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Abstract

We describe the SEx BiST parser (Seman-
tically EXtended Bi-LSTM parser) de-
veloped at Lattice for the CoNLL 2018
Shared Task (Multilingual Parsing from
Raw Text to Universal Dependencies).
The main characteristic of our work is the
encoding of three different modes of con-
textual information for parsing: (i) Tree-
bank feature representations, (ii) Multi-
lingual word representations, (iii) ELMo
representations obtained via unsupervised
learning from external resources. Our
parser performed well in the official end-
to-end evaluation (73.02 LAS – 4th/26
teams, and 78.72 UAS – 2nd/26); remark-
ably, we achieved the best UAS scores
on all the English corpora by applying
the three suggested feature representa-
tions. Finally, we were also ranked 1st at
the optional event extraction task, part of
the 2018 Extrinsic Parser Evaluation cam-
paign.

1 Introduction

Feature representation methods are an essential
element for neural dependency parsing. Meth-
ods such as Feed Forward Neural Network (FFN)
(Chen and Manning, 2014) or LSTM-based word
representations (Kiperwasser and Goldberg, 2016;
Ballesteros et al., 2016) have been proposed to
provide fine-grained token representations, and
these methods provide state of the art perfor-
mance. However, learning efficient feature repre-
sentations is still challenging, especially for under-
resourced languages.

One way to cope with the lack of training data
is a multilingual approach, which makes it possi-
ble to use different corpora in different languages

as training data. In most cases, for instance in the
CoNLL 2017 shared task (Zeman et al., 2017), the
teams that have adopted this approach used a mul-
tilingual delexicalized parser (i.e. a multi-source
parser trained without taking into account lexical
features). However, it is evident that delexicalized
parsing cannot capture contextual features that de-
pend on the meaning of words within the sentence.

Following previous proposals promoting a
model-transfer approach with lexicalized feature
representations (Guo et al., 2016; Ammar et al.,
2016; Lim and Poibeau, 2017), we have developed
the SEx BiST parser (Semantically EXtended Bi-
LSTM parser), a multi-source trainable parser us-
ing three different contextualized lexical represen-
tations:

• Corpus representation: a vector representa-
tion of each training corpus.

• Multilingual word representation: a multi-
lingual word representation obtained by the
projection of several pre-trained monolingual
embeddings into a unique semantic space
(following a linear transformation of each
embedding).

• ELMo representation: token-based repre-
sentation integrating abundant contexts gath-
ered from external resources (Peters et al.,
2018).

In this paper, we extend the multilingual graph-
based parser proposed by Lim and Poibeau
(2017) with the three above representations.
Our parser is open source and available at:
https://github.com/CoNLL-UD-2018/
LATTICE/.

Our parser performed well in the official end-to-
end evaluation (73.02 LAS – 4th out of 26 teams,
and 78.72 UAS – 2nd out of 26). We obtained very

https://github.com/CoNLL-UD-2018/LATTICE/
https://github.com/CoNLL-UD-2018/LATTICE/
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good results for French, English and Korean where
we were able to extensively exploit the three above
features (for these languages, we obtained the best
UAS performance on all the treebanks, and among
the best LAS performance as well). Unfortunately
we were not able to exploit the same strategy for
all the languages due to a lack of a GPU and, cor-
respondingly, time for training, and also due a lack
of training data for some languages.

The structure of the paper is as follows. We
first describe the feature extraction and represen-
tation methods (Section 2 and 3) and then present
our POS tagger and our parser based on multi-task
learning (Section 4). We then give some details
on our implementation (Section 5) and we finally
provide an analysis of our official results (Section
6).

2 Deep Contextualized Token
Representations

The architecture of our parser follows the mul-
tilingual LATTICE parser presented in Lim and
Poibeau (2017), with the addition of the three fea-
ture representations presented in the introduction.

The basic token representations is as follows.
Given a sentence of tokens s=(t1,t2,..tn), the ith

token ti can be represented by a vector xi, which
is the result of the concatenation (◦) of a word
vector wi and a character-level vector ci of ti:

xi = ci ◦ wi

ci = Char(ti; θc)
wi = Word(ti; θw)

When the approach is monolingual, wi corre-
sponds to the external word embeddings provided
by Facebook (Bojanowski et al., 2016). Otherwise
we used our own multilingual strategy based on
multilingual embeddings (see Section 3.2)

2.1 Character-Level Word Representation
Token ti can be decomposed as a vector of
characters (ch1, ch2,.. chm) where chj is the jth

character of ti. The function Char (that generates
the character-level word vector ci) corresponds to
a vector obtained from the hidden state represen-
tation hj of the LSTM, with an initial state h0 (m
is the length of token ti)1:

1Note that i refers to the ith token in the sentence and that j
refers to the jth character of the ith token. Here, we use lower-
case italics for vectors and uppercase italics for matrices. So

hj = LSTM(ch)(h0, (ch1,ch2,..chm))j

ci = wchm

For LSTM-based character-level represen-
tations, previous studies have shown that the
last hidden layer hm represents a summary of
all the information based on the input character
sequences (Shi et al., 2017). It is then possible
to linearly transform this with a parameter wc

so as to get the desired dimensionality. Another
representation method involves applying an
attention-based linear transformation of the hid-
den layer matrix Hi, for which attention weights
ai are calculated as follows:

ai = Sofmax(watt Hi
T)

ci = aiHi

Since we apply the Softmax function, making
weights sum up to 1 after a linear transforma-
tion of Hi with attention parameter watt, the self-
attention weight ai intuitively corresponds to the
most informational characters of token ti for pars-
ing. Finally, by summing up the hidden state Hi

of each word according to its attention weights ai,
we obtain our character-level word representation
vector for token ti. Most recently, Dozat et al.
(2017) suggested an enhanced character-level rep-
resentation based on the concatenation of hm and
aiHi so as to capture both the summary and con-
text information in one go for parsing. This is an
option that could be explored in the future.

After some empirical experiments, we chose
bidirectional LSTM encoders rather than a single
directional one and then introduced the hidden
state Hi into the two-layered Multi-Layer Percep-
tron (MLP) without bias terms for computing the
attention weight ai:

ai = Sofmax(watt2 tanh(Watt1 Hi
T))

ci = aiHi

For training, we used the charter-level word repre-
sentations for all the languages except Kazakh and
Thai (see Section 5).

2.2 Corpus Representation
Following Lim and Poibeau (2017), we used a
one-hot treebank representation strategy to encode

a set of hidden state Hi is a matrix stacked on m characters.
In this paper, all the letters w and W denote parameters that
the system has to learn.
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language-specific features. In other words, each
language has its own set of specific lexical fea-
tures.

For languages with several training corpora
(e.g., French-GSD and French-Spoken), our
parser computes an additional feature vector
taking into account corpus specificities at word
level. Following the recent work of Stymne et al.
(2018), who proposed a similar approach for
treebank representations, we chose to use a 12
dimensional vector for corpus representation.
This representation tri is concatenated with the
token representation xi:

tri = Treebank(ti; θtr)

xi = ci ◦ wi ◦ tri

We used this approach (corpus representation) for
24 corpora, and its effectiveness will be discussed
in Section 5.

2.3 Contextualized Representation

ELMo (Embedding from Language Model (Peters
et al., 2018)) is a function that provides a represen-
tation based on the entire input sentence. ELMo
contextualized embedding is a new technique for
word representation that has achieved state-of-the-
art performance across a wide range of language
understanding tasks. This approach is able to cap-
ture both subword and contextual information. As
stated in the original paper by Peters et al. (2018),
the goal is to “learn a linear combination of the
vectors stacked above each input word for each
end task, which markedly improves performance
over just using the top LSTM layer”.

We trained our language model with bidirec-
tional LSTM using ELMo as an intermediate layer
in the bidirectional language model (biLM), and
we used ELMo embeddings to improve again the
performance of our model.

Ri = {xLMi ,
←→
h LM

i,j | = 1, ..., L}

= {hLM
i,j | = 0, ..., L}

(1)

ELMoi = E(Ri; Θ) = γ

L∑
j=0

sjhLM
i,j (2)

In (1), xLMi and hLMi,0 are word embedding vec-

tors corresponding to the token layer.
←→
h LM

i,j is

a hidden LSTM vector consisting of a multi-layer
and a bidirectional LSTM layer. hLM

i,j is a con-

catenated vector composed of xLMi and
←→
h LM

i,j .
We computed our model with all the biLM layers
weighted. In (2), sj is softmax weight that is train-
able to normalize multi-layer LSTM layers. γ is
the scalar parameter to efficiently train the model.
We used a 1024 dimensions ELMo embedding.

3 Multilingual Feature Representations

The supervised, monolingual approach to parsing,
based on syntactically annotated corpora, has long
been the most common one. However, thanks to
recent developments involving powerful word rep-
resentation methods (a.k.a. word embeddings), it
is now possible to develop accurate multilingual
lexical models by mapping several monolingual
embeddings into a single vector space. This mul-
tilingual approach to parsing has yielded encour-
aging results for both low- (Guo et al., 2015) and
high-resource languages (Ammar et al., 2016). In
this work, we extend the recent multilingual de-
pendency parsing approach proposed by Lim and
Poibeau (2017) that achieved state-of-the-art per-
formance during the last CoNLL shared task by
using multilingual embeddings mapped based on
bilingual dictionaries.

3.1 Embedding Projection

There are different strategies to produce multilin-
gual word embeddings (Ruder et al., 2018), but
a very efficient one consists in simply project-
ing one word embedding on top of the other to
make both representations share the same seman-
tic space (Artetxe et al., 2016). The alternative in-
volves directly generating bilingual word embed-
dings from bilingual corpora (Gouws et al., 2015;
Gouws and Sgaard, 2015), but this requires a large
amount of bilingual data aligned at sentence or
document level. This kind of resource is not avail-
able for most language pairs, especially for under-
resourced languages.

We thus chose to train independently monolin-
gual word embeddings and then map these word
embeddings one to another. This approach is pow-
erful since monolingual word embeddings gener-
ally share a similar structure (especially if they
have been trained on similar corpora) and so can
be superimposed with little information loss.

To project embeddings, we applied the linear
transformation method using bilingual dictionar-
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ies proposed by Artetxe et al. (2017). We took the
bilingual dictionaries from OPUS2 and Wikipedia.

The projection method can be described as fol-
lows. Let X and Y be the source and target word
embedding matrix so that xi refers to ith word em-
bedding of X and yj refers to jth word embedding
of Y. And let D be a binary matrix where Dij = 1,
if xi and yj are aligned. Our goal is to find a trans-
formation matrix W such that Wx approximates y.
This is done by minimizing the sum of squared er-
rors:

arg min
W

m∑
i=1

n∑
j=1

Dij‖xiW − yi‖2

The method is relatively simple since convert-
ing a bilingual dictionary into D is quite straight-
forward. The size of the dictionary used for train-
ing is around 250 pairs, and the projected word
embedding is around 1.8GB. The dictionaries and
the projected word embeddings are publicly avail-
able on Github.3

3.2 Training with Multilingual Embedding
After having trained multilingual embeddings,
we associate them with word representation wi as
follows:

wi = Word(ti; θmw)

We applied the multilingual embedding mostly
to train the nine low-resource languages of the
2018 CoNLL evaluation, for which only a hand-
ful of annotated sentences were provided.

4 Multi-Task Learning for Tagging and
Parsing

In this section, we describe our Part-Of-Speech
(POS) tagger and dependency parser using the en-
coded token representation xi based on Multi-Task
Learning (MTL) (Zhang and Yang, 2017).

4.1 Part-Of-Speech Tagger
As presented in Section 2 and 3, our parser is
based on models trained with a combination of
features, encoding different contextual informa-
tion. However, the attention mechanism for the
character-level word vector ci is focusing only on
a limited number of features within the token, and

2http://opus.nlpl.eu/
3https://github.com/jujbob/

multilingual-models

the word representation element wi is thus needed
to transform a bidirectional LSTM, as a way to
capture the overall context of a sentence. Finally,
a token is encoded as a vector gi:

gi = BiLSTM(pos)(g0, (x1,x2,..xn))i

We transform the token vector gi to a vector of
the desired dimensionality by two-layered MLP
with a bias term to classify the best candidate of
universal part-of-speech (UPOS):

p′i = Wpos2 leaky relu(Wpos1 gi
T) + bpos

y′i = arg max
j
p′ij

Finally, we randomly initialize the UPOS
embedding as pi and map the predicted UPOS y′i
as a POS vector:

pi = Pos(y′i; θpos)

4.2 Dependency Parser
To take into account the predicted POS vector on
the main target task (i.e. parsing), we concatenate
the predicted POS vector pi with the word rep-
resentation wi and then we encode the resulting
vector via BiLSTM. This enriches the syntactic
representations of the token by back-propagation
during training:

vi = BiLSTM(dep)(v0, (x1,x2,..xn))i

Following Dozat and Manning (2016), we used
a deep bi-affine classifier to score all the possi-
ble head and modifier pairs Y = (h,m). We then
selected the best dependency graph based on Eis-
ner’s algorithm (Eisner and Satta, 1999). This al-
gorithm tries to find the maximum spanning tree
among all the possible graphs:

arg max
valid Y

∑
(h,m)∈Y

ScoreMST (h,m)

With this algorithm, it has been observed that pars-
ing results (for some sentences) can have multiple
roots, which is not a desirable feature. We thus fol-
lowed an empirical method that selects a unique
root based on the word order of the sentence, as
already proposed by Lim and Poibeau (2017) to
ensure tree well-formedness. After the selection

https://github.com/jujbob/multilingual-models
https://github.com/jujbob/multilingual-models
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of the best-scored tree, another bi-affine classifier
is applied for the classification of relation labels,
based on the predicted tree.

We trained our tagger and parser simultaneously
using a single objective function with penalized
terms:

loss = αCrossEntropy(p′, p(gold))

+ βCrossEntropy(arc′, arc(gold))

+ γCrossEntropy(dep′, dep(gold))

where arc′ and dep′ refer to the predicted arc
(head) and dependency (modifier) results.

Since UAS directly affects LAS, we assumed
that UAS would be crucial for parsing unseen cor-
pora such as Finnish PUD, as well as other cor-
pora from low-resource languages. Therefore, we
gave more weight to the parameters predicting
arc′ than rel′ and p′, since arc′ directly affects
UAS. We set α = 0.1, β = 0.7 and γ = 0.2. Un-
fortunately, during the testing phase, we did not
adjust weight parameters that would have bene-
fited LAS for the 61 big treebanks, and this made
our results on big treebanks suffer a bit (7th) com-
pared to those we obtained on Small and PUD
treebanks (3th) regarding LAS. This also explains
the gap between the UAS and LAS scores in our
overall results.

5 Implementation Details

In this section, we provide some details on our im-
plementation for the CoNLL 2018 shared task (Ze-
man et al., 2018b).

5.1 Training

We have trained both monolingual and multilin-
gual models for parsing. In the first case, we sim-
ply used the available Universal Dependency 2.2
corpora for training (Zeman et al., 2018a). In the
second case, for the multilingual approach, as both
multilingual word embeddings and corresponding
training corpora (in the Universal Dependency 2.2
format) were required, we concatenated the corre-
sponding available Universal Dependency 2.2 cor-
pora to artificially create multilingual training cor-
pora.

The number of epochs was set to 200, with one
epoch processing the entire training corpus in each
language and with a batch size of 32. We then
picked the best five performing models to parse
the test corpora on TIRA (Potthast et al., 2014).

The five models were used as an ensemble run (de-
scribed in Section 5.2).

Hyperparameters. Each deep learning parser
has a number of hyperparameters that can boost
the overall performance of the system. In our im-
plementation, most hyperparameter settings were
identical to Dozat et al. (2017), except of course
those concerning the additional features we have
introduced before. We used 100 dimensional
character-level word representations with a 200 di-
mensional MLP, as presented in Section 2, and
for corpus representation, we used a 12 dimen-
sional vector. We set the learning-rate to 0.002
with Adam optimization.

Multilingual Embeddings. As described in
Section 3, we specifically trained multilingual em-
bedding models for nine low-resource languages.
Table 2 gives the list of languages for which we
adopted this approach, along with the language
used for knowledge transfer. We selected language
pairs based on previous studies (Lim and Poibeau,
2017; Lim et al., 2018; Partanen et al., 2018) for
bxr, kk, kmr, sme, and hsb, and the others where
chosen based on the public availability of bilin-
gual dictionaries (this explains why we chose to
map several languages with English, even when
there was no real linguistically motivated reason
to do so). Since we could not find any pre-trained
embeddings for pcm nsc, we applied a delexical-
ized parsing approach based on an English mono-
lingual model.

ELMo. We used ELMo weights to train spe-
cific models for five languages: Korean, French,
English, Japanese and Chinese. ELMo weights
were pre-trained using the CoNLL resources pro-
vided 4. We used AllenNLP5 for training, and used
the default hyperparameters. We included ELMo
only at the level of the input layer for both training
and inference (we set up dropout to 0.5 and used
1024 dimensions for the ELMo embedding layer
in our model). All the other hyper-parameters are
the same as for our other models (without ELMo).

5.2 Testing

All the tests were done on the TIRA platform pro-
vided by the shared task organizers. During the
test phase, we applied an ensemble mechanism us-
ing five models trained with two different “seeds”.
The seeds are integers randomly produced by the

4http://hdl.handle.net/11234/1-1989
5https://github.com/allenai/allennlp
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Corpus UAS LAS Rank(UAS) Rank(LAS) Baseline(LAS)
Overall (82) 78.71 73.02 2 4 65.80
Big treebanks only (61) 85.36 80.97 4 7 74.14
PUD treebanks only (5) 76.81 72.34 3 3 66.63
Small treebanks only (7) 75.67 68.12 2 3 55.01
Low-resource only (9) 37.03 23.39 4 5 17.17

Corpus Method UAS(Rank) LAS(Rank)
af afribooms 87.42 (7) 83.72 (8)
grc perseus tr 79.15 (4) 71.63 (8)
grc proiel tr 79.53 (5) 74.46 (8)
ar padt 75.96 (8) 71.13 (10)
hy armtdp tr, mu 53.56 (1) 37.01 (1)
eu bdt 85.72 (7) 81.13 (8)
br keb tr, mu 43.78 (3) 23.65 (5)
bg btb 92.1 (9) 88.02 (11)
bxr bdt tr, mu 36.89 (3) 17.16 (4)
ca ancora 92.83 (6) 89.56 (9)
hr set 90.18 (8) 84.67 (9)
cs cac tr 93.43 (2) 91 (2)
cs fictree tr 94.78 (1) 91.62 (3)
cs pdt tr 92.73 (2) 90.13 (7)
cs pud tr 89.49 (7) 83.88 (9)
da ddt 85.36 (8) 80.49 (11)
nl alpino tr 90.59 (2) 86.13 (5)
nl lassysmall tr 87.83 (2) 84.02 (4)
en ewt tr, el 86.9 (1) 84.02 (2)
en gum tr, el 88.57 (1) 85.05 (1)
en lines tr, el 86.01 (1) 81.44 (2)
en pud tr, el 90.83 (1) 87.89 (1)
et edt 86.25 (7) 82.33 (7)
fo oft tr, mu 48.64 (9) 25.17 (17)
fi ftb tr 89.74 (4) 86.54 (6)
fi pud tr 90.91 (4) 88.12 (6)
fi tdt tr 88.39 (6) 85.42 (7)
fr gsd tr, el 89.5 (1) 86.17 (3)
fr sequoia tr, el 91.81 (1) 89.89 (1)
fr spoken tr, el 79.47 (2) 73.62 (3)
gl ctg tr 84.05 (7) 80.63 (10)
gl treegal tr 78.71 (2) 73.13 (3)
de gsd 82.09 (8) 76.86 (11)
got proiel 73 (6) 65.3 (8)
el gdt 89.29 (8) 86.02 (11)
he htb 66.54 (9) 62.29 (9)
hi hdtb 94.44 (8) 90.4 (12)
hu szeged 80.49 (8) 74.21 (10)
zh gsd tr, el 71.48 (5) 68.09 (5)
id gsd 85.03 (3) 77.61 (10)
ga idt 79.13 (2) 69.1 (4)

Corpus Method UAS(Rank) LAS(Rank)
it isdt tr 92.41 (6) 89.96 (8)
it postwita tr 77.52 (6) 72.66 (7)
ja gsd tr, el 76.4 (6) 74.82 (6)
ja modern 29.36 (8) 22.71 (8)
kk ktb tr, mu 39.24 (15) 23.97 (9)
ko gsd tr, el 88.03 (2) 84.31 (2)
ko kaist tr, el 88.92 (1) 86.32 (4)
kmr mg tr, mu 38.64 (3) 27.94 (4)
la ittb tr 87.88 (8) 84.72 (8)
la perseus tr 75.6 (3) 64.96 (3)
la proiel tr 73.97 (6) 67.73 (8)
lv lvtb tr 82.99 (8) 76.91 (11)
pcm nsc tr, mu 18.15 (21) 11.63 (18)
sme giella tr, mu 76.66 (1) 69.87 (1)
no bokmaal 91.4 (5) 88.43 (11)
no nynorsk tr 90.78 (8) 87.8 (11)
no nynorsklia tr 76.17 (2) 68.71 (2)
cu proiel 77.49 (6) 70.48 (8)
fro srcmf 91.35 (5) 85.51 (7)
fa seraji 89.1 (7) 84.8 (10)
pl lfg tr 95.69 (8) 92.86 (11)
pl sz tr 92.24 (9) 88.95 (10)
pt bosque 89.77 (5) 86.84 (7)
ro rrt 89.8 (8) 84.33 (10)
ru syntagrus tr 93.1 (4) 91.14 (6)
ru taiga tr 79.77 (1) 74 (2)
sr set 90.48 (10) 85.74 (11)
sk snk 86.81 (11) 82.4 (11)
sl ssj tr 87.18 (10) 84.68 (10)
sl sst tr 63.64 (3) 57.07 (3)
es ancora 91.81 (6) 89.25 (7)
sv lines tr 85.65 (4) 80.88 (6)
sv pud tr 83.44 (3) 79.1 (4)
sv talbanken tr 89.02 (4) 85.24 (7)
th pud tr, mu 0.33 (21) 0.12 (21)
tr imst 69.06 (7) 60.9 (11)
uk iu 85.36 (10) 81.33 (9)
hsb ufal tr, mu 54.01 (2) 43.83 (2)
ur udtb 87.4 (7) 80.74 (10)
ug udt 75.11 (6) 62.25 (9)
vi vtb 49.65 (6) 43.31 (8)

Table 1: Official experiment results for each corpus, where tr (Treebank), mu (Multilingual) and el
(ELMo) in the column Method denote the feature representation methods used (see Section 2 and 3).

Corpus Projected languages UAS LAS
hy armntdp Greek 1 1
br keb English 3 5
bxr bdt Russian 3 4
fo oft English 9 17
kk ktb Turkish 15 9
kmr mg English 3 4
pcm nsc - 21 18
sme giella Finnish+Russian 1 1
th giella English 21 21
hsb ufal Polish 2 2

Table 2: Languages trained with multilingual
word embeddings and their ranking.

Representation Methods UAS LAS
baseline 81.79 78.45
+em 83.39 80.15
+em, tr 83.67 80.64
+em, el 85.47 82.72
+em, tr, el 85.49 82.93

Table 3: Relative contribution of the different rep-
resentation methods on the overall results.
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Python random library and are used to initialize
the two parameters W and w (see Section 2). Gen-
erally, an ensemble mechanism combines the best
performing models obtained from different seeds,
so as to ensure robustness and efficiency. In our
case, due to a lack of a GPU, different models have
been trained simply based on the use of two differ-
ent seeds. Finally, the five best performing models
produced by the two seeds were put together to
form the ensemble model. This improved the per-
formances by up to 0.6%, but other improvements
could be expected by testing with a larger set of
seeds.

5.3 Hardware Resources

The training process for all the language models
with the ensemble and ELMo was done using 32
CPUs and 7 GPUs (Geforce 1080Ti) in approx-
imately two weeks. The memory usage of each
model depends on the size of external word em-
beddings (3GB RAM by default plus the amount
needed for loading the external embeddings). In
the testing phase on the TIRA platform, we sub-
mitted our models separately, since testing with
a model trained with ELMo takes around three
hours. Testing took 46.2 hours for the 82 corpora
using 16 CPUs and 16GB RAM.

6 Results

In this section, we discuss the results of our sys-
tem and the relative contributions of the different
features to the global results.

Overall results. The official evaluation results
are given in Table1. Our system achieved 73.02
LAS (4th out of 26 teams) and 78.71 UAS (2nd out
of 26).

The comparison of our results with those ob-
tained by other teams shows that there is room for
improvement regarding preprocessing. For exam-
ple, our system is 0.86 points below HIT-SCIR
(Harbin) for sentence segmentation and 1.03 for
tokenization (HIT-SCIR obtained the best overall
results). Those two preprocessing tasks (sentence
segmentation and tokenization) affect tagging and
parsing performance directly. As a result, our
parser ranked second on small treebanks (LAS),
where most teams used the default segmenter and
tokenizer, avoiding the differences on this aspect.
In contrast, we achieved 7th on the big treebanks,
probably because there is a more significant gap
(1.72) here at the tokenization level.

Corpus Representation. Results with cor-
pus representation (corpora marked tr in column
Method of Table 1) exhibit relatively better perfor-
mance than those without it, since tr makes it pos-
sible to capture corpus-oriented features. Results
were positive not only for small treebanks (e.g.,
cs fictree and ru taiga) but also for big treebanks
(e.g., cs cac and ru syntagrus). Corpus represen-
tation with ELMo shows the best performance for
parsing English and French.

Multilinguality. As described in Section 3,
we applied the multilingual approach to most
of the low-resource languages. The best result
is obtained for hy armtdp, while sme giella and
hsb ufal also gave satisfactory results. We only
applied the delexicalized approach to pcm nsc
since we could not find any pre-trained embed-
dings for this language. We got a relatively poor
result for pcm nsc, despite testing different strate-
gies and different feature combinations (we as-
sume that the English model is not fit for it).

Additionally, we found that character-level rep-
resentation is not always helpful, even in the case
of some low-resource languages. When we tested
kk ktb (Kazakh) trained with a Turkish corpus,
with multilingual word embeddings and character-
level representations, the performance dramati-
cally decreased. We suspect this has to do with
the writing systems (Arabic versus Latin), but this
theory should be further investigated.

sme giella is another exceptional case since we
chose to use a multilingual model trained with
three different languages. Although Russian and
Finnish do not use the same writing system, apply-
ing character and corpus representation improve
the results. This is because the size of the train-
ing corpus for sme giella is around 900 sentences,
which seems to be enough to capture its main char-
acteristics.

Language Model (ELMo). We used ELMo
embeddings for five languages: Korean, French,
English, Japanese and Chinese (they are marked
with el in the method column in Table 1). The
experiments with ELMo models showed excel-
lent overall performance. All the English cor-
pora, fr gsd and fr sequoia in French, and Korean
ko kaist obtained the best UAS. We also obtained
the best LAS for English en gum and en pud, and
for fr sequoia in French.

Contributions of the Different System Com-
ponents to the General results. To analyze the
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Task Precision Recall F1(Rank)
Event Extraction 58.93 43.12 49.80 (1)

Negation Resolution 99.08 41.06 58.06 (12)
Opinion Analysis 63.91 56.88 60.19 (9)

Task LAS MLAS BLEX
Intrinsic Evaluation 84.66 (1) 72.93 (3) 77.62 (1)

Table 4: Official evaluation results on three EPE
task (see https://goo.gl/3Fmjke).

effect of the proposed representation methods on
parsing, we evaluated four different models with
different components. We set our baseline model
with a token representation as xi = wi ◦ ci ◦ pi,
where wi is a randomly initialized word vector, ci

is a character-level word vector and pi is a POS
vector predicted by UDpipe1.1 (note that we did
not apply our 2018 POS tagger here, since it is
trained jointly with the parser and that affects the
overall feature representation). We then initialized
the word vector wi with external word embeddings
as provided by the CoNLL shared organizers. We
also re-run the experiment by adding treebank and
ELMo representations. The results are shown in
Table 3 (em denotes the use of the external word
embedding and tr and el denotes treebank and
ELMo representations respectively.). We observe
that each representation improves the overall re-
sults. This is especially true regarding LAS when
using ELMo (el), which means this representation
has a positive effect on relation labeling.

Extrinsic Parser Evaluation (EPE 2018). Par-
ticipants in the CoNLL shared task were invited to
also participate in the 2018 Extrinsic Parser Eval-
uation (EPE) campaign6 (Fares et al., 2018), as a
way to confirm the applicability of the developed
methods on practical tasks. Three downstream
tasks were proposed this year in the EPE: biomed-
ical event extraction, negation resolution and opin-
ion analysis (and each task was run independently
from the others). For this evaluation, participants
were only required to send a parsed version of the
different corpora received as input back to the or-
ganizers using a UD-type format (the organizers
then ran the different scripts related to the dif-
ferent tasks and computed the corresponding re-
sults). We trained one single English model for
the three tasks using the three English corpora pro-
vided (en lines, en ewt, en gum) without treebank
embeddings (tr), since we did not know which cor-
pus embedding would perform better. In addition,

6http://epe.nlpl.eu/

we did not apply our ensemble process on TIRA
since it would have been too time consuming.

Our results are listed in Table 4. They in-
clude an intrinsic evaluation (overall performance
of the parser on the different corpora considered
as a whole) (Nivre and Fang, 2017) and task-
specific evaluations (i.e. results for the three dif-
ferent tasks). In the intrinsic evaluation, we ob-
tained the best LAS among all the participating
systems, which confirms the portability of our ap-
proach across different domains. As for the task-
specific evaluations, we obtained the best result for
event extraction, but our parser did not perform
so well on negation resolution and opinion analy-
sis. This means that specific developments would
be required to properly address the two tasks un-
der consideration, taking semantics into consider-
ation.

7 Conclusion

In this paper, we described the SEx BiST parser
(Semantically EXtended Bi-LSTM parser) devel-
oped at Lattice for the CoNLL 2018 Shared Task.
Our system was an extention of our 2017 parser
(Lim and Poibeau, 2017) with three deep contex-
tual representations (multilingual word represen-
tation, corpus representations, ELMo representa-
tion). It also included a multi-task learning pro-
cess able to simultaneously handle tagging and
parsing. SEx BiST achieved 73.02 LAS (4th over
26 teams), and 78.72 UAS (2nd out of 26), over
the 82 test corpora of the evaluation. In the future,
we hope to improve our sentence segmenter and
our tokenizer since this seems to be the most ob-
vious target for improvements to our system. The
generalization of ELMo representation to new lan-
guages (beyond what we could do for the 2018
evaluation) should also have a positive effect on
the results.
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