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INTRODUCTION

The metrics used for the Fifth Message Understanding Conference (MUC-5) evaluation are a major update
to those used for MUC-4 in 1992. The official MUC-5 metrics express error rates while the official MUC-4 metric s
express performance in terms of recall and precision (used for MUC-5 only as "unofficial" metrics) . This paper
discusses the current metrics and the reasons for their adoption .

SCORE REPORTS

The MUC-5 Scoring System is evaluation software that aligns and scores the templates produced by th e
information extraction systems under evaluation in comparison to an "answer key" created by humans . The Scoring
System produces comprehensive summary reports showing the overall scores for the templates in the test set ; these
may be supplemented by detailed score reports showing scores for each template individually. Figure 1 shows a
sample summary score report in the joint ventures task domain for the error metrics ; Figure 2 shows a corresponding
summary score report for the recall-precision metrics .

Scoring Categorie s

The basic scoring categories are found in the score report under the column headings COR, PAR, INC ,
XCR, XPA, XIC, MIS, SPU, and NON. These categories have not fundamentally changed since the MUC-4
evaluation. The rows in the body of the score report are for the various slots and objects in the template ; various totals
appear at the bottom .

For the MUC-5 evaluation, alignment of system responses (i .e ., templates, objects, and slot-fillers generated
by the system under evaluation) with the answer key was done fully automatically, and scoring was don e
interactively. In interactive scoring mode, the evaluator is queried for a scoring decision only under certain
circumstances; under most circumstances, the scoring decisions are made automatically . The meaning of each of th e
scoring categories is described below and summarized in Table 1 .

• If the response and the key are deemed to be equivalent, the category is correct (COR); if interactively
assigned, a tally appears in both the COR and XCR (interactive correct) columns .

• If the response and the key are judged to be a near match, the category is partial (PAR) ; if interactively
assigned, a tally appears in both the PAR and XPA (interactive partial) columns .
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Figure 1 : Sample Error Score Report .

• If the key and response do not match, the category is incorrect (INC) ; if interactively assigned, a tall y
appears in both the INC and XIC (interactive incorrect) columns .

• If the key has a fill and the response has no corresponding fill, the category is missing (MIS) .

• If the response has a fill which has no corresponding fill in the key, the category is spurious (SPU) .

• If the key and response are both left blank, then the category is noncommittal (NON) .

The columns in Figures 1 and 2 labelled possible (POS) and actual (ACT) contain the tallies of the numbe r
of slot fillers that should be generated and the number of fillers that the system under evaluation actually generated ,
respectively. Possible is the sum of the correct, partial, incorrect, and missing . Actual is the sum of the correct, partial ,
incorrect, and spurious . These tallies are used in the computation of some of the evaluation metrics . The total possibl e
is system-dependent and is therefore computed by summing the tallies assigned to the system responses rather tha n
by simply summing the slot fillers to be found in the key template . In contrast, a system-independent metric will be
explained in a later section .
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Figure 2: Sample Recall-Precision Score Report.

Summary Rows
The two summary rows in the score report labelled "ALL OBJECTS" and "MATCHED ONLY" show th e

accumulated tallies obtained by scoring spurious and missing objects in different manners . Templates may contain

Table 1 : Scoring Categories .

q Correct

q Partial

q Incorrect

q Spurious

D Missing

q Noncommittal

response = key

response a key

response �key

key is blank and response is no t

response is blank and key is no t

key and response are both blank
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more than one instance of a kind of object, e .g ., more than one <entity> object . The keys and responses may not agree
in the number of objects generated . These cases lead to spurious and/or missing objects . Opinions as to how muc h
systems should be penalized for spurious or missing objects differ depending upon the requirements of th e
application in mind . These differing views have lead us to provide the two ways of scoring spurious and missin g
information as outlined in Table 2 .

The MATCHED ONLY manner of scoring penalizes the least for missing and spurious objects by scorin g
them only in the object ID slot. This object ID score does not impact the overall score because the object ID slot is no t
included in the summary tallies ; the tallies include only the individual slots . ALL OBJECTS is a stricter manner o f
scoring because it penalizes for both the slot fills missing in the missing objects and the slots filled in the spuriou s
object . The metrics calculated based on the scores in the ALL OBJECTS row of the error score report are the officia l
MUC-5 scores .

q

	

Matched Only

Missing and spurious objects scored in object slot only

q

	

All Objects

Missing object slots scored as missing

Spurious object slots scored as spurious

Table 2: Manners of Scoring .

Evaluation Metric s

The rightmost four columns in both the error score report and the recall-precision score report contain th e
scores for the evaluation metrics. These are computed for each object and slot in the template, and overall scores ar e
shown at the bottom .

The primary evaluation metrics for MUC-5 have been changed from those used in previous MU C
evaluations . The reasoning behind this change will be described in a later section . First, the formulas used to calculat e
the evaluation metrics on the score reports will be given .

Error Metrics

The error per response fill (ERR) is the official measure of MUC-5 system performance . This measure i s
calculated as the number wrong divided by the total (possible plus spurious) as shown in Table 3 . It is dependent on
the system because tallies change according to the amount of spurious data generated and according to how th e
system tilled slots that have optional or alternate fills in the key. (See the discussion below on richness-normalize d
error metric . )

Table 3 also shows the computation of three secondary metrics -- undergeneration, overgeneration, an d
substitution -- which isolate the three elements constituting overall error . Undergeneration and overgeneration were i n
use for MUC-4 as well, and this is why they appear in both the error score report and the recall-precision score report .
Those metrics are computed the same way for both reports . The substitution metric is new for MUC-5 and is foun d
only in the error score report . The metric is not isolated in the recall-precision view on information extraction ; this i s
because it is a (negative) factor in both recall and precision ; in the error-based view, on the other hand, it is isolated a s
a distinct type of error. The reader should note that the denominator in each of the secondary metrics is differen t
because each metric offers a distinct perspective on the errors that a system can make .
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Primary Metric Error per response fill = wrong =

	

INC + PAR/2 + MIS + SP U
total

	

COR+PAR+INC+MIS+SP U

Secondary Metrics Undergeneration =

Overgeneration =

MIS _
POS

MI S
COR + PAR + INC + MI S

SPU

	

SPU_
ACT

	

COR + PAR + INC + SP U

Substitution =

	

INC + PAR/ 2
COR + PAR + INC

Table 3: System-dependent Error Metrics .

The error per response fill has been chosen as the primary measure reported for a system for this evaluatio n
because developers now need to focus on the sources of errors, explain them, and remedy them to push the state o f
the art. For example, if System A has the raw scores shown in Figure 3, its error per response fill is calculated a s
follows :

wrong=INC+PAR/2+MIS+SPU=25+5+0+ 10=4 0

total=COR+PAR+INC+MIS+SPU=10+10+25+0+10=5 5

wrong/total = 40/55 = 73%

While the error per response fill metric and the undergeneration, overgeneration, and substitution metrics ar e
designed to suit the system developers' need for performance diagnostics, a different measure that is as independen t
of the system and the text sample as possible may be more useful in some other circumstances . The richness -
normalized error measure is designed to measure errors relative to the amount of information to be extracted from th e
texts. This metric is shown in one of the summary rows at the bottom of the error score report .

COR PAR INC SPU MIS NON ER R

SYSTEM A

	

I 10

	

10

	

25

	

10

	

0

	

35

	

73

Figure 3 : System A .

Richness-normalized error is calculated by dividing the number of errors per word by the number of key fill s
per word . This calculation reduces to the number of errors divided by the fill-count . If a program manager i s
considering use of a system on a distinct class of documents from the ones the system was tested on, this measure wil l
predict the number of errors the system will make, given the richness of the new set of documents .

Due to the optional and alternate fills in the key, there will be a range of fill-counts from the minimu m
number of fills required to the maximum number of fills allowed . The difference between the two numbers represen t
"discretionary" fills, i .e ., ones that represent the ambiguity inherent in the text) The formaulas for calculating the
minimum and maximum richness-normalized error appear in Table 4 .

1 . For further information on the variability inherent in the key templates, please refer to the published ver -
sion of the proceedings, which will contain a paper about the text and template corpora.
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Richness-

Minimum Error =

	

wrong

	

INC + PAR/2 + MIS + SPU_
All - fills

	

Required + Optional + MaximumAlternat e

Normalized
Error Maximum Error =

	

wrong

	

INC + PAR/2 + MIS + SPU–
Req - fills

	

Required + MinimumAlternate

Table 4 : Richness-normalized error.

For example, if system B has the raw scores in Figure 4 and if the key is filled as in Figure 5, the fill-coun t
will range from the minimum required fills, which is a sum of Required Fills + Minimum Alternate Discretionar y
Fills (20+ 10), to the maximum allowed fills, which is the sum of Required Fills + Optional Discretionary Fills +
Maximum Alternate Discretionary Fills (20 + 10 + 30) . For this system, the richness-normalized error will range
from 40/60 to 40/30 or 0.67 to 1 .33 .

Note that the maximum richness-normalized error can be greater than 1 .00 because the fill-count in the key
can he less than the number wrong for a system that overgenerates . Note also that the minimum richness-normalized
error can he less than the error per response fill because the (system-independent) fill-count in the key can be greate r

than the (system-dependent) total used in the denominator in error per response fill .

The error score report also contains a row called "Error Rate per Word," but it should be noted that thi s
metric is not comparable between the Japanese and the English and is not highly accurate for Japanese .

POS ACT COR PAR INC XCR XPA XIC SPU MIS NON ERR UNDOVG SU B

SYSTEM B

	

10 10 5

	

20 10 35

Wrong

	

Req-fills

	

All-fills

	

Min-err

	

Max-err

40

	

30

	

60

	

0 .67

	

1 .33

Figure 4 : System B .

REQUIRE D
FILLS

Optional

DISCRETIONARY FILLS

Alternate

BLANKS

Minimum Maximu m

20 10 10 30 35

Figure 5 : Key Fills for System B.

Recall precision Metrics

We have designated the recall, precision, and F-measure metrics that were used for MUC-4 as unofficia l
secondary metrics for MUC-5 in order to maintain continuity with previous MUCs . They can be used to explain
current performance in comparison to past performance. Further analysis is still necessary to determine thei r
contribution to the evaluation of data extraction systems as compared to the error-based metrics .

Richness-Normalized Error
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The recall-precision evaluation metrics were adapted from the field of Information Retrieval (IR) an d
extended for the MUC evaluations . They measure four different aspects of performance and an overall, combine d
view of performance . The four evaluation metrics of recall, precision, undergeneration, and overgeneration ar c
calculated for the slots and in the summary score rows (see Table 5) . The fifth metric, the F-measure, is a combined
score for the entire system and is listed at the bottom of the report .

Recall (REC) is the percentage of possible answers which were correct . Precision (PRE) is the percentage o f
actual answers given which were correct . A system has a high recall score if it does well relative to the number of slo t
fills in the key. A system has a high precision score if it does well relative to the number of slot fills it attempted :

In IR, a common way of representing the characteristic performance of systems is in a precision-recal l
graph. Normally, as recall goes up, precision tends to go down and vice versa [I ] . To directly measure
underpopulation or overpopulation of the template database by the information extraction systems, we introduced th e
measures of undergeneration and overgeneration .

recall

	

=

	

correct+(nartial x 0.5 )
possible

precision

	

=

	

correct+(partial x 0.5) ,
actual

undergeneration

	

missing
possible

overgeneration

	

=

	

spurious
actual

Table 5: Recall- Precision Evaluation Metrics .

Methods have been developed for combining the measures of recall and precision to get a single measure . I n
MUC-4, we used van Rijsbergen's F-measure [1, 2] for this purpose . The F-measure provides a way of combinin g
recall and precision to get a single measure which falls between recall and precision . Recall and precision can hav e
relative weights in the calculation of the F-measure, giving it the flexibility to be useful in the context of differen t
application requirements . The formula for calculating the F-measure is :

(132
+1 .0)xPx R

(02 xP)+ R

where P is precision, R is recall, and is the relative importance given to recall over precision . If recall and precision
are of equal weight, Q = 1 .0. This value is shown in the score report under the heading "P&R." The heading "2P&R "
is for recall half as important as precision (R = 0.5) . The heading "P&2R" is for recall twice as important as precisio n
(f3 = 2 .0) . The F-measure is calculated from the recall and precision values in the ALL OBJECTS row .

Note that the F-measure is higher if the values of recall and precision are more towards the center of th e
precision-recall graph than at the extremes and their sums are the same . So, for R = 1 .0, a system which has recall o f
50% and precision of 50% has a higher F-measure than a system which has recall of 20% and precision of 80%. Thi s
behavior is what we wanted from this single measure, which we expected would encourage developers to pus h
overall performance and, at the same time, to minimize the trade-off between the competing requirements fo r
minimal missing, spurious, and substitution types of error .

F=
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An example showing the new metrics and the old (along with the pertinent scoring categories) for thre e
theoretical systems is given in Figures 6 and 7 . In this example, the error per response fill is the same for each of th e
three systems even though the F-measures are different. However, the secondary metrics of undergeneration ,
overgeneration, and substitution serve to distinguish the three systems . This hypothetical example points out th e
important role that the secondary metrics could play in system analysis as well as the analysis of the quality of th e
extracted information .

POS ACT COR PAR INC SPU MIS NON ERR UND OVG SU B

SYSTEM A 45 55 10 10 25 10 0 35 73 0 18 67

SYSTEM B 45 35 10 10 5 10 20 35 73 44 29 40

SYSTEM C 55 35 10 10 15 0 20 35 73 36 0 57

Figure 6 : Three Systems with Equal Error per Response Fill .

POS ACT COR PAR INC SPU MIS NON FP&R REC PR E

SYSTEM A 45 55 10 10 25 10 0 35 29.70 33 27

SYSTEM B 45 35 10 10 5 10 20 35 37.34 33 43

SYSTEM C 55 35 10 10 15 0 20 35 33.17 27 43

Figure 7: Unofficial Metrics for Three Systems with Equal Error per Response Fill .

Also appearing in the recall-precision score report is a row called "Text Filtering ." The purpose of this row i s
to report how well systems distinguish relevant articles from irrelevant articles . The scoring program keeps track of
how many times each of the situations in the contingency table arises for a system (see Table 6) . It then uses those
values to calculate the entries in the Text Filtering row . The evaluation metrics are calculated for the row as indicate d
by the formulas at the bottom of Table 6 .

The Role of the Noncommittal Scoring Categor y
The reader will have noticed that the category of "noncommittal" responses has been omitted from the

metrics . Although this may not seem reasonable from an applications perspective, from a research perspective w e
believe that the exclusion of noncommittal responses results in a much less distorted cross-system view o f
performance . The question comes down to whether systems normally leave a slot blank out of knowledge or whethe r
they do so out of a lack of knowledge . Highly immature systems tend either to overgenerate to an extreme, leavin g
few blanks, or to undergenerate to an extreme, leaving many blanks . The latter type of immature system is more
common and may benefit unfairly from a metric that considers a noncommittal response to be a correct response,
especially if there are relatively many blanks in the key templates .

If, for example, noncommittals were considered correct responses and included in the denominator of the
error per response fill measure, the rankings of all 17 MUC-4 systems on TST3 (the name of one of the two test set s
used in the evaluation) would change. The most radical changes would be for immature systems whose number of
noncommittals greatly outweighs all other categories of response . Since there are a lot of immature systems evaluate d
for MUC-5 (as there were for MUC-4) and since the average number of fills in the answer-key templates for MUC- 5
is only about half of what it was for MUC-4, the distortions of the results for MUC-5 have the potential to be eve n
greater than they were for MUC-4 . However, the potential effect on the MUC-5 evaluation is damped somewhat b y
the fact that the MUC-5 template consists of objects that are aligned separately ; response objects that contain an
insufficient amount of slot-fillers to warrant an alignment with a key object are not scored against a key object at th e
slot level . Nonetheless, we believe that omitting noncommittals from the metrics provides a better basis fo r
comparison across the full range of MUC-5 (and MUC-4) systems and provides a more accurate assessment of the -
state of the art .
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Decides Relevant

Relevant I s
Correct

a

Irrelevant I s
Correct

b a+b

Decides Irrelevant c d c+d

a+c b+d a+b+c+d = n

POS ACT COR PAR INC ICR IPA Spu MIS NON

Recall = a/(a+c)

	

Undergeneration = c/(a+c)

Precision = a/(a+b)

	

Overgeneration = b/(a+b)

Text
Filtering a+c a+b

	

a c db

Table 6 : Text Filtering.

CHANGES TO THE METRICS FROM PREVIOUS EVALUATION S

The changes to the evaluation metrics are expected to enable three different types of evaluation "users "
(NLP researchers, program managers, and potential customers) to assess and compare system performance in a
meaningful way. It is also hoped that the changes will correct deficiencies in the evaluation that may unwittingl y
encourage conservative development strategies on the part of the researchers and that may also limit the evaluation' s
meaningfulness to other evaluation users.

Although the terms recall and precision were borrowed from IR, the metrics themselves represent a
significant departure from the contingency table model, which underlies the IR version of the metrics . The task o f
extraction is a complex one that includes elements of information detection and classification, plus open-ende d
generation of strings and object pointers . The focus on recall and precision as primary metrics for the last few year s
has had some advantages, among them the following :

• they bring out the fundamental tension between spurious and missing data ;

• they require that evaluation users view system performance along more than one dimension ;

• they present a positive view of system performance, which may have helped to make the NL P
researchers more comfortable with the idea of submitting their systems to evaluation .

However, recall and precision have the disadvantage of making a two-way distinction between error type s
(spurious and missing) when in fact there are three types of error. The third kind of error is captured by the
substitution metric ; it is accounted for by the categories of incorrect and ( .5 times) partial . Substitution errors arc
taken into account in the recall-precision metrics to the extent that they contribute to the denominator of both recal l
and precision ; however, this type of error is not isolated, and its inclusion in the denominator of recall and precision
prevents those metrics from revealing to what extent a system's shortfalls are due to substitution rather than t o
missing (in the case of recall) or spurious (in the case of precision) .

77



In a way, the recall-precision metrics view substitution as a blend of missing and spurious ; a system did no t
simply produce the wrong fill, but rather produced a spurious fill on the one hand and missed a fill on the other hand .
This is a reasonable model of system behavior in many cases, but not in others, especially when a response is scored
partially correct . These deficiencies of the recall and precision metrics make the use of the error per response fil l
reasonable, as long as it is accompanied by the secondary metrics of overgeneration (spurious), undergeneratio n
(missing), and substitution (incorrect, including half of the partial) .

The F-measure, which was introduced for MUC-4 in response to needs of researchers and program
managers for a ranking metric, has come to be used more generally than just for cross-system comparisons . By
becoming the one metric of focus, it has been competing with recall and precision for the role of primary metric ,
thereby weakening two of the major advantages that recall and precision originally had . Furthermore, now that
performance of some systems is in or approaching the 50% range, recall and precision are at a disadvantage fo r
motivating researchers to push performance of the top systems through the more difficult stages ahead because the y
focus on the positive aspects of performance . These factors make the adoption of error per response fill as the primary
metric a reasonable next step in determining the best way to measure performance .

The statistical significance results from MUC-5 give us feedback on how well the error metric and the F -
measure distinguish systems . The results show that there are no differences between the rankings determined by erro r
per response fi11 2 and the rankings determined by F-measure. The error per response fill distinguishes systems slightly
better ; four more system pairs were significantly different in their error per response fill than were significantl y
different in their F-measure . The error per response fill also shows a tendency towards clustering systems in slightl y
clearer groups than the F-measure for EJV due to its ability to distinguish systems slightly better .

The richness-normalized error represents another change from previous evaluations and was motivated b y
the desire for a system-independent metric . The nature of this metric requires that spurious behavior be ignored . The
search for such a metric led us to innovate one in which two values, a minimum and maximum, were calculated sinc e
language understanding necessarily involves variability in interpretation . It remains to be seen whether ignoring
overgeneration interferes with the predictive quality of the richness-normalized error metric .
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