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Abstract
Stemma generation can be understood as a task where an original manuscript M gets copied and copies – due to the manual mode
of copying – vary from each other and from M . Copies M1, ..,Mk which survive historical loss serve as input to a mapping process
estimating a directed acyclic graph (tree) which is the most likely representation of their copy history. One can first tokenize and align
the texts of M1, ..,Mk and then produce a pairwise distance matrix between them. From this, one can finally derive a tree with various
methods, for instance Neighbor-Joining (NJ) (Saitou and Nei, 1987). For computing those matrices, previous research has applied
unweighted approaches to token similarity (implicitly interpreting each token pair as a binary observation: identical or different), see
Mooney et al. (2003). The effects of weighting have then been investigated and Spencer et al. (2004b) found them to be small in their
(not necessarily all) scenario(s). The present approach goes beyond the token level and instead of a binary comparison uses a distance
model on the basis of psycholinguistically gained distance matrices of letters in three modalities: vision, audition and motorics. Results
indicate that this type of weighting have positive effects on stemma generation.
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Figure 1: First modern stemma by Schlyter, 1827, from
O’Hara (1996) with texts= nodes, copy processes= edges.

1. Introduction
Stemma generation is the process of determining the most
likely tree1 with manuscripts being represented by nodes in
the usually directed acyclic graph2 and edges representing
copy processes or chains of such, see Figure 1. Since the
late 1950ies computational methods have been applied to
stemmatological tasks (Ellison, 1957) and in the last decade
evaluation against benchmark datasets (or artificial tradi-
tions) has been conducted (Baret et al., 2004; Spencer et al.,
2004a; Roos and Heikkilä, 2009; Hoenen, 2015a). These
datasets have been generated by first giving one text (root)

1Insights and historical considerations on the tree as a pre-
ferred technical model for stemmatology and concurrent graph
theoretical considerations are discussed for instance in Hoenen et
al. (2017), Flight (1994) and sources therein.

2Note, that we target stemmata for closed traditions (Pasquali
and Pieraccioni, 1952) that have no multiple originals, as is prob-
able for orally transmitted epics (Lord, 1960). Hoenen (2017) has
attempted to reconcile tree and network perspectives on stemmata.

to volunteers to be handcopied (or dictated). Its copies have
then been handcopied again and so forth. The true vor-
lage3-copy relations (edges in the true stemma) have been
recorded by the authors, so that we know the entire true tree
with all edges and the position of root. Those manuscript
texts have been digitized and manually aligned for a stem-
matology challenge (Roos and Heikkilä, 2009) where from
a subset of manuscripts several teams attempted to recon-
struct – manually or automatically – the true tree.4 In this
paper, these datasets are taken as basis to a new method
which uses external data in the form of psycholinguistically
generated letter and phoneme distance matrices in order to
a) generate and evaluate stemmata and b) assess how large
the influence of low level perceptual processes is. From
the alignments of the artificial traditions, pairwise distance
matrices of the single manuscripts (texts, nodes) are built.
Each manuscript pair is compared tokenwise using some
metric resulting in an overall distance. This metric can
be described as weighted, where the external data serves
for determining the weights. Concerning token compari-
son, philology describes a whole range of types of vari-
ation and their implications, see e.g. (Roelli and Macé,
2015; Andrews and Macé, 2013). Philologically moti-
vated classification has been used for weighting token pairs
upon distance computation. Categories such as ”Word vari-
ant, changes meaning” or ”Word change affecting rhyme”
(Mooney et al., 2003, p.287) have been applied. A stemma-
tologically relevant distinction and driving force behind the
will to weight variants is that between genealogically infor-
mative and accidental variation (Andrews and Macé, 2013).
The implication is that some innovations in the text induced

3Vorlage is a German loan, which is used in philology to de-
scribe the model or the original of a copy.

4The webpage of the challenge is https://www.cs.
helsinki.fi/u/ttonteri/casc/. Here, the challenge
datasets can be obtained. For the current study the authors pro-
vided the full datasets additionally via direct contact.
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by copying are idiosyncratic and hardly revertable, for in-
stance when some non syntactically crucial word is acci-
dentally left out: this is a really big challenge → this is a
big challenge or when some content word gets replaced by
one equally fitting into the context: the clay dust shimmered
→ the day dust shimmered. Such errors imply,5 that the
whole subbranch rooted by the manuscript having the new
version at first will have it. In this way the innovation is ge-
nealogically informative. That is the information helps us
locate the manuscript on the stemmatic tree, whereas other
innovations could easily happen independently in different
copy processes such as the introduction of punctuation at
some point in time or some shift in definiteness I heard
the magpie → I heard a magpie. Often variation can be
multicausally explained and is analyzed on a case-by-case
basis. One process which could be responsible for both
kinds of innovations is the confusion of letters. In philolog-
ical discussions on the complex processes which can lead to
variation, the confusion of letters such as <cl> with <d>
has been discussed early on, probably already in antiquity
(Vanek, 2007, p.276). Reynolds and Wilson (2013, p.222)
identify conscious and inadvertent processes as underlying
such and other processes.
The current paper tries to determine how well the true stem-
matic trees for artificial benchmark datasets in stemmatol-
ogy (gold standards) can be approximated from external
data on the confusion of letters. As Spencer et al. (2004b),
we use manually provided alignments, derive pairwise dis-
tance matrices and then use the Neighbor-Joining (NJ) al-
gorithm for stemma generation from the distance matrix.
In computing the distance matrix of pairwise variant text
distances, we compare each position of the alignments and
implement three metrics, the simple binary (same or dif-
ferent variant?) Hamming distance (Hamming, 1950), the
Levenshtein distance (Levenshtein, 1965) and the weighted
Levenshtein distance.6 For weighting, we do not con-
sider philological classes of variation but distance matrices
from psycholinguistic research on letter distances. These
have been gained in experimental set-ups and do thus suf-
fer less from a weighting bias introduced through subjec-
tivity as mentioned in Spencer et al. (2004b). Compar-
ing stemma generation with philologically inspired weight-
ing against unweighted stemma generation (Hamming dis-
tance), Spencer et al. (2004b) found no crucial differences
in the resulting stemmata for their data set but stated (p.
236) that ’different weightings could lead to completely
different stemmata’ concluding (p.238) that ’Determining
appropriate weightings in these cases is an open problem’.

5Terminologically, there are some slightly differing terms
which imply similar things: variant, innovation, error, change, al-
teration. Since ’error’ implies a knowledge of the correct form,
the term can sometimes lead to controversies. Here, we use all
terms quasi-interchangeably.

6Weights for transpositions are not immediately derivable
from psycholinguistic letter confusion matrices. Additionally,
there are long distance transpositions or transpositions of vow-
els of adjacent syllables which would require some additional lin-
guistically carefully modelled distance. The java library debatty
info.debatty.java.stringsimilarity was used for
implementation of the weights.

The main aim of this paper is to assess a part of this prob-
lem through using external data for weighting.

2. Artificial Data Sets
For evaluation, we use three most used artificial datasets,
called Parzival PRZ (English), Notre Besoin NB (French)
and Heinrichi HR (Finnish) (Baret et al., 2004; Spencer
et al., 2004a; Roos and Heikkilä, 2009) both in their en-
tirety. A fourth7 and fifth (Hoenen, 2015a)8 are not fo-
cussed.9 PRZ has 21 manuscripts and the alignment has
855 lines, NB features 13 manuscripts of 1035 lines and
HR 64 manuscripts of 1208 lines.10 From a machine learn-
ing perspective, these data sets are quite small and from
a historical perspective, they may not represent but a tiny
fraction of possible scenarios. Results are thus to be taken
with utter caution. Nevertheless, these are the only data in
the field for which an indisputable gold standard exists.

3. Method and Model
Of all pairwise manuscript comparisons, in large numbers
of cases both manuscripts do not share an edge in the true
stemma. Hence, those comparisons will include word pairs
which stem from remotely distant manuscripts on the stem-
matic tree. On each edge on the shortest path between them
some event(s) may have happened with the implication that
one is most often looking at variation reflecting more than
one copy step and a back and forth of directionality. This
is unfortunate but unavoidable if one doesn’t know the true
relations in advance. To illustrate, Figure 2 gives a small
toy example of a tradition, where each manuscript contains
only one word and where thus the comparison of the con-
current word pairs correspond to manuscript pair compar-
isons. Looking at Figure 2, when comparing and aligning
words, all pairs are different in terms of a binary classifi-
cation. Using the Levenshtein distance, token pair c gets
the same distance as pair b, but only b corresponds to an
edge. Counting differing alignment positions assigns the
same distance to b and c as well. Only carefully chosen
weights achieve an overall weighting that assigns the three
lowest values to the pairs corresponding to edges and the
largest to that with the longest path in the true stemma.
Weights in the example are set intuitively to mimick con-
fusability of the aligned letter units. Realistic confusabil-
ity patterns of letters and phonemes have been researched

7https://phylomemetic.
wordpress.com/2015/02/12/
artificial-textual-tradition-julies-caesar/
:last accessed on 04.02.2018

8Available under Tascfe at https://www.
texttechnologylab.org/applications/corpora/.

9Both have been used scarcely in the literature, compare
Robinson (2015) and the correct stemma available online for the
first of them does not feature all node names. The second requires
substantial additional modelling since it has a) multiple roots, b)
is written in the Arabic writing system of Persian usage and c)
because there are considerably less psycholinguistic resources for
this constellation. Additionally the text is rather short. Experi-
ments were conducted and results are briefly summarized below.

10We include the PRZ loss challenge data set (17 ms) for com-
parison.
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clash

class

h→s

dash

bash

d→b

cl→d

Index comp pos Lev MMD* l(path) EDGE
a c-l-a-s-h 1 1 0.4 1 T

c-l-a-s-s
b cl-a-s-h 1 2 0.2 1 T

d -a-s-h
c cl-a-s-h 1 2 0.8 2

b -a-s-h
d cl-a-s-s 2 3 0.2+0.4 2

d -a-s-h 0.6
e cl-a-s-s 2 3 0.8+0.4 3

b -a-s-h 1.2
f d-a-s-h 1 1 0.3 1 T

b -a-s-h

Figure 2: An example stemma and all corresponding
(text=) word pair comparisons. All word pairs are man-
ually aligned, corresponding comparisons (column comp.)
highlighted. The number of such comparisons or positions
(column pos) is compared to the Levenshtein distance (lev)
and a modally weighted version of it (*Multi Modal Dis-
tance, MMD, with one addend for each comparison). Path
length (l(path)) between the nodes of a pair and whether
this corresponds to an edge serve evaluation. Only MMD
achieves an optimal ranking.

and can be inferred from psycholinguistic experiments, see
next section, which brings external data into the model and
which might help to avoid overfitting and subjectivity. An-
other question is how much these linguistically speaking
low-level phenomena are responsible for the variation ob-
served in copies.

3.1. Model

We operate with a number of observed (survived)
manuscript variant texts M, which are arranged in a pro-
vided token level alignment A. For each variant text pair
(Mi,Mj), i 6= j, we sum the weighted Levenshtein dis-
tances of all words Mi,j1..k (implying different letter level
alignments) according to the different weighting schemas
of the modalities and then weight again each modality with
a linear factor.

∆(Mik ,Mjk) =

α · wLevvis(Mik ,Mjk)+

β · wLevac(Mik ,Mjk)+

γ · wLevmot(Mik ,Mjk), i 6= j,

(1)

where wLevmodality is the weighted Levenshtein distance
according to the values from modally determined (visual,
acoustic, motoric) psycholinguistic letter distance matri-
ces, Mik is the k−th token (alignment position, often
word) of the i−th manuscript and α, β, γ are the respective
weights for the modalities. The final distance of a variant

text pair is then simply

length(A)∑
k=1

∆(Mik ,Mjk). (2)

In the even simpler conditions for comparison, the distance
function ∆ simply returns 1 (in case of difference) or 0 (in
case of identity) of the elements in (Mik ,Mjk) or in the
other condition Lev(Mik ,Mjk).

3.2. Modalities
Copying is a very complicated process and builds on many
cognitive processes, compare Hoenen (2014), amongst oth-
ers reading, retaining the read in memory and writing are
involved. These make use of vision, probably acoustics (as
far as retention in memory is involved) and motor innerva-
tion of the muscles responsible for the movements leading
to writing. Among human modalities or senses, those three
are assumed to be the decisive ones for the copy process.
Whilst human languages differ profoundly in a number of
parameters, the basic receptory and cognitive apparatus is
essentially the same for all humans. Consequently, basic
confusability patterns should across time and language be
roughly stable. Therefore, we believe one can use psy-
cholinguistically derived confusability information for a
weighting regardless of the time period or language from
which the textual material may stem.

Vision and Reading In comparison to the other modal-
ities, vision is not only the most important one, but wit-
nesses by far the largest body of research on confusabil-
ity of letters. In order to model the values of the visual
modality, matrices of visual confusability have to be used.
Müller and Weidemann (2011) have compared 55 papers
from 1886 until 2011 that describe 74 experiments (the ma-
jority using psycholinguistic approaches (ca. 82%)) to es-
tablish letter discriminability matrices for the Latin alpha-
bet. As many tables as were readily available from the sup-
plied paper links have been extracted and it was ensured
that they were labelled for

1. modality (visual, motoric, acoustical)

2. directionality (symmetric matrix?, ∆(< a >,< d >)
= ∆(< d >,< a >) ?)

3. letter set (upper case, lower case, numbers, mixed
case)

4. polarity (similarity or distance)

However, some matrices or data reported in the papers
were not used, since they either analysed irrelevant data
(perception in pigeons (Blough, 1985), discrimination of
the Braille alphabet, (Gilmore et al., 1979)), reported a
poor predictive performance (Coffin, 1978), provided in-
complete data (Uttal, 1969), featured very few observations
(Banister, 1927) or were hardly extractable due to age or
condition of the pdfs. We ended up with 27 matrices.
In order to make all matrices comparable, the values were
normalized to a number between 0 and 1 by using the
largest value as 1, if and only if the reported values were not
already in that range explicitly representing percentages.

2107



The values were transformed if necessary turning similar-
ities into distances. Furthermore, distances were averaged
if directional differences existed: ∆(a, b) = ∆(b, a). This
was primarily done since the direction of copy when com-
paring two manuscripts is not apriori known. All non ob-
served letter combinations would receive the maximal dis-
tance. For numbers Keren and Baggen (1981) provided a
table and for mixed case only Boles and Clifford (1989)
reported confusability values. This gave 1 matrix for num-
bers and mixed case visual confusion and 6 matrices for
lower case to lower case letters and 17 for upper case to
upper case letters. We combined those and obtained and
tested 102 combinations of visual uppercase, visual lower-
case, visual mixed case, visual number confusabilities with
acoustic and motoric confusion matrices. Matrices have
been made available on GitHub.11

Acoustic Modality For acoustic confusion, the process
of modal transition from and into the visual medium must
be modelled as an additional step. Naturally, one could
choose grapheme-to-phoneme (g2p) and p2g based ap-
proaches. However, since the aim of the present study is
to analyse explicitly modally motivated errors, we alterna-
tively do the following and leave g2p/p2g as an alternative
for future research.
Cutler et al. (2004) provide phoneme-based confusability
matrices. We use the ones for initial vowels and conso-
nants discriminated by natives. In word initial position, the
phonemes do usually not become subject of heavy coartic-
ulation.12 Additionally, there was a high canonical correla-
tion between initial and final confusability values (vowels
initial and final:0.99, consonants in onset and coda: 0.81).
For the mapping of phoneme pair distances to graphemic
units (GU), Van Berkel (2005)’s basic, contextual and word
specific spellings were used for English.13 For instance,
the presumably confusable GU pairs potentially represent-
ing /aV/ and /aI/ constructed from this were: <ou>:<i>,
<ou>:<y>, <ou>:<ie>, and <ow>:<i>, <ow>:<y>,
and <ow>:<ie>. The same corresponding normalized
distance value from the matrix of phoneme distances was
assigned to each of them and used with the acoustically
weighted Levenshtein distance. If one GU pair could rep-
resent multiple phoneme pairs, all of its values were aver-
aged. For Finnish and French similar resources were used
to obtain GUs (Lyytinen et al., 2013; Lehtonen, 2013; Wiik,
1965; International-Phonetic-Association, 1999; Guex and
Pithon, 1975; Dryer and Haspelmath, 2013; O’Grady et al.,
1997).
Those acoustic distances between phonemes for which Cut-
ler et al. (2004) have provided no values have been esti-

11https://github.com/HoenenA/
MultiModalDistance/. References to all in Müller
and Weidemann (2011).

12Coarticulation is a linguistic phenomenon whereby some
phonemes are influenced by previous or subsequent ones.

13Van Berkel (2005) analyses the English spelling system pos-
tulating for each phoneme a basic spelling which reflects the most
frequent spelling for this phoneme, a contextual spelling repre-
senting a frequent but not the most frequent spelling and word
specific spellings. Corresponding phonemes have been mapped
from American to British English in the process.

i y 1 0 w u
I Y U

e ø 9 8 G o

E œ 3 Æ 2 O

æ
a Œ A 6

@

5

Figure 3: The vowel diagram from the IPA. Highlighted in
red and bold is the path from /a/ to /3/.

mated using the average of the values of all observed pairs,
which had a similar distance. This distance was measured
in terms of numbers and qualities (backness, height, round-
edness) of edges in the vowel diagram or number and qual-
ity (place, manner and voice) of steps in the consonant table
of the International Phonetic Alphabet (IPA). See Figure
3.2., here, to come from /a/ to /3/ requires a shift in height
(to reach E) and then one in backness summing 2 steps. To
estimate the value of a pair where at least one phoneme was
not observed by Cutler et al. (2004), and where their dis-
tance was one shift in height and one in backness, we sum
and average all distances for observed vowel pairs from the
chart which have that very distance. Analogously, for con-
sonants, for instance /n/ to /m/ has 4 place steps, /n/ to /d/ 4
place and 1 manner steps, /n/ to /t/ an additional voice step
etc. For diphthongues with missing values, the distinction
was made between such diphthongue pairs which shared at
least one sound and such which did not and the concurrent
observed averaged values were assigned.

Motor Modality While biologically muscular neurology
is well-understood, research focussing on letter production
from a motor-perspective is comparatively rare. In Müller
and Weidemann (2011), the only mentioned study fo-
cussing on letter production is Miozzo and Bastiani (2002),
where production errors of one patient are reported, who
suffered a brain damaging intoxication. They found letter
substitutions to occur predominantly between letters with
common strokes such as <b> and <p> and remarked that
letter frequency, consonant-vowel status and letter gemina-
tion were affecting such errors. Their data was used to de-
fine all motoric weights and truly corresponds to handwrit-
ing. Non observed pairs received the maximum distance.14

4. Stemmatological Application of MMD
We used the artificial datasets to compute a pairwise dis-
tance matrix with the MMD (ignoring gaps in the align-
ment) using each combination of matrices (102 combina-
tions). From the pairwise distances, we computed a stemma
using NJ from the R package ape and then scored it using
the so called Average Sign Distance (ASD),15 an accuracy

14Values on < a/e > were not used.
15While on the level of path comparison operating on distance,

in terms of the overall manuscript comparison, the ASD is rather
a similarity and referred to as Average Sign Similarity by other
authors.
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Trad. Bin Lev MMD RH09
NB 69.35 58.74 69.35 77
PRZ 72.11 67.58 72.11
PRZ loss 76.04 71.28 76.04 87
HR 72.71 72.9 74.32

Table 1: Comparison of stemmatological evaluation results
with ASD on the percentage of shared words (Bin), the
Levenshtein distance (Lev) and the MMD (psycholinguisti-
cally weighted Levenshtein distance). RH09 gives the best
achieved results of the 2009 study of Roos and Heikkilä.

value introduced by Roos and Heikkilä (2009) as:

u(A,B,C) = 1− 1

2
|sign(d(A,B)− d(A,C))−

sign(d′(A,B)− d′(A,C))|

A, B and C are nodes present in both the true and the es-
timated stemma, d(A,B) is the distance of the two nodes
in the true stemma defined as the number of edges on the
shortest path between them, d′(A,B) the same distance
for the estimated tree. sign(d(A,B) − d(A,C)) returns
so to speak only the sign, discarding length, thus −1 if
d(A,B) < d(A,C), 1 in the opposite case and 0 if both
are equal. The index equals 1 if both stemmata agree and 0
if they differ ( 12 if they partly agree, for details see the for-
mula or (Roos and Heikkilä, 2009)) and is computed and
turned into a proportion for all such triples. ASD is the to
date most used evaluation metric for stemmata on the ar-
tificial data sets used for instance in (Lai and O’Sullivan,
2010; Roos and Zou, 2011; Hoenen, 2015a).16

4.1. Experiment and Results
For each of the artificial traditions, we tested 102 combi-
nations of uppercase and lowercase confusion matrices and
for each such combination, we tested 66 different param-
eter settings, including such where the weight for any one
parameter was 1.0. In all, these were 6, 732 combinations
per tradition, thus roughly 27, 000 results. Since this is far
too much to be displayed in a simple table, we give results
in several different ways. Table 1 contains the best achieved
results of the MMD for each tradition (including the fur-
ther not focussed loss scenario). Ranges between the best
and worst results in the whole grid of 6, 732 configurations
were roughly 24% ASD for NB with the worst result 45, 5
for PRZ (worst:67) and 26 for HR (worst:48).
As what regards the combinations of uppercase and low-
ercase matrices, it must be said that those transitions truly
involving only uppercase letters were rare and those involv-
ing mixed case still very infrequent (in NB roughly 10%
and for PRZ roughly 14%) in respect to lowercase to low-
ercase transitions. All matrix combinations (1 uppercase, 1
lowercase confusion matrix) witnessed parameter settings
for which the respective best results were produced. Av-
erages per matrix (over all parameter settings) produced
roughly similar results and no matrix combination was an
extreme outlier.

16A python and a C++ implementation are available from (Roos
and Heikkilä, 2009) through the stemmatology challenge website.

Trad. vis ac mot
NB −0.18(58) 0.56(66) −0.39(45)
PRZ −0.43(69) 0.83(72) −0.4(68)
PRZ loss −0.6(67) 0.51(76) 0.03(71)
HR −0.12(73) 0.29(74) −0.17(73)

Table 2: Pearson correlations between ASD values and
modal parameters, strongest per row highlighted. In
brackets, ASD value when modality was used exclusively
(weighting factor set to 1 and all other weighting factors to
0, average over combinations of letter case confusion ma-
trices).

As for the values of the modalities, we looked at the
weighted average contributions of the parameters, that is for
each modality:

∑6732
i=1 ω ∗ASD[i], where all 6,732 ASD

values are in one array and each position of the array is
conditioned by four parameters: the matrix combination,
the weight for vision, acoustics and motorics and where ω
is the corresponding weight for the modality under investi-
gation.
Values were almost identical for the modalities and a de-
sired significant difference was not visible. Looking only
at those results, where one of the parameters had been set
to 1, only for NB some significant pattern emerged: vi-
sion (contributing 39%) worked slightly better than audi-
tion (contributing 34%) while motorics performed a little
worse (contributing 27%) and deviated from the mean sig-
nificantly (t-test, significance level 0.01). Getting a deeper
insight, while this was not possible for the matrix combina-
tions due to the categorical character of these data points,
for the weighting factor values additionally a Pearson cor-
relation analysis with the ASD array could be conducted,
which yielded more interesting results, see Table 2.
There is a strong positive correlation of the acoustic modal-
ity with the result for PRZ and NB and a weak one for
HR. It must be said however that these correlations are to
be understood as on the conjunction of parameter settings.
This means that a larger negative value does not automat-
ically mean that there is a bad effect of this modality but
solely that in conjunction with at least one better perform-
ing modality, the contribution to the overall result was mod-
erate. In other words, the reason why ASD values suffer if
the negatively correlated modality gets stronger may be the
result of the more effective ones getting weaker not nec-
essarily because of a bad fit of the modality itself. This is
corroborated by the values where the single modalities were
used exclusively and by the fact that the best overall results
were often only reached in settings where the modalities
had been combined.
We conducted all the above analyses in the same way also
for the so called TASCFE corpus (Hoenen, 2015a) which
has some special characteristics such as being based on
4 different initial versions (entailing multiple roots or 4
clusters) and can be used as a testset to robustness of a
stemma generating algorithm. Secondly and most impor-
tantly, TASCFE is written in Persian making all letter dis-
tance matrices from Müller and Weidemann (2011) unuse-
ful. Not least because of the small length (the alignment
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features only 137 positions) this data set is the most chal-
lenging and produced not unexpectedly the worst results.
Best ASDs were roughly between 56 and 63 (still far from
chance) on the 4 complete single subsets. For the MMD,
visual confusion resulted in only 1 matrix which had been
modelled based on the similarity of letter features in Wi-
ley et al. (2016), motoric similarity came from the same
source but used the reported stroke similarity between the
letters. Acoustic to graphemic mappings were deducted
from the International Phonetic Alphabet (International-
Phonetic-Association, 1999).

5. Discussion
Results are generally negative in that they did not out-
perform the best of some previously reported values al-
though they are in the range of many of the there presented
approaches.17 However, to a certain extent this was ex-
pectable, given that only a subset of the innovations found
which occurred along the textual transmission are estimated
to be the direct result of simple modal or multi-modal con-
fusion on the token level. Consequently, we first looked at
the data in more detail to find out how many of the devia-
tions were possibly such captured by the MMD. We con-
ducted a tentative and surely partly subjective classifica-
tion to this end. In order to better be able to interpret this
data, the analysis was confined to NB (French) and PRZ
(English). Some of the confusions occurred many times
in different copy processes not always of the same source
manuscript. Some of them, in the French case, are presum-
ably reverts of a dictation copy where a non-native speaker
had misrecorded some silent endings. A large number of
cases involved deletions or insertions of letters, which pos-
sibly in part explain why the results of the binary distance
and the MMD are not differing for NB and PRZ. Those are
not subject to the MMD weighting schema but will make
token distance coincide with the Hamming value. Another
reason can be that some distances in the matrices (for some
matrices, the majority of distances) were so small that they
could hardly make a big difference as compared to the
Hamming distance.
Overall, we found roughly a third of the differences to be
applicable to a visual (127 of 422) or acoustic (115) weight-
ing. Motoric confusion was deemed possible for roughly a
sixth (56) of the cases. In conjunction roughly half (206) of
the variation was subject to MMD weighting.
As for the matrices, generally their performance was not
extremely different with some interesting observations.
Müller and Weidemann (2011) comparing 11 of the ma-
trices found a mean correlation of 0.68 to the generated
average matrix (p.30), which well aligns with our observa-
tion. The matrices were all qualitatively roughly similar but
some would have a large range between smallest and largest
values, some would give differing values for self similarity.

17Note, that our results on the binary distance combined with
NJ achieved slightly worse results than those obtained in the
challenge using the same data, metric and algorithm, for NB
(theirs:76.2, ours:69.35), PRZ (theirs:81.5, ours:76.04) . This
may be due to the fact that NJ is a greedy algorithm and differ-
ent implementations and/or manuscript text orderings may output
different trees.

In cases with no self similarity reported, we had assigned
unity regardless of the magnitude of differences with and
in the rest of the matrix. Overall, the matrix of (Geyer,
1977) performed best by a very small margin. (Courrieu
and De Falco, 1989)’s matrix although on average best per-
former for English clearly performed worst for French. The
data had been gained from the confusions of preschoolers
and showed a presumably acoustically decoupled confus-
ability component (<p> with <q>). Such relations might
have influenced the distance matrix in a way as to overwrite
some genealogical relations for French so that NJ, which
is a greedy algorithm found some tree quite different from
the others. Generally, the information from the differences
which are not measurable by MMD may additionally cru-
cially determine the schema of information reduction from
distance matrix to stemma and thus obscure the fit.
Comparing the different metrics, interestingly, the Leven-
shtein distance was clearly outperformed for NB and PRZ
by the binary distance despite Levenshteins ability to mea-
sure the degree of difference between two tokens. For HR
however, this was not the case. Furthermore, for HR MMD
was outperforming the binary distance. This result may be
due to the writing systems of the languages involved. More
specifically, Katz and Frost (1992) introduce the notion of
orthographic depth. English and French in this sense are
deep orthographies, that is their g2p and p2g relations con-
tain many n:m relationships, whereas Finnish is a shallow
system (Joshi and Aaron, 2013). Illustrating the difference
between a deep (English) and a shallow (Finnish) orthogra-
phy, it may suffice to look at the following two examples:
P2G: /k/→ {<c>,<k>,<ck>}EN , {<k>}FIN

G2P: <a>→ {/A/, /A: /, /6/, /æ/, /eI/}EN ,{/A/}FIN

The values from our confusion matrices in the MMD cover
1:1 letter confusion values. If now confusion took place
also on some levels of graphemic units, these would not
be captured by the visual and motoric confusion values, al-
beit by the acoustical ones. For instance the confusion of
<their> and <there> could entail such a larger-unit-based
confusion, where not one letter is cofused with one other
letter. Acoustic distances as modelled however take into
account such units since there is the above-described map-
ping between phonemes and graphemic units. In fact, the
positive correlations of the acoustic weighting factors seem
to support such an interpretation. Moreover, since Leven-
shtein may assign too large a value to confusions which
involve n:m relations that correspond to just one confusion
it may introduce noise, especially for deeper orthographies,
so much so that its overall result becomes worse than the
binary distance.18 For the same reason, MMD is distin-
guishable from the binary distance for Finnish. In this vein,
results all seem to be most consistent with an interpretation
which suggests that the proposed method currently works
best for texts written in languages with a shallow writing
system (e.g. Latin). Confusion matrices for more com-

18A similar explanation may hold for the observation of
Spencer et al. (2004b) who found that subjective weights had
made few difference. Here, weights might have accidentally ob-
scured the genealogical information although the weighting, quite
like Levenshtein may not have been unreasonable in itself.
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plex orthogaphic units could be useful.19 It also suggests
that the level of graphemic units could be quite important
in analysing confusion (on token level). This interpretation
would be consistent also with the Persian data, where tak-
ing into account abstract letter identities20 produced some
better values than the graphemic distances.
However, utter caution must be taken since the data sets are
by all means small and not representative of historical data
as such. Their size entails a grave danger of overfitting,
which is why using methods of machine learning to opti-
mize the weights may be dangerous and surely much more
effective on larger data sets. Additionally, our model of an
interplay of the modalities is not the only possibility and
ideally each position of a manuscript would require some
different weighting input or an entirely different model (for
instance if not modal confusion on the token level but con-
textual priming effects paired with some degree of visual
similarity cause miscopying (Hoenen, 2015b)). There are
confusions, where one single modality is to be held respon-
sible. When Spencer et al. (2004a) mention the exapmle of
<cl> and <d>, it is unlikely that the reason for the confu-
sion lie in any other modality than vision. Thus modelling
each modality separately and summing them, apart from
having neurological correlates, is not unreasonable but the
presented approach is surely just a first step to investigate a
complex and data sparse object.

6. Conclusion
We presented an approach to weighted stemma generation
from pairwise manuscript text distance matrices. In the ap-
proach, external data in the form of psycholinguistically
generated letter and phoneme distance matrices in the vi-
sual, acoustic and motoric modalities was used to model
weights for a weighted version of the Levenshtein distance.
We tested and evaluated the approach producing stemmata
from manuscript pair distances of three artificial data sets
with known ground truth. Results were not outperform-
ing the best results reported in Roos and Heikkilä (2009),
but in all cases were better than many other approaches.
Which external input matrix to choose was found not to be
crucial in our setting and all combinations of matrices per-
formed very similarly. Regarding the contribution of the
single modalities, acoustics as modelled performed very
well, but best results were often only achieved when the
modalities were combined in a weighting schema. We ad-
ditionally found that most likely orthographic depth was the
reason why MMD outperformed the binary distance only
for Finnish and why the unweighted Levenshtein distance
was outperformed by the binary distance for the French tra-
dition NB and the English tradition PRZ. The main contri-
bution of the paper is thus in corroborating an argument
in the discourse. That argument is that weighting beyond
the word level may make sense, but weights must be care-
fully elicited and theoretically grounded for instance using

19To this end, some experiments with OCR error data on n:m
confusions showed positive effects.

20An abstract letter identity is a cognitive entity which connects
different elements of a writing system behaving in the same way,
for instance the lowercase ’incarnation’ and the uppercase ’incar-
nation’ of a letter {a,A}.

psycholinguistically derived confusability matrices. Ap-
proaches to weighting which are not confined to the com-
parison of manuscript and token pairs, but which take into
account additional distributional information of each vari-
ant, such as the one presented by Roelli and Bachmann
(2010) could improve results of weighted approaches in
another vein, which a quantitative assessment for instance
against the benchmark datasets could reveal. We conclude
with a word of caution, that all results have been obtained
on relatively small data sets.
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