
SCALE: A Scalable Language Engineering Toolkit

Joris Pelemans1, Lyan Verwimp1, Kris Demuynck2, Hugo Van hamme1, Patrick Wambacq1

1ESAT, KU Leuven, Belgium
2ELIS, Ghent University, Belgium

{joris.pelemans,lyan.verwimp,hugo.vanhamme,patrick.wambacq}@esat.kuleuven.be
kris.demuynck@elis.ugent.be

Abstract
In this paper we present SCALE, a new Python toolkit that contains two extensions to n-gram language models. The first extension is
a novel technique to model compound words called Semantic Head Mapping (SHM). The second extension, Bag-of-Words Language
Modeling (BagLM), bundles popular models such as Latent Semantic Analysis and Continuous Skip-grams. Both extensions scale to
large data and allow the integration into first-pass ASR decoding. The toolkit is open source, includes working examples and can be
found on http://github.com/jorispelemans/scale.

Keywords: language engineering, compound modeling, bag of words

1. Introduction
Although recurrent neural networks (RNNs) have recently
become the state of the art in language modeling (Mikolov
et al., 2010), they do not yet scale as well to large data
as n-gram language models do and are as such impractical
for automatic speech recognition (ASR). Even after opti-
mization, an RNN language model (LM) is too computa-
tionally expensive to be applied directly during decoding
and its use is therefore restricted to a multi-pass approach
in which the speech signal is first decoded using a simpler
(often n-gram) LM, after which the output (N -best lists or
lattices) is rescored using the RNNLM.
In this paper we present SCALE, a new Python toolkit that
contains two extensions to n-gram LMs: Semantic Head
Mapping (SHM) and Bag-of-Words Language Modeling
(BagLM). Both of them scale to large data and allow the in-
tegration into first-pass ASR decoding. The toolkit is open
source, includes working examples and can be found on
http://github.com/jorispelemans/scale.

2. SHM for compound modeling
One of the main issues in language modeling is data spar-
sity: there is not enough training material to derive reliable
statistics for every possible word sequence. This is in part
caused by the ongoing formation of new words, a process
that has only accelerated with the rise of the Internet e.g.
Netizen, tweeple, infobesity. To successfully model these
words, it is essential to look at lexicological processes and
investigate the mechanisms that underly the formation of
words.
One of the most productive mechanisms in many languages
is compounding, which induces the frequent creation of
numerous new words all over the world. In this section
we briefly describe SHM: a tool to find semantic heads
for compounds. We also present some results that were
achieved using this tool. For more details we refer the

This research is funded by the Flemish government agency
IWT (project 130041, SCATE) and by IWT–INNOVATIEF AAN-
BESTEDEN and VRT in the STON project.

reader to (Pelemans et al., 2014a) and (Pelemans et al.,
2015).

2.1. Semantic Head Mapping
In recent work (Pelemans et al., 2014a; Pelemans et al.,
2015) we presented a novel clustering technique for com-
pound words, called Semantic Head Mapping. We ar-
gue that compounds are well represented by their seman-
tic heads and as a consequence that compound-head clus-
ters do not suffer as much from overgeneralization as other
clustering techniques. By mapping compounds onto their
semantic heads, the technique is able to estimate n-gram
probabilities for infrequent and even unseen compounds.
This approach is especially interesting for domain adapta-
tion purposes where new, domain specific words are intro-
duced into the vocabulary, but can also be applied in more
general contexts. The technique was evaluated on Dutch,
but the idea may extend to languages with similar com-
pound formation rules.
Because existing morphological information is rarely avail-
able for infrequent words, the SHM tool was built from
scratch and consists of two parts: (1) a generation module
which generates all possible decompounding hypotheses;
and (2) a selection module which selects the most plausible
head.

2.2. Generation module
First, all possible decompounding hypotheses are generated
by means of a brute-force lexicon lookup: for all possible
substrings w1 and w2 of the candidate compound w, w =
w1 + w2 is an acceptable hypothesis if w1 and w2 are both
in the lexicon. The substrings are optionally separated by
binding morphemes. The module works recursively on the
first substring i.e. if w1 is not in the lexicon, the module
will verify whether or not it is a compound by itself. In
its current implementation, the system always makes the
assumption that the head is located at the right-hand side of
the compound, since this is almost exclusively the case for
Germanic languages.
To account for possible discrepancies between modifiers
and heads, we allow the generation module to read from

3868



two different lexica: a modifier lexicon Vm and a head lexi-
con Vh. The user can decide how to create these lexica e.g.
by word frequency. Every hypothesis that has a modifier
or head that does not occur in the corresponding lexicon, is
automatically ignored. An exception is made for acronym
modifiers consisting of all uppercase characters, which are
automatically considered as valid words and are therefore
not required to be lexical.
Some additional filtering is possible based on constituent
length. Allowing short constituents often results in a dras-
tic decrease in precision, especially if the lexica contain
(noisy) infrequent short words. Two parameters Lm and
Lh are introduced to control the minimal length of modi-
fiers and heads respectively.

2.3. Selection module
The generation module hugely overgenerates because it
only has access to lexical knowledge. In the selection mod-
ule we introduce knowledge based on corpus statistics to
select the most likely candidate. Concretely, the choice be-
tween the remaining hypotheses is based on unigram proba-
bilities and constituent length: we provide selection param-
eters wlen, wu and wpu to weigh the relative importance
of the head length, head unigram probability and product
of the constituent unigram probabilities. We also allow the
use of part-of-speech (POS) knowledge, although POS tags
are often incorrect for infrequent compounds. The toolkit
allows the exploitation of POS knowledge in two different
ways: by constraining the head to have the same POS as the
compound or by specifying compound rules e.g. only allow
noun + noun.
Algorithm 1 shows pseudocode for the complete SHM al-
gorithm, excluding binding morphemes and POS knowl-
edge for the sake of clarity.

function GENERATE(compound, Vm, Vh, Lm, Lh)
for all mod+ head = compound do
if len(mod) ≥ Lm and len(head) ≥ Lh then

if head ∈ Vh then
if mod ∈ Vm or mod is acronym then
hypotheses← (mod, head)

else
hypotheses← (GENERATE(mod, ...), head)

return hypotheses
function SELECT BEST(hypotheses, wlen, wu, wpu)

for all (mod, head) ∈ hypotheses do
score← wlen ∗ len(head) + wu ∗ Puni(head)

+wpu ∗ Puni(mod) ∗ Puni(head)
if score > max score then
max score← score
best← (mod, head)

return best

Algorithm 1: Semantic head mapping algorithm

2.4. Results
Table 1 shows some results that were achieved using SHM
on a test set extracted from the Corpus Spoken Dutch
(CGN) (Oostdijk, 2000). It can be seen that the tool is capa-
ble of finding the semantic head with a precision and recall

WER
Precision Recall n=3 n=5

no mapping - - 28.23% 27.53%
SHM 80.25% 85.97% 27.29% 26.62%

Table 1: Semantic Head Mapping (SHM) results on a test
set from the Corpus Spoken Dutch (CGN). Word error rates
(WERs) are compared to a baseline n-gram LM (no map-
ping).

of ca. 80% and 86% respectively. Using the probability es-
timation techniques discussed in (Pelemans et al., 2014a),
it is possible to adapt a baseline n-gram LM to incorpo-
rate unseen compounds which gives an absolute reduction
in word error rate (WER) of ca. 1%. For more information
and results we refer the reader to (Pelemans et al., 2014a)
and (Pelemans et al., 2015).

3. BagLM for long-distance modeling
The main weakness of n-gram LMs is their primary as-
sumption that the history upon which the prediction is
based, can be reduced to only a handful of words. Al-
though it may be the case that much if not most of the
information resides in the immediate, local context of the
current word (Rosenfeld, 1994), other long-span phenom-
ena such as sentence- or document-level semantic relations
can only be modeled with the help of the more distant his-
tory. One of the ways to address this weakness is to com-
bine n-gram LMs with so-called bag-of-words techniques
that model word similarity in the hope of capturing both
local and global phenomena.
The focus of this section is BagLM: a tool that provides
several of these techniques including well established mod-
els such as cache models (Kuhn and de Mori, 1990) and
models based on Latent Semantic Analysis (Deerwester et
al., 1990). New is a bag-of-words LM that we recently pro-
posed (Pelemans et al., 2014b) which is based on the con-
tinuous skip-gram model (Mikolov et al., 2013b; Mikolov
et al., 2013a; Mikolov et al., 2013c). The cache model
was implemented from scratch, whereas the other models
are wrapped around existing implementations of similar-
ity models from the open-source Python framework gen-
sim (Řehůřek and Sojka, 2010). In what follows we briefly
describe the three main models of the tool and present some
results that were achieved using the tool. For more details
on the models and experiments we refer the reader to (Pele-
mans et al., 2014b).

3.1. Cache models
Cache models are based on the observation that topical
words tend to re-occur within a text. A cache memory is
kept that keeps track of the last K words in a document
and is consulted when predicting the next word. In their
simplest form (Kuhn and de Mori, 1990), cache models
distribute the probability mass uniformly among all the K
tokens in the cache memory:

Pcache(wq|wq−1q−K) =
Ccache(wq)

K
(1)

3869



where Ccache(wq) indicates the frequency of word wq in
the cache memory.
Cache models are simple and efficient and are capable
of modeling long distance phenomena which is the main
weakness of n-gram LMs. They do not however employ
any kind of semantic knowledge.

3.2. Latent Semantic Analysis
Latent Semantic Analysis (LSA) (Deerwester et al., 1990)
is one of the earliest attempts to discover hidden semantic
structure in a text by considering word co-occurrences. It
is a dimensionality reduction technique based on truncated
singular value decomposition that is applied on a term-
document matrix W which contains in each cell the num-
ber of times a word (rows) occurs in a document (columns).
The information in W that corresponds to the smallest sin-
gular values is considered to be noise induced by data er-
rors and word redundancy and is effectively removed by
preserving only the k largest singular values. The resulting
rank k approximation is optimal with respect to the Frobe-
nius norm and uncovers latent semantic relations between
words and documents.

Figure 1: (Truncated) Singular Value Decomposition

Often a preprocessing step is useful, because the documents
are not of equal length and not all words are equally infor-
mative. To this end, the raw counts of W may be trans-
formed according to a weighting scheme which typically
consists of a global componentG(i) and a local component
L(i, j) (Dumais, 1991). The same global weight – indicat-
ing the overall importance of a term – is applied to an entire
row of the matrix, whereas the local weight – which indi-
cates the importance of a term in a specific document – is
applied to each cell in the matrix.
Although many different schemes exist, the choice is not
so critical to the overall performance of LSA. TF-IDF is
one of the most used weighting schemes in the context of
information retrieval and also one with which we have had
good results. For an overview and classification of different
weighting schemes, we refer to Salton (1971).
Semantic similarity between documents and words is mea-
sured by calculating the cosine distance in the latent space.
In the context of language modeling, the history is consid-
ered to be a (pseudo-)document d̃ and the cosine distance
K between the word vector uq and the (pseudo-)document
vector ṽq−1 in the latent space is converted into a probabil-
ity as follows (Coccaro and Jurafsky, 1998):

P (wq|d̃) =
[K(uq, ṽq−1)−min

u
K(u, ṽq−1)]

γ∑
wi∈V

[K(ui, ṽq−1)−min
u
K(u, ṽq−1)]

γ
(2)

where V is the vocabulary and γ is a parameter that controls
the dynamic range of the distribution.
Although LSA is capable of uncovering semantic relations
between words and documents, it is insensitive to the mul-
tiple senses that many words have. Moreover, using the
Frobenius norm as an error function assumes normally dis-
tributed data with independent entries, which is not the case
for the counts in the term-document matrix.

3.3. Continuous skip-gram model
Motivated by the recent successes in neural network lan-
guage modeling, Mikolov et al. (Mikolov et al., 2013b;
Mikolov et al., 2013a; Mikolov et al., 2013c) recently pro-
posed the continuous skip-gram model (CSM): a new ar-
chitecture for the acquisition of high-quality word embed-
ding vectors which might not be able to represent the data
as precisely as neural networks, but is less complex and
can therefore handle more data efficiently. CSM is a log-
linear classifier with a continuous projection layer that tries
to maximize the prediction of words within a range R be-
fore and after the current word. The network is trained by
using backpropagation with stochastic gradient descent un-
til convergence and uses the softmax activation function to
ensure that the output layer forms a valid probability distri-
bution:

p(wt+j |wt) =
exp(vTwt

v′wt+j
)∑W

w=1 exp(v
T
wt
v′wt+j

)
(3)

where vw and v′w are the input and output representations
of word w.
The model was made more efficient by approximating the
full softmax by a hierarchical version which was first in-
troduced by Morin and Bengio (2005). The hierarchical
softmax uses a binary Huffman tree representation of the
output layer with the words as its leaves. It assigns short
binary codes to frequent words which has a significant pos-
itive effect on the overall speed of the model. For more
information on the hierarchical softmax and the continuous
skip-gram model in general, we refer the reader to Mikolov
et al. (2013a) and Mikolov et al. (2013b).

Figure 2: Continuous Skip-gram Model

An interesting observation was made in Mikolov et al.
(2013c): the vector-space word representations that are im-
plicitly learned by the input-layer weights are surprisingly
good at capturing both semantic and syntactic regularities
in language and each relationship is characterized by a
relation-specific vector offset. This allows intuitive vector
mathematics based on the offsets between words e.g. king -
man + woman results in a vector that is very close to that of

3870



queen. It is clear that these CSM word embedding vectors
can be a valuable source of information to enrich existing
LM techniques.
For word embedding vectors to be incorporated into a LM,
we need to have a representation at a higher level than just
individual words. In the current implementation we chose
to calculate the centroid of the previous K word vectors,
even though this makes the unreasonable assumption that
the meaning of a phrase is equal to the sum of its compo-
nents. We then calculated the cosine distance of this cen-
troid to the predicted word, using a similar technique as
Eq. (2) to end up with a probability distribution.
Mikolov et al. (2013b) show that the assumption that the
meaning of a phrase is equal to the sum of its components
can be overcome in part by detecting common phrases i.e.
words that appear frequently together and infrequently in
other contexts. This way they were able to replace New
York Times by a single token while this is remained un-
changed. We have not experimented with this approach,
but the toolkit certainly allows it.
They did not however address the assumption of equal word
importance. Function words like the and of are clearly less
informative than content words, hence should be given less
weight. This can be dealt with quite easily by applying the
same TF-IDF weighting as was mentioned in Section 3.2..

3.4. Results
Table 2 shows some results that were achieved using vari-
ous combinations of n-grams with BagLM models on a test
set extracted from the Flemish magazine Knack. It can be
seen that the BagLM models are a valuable extension of n-
grams with perplexity reductions of up to ca. 13% and 21%
for individual and multiple models, respectively. For more
information and results we refer the reader to (Pelemans et
al., 2014b).

PPL Reduction
3-gram 210.36
4-gram 198.10 5.83%
5-gram 197.69 6.02%
3-gram+cache 187.89 10.68%
3-gram+LSA 186.12 11.53%
3-gram+CSM 183.62 12.71%
3-gram+cache+CSM 175.82 16.42%
4-gram+cache+CSM 166.20 21.00%
5-gram+cache+CSM 166.16 21.02%

Table 2: Perplexity results for various combinations of n-
gram and BagLM models using a vocabulary of 50,000
words, as measured on a test set from the Flemish maga-
zine Knack.

4. Conclusion
We presented a new toolkit that contains two extensions
to n-gram language models: SHM and BagLM. Both of
them scale to large data and allow the integration into
first-pass ASR decoding. The toolkit is open source, in-
cludes working examples and can be found on http://
github.com/jorispelemans/scale. To the best

of our knowledge, no other toolkits exist that provide this
functionality.

5. Bibliographical References
Coccaro, N. and Jurafsky, D. (1998). Towards Better In-

tegration Of Semantic Predictors In Statistical Language
Modeling. In Proc. ICSLP, pages 2403–2406.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent se-
mantic analysis. Journal of the American Society for In-
formation Science, 41(6):391–407.

Dumais, S. T. (1991). Behavior Research Methods, Instru-
ments, & Computers, (2):229–236.

Kuhn, R. and de Mori, R. (1990). A Cache-Based Natural
Language Model for Speech Recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 12(6):570–583.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and
Khudanpur, S. (2010). Recurrent neural network based
language model. In Proc. Interspeech, pages 1045–
1048.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient Estimation of Word Representations in Vector
Space. CoRR, abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed Representations of Words
and Phrases and their Compositionality. In Proc. NIPS,
pages 3111–3119.

Mikolov, T., tau Yih, W., and Zweig, G. (2013c). Linguis-
tic Regularities in Continuous Space Word Representa-
tions. In Proc. HLT-NAACL, pages 746–751.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilis-
tic neural network language model. In Proc. AISTATS,
pages 246–252.

Oostdijk, N. (2000). The Spoken Dutch Corpus. The
ELRA Newsletter, 5(2):4–8. http://lands.let.ru.nl/cgn/.

Pelemans, J., Demuynck, K., Van hamme, H., and
Wambacq, P. (2014a). Coping with Language Data
Sparsity: Semantic Head Mapping of Compound Words.
In Proc. ICASSP, pages 141–145.

Pelemans, J., Demuynck, K., Van hamme, H., and
Wambacq, P. (2014b). The effect of word similarity
on N-gram language models in Northern and Southern
Dutch. CLIN, 24:91–104.

Pelemans, J., Demuynck, K., Van hamme, H., and
Wambacq, P. (2015). Improving N-gram Probabilities
by Compound-head Clustering. In Proc. ICASSP, pages
5221–5225.

Řehůřek, R. and Sojka, P. (2010). Software framework
for topic modelling with large corpora. In Proc. LREC,
pages 45–50.

Rosenfeld, R. (1994). Adaptive Statistical Language Mod-
eling: A Maximum Entropy Approach. Ph.D. thesis,
Carnegie Mellon University.

Salton, G. (1971). The SMART Retrieval System: Ex-
periments in Automatic Document Processing. Prentice-
Hall, Inc.

3871


