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Abstract1 

In this paper we present recent advances in 
acoustic and language modeling that improve 
recognition performance when children read 
out loud within digital books. First we extend 
previous work by incorporating cross-
utterance word history information and dy-
namic n-gram language modeling. By addi-
tionally incorporating Vocal Tract Length 
Normalization (VTLN), Speaker-Adaptive 
Training (SAT) and iterative unsupervised 
structural maximum a posteriori linear regres-
sion (SMAPLR) adaptation we demonstrate a 
54% reduction in word error rate.  Next, we 
show how data from children’s read-aloud 
sessions can be utilized to improve accuracy 
in a spontaneous story summarization task.  
An error reduction of 15% over previous pub-
lished results is shown.  Finally we describe a 
novel real-time implementation of our re-
search system that incorporates time-adaptive 
acoustic and language modeling. 

1 Introduction 

Pioneering research by MIT and CMU as well as more 
recent work by the IBM Watch-me-Read Project have 
demonstrated that speech recognition can play an effec-
tive role in systems designed to improve children’s 
reading abilities (Mostow et al., 1994; Zue et al., 1996). 
In CMU’s Project LISTEN, for example, the tutor oper-
ates by prompting children to read individual sentences 
out loud.  The tutor listens to the child using speech 
recognition and extracts features that can be used to 
detect oral reading miscues (Mostow et al., 2002; Tam 
et al. 2003).   Upon detecting reading miscues, the tutor 
provides appropriate feedback to the child.  Recent re-
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sults show that such automated reading tutors can im-
prove student achievement (Mostow et al, 2003). Pro-
viding real time feedback by highlighting words as the 
are read out loud is the basis of at least one commercial 
product today (http://www.soliloquy.com).  

Cole et al. (2003) and Wise et al. (in press) describe 
a new scientifically-based literacy program, Founda-
tions to Fluency, in which a virtual tutor—a lifelike 3D 
computer model—interacts with children in multimodal 
learning tasks to teach them to read. A key component 
of this program is the Interactive Book, which combines 
real-time speech recognition, facial animation, and natu-
ral language understanding capabilities to teach children 
to read and comprehend text.  Interactive Books are 
designed to improve student achievement by helping 
students to learn to read fluently, to acquire new knowl-
edge through deep understanding of what they read, to 
make connections to other knowledge, and to express 
their ideas concisely through spoken or written summa-
ries. Transcribed spoken summaries can be graded 
automatically to provide feedback to the student about 
their comprehension.  

During reading out loud activities in Interactive 
Books, the goal is to design a computer interface and 
speech recognizer that combine to teach the student to 
read fluently and naturally.  Here, speech recognition is 
used to track a child’s position within the text during 
read-aloud sessions in addition to providing timing and 
confidence information which can be used for reading 
assessment. The speech recognizer must follow the stu-
dents verbal behaviors accurately and quickly, so the 
cursor (or highlighted word) appears at the right place 
and right time when the student is reading fluently, and 
pauses when the student hesitates to sound out a word. 
The recognizer must also score mispronounced words 
accurately so that the student can revisit these words 
and receive feedback about their pronunciation after 
completing a paragraph or page (since highlighting hy-
pothesized mispronounced words when reading out loud 
may disrupt fluent reading behavior).   

In this paper we focus on the problem of speech rec-
ognition to track and provide feedback during reading 
out loud and to transcribe spoken summaries of text. 
Specifically, we describe several new methods for in-



corporating language modeling knowledge into the read 
aloud task.  In addition, through use of speaker adapta-
tion, we also demonstrate the potential for significant 
gains in recognition accuracy.  Finally, we leverage 
improvements in speech recognition for read aloud 
tracking to improve performance for spoken story sum-
marization.  Work reported here extends previous work 
in several important ways: by integrating the research 
advances into a real time system, and by including time-
adaptive language modeling and time-adaptive acoustic 
modeling of the child’s voice into the system. 

The paper is organized as follows. Sect. 2 describes 
our baseline speech recognition system and reading 
tracking method. Sect. 3 presents our rationale for using 
word-error-rate as a measure of performance.  Sect. 4 
describes the read aloud and story summarization cor-
pora used in this work. Sect. 5 describes and evaluates 
proposed improvements in a read aloud speech recogni-
tion task. Sect. 6 describes how these improvements 
translate to improved recognition of story summaries 
produced by a child. Sect. 7 details our real-time system 
implementation. 

2 Baseline System 

For this work we use the SONIC speech recognition 
system (Pellom, 2001; Pellom and Hacioglu, 2003).  
The recognizer implements an efficient time-
synchronous, beam-pruned Viterbi token-passing search 
through a static re-entrant lexical prefix tree while 
utilizing continuous density mixture Gaussian HMMs.  
For children’s speech, the recognizer has been trained 
on 46 hours of data from children in grades K through 9 
extracted from the CU Read and Prompted speech 
corpus (Hagen et al., 2003) and the OGI Kids’ speech 
corpus (Shobaki et al., 2000).  Further, the baseline 
system utilizes PMVDR cepstral coefficients (Yapanel 
and Hansen, 2003) for improved noise robustness. 

During read-aloud operation, the speech recognizer 
models the story text using statistical n-gram language 
models.  This approach gives the recognizer flexibility 
to insert/delete/substitute words based on acoustics and 
to provide accurate confidence information from the 
word-lattice.  The recognizer receives packets of audio 
and automatically detects voice activity.  When the 
child speaks, the partial hypotheses are sent to a reading 
tracking module.  The reading tracking module deter-
mines the current reading location by aligning each par-
tial hypothesis with the book text using a Dynamic 
Programming search.  In order to allow for skipping of 
words or even skipping to a different place within the 
text, the search finds words that when strung together 
minimize a weighted cost function of adjacent word-
proximity and distance from the reader's last active 
reading location. The Dynamic Programming search 
additionally incorporates constraints to account for 
boundary effects at the ends of each partial phrase. 

3 Evaluation Methodology 

There are many different ways in which speech recogni-
tion can be used to serve children. In computer-based 
literacy tutors, speech recognition can be used to meas-
ure children's ability to read fluently and pronounce 
words while reading out loud, to engage in spoken dia-
logues with an animated agent to assess and train com-
prehension, or to transcribe spoken summaries of stories 
that can be graded automatically.  Because of the variety 
of ways of using speech recognition systems, it is criti-
cally important to establish common metrics that are 
used by the research community so that progress can be 
measured both within and across systems. 

For this reason, we argue that word error rate calcu-
lations using the widely accepted NIST scoring software 
provides the most widely accepted, easy to use and 
highly valid metric.  In this scoring procedure, word 
error rate is computed strictly by comparing the speech 
recognizer output against a known human transcription 
(or the text in a book).  Of course, authors are free to 
define and report other measures, such as detection/false 
alarm curves for useful events such as reading miscues.  
However, such analyses should always supplement re-
ports of word error rates using a single standardized 
measure. Adopting this strategy enables fair and bal-
anced comparisons within and across systems for any 
speech data given a known word-level transcription. 

4 Experimental Data 

For all experiments in this paper we use speech data and 
associated transcriptions from 106 children (grade 3: 17 
speakers, grade 4: 28 speakers, and grade 5: 61 speak-
ers) who were asked to read one of ten stories and to 
provide a spoken story summary.  The 16 kHz audio 
data contains an average of 1054 words (min 532 
words; max 1926 words) with an average of 413 unique 
words per story.  The resulting summaries spoken by 
children contain an average of 168 words. 

5 Improved Read-Aloud Recognition 

Baseline: Our baseline read-aloud system utilizes a 
trigram language model constructed from a normalized 
version of the story text. Text normalization consists 
primarily of punctuation removal and determination of 
sentence-like units.  For example,  

 

It was the first day of summer vacation.  Sue and Billy were 
eating breakfast.  “What can we do today?”  Billy asked. 

 

is normalized as: 
 

<s> IT WAS THE FIRST DAY OF SUMMERVACATION</s> 
<s> SUE AND BILLY WERE EATING BREAKFAST</s> 
<s> WHAT CAN WE DO TODAY </s> 
<s> BILLY ASKED </s> 
 



The resulting text is used to estimate a back-off trigram 
language model. We stress that only the story text is 
used to construct the language model. Details on the 
story texts are provided in Hagen et al. (2003). Note that 
the sentence markers (<s> and </s>) are used to repre-
sent positions of expected speaker pause.  This baseline 
system is shown in Table 1(A) to produce a 17.4% word 
error rate. 

Improved Sentence Context Modeling: It is impor-
tant in the context of this research to note that children 
do not pause between each estimated sentence bound-
ary.  Instead, many children read fluently across phrases 
and sentences, where more experienced readers would 
pause. For this reason, we improved upon our baseline 
system by estimating language model parameters using 
a combined text material that is generated both with and 
without the contextual sentence markers (<s> and </s>).  
Results of this modification are shown in Table 1(B) 
and show a reduction in error from 17.4% to 13.5%. 

Improved Word History Modeling:  Most speech 
recognition systems operate on the utterance as a pri-
mary unit of recognition.  Word history information 
typically is not maintained across segmented utterances.  
However, in our text example, the words “do today”  
should provide useful information to the recognizer that 
“Billy asked” may follow.  We therefore modify the 
recognizer to incorporate knowledge of previous utter-
ance word history. During token-passing search, the 
initial word-history tokens are modified to account for 
the fact that the incoming sentence may be either the 
beginning of a new sentence or a direct extension of the 
previous utterance’s word-end history.  Incorporating 
this constraint lowers the word error rate from 13.5% to 
12.7% as shown in Table 1(C). 

Dynamic n-gram Language Modeling:  During story 
reading we can anticipate words that are likely to be 
spoken next based upon the words in the text that are 
currently being read aloud.  To account for this knowl-
edge, we estimate a series of position-sensitive n-gram 
language models by partitioning the story into overlap-
ping regions containing at most 150 words (i.e., each 
region is centered on 50 words of text with 50 words 
before and 50 words after).  For each partition, we con-
struct an n-gram language model by using the entire 
normalized story text in addition to a 10x weighting of 
text within the partition.  Each position-sensitive lan-
guage model therefore contains the entire story vocabu-
lary.  We also compute a general language model 
estimated solely from the entire story text (similar to 
Table 1(C)).   At run-time, the recognizer implements a 
word-history buffer containing the most recent 15 rec-
ognized words.  After decoding each utterance, the 
probability of the text within the word history buffer is 
computed using each of the position-sensitive language 
models.  The language model with the highest probabil-
ity is selected for the first-pass decoding of the subse-

quent utterance.  This modification decreases the word 
error rate from 12.7% to 10.7% (Table 1(D)). 

Vocal Tract Normalization and Acoustic Adaptation:  
We further extend on our baseline system by incorporat-
ing the Vocal Tract Length Normalization (VTLN) 
method described in Welling et al. (1999).  Based on 
results shown in Table 1(E), we see that VTLN provides 
only a marginal gain (0.1% absolute).  Our final set of 
acoustic models for the read aloud task are both VTLN 
normalized and estimated using Speaker Adaptive 
Training (SAT).  The SAT models are determined by 
estimating a single linear feature space transform for 
each training speaker (Gales, 1997).  The means and 
variances of the VTLN/SAT models are then iteratively 
adapted using the SMAPLR algorithm (Siohan, 2002) to 
yield a final recognition error rate of 8.0% absolute (Ta-
ble 1(G)).  By combining all of these techniques, we 
achieved a 54% reduction in word error rate relative to 
the baseline system.    

 
Word Error Rate (%) Experimental Configuration 
MFCC PMVDR 

(A) Baseline: single n-gram 
language model 

17.7% 17.4% 

(B) (A) + Begin/End Sentence 
Context Modeling 

14.0% 13.5% 

(C) (B) + between utterance 
word history modeling 

13.0% 12.7% 

(D) (C) + dynamic  
n-gram language model 

11.0% 10.7% 

(E) (D) + VTLN 10.9% 10.6% 
(F) (E) + VTLN/SAT + 

SMAPLR (iteration 1) 
8.2% 8.2% 

(G) (E) + VTLN/SAT + 
SMAPLR (iteration 2) 

8.0% 8.0% 

Table 1: Recognition of children’s read out-loud data. 

6 Improved Story Summary Recognition 

One of the unique and powerful features of our interac-
tive books is the notion of assessing and training com-
prehension by providing feedback to the student about a 
typed summary of text that the student has just read 
(Cole et al., 2003). Verbal input is especially important 
for younger children who often can not type well. Util-
izing summaries from the children’s speech corpus, 
Hagen et al. (2003) showed that an error rate of 42.6% 
could be achieved.  The previous work, however, did 
not consider utilizing the read story material to provide 
improved initial acoustic models for the summarization 
task.  In Table 2 we demonstrate several findings using 
a language model trained on story text and example 
summaries produced by children (leaving out data from 
the child under test).  Without any adaptation the error 
rate is 47.1%.  However, utilizing adapted models from 
the read stories (see Table 1(G)) provides an initial per-
formance gain of nearly 10% absolute.  Further use 
SMAPLR adaptation reduces the error rate to 36.1%. 



 
Word Error Rate (%) Experimental Configuration 
MFCC PMVDR 

(A) Baseline / no adaptation 47.0% 47.1% 
(B) Read-aloud adapted models 

(VTLN/SAT) 
37.2% 38.0% 

(C) (B) + SMAPLR  
adaptation iteration #1 

36.0% 36.6% 

(D) (C) + SMAPLR 
adaptation iteration #2 

35.1% 36.1% 

Table 2:  Recognition of spontaneous story summaries 

7 Practical Real-Time Implementation 

The research systems described in Sect. 5 and 6 do not 
operate in real-time since multiple adaptation passes 
over the data are required.  To address this issue, we 
have implemented a real-time system that operates on 
small pipelined audio segments (250ms on average).  
When evaluated on the read-aloud task (Sect. 5), the 
initial baseline system achieves an error rate of 19.5%.  
This system has a real-time factor of 0.56 on a 2.4 GHz 
Intel Pentium 4 PC with 512MB of RAM. When inte-
grated, the proposed methods show the error rate can be 
reduced from 19.5% to 12.7% (compare with 10.7% 
error research system in Table 1(D)).  The revised sys-
tem which incorporates dynamic language modeling 
operates 35% faster than the single language model 
method while also reducing the variance in real-time 
factor for each processed chunk of audio.  Further gains 
are possible by incorporating adaptation in an incre-
mental manner.  For example, in Table 3(C) a real-time 
system that incorporates incremental unsupervised 
maximum likelihood linear regression (MLLR) adapta-
tion of the Gaussian means is shown.  This final real-
time system simultaneously adapts both language and 
acoustic model parameters during system use. The sys-
tem is now being refined for deployment in classrooms 
within the CLT project. We were able to further im-
prove the system after the submission deadline. The 
current WER on the story read aloud task improved to 
7.6%; while a WER of 32.2% was achieved on the 
summary recognition task. The improvements are due to 
the inclusion of a breath model and the additional use of 
audio data from 103 second graders for more accurate 
acoustic modeling. 

 
PMVDR Front-End System Description 

WER (%) RTF 
(A) Baseline: single LM 19.5% 0.56  

(� 2=0.11) 
(B) Proposed System 12.7% 0.36 

(� 2=0.06) 
(C) (B) + Incremental 

MLLR adaptation 
11.5% 0.80 

(� 2=0.33) 
Table 3:  Evaluation of real-time read out-loud system. 
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