for each predicate
in the sentence, identify and label the predicate’s se-
mantic arguments. In recent work, a number of re-
searchers have cast this problem as a tagging prob-
lem and have applied various supervised machine
learning techniques to it. On the Wall Street Jour-
nal (WSJ) data, using correct syntactic parses, it is
possible to achieve accuracies rivaling human inter-
annotator agreement. However, the performance gap
widens when information derived from automatic
syntactic parses is used.

So far, most of the work on SRL systems has been
focused on improving the labeling performance on a
test set belonging to the same genre of text as the
training set. Both the Treebank on which the syntac-
tic parser is trained and the PropBank on which the
SRL systems are trained represent articles from the
year 1989 of the WSJ. While all these systems per-
form quite well on the WSJ test data, they show sig-
nificant performance degradation (approximately 10
point drop in F-score) when applied to label test data
that is different than the genre that WSJ represents
(Pradhan et al., 2004; Carreras and Màrquez, 2005).
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Surprisingly, it does not matter much whether the
data is from another newswire, or a completely dif-
ferent type of text – as in the Brown corpus. These
results indicate that the systems are being over-fit to
the specific genre of text. Many performance im-
provements on the WSJ PropBank corpus may re-
flect tuning to the corpus. For the technology to
be widely accepted and useful, it must be robust
to change in genre of the data. Until recently, data
tagged with similar semantic argument structure was
not available for multiple genres of text. Recently,
Palmer et al., (2005), have PropBanked a significant
portion of the Treebanked Brown corpus which en-
ables us to perform experiments to analyze the rea-
sons behind the performance degradation, and sug-
gest potential solutions.

2 Semantic Annotation and Corpora

In the PropBank1 corpus (Palmer et al., 2005), pred-
icate argument relations are marked for the verbs
in the text. PropBank was constructed by assign-
ing semantic arguments to constituents of the hand-
corrected Treebank parses. The arguments of a verb
are labeled ARG0 to ARG5, where ARG0 is the
PROTO-AGENT (usually the subject of a transitive
verb) ARG1 is the PROTO-PATIENT (usually its di-
rect object), etc. In addition to these CORE ARGU-
MENTS, 16 additional ADJUNCTIVE ARGUMENTS,
referred to as ARGMs are also marked.

More recently the PropBanking effort has been
extended to encompass multiple corpora. In this
study we use PropBanked versions of the Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus et
al., 1994) and part of the Brown portion of the Penn
Treebank.

The WSJ PropBank data comprise 24 sections
of the WSJ, each section representing about 100
documents. PropBank release 1.0 contains about
114,000 predicates instantiating about 250,000 argu-
ments and covering about 3,200 verb lemmas. Sec-
tion 23, which is a standard test set and a test set
in some of our experiments, comprises 5,400 predi-
cates instantiating about 12,000 arguments.

The Brown corpus is a Standard Corpus of Ameri-
can English that consists of about one million words
of English text printed in the calendar year 1961

1
http://www.cis.upenn.edu/˜ace/

(Kučera and Francis, 1967). The corpus contains
about 500 samples of 2000+ words each. The idea
behind creating this corpus was to create a hetero-
geneous sample of English text so that it would be
useful for comparative language studies.

The Release 3 of the Penn Treebank contains the
hand parsed syntactic trees of a subset of the Brown
Corpus – sections F, G, K, L, M, N, P and R. Palmer
et al., (2005) have recently PropBanked a signifi-
cant portion of this Treebanked Brown corpus. In
all, about 17,500 predicates are tagged with their se-
mantic arguments. For these experiments we used a
limited release of PropBank dated September 2005.
A small portion of the predicates – about 8,000 have
also been tagged with frame sense information.

3 SRL System Description

We formulate the labeling task as a classification
problem as initiated by Gildea and Jurafsky (2002)
and use Support Vector Machine (SVM) classi-
fiers (2005). We use TinySVM2 along with Yam-
Cha3 (Kudo and Matsumoto, 2000) (Kudo and Mat-
sumoto, 2001) as the SVM training and classifica-
tion software. The system uses a polynomial kernel
with degree 2; the cost per unit violation of the mar-
gin, C=1; and, tolerance of the termination criterion,
e=0.001. More details of this system can be found
in Pradhan et al., (2005). The performance of this
system on section 23 of the WSJ when trained on
sections 02-21 is shown in Table 1

ALL ARGs Task P R F A
(%) (%) (%)

TREEBANK Id. 97.5 96.1 96.8
Class. - - - 93.0
Id. + Class. 91.8 90.5 91.2

AUTOMATIC Id. 86.9 84.2 85.5
Class. - - - 92.0
Id. + Class. 82.1 77.9 79.9

Table 1: Performance of the SRL system on WSJ

The performance of the SRL system is reported
on three different tasks, all of which are with respect
to a particular predicate: i) argument identification
(ID), is the task of identifying the set of words (here,
parse constituents) that represent a semantic role; ii)
argument classification (Class.), is the task of clas-
sifying parse constituents known to represent some

2
http://cl.aist-nara.ac.jp/˜talus-Au/software/TinySVM/

3
http://cl.aist-nara.ac.jp/˜taku-Au/software/yamcha/
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semantic role into one of the many semantic role
types; and iii) argument identification and classifi-
cation (ID + Class.), which involves both the iden-
tification of the parse constituents that represent se-
mantic roles of the predicate and their classification
into the respective semantic roles. As usual, argu-
ment classification is measured as percent accuracy
(A), whereas ID and ID + Class. are measured in
terms of precision (P), recall (R) and F-score (F)
– the harmonic mean of P and R. The first three
rows of Table 1 report performance for the system
that uses hand-corrected Treebank parses, and the
next three report performance for the SRL system
that uses automatically generated – Charniak parser
– parses, both during training and testing.

4 Robustness Experiments

This section describes experiments that we per-
formed using the PropBanked Brown corpus in an
attempt to analyze the factors affecting the portabil-
ity of SRL systems.

4.1 How does the SRL system trained on WSJ
perform on Brown?

In order to test the robustness of the SRL system,
we used a system trained on the PropBanked WSJ
corpus to label data from the Brown corpus. We use
the entire PropBanked Brown corpus (about 17,500
predicates) as a test set for this experiment and use
the SRL system trained on WSJ sections 02-21 to
tag its arguments.

Table 2 shows the performance for training and
testing on WSJ, and for training on WSJ and testing
on Brown. There is a significant reduction in per-
formance when the system trained on WSJ is used
to label data from the Brown corpus. The degrada-
tion in the Identification task is small compared to
that of the combined Identification and Classifica-
tion task. A number of factors could be responsible
for the loss of performance. It is possible that the
SRL models are tuned to the particular vocabulary
and sense structure associated with the training data.
Also, since the syntactic parser that is used for gen-
erating the syntax parse trees (Charniak) is heavily
lexicalized and is trained on WSJ, it could have de-
creased accuracy on the Brown data resulting in re-
duced accuracy for Semantic Role Labeling. Since

the SRL algorithm walks the syntax tree classifying
each node, if no constituent node is present that cor-
responds to the correct argument, the system cannot
produce a correct labeling for the argument.

Train Test Id. Id. + Class
F F

WSJ WSJ 85.5 79.9
WSJ Brown 82.4 65.1

Table 2: Performance of the SRL system on Brown.

In order to check the extent to which constituent
nodes representing semantic arguments were deleted
from the syntax tree due to parser error, we gener-
ated the performance numbers which are shown in
Table 3. These numbers are for top one parse for the
Charniak parser, and represent not all parser errors,
but deletion of argument bearing constituent nodes.

Total Misses %
PropBank 12000 800 6.7
Brown 45880 3692 8.1

Table 3: Constituent deletions in WSJ and Brown.

The parser misses 6.7% of the argument-bearing
nodes in the PropBank test set and about 8.1% in
the Brown corpus. This indicates that the errors in
syntactic parsing account for a fairly small amount
of the argument deletions and probably do not con-
tributing significantly to the increased SRL error
rate. Obviously, just the presence of a argument-
bearing constituent does not necessarily guarantee
the correctness of the structural connections be-
tween itself and the predicate.

4.2 Identification vs Classification Performance

Different features tend to dominate in the identifi-
cation task vs the classification task. For example,
the path feature (representing the path in the syntax
tree from the argument to the predicate) is the sin-
gle most salient feature for the ID task and is not
very important in the classification task. In the next
experiment we look at cross genre performance of
the ID and Classification tasks. We used gold stan-
dard syntactic trees from the Treebank so there are
no errors in generating the syntactic structure. In
addition to training on the WSJ and testing on WSJ
and Brown, we trained the SRL system on a Brown
training set and tested it on a test set also from the
Brown corpus. In generating the Brown training and
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SRL SRL Task P R F A
Train Test (%) (%) (%)

WSJ WSJ Id. 97.5 96.1 96.8
(104k) (5k) Class. 93.0

Id. + Class. 91.8 90.5 91.2
WSJ WSJ Id. 96.3 94.4 95.3
(14k) (5k) Class. 86.1

Id. + Class. 84.4 79.8 82.0
BROWN BROWN Id. 95.7 94.9 95.2
(14k) (1.6k) Class. 80.1

Id. + Class. 79.9 77.0 78.4
WSJ BROWN Id. 94.2 91.4 92.7
(14k) (1.6k) Class. 72.0

Id. + Class. 71.8 65.8 68.6

Table 4: Performance of the SRL system using correct Treebank parses.

test sets, we used stratified sampling, which is often
used by the syntactic parsing community (Gildea,
2001). The test set was generated by selecting ev-
ery 10th sentence in the Brown Corpus. We also
held out the development set used by Bacchiani et
al., (2006) to tune system parameters in the future.
This procedure resulted in a training set of approxi-
mately 14,000 predicates and a test set of about 1600
predicates. We did not perform any parameter tun-
ing for any of the following experiments, and used
the parameter settings from the best performing ver-
sion of the SRL system as reported in Table1. We
compare the performance on this test set with that
obtained when the SRL system is trained using WSJ
sections 02-21 and use section 23 for testing. For
a more balanced comparison, we retrained the SRL
system on the same amount of data as used for train-
ing on Brown, and tested it on section 23. As usual,
trace information, and function tag information from
the Treebank is stripped out.

Table 4 shows the results. There is a fairly small
difference in argument Identification performance
when the SRL system is trained on 14,000 predi-
cates vs 104,000 predicates from the WSJ (F-score
95.3 vs 96.8). However, there is a considerable drop
in Classification accuracy (86.1% vs 93.0%). When
the SRL system is trained and tested on Brown data,
the argument Identification performance is not sig-
nificantly different than that for the system trained
and tested on WSJ data (F-score 95.2 vs 95.3). The
drop in argument Classification accuracy is much
more severe (86.1% vs 80.1%).

This same trend between ID and Classification is
even more pronounced when training on WSJ and

testing on Brown. For a system trained on WSJ,
there is a fairly small drop in performance of the
ID task when tested on Brown vs tested on WSJ (F-
score 92.7 vs 95.3). However, in this same condi-
tion, the Classification task has a very large drop in
performance (72.0% vs 86.1%).

So argument ID is not very sensitive to amount
of training data in a corpus, or to the genre of the
corpus, and ports well from WSJ to Brown. This ex-
periment supports the belief that there is no signifi-
cant drop in the task of identifying the right syntactic
constituents that are arguments – and this is intuitive
since previous experiments have shown that the task
of argument identification is more dependent on the
structural features – one such feature being the path
in the syntax tree.

Argument Classification seems to be the problem.
It requires more training data within the WSJ corpus,
does not perform as well when trained and tested on
Brown as it does for WSJ and does not port well
from WSJ to Brown. This suggests that the features
it uses are being over-fit to the training data and are
more idiosyncratic to a given dataset. In particular,
the predicate whose arguments are being identified,
and the head word of the syntactic constituent being
classified are both important features in the task of
argument classification.

As a generalization, the features used by the Iden-
tification task reflect structure and port well. The
features used by the Classification task reflect spe-
cific lexical usage and semantics, and tend to require
more training data and are more subject to over-
fitting. Even when training and testing on Brown,
Classification accuracy is considerably worse than
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training and testing on WSJ (with comparable train-
ing set size). It is probably the case that the predi-
cates and head words in a homogeneous corpus such
as the WSJ are used more consistently, and tend to
have single dominant word senses. The Brown cor-
pus probably has much more variety in its lexical
usage and word senses.

4.3 How sensitive is semantic argument
prediction to the syntactic correctness
across genre?

This experiment examines the same cross-genre ef-
fects as the last experiment, but uses automatically
generated syntactic parses rather than gold standard
ones.

For this experiment, we used the same amount of
training data from WSJ as available in the Brown
training set – that is about 14,000 predicates. The
examples from WSJ were selected randomly. The
Brown test set is the same as used in the previous
experiment, and the WSJ test set is the entire section
23.

Recently there have been some improvements to
the Charniak parser, use n-best re-ranking as re-
ported in (Charniak and Johnson, 2005) and self-
training and re-ranking using data from the North
American News corpus (NANC) and adapts much
better to the Brown corpus (McClosky et al., 2006a;
McClosky et al., 2006b). The performance of these
parsers as reported in the respective literature are
shown in Table 6 shows the performance (as re-
ported in the literature) of the Charniak parser: when
trained and tested on WSJ, when trained on WSJ and
tested on Brown, When trained and tested on Brown,
and when trained on WSJ and adapted with NANC.

Train Test F
WSJ WSJ 91.0
WSJ Brown 85.2
Brown Brown 88.4
WSJ+NANC Brown 87.9

Table 6: Charniak parser performance.

We describe the results of Semantic Role Label-
ing under the following five conditions:

1. The SRL system is trained on features ex-
tracted from automatically generated parses of
the PropBanked WSJ sentences. The syntactic

parser – Charniak parser – is itself trained on
the WSJ training sections of the Treebank. This
is used for Semantic Role Labeling of section-
23 of WSJ.

2. The SRL system is trained on features ex-
tracted from automatically generated parses of
the PropBanked WSJ sentences. The syntac-
tic parser – Charniak parser – is itself trained
on the WSJ training sections of the Treebank.
This is used to classify the Brown test set.

3. The SRL system is trained on features ex-
tracted from automatically generated parses of
the PropBanked Brown corpus sentences. The
syntactic parser is trained using the WSJ por-
tion of the Treebank. This is used to classify
the Brown test set.

4. The SRL system is trained on features ex-
tracted from automatically generated parses of
the PropBanked Brown corpus sentences. The
syntactic parser is trained using the Brown
training portion of the Treebank. This is used
to classify the Brown test set.

5. The SRL system is trained on features ex-
tracted from automatically generated parses of
the PropBanked Brown corpus sentences. The
syntactic parser is the version that is self-
trained using 2,500,000 sentences from NANC,
and where the starting version is trained only
on WSJ data (McClosky et al., 2006b). This is
used to classify the Brown test set.

Table 5 shows the results. For simplicity of dis-
cussion we have tagged the five conditions as 1.,
2., 3., 4., and 5. Comparing conditions 2. and 3.
shows that when the features used to train the SRL
system are extracted using a syntactic parser that is
trained on WSJ it performs at almost the same level
on the task of Identification, regardless of whether
it is trained on the PropBanked Brown corpus or
the PropBanked WSJ corpus. This, however, is sig-
nificantly lower than when all the three – the syn-
tactic parser training set, the SRL system training
set, and the SRL system test set, are from the same
genre (6 F-score points lower than condition 1, and
5 points lower than conditions 4 and 5). In case of
the combined task, the gap between the performance
for conditions 2 and 3 is about 10 points in F-score
(59.1 vs 69.8). Looking at the argument classifica-
tion accuracies, we see that using the SRL system
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Setup Parser SRL SRL Task P R F A
Train Train Test (%) (%) (%)

1. WSJ WSJ WSJ Id. 87.3 84.8 86.0
(40k – sec:00-21) (14k) (5k) Class. 84.1

Id. + Class. 77.5 69.7 73.4
2. WSJ WSJ Brown Id. 81.7 78.3 79.9

(40k – sec:00-21) (14k) (1.6k) Class. 72.1
Id. + Class. 63.7 55.1 59.1

3. WSJ Brown Brown Id. 81.7 78.3 80.0
(40k – sec:00-21) (14k) (1.6k) Class. 79.2

Id. + Class. 78.2 63.2 69.8
4. Brown Brown Brown Id. 87.6 82.3 84.8

(20k) (14k) (1.6k) Class. 78.9
Id. + Class. 77.4 62.1 68.9

5. WSJ+NANC Brown Brown Id. 87.7 82.5 85.0
(2,500k) (14k) (1.6k) Class. 79.9

Id. + Class. 77.2 64.4 70.0

Table 5: Performance on WSJ and Brown using automatic syntactic parses

trained on WSJ to test Brown sentences give a 12
point drop in F-score (84.1 vs 72.1). Using the SRL
system trained on Brown using WSJ trained syntac-
tic parser shows a drop in accuracy by about 5 F-
score points (84.1 to 79.2). When the SRL system is
trained on Brown using syntactic parser also trained
on Brown, we get a quite similar classification per-
formance, which is again about 5 points lower than
what we get using all WSJ data. This shows lexical
semantic features might be very important to get a
better argument classification on Brown corpus.

4.4 How much data is required to adapt to a
new genre?

We would like to know how much data from a new
genre we need to annotate and add to the training
data of an existing corpus to adapt the system such
that it gives the same level of performance as when
it is trained on the new genre.

One section of the Brown corpus – section CK
has about 8,200 predicates annotated. We use six
different conditions – two in which we use correct
Treebank parses, and the four others in which we
use automatically generated parses using the varia-
tions described before. All training sets start with
the same number of examples as in the Brown train-
ing set. The part of this section used as a test set for
the CoNLL 2005 shared task is used as the test set
here. It contains a total of about 800 predicates.

Table 7 shows a comparison of these conditions.
In all the six conditions, the performance on the task
of Identification and Classification improves gradu-

ally until about 5625 examples of section CK which
is about 75% of the total added, above which they
improve very little. In fact, even 50% of the new
data accounts for 90% of the performance differ-
ence. Even when the syntactic parser is trained on
WSJ and the SRL is trained on WSJ, adding 7,500
instances of the new genres allows it to achieve al-
most the same performance as when all three are
from the same genre (67.2 vs 69.9). Numbers for ar-
gument identification aren’t shown because adding
more data does not have any statistically signifi-
cant impact on its performance. The system that
uses self-trained syntactic parser seems to perform
slightly better than the rest of the versions that use
automatically generated syntactic parses. The preci-
sion numbers are almost unaffected – except when
the labeler is trained on WSJ PropBank data.

4.5 How much does verb sense information
contribute?

In order to find out how important the verb sense
information is in the process of genre transfer, we
used the subset of PropBanked Brown corpus that
was tagged with verb sense information, ran an ex-
periment similar to that of Experiment 1. We used
the oracle sense information and correct syntactic in-
formation for this experiment.

Table 8 shows the results of this experiment.
There is about 1 point F-score increase on using
oracle sense information on the overall data. We
looked at predicates that had high perplexity in both
the training and test sets, and whose sense distribu-
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Parser SRL Id. + Class Parser SRL Id. + Class
P R F P R F

Train Train (%) (%) (%) (%)
WSJ WSJ (14k) WSJ Brown (14k)
(Treebank parses) (Treebank parses)

+0 ex. from CK 74.1 66.5 70.1 (40k) +0 ex. from CK 74.4 57.0 64.5
+1875 ex. from CK 77.6 71.3 74.3 +1875 ex. from CK 75.1 58.7 65.9
+3750 ex. from CK 79.1 74.1 76.5 +3750 ex. from CK 76.1 59.6 66.9
+5625 ex. from CK 80.4 76.1 78.1 +5625 ex. from CK 76.9 60.5 67.7
+7500 ex. from CK 80.2 76.1 78.1 +7500 ex. from CK 76.8 59.8 67.2

Brown Brown (14k) Brown Brown (14k)
(Treebank parses) (Treebank parses)

+0 ex. from CK 77.1 73.0 75.0 (20k) +0 ex. from CK 76.0 59.2 66.5
+1875 ex. from CK 78.8 75.1 76.9 +1875 ex. from CK 76.1 60.0 67.1
+3750 ex. from CK 80.4 76.9 78.6 +3750 ex. from CK 77.7 62.4 69.2
+5625 ex. from CK 80.4 77.2 78.7 +5625 ex. from CK 78.2 63.5 70.1
+7500 ex. from CK 81.2 78.1 79.6 +7500 ex. from CK 78.2 63.2 69.9

WSJ WSJ (14k) WSJ+NANC Brown (14k)
(40k) +0 ex. from CK 65.2 55.7 60.1 (2,500k) +0 ex. from CK 74.4 60.1 66.5

+1875 ex. from CK 68.9 57.5 62.7 +1875 ex. from CK 76.2 62.3 68.5
+3750 ex. from CK 71.8 59.3 64.9 +3750 ex. from CK 76.8 63.6 69.6
+5625 ex. from CK 74.3 61.3 67.2 +5625 ex. from CK 77.7 63.8 70.0
+7500 ex. from CK 74.8 61.0 67.2 +7500 ex. from CK 78.2 64.9 70.9

Table 7: Effect of incrementally adding data from a new genre

Train Test Without Sense With Sense
Id. Id.

F F
WSJ Brown (All) 69.1 69.9
WSJ Brown (predicate: go) 46.9 48.9

Table 8: Influence of verb sense feature.

tion was different. One such predicate is “go”. The
improvement on classifying the arguments of this
predicate was about 2 points (46.9 to 48.9), which
suggests that verb sense is more important when the
sense structure of the test corpus is more ambiguous
and is different from the training. Here we used ora-
cle verb sense information, but one can train a clas-
sifier as done by Girju et al., (2005) which achieves
a disambiguation accuracy in the 80s for within the
WSJ corpus.

5 Conclusions

Our experimental results on robustness to change in
genre can be summarized as follows:

• There is a significant drop in performance when
training and testing on different corpora – for
both Treebank and Charniak parses

• In this process the classification task is more
disrupted than the identification task.

• There is a performance drop in classification

even when training and testing on Brown (com-
pared to training and testing on WSJ)

• The syntactic parser error is not a large part of
the degradation for the case of automatically
generated parses.

An error analysis leads us to believe that some
reasons for this behavior could be: i) lexical us-
ages that are specific to WSJ, ii) variation in sub-
categorization across corpora, iii) variation in word
sense distribution and iv) changes in topics and enti-
ties. Training and testing on the same corpora tends
to give a high weight to very specific semantic fea-
tures. Two possibilities remedies could be: i) using
less homogeneous corpora and ii) less specific fea-
tures, for eg., proper names are replaced with the
name entities that they represent. This way the sys-
tem could be forced to use the more general features.
Both of these manipulations would most likely re-
duce performance on the training set, and on test
sets of the same genre as the training data. But they
would be likely to generalize better.
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Abstract 

Semantic inference is a key component 
for advanced natural language under-
standing. However, existing collections of 
automatically acquired inference rules 
have shown disappointing results when 
used in applications such as textual en-
tailment and question answering. This pa-
per presents ISP, a collection of methods 
for automatically learning admissible ar-
gument values to which an inference rule 
can be applied, which we call inferential 
selectional preferences, and methods for 
filtering out incorrect inferences. We 
evaluate ISP and present empirical evi-
dence of its effectiveness. 

1 Introduction 

Semantic inference is a key component for ad-
vanced natural language understanding. Several 
important applications are already relying heavily 
on inference, including question answering 
(Moldovan et al. 2003; Harabagiu and Hickl 2006), 
information extraction (Romano et al. 2006), and 
textual entailment (Szpektor et al. 2004). 

In response, several researchers have created re-
sources for enabling semantic inference. Among 
manual resources used for this task are WordNet 
(Fellbaum 1998) and Cyc (Lenat 1995). Although 
important and useful, these resources primarily 
contain prescriptive inference rules such as “X di-
vorces Y ⇒ X married Y”. In practical NLP appli-
cations, however, plausible inference rules such as 
“X married Y” ⇒ “X dated Y” are very useful. This, 
along with the difficulty and labor-intensiveness of 
generating exhaustive lists of rules, has led re-

searchers to focus on automatic methods for build-
ing inference resources such as inference rule 
collections (Lin and Pantel 2001; Szpektor et al. 
2004) and paraphrase collections (Barzilay and 
McKeown 2001). 

Using these resources in applications has been 
hindered by the large amount of incorrect infer-
ences they generate, either because of altogether 
incorrect rules or because of blind application of 
plausible rules without considering the context of 
the relations or the senses of the words. For exam-
ple, consider the following sentence: 
Terry Nichols was charged by federal prosecutors for murder 
and conspiracy in the Oklahoma City bombing. 

and an inference rule such as: 
 X is charged by Y ⇒ Y announced the arrest of X (1) 

Using this rule, we can infer that “federal prosecu-
tors announced the arrest of Terry Nichols”. How-
ever, given the sentence: 
Fraud was suspected when accounts were charged by CCM 
telemarketers without obtaining consumer authorization. 

the plausible inference rule (1) would incorrectly 
infer that “CCM telemarketers announced the ar-
rest of accounts”. 

This example depicts a major obstacle to the ef-
fective use of automatically learned inference 
rules. What is missing is knowledge about the ad-
missible argument values for which an inference 
rule holds, which we call Inferential Selectional 
Preferences. For example, inference rule (1) 
should only be applied if X is a Person and Y is a 
Law Enforcement Agent or a Law Enforcement 
Agency. This knowledge does not guarantee that 
the inference rule will hold, but, as we show in this 
paper, goes a long way toward filtering out errone-
ous applications of rules. 

In this paper, we propose ISP, a collection of 
methods for learning inferential selectional prefer-
ences and filtering out incorrect inferences. The 
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presented algorithms apply to any collection of 
inference rules between binary semantic relations, 
such as example (1). ISP derives inferential selec-
tional preferences by aggregating statistics of in-
ference rule instantiations over a large corpus of 
text. Within ISP, we explore different probabilistic 
models of selectional preference to accept or reject 
specific inferences. We present empirical evidence 
to support the following main contribution: 

Claim: Inferential selectional preferences can be 
automatically learned and used for effectively fil-
tering out incorrect inferences. 

2 Previous Work 

Selectional preference (SP) as a foundation for 
computational semantics is one of the earliest top-
ics in AI and NLP, and has its roots in (Katz and 
Fodor 1963).  Overviews of NLP research on this 
theme are (Wilks and Fass 1992), which includes 
the influential theory of Preference Semantics by 
Wilks, and more recently (Light and Greiff 2002). 

Rather than venture into learning inferential 
SPs, much previous work has focused on learning 
SPs for simpler structures. Resnik (1996), the 
seminal paper on this topic, introduced a statistical 
model for learning SPs for predicates using an un-
supervised method. 

Learning SPs often relies on an underlying set of 
semantic classes, as in both Resnik’s and our ap-
proach. Semantic classes can be specified manu-
ally or derived automatically. Manual collections 
of semantic classes include the hierarchies of 
WordNet (Fellbaum 1998), Levin verb classes 
(Levin 1993), and FrameNet (Baker et al. 1998). 
Automatic derivation of semantic classes can take 
a variety of approaches, but often uses corpus 
methods and the Distributional Hypothesis (Harris 
1964) to automatically cluster similar entities into 
classes, e.g. CBC (Pantel and Lin 2002). In this 
paper, we experiment with two sets of semantic 
classes, one from WordNet and one from CBC. 

Another thread related to our work includes ex-
tracting from text corpora paraphrases (Barzilay 
and McKeown 2001) and inference rules, e.g. 
TEASE1 (Szpektor et al. 2004) and DIRT (Lin and 
Pantel 2001). While these systems differ in their 
approaches, neither provides for the extracted in-

                                                      
1 Some systems refer to inferences they extract as entail-
ments; the two terms are sometimes used interchangeably. 

ference rules to hold or fail based on SPs. Zanzotto 
et al. (2006) recently explored a different interplay 
between SPs and inferences. Rather than examine 
the role of SPs in inferences, they use SPs of a par-
ticular type to derive inferences.  For instance the 
preference of win for the subject player, a nomi-
nalization of play, is used to derive that “win ⇒ 
play”. Our work can be viewed as complementary 
to the work on extracting semantic inferences and 
paraphrases, since we seek to refine when a given 
inference applies, filtering out incorrect inferences. 

3 Selectional Preference Models 

The aim of this paper is to learn inferential selec-
tional preferences for filtering inference rules. 

Let pi ⇒ pj be an inference rule where p is a bi-
nary semantic relation between two entities x and 
y. Let 〈x, p, y〉 be an instance of relation p. 

Formal task definition: Given an inference rule 
 pi ⇒ pj and the instance 〈x, pi, y〉, our task is to 
determine if 〈x, pj, y〉 is valid. 

Consider the example in Section 1 where we 
have the inference rule “X is charged by Y” ⇒ “Y 
announced the arrest of X”. Our task is to auto-
matically determine that “federal prosecutors an-
nounced the arrest of Terry Nichols” (i.e., 
〈Terry Nichols, pj, federal prosecutors〉) is valid 
but that “CCM telemarketers announced the arrest 
of accounts” is invalid. 

Because the semantic relations p are binary, the 
selectional preferences on their two arguments may 
be either considered jointly or independently. For 
example, the relation p = “X is charged by Y” 
could have joint SPs: 
 〈Person, Law Enforcement Agent〉 
 〈Person, Law Enforcement Agency〉  (2) 
 〈Bank Account, Organization〉 
or independent SPs: 
 〈Person, *〉 
 〈*, Organization〉 (3) 
 〈*, Law Enforcement Agent〉 
This distinction between joint and independent 
selectional preferences constitutes the difference 
between the two models we present in this section. 

The remainder of this section describes the ISP 
approach. In Section 3.1, we describe methods for 
automatically determining the semantic contexts of 
each single relation’s selectional preferences. Sec-
tion 3.2 uses these for developing our inferential 
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selectional preference models. Finally, we propose 
inference filtering algorithms in Section 3.3. 

3.1 Relational Selectional Preferences 

Resnik (1996) defined the selectional preferences 
of a predicate as the semantic classes of the words 
that appear as its arguments. Similarly, we define 
the relational selectional preferences of a binary 
semantic relation pi as the semantic classes C(x) of 
the words that can be instantiated for x and as the 
semantic classes C(y) of the words that can be in-
stantiated for y. 

The semantic classes C(x) and C(y) can be ob-
tained from a conceptual taxonomy as proposed in 
(Resnik 1996), such as WordNet, or from the 
classes extracted from a word clustering algorithm 
such as CBC (Pantel and Lin 2002). For example, 
given the relation “X is charged by Y”, its rela-
tional selection preferences from WordNet could 
be {social_group, organism, state…} for X and 
{authority, state, section…} for Y. 

Below we propose joint and independent mod-
els, based on a corpus analysis, for automatically 
determining relational selectional preferences. 

Model 1: Joint Relational Model (JRM) 

Our joint model uses a corpus analysis to learn SPs 
for binary semantic relations by considering their 
arguments jointly, as in example (2). 

Given a large corpus of English text, we first 
find the occurrences of each semantic relation p. 
For each instance 〈x, p, y〉, we retrieve the sets C(x) 
and C(y) of the semantic classes that x and y be-
long to and accumulate the frequencies of the tri-
ples 〈c(x), p, c(y)〉, where c(x) ∈ C(x) and  
c(y) ∈ C(y)2. 

Each triple 〈c(x), p, c(y)〉 is a candidate selec-
tional preference for p. Candidates can be incorrect 
when: a) they were generated from the incorrect 
sense of a polysemous word; or b) p does not hold 
for the other words in the semantic class. 

Intuitively, we have more confidence in a par-
ticular candidate if its semantic classes are closely 
associated given the relation p. Pointwise mutual 
information (Cover and Thomas 1991) is a com-
monly used metric for measuring this association 
strength between two events e1 and e2: 

                                                      
2 In this paper, the semantic classes C(x) and C(y) are ex-
tracted from WordNet and CBC (described in Section 4.2).  
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where |x, p, y| denotes the frequency of observing 
the instance 〈x, p, y〉 and |C(w)| denotes the number 
of classes to which word w belongs. |C(w)| distrib-
utes w’s mass equally to all of its senses cw. 

Model 2: Independent Relational Model (IRM) 

Because of sparse data, our joint model can miss 
some correct selectional preference pairs. For ex-
ample, given the relation  
 Y announced the arrest of X 

we may find occurrences from our corpus of the 
particular class “Money Handler” for X and “Law-
yer” for Y, however we may never see both of 
these classes co-occurring even though they would 
form a valid relational selectional preference. 

To alleviate this problem, we propose a second 
model that is less strict by considering the argu-
ments of the binary semantic relations independ-
ently, as in example (3). 

Similarly to JRM, we extract each instance  
〈x, p, y〉 of each semantic relation p and retrieve the 
set of semantic classes C(x) and C(y) that x and y 
belong to, accumulating the frequencies of the tri-
ples 〈c(x), p, *〉 and 〈*, p, c(y)〉, where  
c(x) ∈ C(x) and c(y) ∈ C(y). 

All tuples 〈c(x), p, *〉 and 〈*, p, c(y)〉 are candi-
date selectional preferences for p. We rank candi-
dates by the probability of the semantic class given 
the relation p, according to Equations 3.3. 

                                                      
3 cx and cy are shorthand for c(x) and c(y) in our equations. 
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3.2 Inferential Selectional Preferences 

Whereas in Section 3.1 we learned selectional 
preferences for the arguments of a relation p, in 
this section we learn selectional preferences for the 
arguments of an inference rule pi ⇒ pj. 

Model 1: Joint Inferential Model (JIM) 

Given an inference rule pi ⇒ pj, our joint model 
defines the set of inferential SPs as the intersection 
of the relational SPs for pi and pj, as defined in the 
Joint Relational Model (JRM). For example, sup-
pose relation pi = “X is charged by Y” gives the 
following SP scores under the JRM: 
 〈Person, pi, Law Enforcement Agent〉 = 1.45 
 〈Person, pi, Law Enforcement Agency〉 = 1.21  
 〈Bank Account, pi, Organization〉 = 0.97 

and that pj = “Y announced the arrest of X” gives 
the following SP scores under the JRM: 
 〈Law Enforcement Agent, pj, Person〉 = 2.01 
 〈Reporter, pj, Person〉 = 1.98  
 〈Law Enforcement Agency, pj, Person〉 = 1.61 

The intersection of the two sets of SPs forms the 
candidate inferential SPs for the inference pi ⇒ pj: 
 〈Law Enforcement Agent, Person〉 
 〈Law Enforcement Agency, Person〉 

We rank the candidate inferential SPs according 
to three ways to combine their relational SP scores, 
using the minimum, maximum, and average of the 
SPs. For example, for 〈Law Enforcement Agent, 
Person〉, the respective scores would be 1.45, 2.01, 
and 1.73. These different ranking strategies pro-
duced nearly identical results in our experiments, 
as discussed in Section 5. 

Model 2: Independent Inferential Model (IIM) 

Our independent model is the same as the joint 
model above except that it computes candidate in-
ferential SPs using the Independent Relational 
Model (IRM) instead of the JRM. Consider the 
same example relations pi and pj from the joint 
model and suppose that the IRM gives the follow-
ing relational SP scores for pi: 
 〈Law Enforcement Agent, pi, *〉 = 3.43 
 〈*, pi, Person〉 = 2.17  
 〈*, pi, Organization〉 = 1.24 

and the following relational SP scores for pj: 
 〈*, pj, Person〉 = 2.87 
 〈Law Enforcement Agent, pj, *〉 = 1.92  
 〈Reporter, pj, *〉 = 0.89 

The intersection of the two sets of SPs forms the 
candidate inferential SPs for the inference pi ⇒ pj: 
 〈Law Enforcement Agent, *〉 
 〈*, Person〉  

We use the same minimum, maximum, and av-
erage ranking strategies as in JIM. 

3.3 Filtering Inferences 

Given an inference rule pi ⇒ pj and the instance  
〈x, pi, y〉, the system’s task is to determine whether 
〈x, pj, y〉 is valid. Let C(w) be the set of semantic 
classes c(w) to which word w belongs. Below we 
present three filtering algorithms which range from 
the least to the most permissive: 
• ISP.JIM, accepts the inference 〈x, pj, y〉 if the 

inferential SP 〈c(x), pj, c(y)〉 was admitted by the 
Joint Inferential Model for some c(x) ∈ C(x) and 
c(y) ∈ C(y). 

• ISP.IIM.∧, accepts the inference 〈x, pj, y〉 if the 
inferential SPs 〈c(x), pj, *〉 AND 〈*, pj, c(y)〉 were 
admitted by the Independent Inferential Model 
for some c(x) ∈ C(x) and c(y) ∈ C(y) . 

• ISP.IIM.∨, accepts the inference 〈x, pj, y〉 if the 
inferential SP 〈c(x), pj, *〉 OR 〈*, pj, c(y)〉 was 
admitted by the Independent Inferential Model 
for some c(x) ∈ C(x) and c(y) ∈ C(y) . 

Since both JIM and IIM use a ranking score in 
their inferential SPs, each filtering algorithm can 
be tuned to be more or less strict by setting an ac-
ceptance threshold on the ranking scores or by se-
lecting only the top τ percent highest ranking SPs. 
In our experiments, reported in Section 5, we 
tested each model using various values of τ. 

4 Experimental Methodology 

This section describes the methodology for testing 
our claim that inferential selectional preferences 
can be learned to filter incorrect inferences. 

Given a collection of inference rules of the form 
pi ⇒ pj, our task is to determine whether a particu-
lar instance 〈x, pj, y〉 holds given that 〈x, pi, y〉 
holds4. In the next sections, we describe our collec-
tion of inference rules, the semantic classes used 
for forming selectional preferences, and evaluation 
criteria for measuring the filtering quality. 
                                                      

4 Recall that the inference rules we consider in this paper are 
not necessary strict logical inference rules, but plausible in-
ference rules; see Section 3. 
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4.1 Inference Rules 

Our models for learning inferential selectional 
preferences can be applied to any collection of in-
ference rules between binary semantic relations. In 
this paper, we focus on the inference rules con-
tained in the DIRT resource (Lin and Pantel 2001). 
DIRT consists of over 12 million rules which were 
extracted from a 1GB newspaper corpus (San Jose 
Mercury, Wall Street Journal and AP Newswire 
from the TREC-9 collection). For example, here 
are DIRT’s top 3 inference rules for “X solves Y”: 
 “Y is solved by X”, “X resolves Y”, “X finds a solution to Y” 

4.2 Semantic Classes 

The choice of semantic classes is of great impor-
tance for selectional preference. One important 
aspect is the granularity of the classes. Too general 
a class will provide no discriminatory power while 
too fine-grained a class will offer little generaliza-
tion and apply in only extremely few cases. 

The absence of an attested high-quality set of 
semantic classes for this task makes discovering 
preferences difficult. Since many of the criteria for 
developing such a set are not even known, we de-
cided to experiment with two very different sets of 
semantic classes, in the hope that in addition to 
learning semantic preferences, we might also un-
cover some clues for the eventual decisions about 
what makes good semantic classes in general. 

Our first set of semantic classes was directly ex-
tracted from the output of the CBC clustering algo-
rithm (Pantel and Lin 2002). We applied CBC to 
the TREC-9 and TREC-2002 (Aquaint) newswire 
collections consisting of over 600 million words. 
CBC generated 1628 noun concepts and these were 
used as our semantic classes for SPs. 

Secondly, we extracted semantic classes from 
WordNet 2.1 (Fellbaum 1998). In the absence of 
any externally motivated distinguishing features 
(for example, the Basic Level categories from Pro-
totype Theory, developed by Eleanor Rosch 
(1978)), we used the simple but effective method 
of manually truncating the noun synset hierarchy5 
and considering all synsets below each cut point as 
part of the semantic class at that node. To select 
the cut points, we inspected several different hier-
archy levels and found the synsets at a depth of 4 

                                                      
5 Only nouns are considered since DIRT semantic relations 
connect only nouns. 

to form the most natural semantic classes. Since 
the noun hierarchy in WordNet has an average 
depth of 12, our truncation created a set of con-
cepts considerably coarser-grained than WordNet 
itself. The cut produced 1287 semantic classes, a 
number similar to the classes in CBC. To properly 
test WordNet as a source of semantic classes for 
our selectional preferences, we would need to ex-
periment with different extraction algorithms. 

4.3 Evaluation Criteria 

The goal of the filtering task is to minimize false 
positives (incorrectly accepted inferences) and 
false negatives (incorrectly rejected inferences). A 
standard methodology for evaluating such tasks is 
to compare system filtering results with a gold 
standard using a confusion matrix. A confusion 
matrix captures the filtering performance on both 
correct and incorrect inferences: 

  
where A represents the number of correct instances 
correctly identified by the system, D represents the 
number of incorrect instances correctly identified 
by the system, B represents the number of false 
positives and C represents the number of false 
negatives. To compare systems, three key meas-
ures are used to summarize confusion matrices: 
• Sensitivity, defined as CA

A
+ , captures a filter’s 

probability of accepting correct inferences; 
• Specificity, defined as DB

D
+ , captures a filter’s 

probability of rejecting incorrect inferences; 
• Accuracy, defined as DCBA

DA
+++

+ , captures the 
probability of a filter being correct. 

5 Experimental Results 

In this section, we provide empirical evidence to 
support the main claim of this paper. 

Given a collection of DIRT inference rules of 
the form pi ⇒ pj, our experiments, using the meth-
odology of Section 4, evaluate the capability of our 
ISP models for determining if 〈x, pj, y〉 holds given 
that 〈x, pi, y〉 holds. 

GOLD STANDARD   
1 0 

1 A B 
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5.1 Experimental Setup 

Model Implementation 
For each filtering algorithm in Section 3.3, ISP.JIM, 
ISP.IIM.∧, and ISP.IIM.∨, we trained their probabil-
istic models using corpus statistics extracted from 
the 1999 AP newswire collection (part of the 
TREC-2002 Aquaint collection) consisting of ap-
proximately 31 million words. We used the Mini-
par parser (Lin 1993) to match DIRT patterns in 
the text. This permits exact matches since DIRT 
inference rules are built from Minipar parse trees. 

For each system, we experimented with the dif-
ferent ways of combining relational SP scores: 
minimum, maximum, and average (see Section 
3.2). Also, we experimented with various values 
for the τ parameter described in Section 3.3. 

Gold Standard Construction 
In order to compute the confusion matrices de-
scribed in Section 4.3, we must first construct a 
representative set of inferences and manually anno-
tate them as correct or incorrect. 

We randomly selected 100 inference rules of the 
form pi ⇒ pj from DIRT. For each pattern pi, we 
then extracted its instances from the Aquaint 1999 
AP newswire collection (approximately 22 million 
words), and randomly selected 10 distinct in-
stances, resulting in a total of 1000 instances. For 
each instance of pi, applying DIRT’s inference rule 
would assert the instance 〈x, pj, y〉. Our evaluation 
tests how well our models can filter these so that 
only correct inferences are made. 

To form the gold standard, two human judges 
were asked to tag each instance 〈x, pj, y〉 as correct 
or incorrect. For example, given a randomly se-
lected inference rule “X is charged by Y ⇒ Y an-

nounced the arrest of X” and the instance “Terry 
Nichols was charged by federal prosecutors”, the 
judges must determine if the instance 〈federal 
prosecutors, Y announced the arrest of X, Terry 
Nichols〉 is correct. The judges were asked to con-
sider the following two criteria for their decision: 
• 〈x, pj, y〉 is a semantically meaningful instance; 
• The inference pi ⇒ pj holds for this instance. 
Judges found that annotation decisions can range 
from trivial to difficult. The differences often were 
in the instances for which one of the judges fails to 
see the right context under which the inference 
could hold. To minimize disagreements, the judges 
went through an extensive round of training. 

To that end, the 1000 instances 〈x, pj, y〉 were 
split into DEV and TEST sets, 500 in each. The 
two judges trained themselves by annotating DEV 
together. The TEST set was then annotated sepa-
rately to verify the inter-annotator agreement and 
to verify whether the task is well-defined. The 
kappa statistic (Siegel and Castellan Jr. 1988) was 
κ = 0.72. For the 70 disagreements between the 
judges, a third judge acted as an adjudicator. 

Baselines 
We compare our ISP algorithms to the following 
baselines: 
• B0: Rejects all inferences; 
• B1: Accepts all inferences; 
• Rand: Randomly accepts or rejects inferences. 
One alternative to our approach is admit instances 
on the Web using literal search queries. We inves-
tigated this technique but discarded it due to subtle 
yet critical issues with pattern canonicalization that 
resulted in rejecting nearly all inferences. How-
ever, we are investigating other ways of using Web 
corpora for this task. 

Table 1. Filtering quality of best performing systems according to the evaluation criteria defined in Section 4.3 on 
the TEST set – the reported systems were selected based on the Accuracy criterion on the DEV set. 

PARAMETERS SELECTED FROM DEV SET 
SYSTEM 

RANKING STRATEGY τ (%) 
SENSITIVITY 
(95% CONF) 

SPECIFICITY 
(95% CONF) 

ACCURACY 
(95% CONF) 

B0 - - 0.00±0.00 1.00±0.00 0.50±0.04 
B1 - - 1.00±0.00 0.00±0.00 0.49±0.04 

Random - - 0.50±0.06 0.47±0.07 0.50±0.04 
ISP.JIM maximum 100 0.17±0.04 0.88±0.04 0.53±0.04 
ISP.IIM.∧ maximum 100 0.24±0.05 0.84±0.04 0.54±0.04 CBC 
ISP.IIM.∨ maximum 90 0.73±0.05 0.45±0.06 0.59±0.04† 
ISP.JIM minimum 40 0.20±0.06 0.75±0.06 0.47±0.04 
ISP.IIM.∧ minimum 10 0.33±0.07 0.77±0.06 0.55±0.04 WordNet 
ISP.IIM.∨ minimum 20 0.87±0.04 0.17±0.05 0.51±0.05 

† Indicates statistically significant results (with 95% confidence) when compared with all baseline systems using pairwise t-test. 
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5.2 Filtering Quality 

For each ISP algorithm and parameter combina-
tion, we constructed a confusion matrix on the de-
velopment set and computed the system sensitivity, 
specificity and accuracy as described in Section 
4.3. This resulted in 180 experiments on the devel-
opment set. For each ISP algorithm and semantic 
class source, we selected the best parameter com-
binations according to the following criteria: 
• Accuracy: This system has the best overall abil-

ity to correctly accept and reject inferences. 
• 90%-Specificity: Several formal semantics and 

textual entailment researchers have commented 
that inference rule collections like DIRT are dif-
ficult to use due to low precision. Many have 
asked for filtered versions that remove incorrect 
inferences even at the cost of removing correct 
inferences. In response, we show results for the 
system achieving the best sensitivity while main-
taining at least 90% specificity on the DEV set. 

We evaluated the selected systems on the TEST 
set. Table 1 summarizes the quality of the systems 
selected according to the Accuracy criterion. The 
best performing system, ISP.IIM.∨, performed  sta-
tistically significantly better than all three base-
lines. The best system according to the 90%-
Specificity criteria was ISP.JIM, which coinciden-
tally has the highest accuracy for that model as 
shown in Table 16. This result is very promising 
for researchers that require highly accurate infer-
ence rules since they can use ISP.JIM and expect to 
recall 17% of the correct inferences by only ac-
cepting false positives 12% of the time. 

Performance and Error Analysis 

Figures 1a) and 1b) present the full confusion ma-
trices for the most accurate and highly specific sys-
tems, with both systems selected on the DEV set. 
The most accurate system was ISP.IIM.∨, which is 
the most permissive of the algorithms. This sug-

                                                      
6 The reported sensitivity of ISP.Joint in Table 1 is below 
90%, however it achieved 90.7% on the DEV set. 

gests that a larger corpus for learning SPs may be 
needed to support stronger performance on the 
more restrictive methods. The system in Figure 
1b), selected for maximizing sensitivity while 
maintaining high specificity, was 70% correct in 
predicting correct inferences. 

Figure 2 illustrates the ROC curve for all our 
systems and parameter combinations on the TEST 
set. ROC curves plot the true positive rate against 
the false positive rate. The near-diagonal line plots 
the three baseline systems. 

Several trends can be observed from this figure. 
First, systems using the semantic classes from 
WordNet tend to perform less well than systems 
using CBC classes. As discussed in Section 4.2, we 
used a very simplistic extraction of semantic 
classes from WordNet. The results in Figure 2 
serve as a lower bound on what could be achieved 
with a better extraction from WordNet. Upon in-
spection of instances that WordNet got incorrect 
but CBC got correct, it seemed that CBC had a 
much higher lexical coverage than WordNet. For 
example, several of the instances contained proper 
names as either the X or Y argument (WordNet has 
poor proper name coverage). When an argument is 
not covered by any class, the inference is rejected. 

Figure 2 also illustrates how our three different 
ISP algorithms behave. The strictest filters, ISP.JIM 
and ISP.IIM.∧, have the poorest overall perform-
ance but, as expected, have a generally very low 
rate of false positives. ISP.IIM.∨, which is a much 
more permissive filter because it does not require 
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Figure 1. Confusion matrices for a) ISP.IIM.∨ – best 
Accuracy; and b) ISP.JIM – best 90%-Specificity.
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both arguments of a relation to match, has gener-
ally many more false positives but has an overall 
better performance. 

We did not include in Figure 2 an analysis of the 
minimum, maximum, and average ranking strate-
gies presented in Section 3.2 since they generally 
produced nearly identical results. 

For the most accurate system, ISP.IIM.∨, we ex-
plored the impact of the cutoff threshold τ on the 
sensitivity, specificity, and accuracy, as shown in 
Figure 3. Rather than step the values by 10% as we 
did on the DEV set, here we stepped the threshold 
value by 2% on the TEST set. The more permis-
sive values of τ increase sensitivity at the expense 
of specificity. Interestingly, the overall accuracy 
remained fairly constant across the entire range of 
τ, staying within 0.05 of the maximum of 0.62 
achieved at τ=30%. 

Finally, we manually inspected several incorrect 
inferences that were missed by our filters. A com-
mon source of errors was due to the many incorrect 
“antonymy” inference rules generated by DIRT, 
such as “X is rejected in Y”⇒“X is accepted in Y”. 
This recognized problem in DIRT occurs because 
of the distributional hypothesis assumption used to 
form the inference rules. Our ISP algorithms suffer 
from a similar quandary since, typically, antony-
mous relations take the same sets of arguments for 
X (and Y). For these cases, ISP algorithms learn 
many selectional preferences that accept the same 
types of entities as those that made DIRT learn the 
inference rule in the first place, hence ISP will not 
filter out many incorrect inferences. 

6 Conclusion 

We presented algorithms for learning what we call 
inferential selectional preferences, and presented 

evidence that learning selectional preferences can 
be useful in filtering out incorrect inferences. Fu-
ture work in this direction includes further explora-
tion of the appropriate inventory of semantic 
classes used as SP’s. This work constitutes a step 
towards better understanding of the interaction of 
selectional preferences and inferences, bridging 
these two aspects of semantics. 
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Abstract 

This paper explores the problem of com-
puting text similarity between verb 
phrases describing skilled human behav-
ior for the purpose of finding approximate 
matches. Four parsers are evaluated on a 
large corpus of skill statements extracted 
from an enterprise-wide expertise taxon-
omy. A similarity measure utilizing com-
mon semantic role features extracted from 
parse trees was found superior to an in-
formation-theoretic measure of similarity 
and comparable to the level of human 
agreement. 

1 Introduction 

Knowledge-intensive industries need to become 
more efficient at deploying the right expertise as 
quickly and smoothly as possible, thus it is desired 
to have systems that can quickly match and deploy 
skilled individuals to meet customer needs. The 
searches in most of the current matching systems 
are based on exact matches between skill state-
ments. However, exact matching is very likely to 
miss individuals who are very good matches to the 
job but didn’t select the exact skills that appeared 
in the open job description.  

It is always hard for individuals to find the per-
fect skills to describe their skill sets. For example, 
an individual might not know whether to choose a 
skill stating that refers to “maintaining” a given 
product or “supporting” it or whether to choose a 

skill about maintaining a “database” or about 
maintaining “DB2”. Thus, it is desirable for the job 
search system to be able to find approximate 
matches, instead of only exact matches, between 
available individuals and open job positions. More 
specifically, a skill similarity computation is 
needed to allow searches to be expanded to related 
skills, and return more potential matches.  

In this paper, we present our work on develop-
ing a skill similarity computation based upon se-
mantic commonalities between skill statements. 
Although there has been much work on text simi-
larity metrics (Lin, 1998a; Corley and Mihalcea, 
2005), most approaches treat texts as a bag of 
words and try to find shared words with certain 
statistical properties based on corpus frequencies. 
As a result, the structural information in the text is 
ignored in these approaches. We will describe a 
new semantic approach that takes the structural 
information of the text into consideration and 
matches skill statements on corresponding seman-
tic roles. We will demonstrate that it can outper-
form standard statistical text similarity techniques, 
and reach the level of human agreement.   

In Section 2, we first describe the skill state-
ments we extracted from an enterprise-wide exper-
tise taxonomy. In Section 3, we describe the 
performance of a standard statistical approach on 
this task. This motivates our semantic approach of 
matching skill statements on corresponding seman-
tic roles. We also compare and evaluate the per-
formance of four natural language parsers (the 
Charniak parser, the Stanford parser, the ESG 
parser, and MINIPAR) for the purpose of our task. 
An inter-rater agreement study and evaluation of 
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our approach will be presented in Section 4. We 
end with a discussion and conclusion.  

2 Skill Statements 

An expertise taxonomy is a standardized, enter-
prise-wide language and structure to describe job 
role requirements and people capabilities (skill 
sets) across a corporation. In the taxonomy we util-
ize for this study, skills are associated with job 
roles. The taxonomy has 10667 skills. Each skill 
has a title, for example, “Advise BAAN eBusiness 
ASP.” We refer to this title as the skill statement.  

The official taxonomy update policies require 
that skill statements be verb phrases using one of 
18 valid skill verbs (e.g., Advise, Architect, Code, 
Design, Implement, Sell, and Support).  

3 Computing Semantic Similarities be-
tween Skill Statements 

In this section, we first explain a statistical infor-
mation-theoretic approach we used as a baseline, 
and show examples of how it performs for our 
task. The error analysis of this approach motivates 
our semantic approach that takes the structural in-
formation of the text into consideration. In the re-
mainder of this section, we describe how we 
extract semantic role information from the syntac-
tic parse trees of the skill statements. Four natural 
language parsers are compared and evaluated for 
the purpose of our task. 

3.1 Statistical Approach 

In order to compute semantic similarities between 
skill statements, we first adopted one of the stan-
dard statistical approaches to the problem of com-
puting text similarities based on Lin’s information-
theoretic similarity measure (Lin 1998a). Lin de-
fined the commonality between A and B as  

)),(( BAcommonI  

where common(A, B) is a proportion that states the 
commonalities between A and B and where the 
amount of information in proposition s is 

)(log)( sPsI −=  

The similarity between A and B is then defined as 
the ratio between the amount of information 
needed to state the commonality of A and B and 
the information needed to fully describe A and B: 

)),((log
)),((log),(
BAndescriptioP

BAcommonPBASim =   

In order to compute common(A,B) and descrip-
tion(A,B), we use standard bag-of-words features, 
i.e., unigram features -- the frequency of words 
computed from the entire corpus of the skill state-
ments. Thus common(A,B) is the unigrams that 
both skill statements share, and description(A,B) is 
the union of the unigrams from both skill state-
ments.  

The words are stemmed first so that the words 
with the same root (e.g., managing & manage-
ment) can be found as commonalities between two 
skill statements. A stop-word list is also used so 
that the commonly used words in most of the docu-
ments (e.g., the, a) are not used as features. A for-
mal evaluation of this approach will be presented 
in Section 4 where the similarity between 75 pairs 
of skill statements will be evaluated against human 
judgments, but we discuss some examples here.  

In order to see how to improve Lin’s statistical 
similarity measure, we examine sample skill state-
ment pairs which achieve high similarity scores 
from Lin’s measure but were rated consistently as 
dissimilar by human subjects in our evaluation. 
Here are two examples:  
1. Advise Business Knowledge of CAD function-

ality for FEM 
Advise on Business Knowledge of Process for 
FEM 

2. Advise on Money Market 
Advise on Money Center Banking 

In these two examples, although many words are 
shared between the two pairs of skill statements 
(Advise Business Knowledge of ... for FEM for the 
first pair; Advise on Money for the second pair), 
they are not similar to human judges. We conjec-
ture that this judgment of dissimilarity is due to the 
differences between the key components of the 
skill statements (CAD functionality vs. Process in 
the first pair; Money Market vs. Money Center 
Banking in the second pair). 

This kind of error is common for most statistical 
approaches to the problem, where common infor-
mation is computed without considering the struc-
tural information in the text. From the above 
examples, we can see that the similarity computa-
tion would be more accurate if the verb phrases 
match on corresponding semantic roles, instead of 
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matching words from any location in the skill 
statements. By identifying semantic roles, we can 
provide more weights to those semantic roles criti-
cal for our task, i.e., the key components of the 
skill statements. 

3.2 Identifying and Assigning Semantic 
Roles 

The following example shows the kind of semantic 
roles we want to be able to identify and assign.  

[action Apply] [theme Knowledge of [concept IBM E-
business Middleware]] to [purpose PLM Solu-
tions] 

In this example, “Apply” is the “action” of the 
skill; “Knowledge of IBM E-business Middle-
ware” is the “theme” of the skill, where the “con-
cept” semantic role (IBM E-business Middleware) 
specifies the key component of the skill require-
ment and is the most important role for skill 
matching; “PLM Solutions” is the “purpose” of the 
skill. 

Our goal was to extract all such semantic role 
patterns for all the skill statements, and match on 
corresponding semantic roles. Although there ex-
ists some automatic semantic role taggers (Gildea 
and Jurafsky, 2002; Giuglea and Moschitti, 2006), 
most of them were trained on PropBank (Palmer 
et. al., 2005) and/or FrameNet (Johnson et. al., 
2003), and perform much worse in other corpora 
(Pradhan et. al., 2004). Our corpus is from a very 
different domain (information technology) and 
there are many domain-specific terms in the skill 
statements, such as product names, company 
names, and company-specific nomenclature for 
product offerings. Given this, we would expect 
poor performance from these automatic semantic 
role taggers. Moreover, the semantic role informa-
tion we need to extract is more detailed and deeper 
than most of the automatic semantic role taggers 
can identify and extract (e.g., the “concept” role 
embedded within the “theme” role).  

We developed a specialized parser that extracts 
semantic role patterns from each of the 18 skill 
verbs. This semantic role parser can achieve a 
much higher performance than the general-purpose 
semantic role taggers. The inputs needed for the 
semantic role parser are syntactic parse trees gen-
erated by a natural language parse of the original 
skill statements.  

3.3 Preprocessing for Parsing 

We first used the Charniak parser (2000) to parse 
the original skill statements. However, among all 
the 10667 skill statements, 1217 were not parsed as 
verb phrases, leading to very poor performance. 
After examining the error cases, we found that ab-
breviations are used widely in the skill statements. 
For example, 

Advise Solns Supp Bus Proc Reeng for E&E 
Eng Procs 

These abbreviations made the system unable to 
determine the part of speech of some words, result-
ing in incorrect parses. Thus, the first step of the 
preprocessing was to expand abbreviations.  

There were 225 valid abbreviations already 
identified by the expertise taxonomy team. How-
ever, we found many abbreviations that appeared 
in the skill statements but were not listed there. 
Since most abbreviations are not words found in a 
dictionary, in order to find the abbreviations that 
appear frequently in the skill statements, we first 
found all the words in the skill statements that 
were not in WordNet (Miller, 1990). We then 
ranked them based on their frequencies, and manu-
ally identified high frequency abbreviations. Using 
this approach, we added another 187 abbreviations 
to the list (a total of 412).  

From the error cases, we also found that many 
words were mistagged as proper nouns, For exam-
ple, “Technically” in  

Advise Technically for Simulation 
was parsed as a proper noun. We realized the rea-
son for this error was that all the words, except for 
prepositions, are capitalized in the original state-
ments and the parser tends to tag them as proper 
nouns. To solve this problem, we changed all the 
capitalized words to lower case, except for the first 
word and the acronyms (words that have all letters 
capitalized, e.g., IBM). After applying these two 
steps of preprocessing, we parsed the skill state-
ments again. This time, more than 200 additional 
skill statements were parsed as verb phrases after 
the preprocessing. 

When we examined the error cases more 
closely, we found the errors occur mostly when the 
skill verbs can be both a noun and a verb (e.g., de-
sign, plan). In those cases, the parser may parse the 
entire statement as one noun phrase, instead of a 
verb phrase. In order to disambiguate such cases, 
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we added a subject (“Employees”) to all the skill 
statements to convert them into full sentences. Af-
ter applying this additional step of preprocessing, 
we parsed the skill statements again. This time, 
only 28 skill statements were not parsed as sen-
tences containing verb phrases, a significant im-
provement. The remaining errors were due to the 
use of some words as skill verbs, e.g., “architect”1, 
not recognized as verbs by the parser. 

3.4 Parser Evaluation and Comparison 

While the Charniak parser performed well in our 
initial verb phrase (VP) test, we decided to com-
pare the Charniak parser’s performance with other 
parsers. For this evaluation, we compared it with 
the Stanford parser, the ESG parser, and 
MINIPAR.   

The Stanford parser (Klein and Manning, 
2003) is an unlexicalized statistical syntactic parser 
that was trained on the same corpus as the 
Charniak parser (the Penn TreeBank). Its parse tree 
has the same structure as the Charniak parser. 

The ESG (English Slot Grammar) parser 
(McCord, 1980) is a rule-based parser based on the 
slot grammar where each phrase has a head and 
dependent elements, and is also marked with a syn-
tactic role.  

MINIPAR (Lin, 1998b), as a dependency 
parser, is very similar to the ESG parser in terms of 
its output. It represents sentence structures as a set 
of dependency relationships between head words. 

Since our purpose is to use the syntactic parses 
as inputs to extract semantic role patterns, the cor-
rectness of the bracketing of the parses and the 
syntactic labels of the phrases (e.g., NP, VP, and 
PP) are the most important information for our pur-
poses, whereas the POS (Part-Of-Speech) labels of 
individual words (e.g., nouns vs. proper nouns) are 
not that important (also, there are too many do-
main-specific terms in our data). Thus, our evalua-
tion of the parses is only on the correctness of the 
bracketing and the syntactic labels of the phrases, 
not the correctness of the entire parse. For our task, 
the correctness of the prepositional phrase attach-
ment is especially important for extracting accurate 
semantic role patterns (Gildea and Jurafsky, 2002). 
For example, for the sentence 
                                                           
1 “Architect” has no verb sense in WordNet and many other 
dictionaries, but it does have a verb sense in the Oxford Eng-
lish Dictionary (http://dictionary.oed.com/). 

Apply Knowledge of IBM E-business Middle-
ware to PLM Solutions. 

the correct bracketing should be 
Apply [Knowledge [of [IBM E-business Mid-
dleware]]] [to [PLM Solutions]].  

Thus the parser needs to correctly attach “of IBM 
E-business Middleware” to “Knowledge” and at-
tach “to PLM Solutions” to “Apply”, not “Knowl-
edge”. 

To evaluate the performance of the parsers, we 
randomly picked 100 skill statements from our cor-
pus, preprocessed them, and then parsed them us-
ing the four different parsers. We then evaluated 
the parses using the above evaluation measures. 
The parses were rated as correct or incorrect. No 
partial score was given. Figure 1 shows the evalua-
tion results. The error analysis reveals four major 
sources of error for all the parsers, most of which 
are specific to the domain we are working on: 
(1) Many domain specific terms and acronyms. 

For example, “SAP” in “Employees advise on 
SAP R/3 logistics basic data.” was always 
tagged as a verb by the parsers.  

(2) Many long noun phrases. For example, “Em-
ployees perform JD edwards foundation suite 
address book.”  

(3) Some specialized use of punctuation. For ex-
ample, “Employees perform business transpor-
tation consultant-logistics.sys.”  

(4) Prepositional phrase attachment can be diffi-
cult. For example, in “Employees apply IBM 
infrastructure knowledge for IDBS”, “for 
IDBS” should attach to “apply”, but many 
parsers mistakenly attach it to “IBM infrastruc-
ture knowledge”. 
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Figure 1. An Evaluation of Four Parsers on the 

Task of Parsing Human Skill-related Verb Phrases  

We noticed that MINIPAR performed much 
worse compared with the other parsers. The main 
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reason is that it always parses the phrase “VERB 
knowledge of Y” (e.g., “Employees apply knowl-
edge of web technologies.”) incorrectly -- the parse 
result always mistakenly attaches “of Y” (e.g., of 
web technologies) to the VERB (e.g., apply), not 
“knowledge”. Since there were so many of phrases 
in the test set and in the corpus, this kind of error 
significantly reduced the performance for our task. 
These kinds of errors on prepositional phrase at-
tachment in MINIPAR were also mentioned in 
(Pantel and Lin, 2000).   

From the evaluation and comparison results we 
can see that the Charniak parser performs the best 
for our task among all the four parsers. This result 
is consistent with a more thorough evaluation 
(Swanson and Gordon, 2006) on a different corpus 
with a set of different target verbs, which showed 
the Charniak parser performed the best among 
three parsers (including the Stanford parser and 
MINPAR) for labeling semantic roles. We note 
that although the ESG parser performed a little 
worse than the Charniak parser, its parses contain 
much richer syntactic (e.g., subject, object) and 
semantic (e.g., word senses) slot-filling informa-
tion, which can be very useful to many natural lan-
guage applications.  

3.5 Extracted Semantic Role Patterns 

From the parse trees generated by the Charniak 
parser, we first automatically extracted patterns for 
each of the 18 skill verbs (e.g., “Advise on NP for 
NP”), and then we manually identified the seman-
tic roles. For example, the semantic role patterns 
identified for the skill verb “Advise” are: 
• Advise [Theme] (for [Purpose]) 
• Advise (technically) on/about [Theme] (for 

[Purpose]) 
• Advise clients/customers/employees/users 

on/regarding [Theme]  

The corpus also contains embedded sub-semantic-
role patterns, for example, for the “Theme” role we 
extracted the following sub-patterns: 
• (application) knowledge of/for [Concept] 
• sales of [Concept] 
• (technical) implementation of [Concept]   
We have extracted and identified a total of 74 such 
semantic role patterns from the skill statements. 

4 Evaluation 

In order to evaluate the two approaches (semantic 
role parsing and statistical) to computing semantic 
similarity of skill statements in our domain, we 
first conducted an experiment to evaluate how hu-
mans agree on this task, which also provides us 
with an upper bound accuracy for the task. 

4.1 Inter-Rater Agreement and Upper 
Bound Accuracy 

To assess inter-rater agreement, we randomly se-
lected 75 skill pairs from the expertise taxonomy. 
Since random pairs of verbs would have little or no 
similarity, we selected skill pairs that share the 
same job role, or same secondary or primary job 
category, or from across the entire expertise taxon-
omy. 

These 75 skill pairs are then given to three raters 
to independently judge their similarities on a 5 
point scale from 1 as very similar to 5 as very dis-
similar. Since this 5 point scale is very fine-
grained, we also converted the judgments to a 
more coarse-grained measure -- binary judgment: 1 
and 2 count as similar; 3-5 as not similar. 

The metric we used is the kappa statistic (Car-
letta, 1996), which factors out the agreement that is 
expected by chance: 

)(1
)()(
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EPAP

−
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where P(A) is the observed agreement among the 
raters, and P(E) is the expected agreement, i.e., the 
probability that the raters agree by chance. 

Since the judgment on the 5 point scale is ordi-
nal data, the weighted kappa statistic is used to 
take the distance of disagreement into considera-
tion (e.g., the disagreement between 1 and 2 is 
smaller than that between 1 and 5). 

The inter-rater agreement results for both the 
fine-grained and coarse-grained judgments are 
shown in Table 1. In general, a kappa value above 
0.80 represents perfect agreement, 0.60-0.80 repre-
sents significant agreement, 0.40-0.60 represents 
moderate agreement, and 0.20-0.40 is fair agree-
ment (Chklovski and Mihalcea, 2003). We can see 
that the agreement on the fine-grained judgment is 
moderate, whereas the agreement on the coarse-
grained (binary) judgment is significant. 

 Fine-Grained  Coarse-Grained 
Kappa 0.412 0.602 
Table 1. Inter-Rater Agreement Results. 
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From the inter-rater agreement evaluation, we 
can also get an upper bound accuracy for our task, 
i.e., human agreement without factoring out the 
agreement expected by chance (i.e., P(A) in the 
kappa statistic). The average P(A) for the coarse-
grained (binary) judgment is 0.81, and that consti-
tutes the upper bound accuracy for our task.   

4.2 Evaluation of the Statistical Approach 

We use the 75 skill pairs as test data to evaluate 
our semantic similarity approach against human 
judgments. Considering the reliability of the data, 
only the coarse-grained (binary) judgments are 
used. The gold standard is obtained by majority 
voting from the three raters, i.e., for a given skill 
pair, if two or more raters judge it as similar, then 
the gold standard answer is “similar”, otherwise it 
is “not similar”.  

We first evaluated Lin’s statistical approach de-
scribed in Section 3.1. Among 75 skill pairs, 53 of 
them were rated correctly according to the human 
judgments, that is, 70.67% accuracy. The error 
analysis shows that many of the errors can be cor-
rected if the skills are matched on their correspond-
ing semantic roles. We then evaluated the utility of 
the extracted semantic role information to see 
whether it can outperform the statistical approach. 

4.3 Evaluation of Semantic Role Matching 
Approach 

For simplicity, we will only report on evaluating 
semantic role matching on the "concept" role that 
specifies the key component of the skills, as intro-
duced in Section 3.2. 

There are at least two straightforward ways of 
performing semantic role matching for the skill 
similarity computation: 1) match on the entire se-
mantic role; 2) match on the head nouns only. But 
both have their drawbacks: the first approach is too 
strict and will miss many similar skill statements; 
the second approach may not only miss the similar 
skill statements, e.g., 

Perform [Web Services Planning]2   
Perform [Web Services Assessment]    

but also misclassify dissimilar ones as similar, e.g., 

                                                           
2 The “concept” role is identified with brackets, and the head 
nouns are italic. 

Advise about [Async Transfer Mode (ATM) 
Solutions]   
Advise about [CTI Solutions] 

In order to solve these problems, we used a simple 
matching criterion from Tversky (1977). The simi-
larity of two texts t1 and t2 is determined by: 
      Similarity(t1, t2) =  

         
21

21

 tand in t features  total#
 ) tand between t featurescommon  (#  2×

 

This equation states that two texts are similar if 
shared features are a large percentage of the total 
features. We set a threshold of 0.5, requiring that at 
least 50% of the features be shared. We apply this 
criterion to the text contained in the “concept” role.  

The words in the calculation are preprocessed 
first: abbreviations are expanded, stop-words are 
excluded (e.g., the and of don't count as shared 
words), and the remaining words are stemmed 
(e.g., manager and management are counted as 
shared words), as was done in our previous infor-
mation-theoretic approach. Words connected by 
punctuation (e.g., e-business, software/hardware) 
are treated as separate words. For example, 

Advise on [Field/Force Management] for Tele-
com 
Apply Knowledge of [Basic Field Force Auto-
mation]         

The shared words between the two “concept” roles 
(bracketed) are “Field” and “Force”, and their 
shared percentage is (2*2)/7 = 57.14% > 50%, so 
they are similar. 

We have also evaluated this approach on our test 
set with the 75 skill pairs. Among 75 skill pairs, 60 
of them were rated correctly (i.e., 80% accuracy), 
which significantly outperforms the statistical ap-
proach, and is very close to the upper bound accu-
racy, i.e., human agreement (81%), as shown in 
Figure 2. 
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Figure 2. Evaluation on Semantic Similarity be-

tween Skill Statements 
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The difference between this approach and Lin’s 
information content approach is that this computa-
tion is local -- no corpus statistics is used. Also, 
using this approach, it is easier to set an intuitive 
threshold (e.g., 50%) for a classification problem 
(e.g., similar or not for our task). With this ap-
proach, however, there are also cases that are 
mistagged as similar, for example, 

Apply Knowledge of [Basic Field Force Auto-
mation]  
Advise on [Sales Force Automation] 

Although “Field Force Automation” and “Sales 
Force Automation” seem similar on their surface 
form, they are two quite different concepts. Deeper 
domain knowledge (such as an ontology) is needed 
to distinguish such cases. 

5 Discussion  

We have also investigated several approaches to 
improving the semantic role text similarity meas-
ure we described. One approach is to also consider 
similarities between skill verbs. In this example:  

Implement Domino Mail Manager 
Develop for Domino Mail Manager 

although the key components of the skill state-
ments (Domino Mail Manager) are the same, their 
skill verbs are different (implement vs. develop 
for). The skills required for “implementing” a sys-
tem or software product are usually different from 
those required for “developing for” the same sys-
tem or software product. This example shows that 
a semantic similarity computation between skill 
verbs is required to distinguishing such cases. 

Many approaches to the problem of 
word/concept similarities are based on taxonomies, 
e.g., WordNet. The simplest approach is to count 
the number of nodes on the shortest path between 
two concepts in the taxonomy (Quillian, 1972). 
The fewer nodes on the path, the more similar the 
two concepts are. The assumption for this shortest 
path approach is that the links in the taxonomy rep-
resent uniform distances. However, in most tax-
onomies, sibling concepts deep in the taxonomy 
are usually more closely related than those higher 
up. Different approaches have been proposed to 
discount the depth of the concepts to overcome the 
problem. Budanitsky and Hirst (2006) thoroughly 
evaluated six of the approaches (Hirst and St-
Onge, Leacock and Chodorow, Jiang and Conrath, 

Lin, Resnik, Wu and Palmer), and found that Jiang 
and Conrath (1997) was superior to the other ap-
proaches based on their evaluation experiments. 

For our task, we compared two approaches to 
computing skill verb similarities: shortest path vs. 
Jiang and Conrath. Since the words are compared 
based on their specific senses, we first manually 
assigned one most appropriate sense for each of the 
18 skill verbs from WordNet. We then used the 
library developed by Pedersen et al. (2004) to 
compute their similarity scores. 

Table 2 shows the top nine pairs of skill verbs 
with the highest similarity scores from the two ap-
proaches. We can see that the two approaches 
agree on the top four pairs, but disagree on the rest 
in the list. One intuitive example is the pair “Lead” 
and “Manage” which is ranked the 5th by the Jiang 
and Conrath approach but ranked the 46th by the 
shortest path approach. It seems that the Jiang and 
Conrath approach matches better with our human 
intuition for this example. While we didn’t com-
pare these results with human performance, in gen-
eral most of the similar skill verb pairs listed in the 
table don’t look very similar for our domain. This 
may be due to the fact that WordNet is a general-
purpose taxonomy -- although we have already 
selected the most appropriate sense for each verb, 
their relationship represented in the taxonomy may 
still be quite different from the relationship in our 
domain. A domain-specific taxonomy for skill 
verbs may improve the performance. The other 
reason may be due to the structure of WordNet’s 
verb taxonomy, as mentioned in (Resnik and Diab, 
2000), which is considerably wider and shallower 
than WordNet’s noun taxonomy. A different verb 
lexicon, e.g., VerbNet (Kipper et al., 2000), can be 
explored. 

  
Shortest Path Jiang and Conrath 

Apply Use Apply Use 
Design Plan Design Plan 
Apply Implement Apply Implement 
Implement Use Implement Use 
Analyze  Apply Lead Manage 
Analyze Perform Apply Support 
Analyze Support Support Use 
Analyze Use Apply Sell 
Perform Support Sell Use 
… … … … 

Table 2. Top Similar Skill Verb Pairs 
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6 Conclusion 

In this paper, we have presented our work on a se-
mantic similarity computation for skill statements 
in natural language. We compared and evaluated 
four different natural language parsers for our task, 
and matched skills on their corresponding semantic 
roles extracted from the parse trees generated by 
one of these parsers. The evaluation results showed 
that the skill similarity computation based on se-
mantic role matching can outperform a standard 
statistical approach and reach the level of human 
agreement.  

The extracted semantic role information can also 
be incorporated into the standard statistical ap-
proaches as additional features. One way is to give 
higher weights to those semantic role features 
deemed most important. This approach has 
achieved a high performance for a text categoriza-
tion task when combining extracted keywords with 
the full text (Hulth and Megyesi, 2006). 

We have shown that good results can be 
achieved for a domain-specific text matching task 
by performing a simple word-based feature com-
parison on corresponding structural elements of 
texts.  We have shown that the structural elements 
of importance can be identified by domain-specific 
pattern analysis of corresponding parse trees. We 
believe this approach can generalize to other do-
mains where phrases, sentences, or other short 
texts need to be compared. 
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