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Abstract

Named Entity Disambiguation algorithms typ-
ically learn a single model for all target en-
tities. In this paper we present a word ex-
pert model and train separate deep learning
models for each target entity string, yielding
500K classification tasks. This gives us the
opportunity to benchmark popular text repre-
sentation alternatives on this massive dataset.
In order to face scarce training data we pro-
pose a simple data-augmentation technique
and transfer-learning. We show that bag-
of-word-embeddings are better than LSTMs
for tasks with scarce training data, while
the situation is reversed when having larger
amounts. Transferring an LSTM which is
learned on all datasets is the most effective
context representation option for the word ex-
perts in all frequency bands. The experi-
ments show that our system trained on out-of-
domain Wikipedia data surpasses comparable
NED systems which have been trained on in-
domain training data.

1 Introduction

Named Entity Disambiguation (NED), also known
as Entity Linking or Entity Resolution, is a task
where entity mentions in running text need to be
linked to its entity entry in a Knowledge Base
(KB), such as Wikidata, Wikipedia or other de-
rived resources like DBpedia (Bunescu and Pasca,
2006; McNamee and Dang, 2009; Hoffart et al.,
2011). This task is challenging, as some en-
tity mentions like “London” can refer to a num-
ber of places, people, fictional characters, brands,
movies, books or songs.

Given a mention in context, NED methods
(Cucerzan, 2007; Han and Sun, 2011; Ratinov
et al., 2011; Lazic et al., 2015) typically rely on
three models: (1) a mention model which collects
possible entities which can be referred to by the

mention string (aliases or surface forms), possi-
bly weighted according to prior probabilities; (2) a
context model which measures to which extent the
entities fit well in the context of the mention, us-
ing textual features; (3) a coherence model which
prefers entities that are related to the other entities
in the document. The first and second models are
local in that they only require a short context of
occurrence and disambiguate each mention in the
document separately. The third model is global,
in that all mentions are disambiguated simulta-
neously (Ratinov et al., 2011). Recent work has
shown that local models can be improved adding
a global coherence model (Ratinov et al., 2011;
Globerson et al., 2016). In this work we focus on
a local model, and a global model could improve
the results further.

All local and global systems mentioned above,
as well as the current state-of-the-art systems
(Lazic et al., 2015; Globerson et al., 2016; Yamada
et al., 2016; Ganea and Hofmann, 2017), rely on
single models for each of the above, that is, they
have a single mention model, context model and
coherence model for all entities, e.g. the 500K am-
biguous entity mentions occurring more than 10
times in Wikipedia. While this has the advantage
of reusing the parameters across mentions, it also
makes the problem unnecessarily complex.

In this paper we propose to break the task of
NED into 500K classification tasks, one for each
target mention, as opposed to building a single
model for all 500K mentions. The advantage of
this approach is that each of the 500K classifica-
tion tasks is simpler, as the classifier needs to focus
on learning a good context model for a single men-
tion and a limited set of entities (those returned
by the mention model). On the negative side,
training instances for mentions follow a long tail
distribution, with some mentions having a huge
number of examples, but with the vast majority
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of mentions having very limited training data, e.g.
10 occurrences linking to an entity in Wikipedia.
Our results will show that data-augmentation and
transfer learning allow us to overcome the sparse-
ness problem, yielding the best results among lo-
cal systems, very close to the best local/global
combined systems. Contrary to systems trained
on in-domain data (Cucerzan, 2012; Chisholm and
Hachey, 2015; Globerson et al., 2016; Yamada
et al., 2016; Sil et al., 2018), ours is trained on
Wikipedia and tested out-of-domain.

From another perspective, a set of 500K clas-
sification problems provides a great experimen-
tal framework for testing text representation and
classification algorithms. More specifically, deep
learning methods provide end-to-end algorithms
to learn both representations and classifiers jointly
(LeCun et al., 2015). In fact, learning text rep-
resentations models has become a center topic in
natural language understanding, as it allows to
transfer representation models across tasks (Con-
neau and Kiela, 2018; Peters et al., 2018; Wang
et al., 2018). In this paper, we explore several pop-
ular text representation options, as well as data-
augmentation (Zhang and LeCun, 2015) and trans-
fer learning (Bengio, 2012). All training examples
and models in this paper, as well as the pytorch
code to reproduce results is availabe 1.

This paper is structured as follows. We first
present our models. Section 3 presents the experi-
ments, followed by related work and conclusions.

2 Deep Learning models for NED

In this section we describe the deep learning mod-
els proposed in this work. We first present our use
of Wikipedia to produce the candidate model and
the training instances, followed by the deep learn-
ing models. We will mention options and hyper-
parameters as we explain each component. Un-
less explicitly stated we used default values. The
rest were selected and tuned solely on develop-
ment data from Wikipedia itself, with no access
to other datasets (cf. Section 3).

2.1 Pre-processing and Resources
We used the English Wikipedia2 as the only re-
source for training the models. On the one hand,
Wikipedia articles define the target set of entities.

1https://github.com/anderbarrena/
500kNED

2We chose the 2014 snapshot, which gives good results in
the contemporary evaluation datasets.

On the other hand, Wikipedia editors have manu-
ally added hyperlinks to articles, where the anchor
text corresponds to the mention, and the url corre-
sponds to the entity.

We first built a candidate model as a dictio-
nary that links each text anchor to possible en-
tities, using the method presented in (Spitkovsky
and Chang, 2012; Barrena et al., 2016). Let M be
the set of all unique mention strings m, E the set
of all target entities e, and Em = {e1, . . . , em} the
set of entities that can be referred by mention m.
We kept the 30 most frequent candidates for each
mention for the sake of efficiency. We report the
sizes of E and M below.

We then extracted annotated examples by scan-
ning through the page contents for hyperlinks that
link anchors (the mentions) to the corresponding
Wikipedia pages (the entities). For each such hy-
perlink, we build a context c by first tokenizing
and removing the stop words, and then extracting
a window of 20 words to the left and 20 words to
the right from the anchor. We thus construct a set
of Nm labeled instances {ci, yi}, where yi ∈ Em,
for each m. We did not apply any kind of lemma-
tization or stemming to the training contexts.

2.2 Word Expert models

In the word expert approach we train one clas-
sifier for each possible ambiguous mention. We
are thus interested in learning a classifier that as-
signs a target mention m ∈ M appearing in a
context c to one of its possible entity candidates
Em = {e1, . . . , em} based on the set of Nm train-
ing instances {ci, yi}, where yi ∈ Em. From
the approximately 1M ambiguous mentions in
Wikipedia only 523K occur more than 10 times
as anchors in Wikipedia, and we thus limit M to
523 mentions and learn 523K classifiers.

Given the textual context of a mention, ci,
the text representations model will output a vec-
tor representation h. We tried different alterna-
tives for representing context, as described be-
low. Given the vector h, we define the classi-
fier as a neural network consisting of a number
of fully connected layers, followed by a softmax
layer with as many output dimension as the num-
ber of candidates of the target mention Em. The
whole network (representation model and classi-
fier) is trained end-to-end using cross-entropy loss.

In order to tune the hyper-parameters, we split
the examples into training (90%) and development

https://github.com/anderbarrena/500kNED
https://github.com/anderbarrena/500kNED
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Figure 1: Deep learning models for NED. On the left side, context models: (a) Sparse BoW, (b) Continuous BoW,
(c) LSTM. On the right side the classification models: (d) word expert model, (e) single model. The transfer model
first learns an LSTM on the single model, then reuses the LSTM to learn each of the word expert models.

(10%). We tried different configurations of the
classifier, such as the number of fully connected
layers or the activation function. Two layers of Re-
LUs performed best in the development set. The
rest of parameters were set by default: 256 hidden
units, adam optimizer with an initial learning rate
of 1.0e− 3 and batches of 256 instances. Training
stops when the accuracy in the development set
drops for 10 consecutive epochs or when a max-
imum of 300 epochs is reached. We select the
model that obtained the best accuracy in the devel-
opment set before stopping. The same parameters
and model were used for all word experts.

We now describe the how to represent context.
Sparse bag-of-words (BoW): In this model, de-
picted in Figure 1 (a), the context is represented as
the addition of the one-hot vector for each word,
with as many dimensions as the vocabulary size.
The target mention is assigned a zero vector, akin
to ignoring it. The vocabulary is large, compris-
ing more than 200K different words, which slowed
down learning. Alternatively, we also clustered
the words in the vocabulary. In this case, we use
those clusters to represent the words in the one-
hot vector, yielding a bag of clusters representa-
tion. We used the word2vec3 toolkit to build the
clusters from English Wikipedia text. The corpus
was lower-cased and tokenized. We found that us-
ing 3K cluster size does best in development.4 As
the results on development for the models using
words were below those of clusters we will report
only results for clusters.
Continuous bag-of-words (CBoW): In this case,
see Figure 1 (b), context is represented with the

3https://code.google.com/archive/p/
word2vec/

4We tried 100,300,800,1K,3K,8K and 10K cluster sizes.

centroid of pre-trained word embeddings, where
the mention is represented by a vector of ze-
ros. The embeddings were trained over the En-
glish Wikipedia using word2vec (Mikolov et al.,
2013). The corpus was first lower-cased, and we
used a window size of 20, 10 negative samples and
7 iterations. The embeddings have a dimensional-
ity of 300. We also tested a number of pre-trained
embeddings, but we did not obtain better results,
perhaps because our embeddings were trained on
Wikipedia, which is also the training corpus for
the NED system. When combined with the classi-
fiers, we kept the embeddings fixed.

Recurrent Neural Network (LSTM): As a
third alternative, we considered a recurrent neu-
ral network based on LSTMs (Hochreiter and
Schmidhuber, 1997) to exploit the dependencies
among the word sequence that forms the input
context (Figure 1, (c)). We use a single LSTM
to encode the input contexts as follows. We first
replace the target mention with a special sym-
bol which has a manually assigned constant em-
bedding, and then feed the sequence into the
LSTM. The last hidden vector is taken to represent
the context. The LSTMs have 512 hidden units
and 300 dimensional word embeddings, which
are initialized with the embeddings vectors used
in the continuous BoW model described above.
The LSTM layers have a dropout layer, with 0.2
dropout probability.

We explored GRUs, stacking LSTMs, temporal
average and max pooling among hidden states, but
did not improve results on development.

2.3 Single model

One of the main problems of word experts is that
they need a large number of manually annotated

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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examples for each possible mention, which makes
it unsuitable for less frequent mentions. As an al-
ternative, we also trained a single model. Given
the set of all training instances Nm for all possi-
ble mentions m ∈M , we train a classifier that, for
each context ci produces the correct entity ei ∈ E.
This classifier has a large number of classes |E|.
We discarded entities with less than 50 mentions,
and gather up to 5K random instances for the
rest. Note that clipping the instance number to
5K effectively downsamples those entities that are
highly frequent. All in all, we gather a training
corpus of 53M annotated examples for 248K tar-
get entities in this single model.

We adopted the recurrent model presented in the
previous section. In this case, we also replace the
target mention with a special symbol which has
a manually assigned constant embedding vector,
we feed it into the LSTM, and use the last hidden
vector h as the context representation. The clas-
sifier follows the same architecture as the word
expert model. In this case the LSTM has 2048
hidden units, producing a 512-dimensional con-
text representation and 300 dimensional word em-
beddings, which are again initialized with the pre-
trained embeddings in the previous section keep-
ing them fixed. The final softmax layer has 248K
dimensions, the number of candidate entities. We
checked other hidden-unit sizes with no better re-
sults. In order to improve results, we filter out the
candidates which are not in dictionary.

Regarding the training details, we use the Adam
optimization algorithm with an initial learning rate
of 1.0e−4, and a dropout value of 0.2. In this case,
we used a 1% sample of Wikipedia instances as
a validation set, and we stop early, whenever the
accuracy in this validation set does not improve
for 3 consecutive epochs. Training the model takes
around 16 hours per epoch in a single GPU, taking
at most 18 iterations.

2.4 Transfer learning

As an alternative to learning a single model, we
can use the text representation layer of the afore-
mentioned single model in the word expert model.
That is, after training the single model with the
whole Wikipedia, we use the learned model of the
LSTM as the text representation layer of the word
expert models. This way, we reuse the LSTM
which was learned alongside the single model in-
stead of learning a separate LSTM layer for each

word expert (see Section 2.2). When training the
word experts, we keep the LSTM layer fixed.

2.5 Data augmentation

As mentioned above, some mentions only have as
few as 10 training instances. In order to have a
larger number of training instances, we augment
the training set for target mention m with the con-
texts of other mentions that occur as anchors of
one of the ei candidates m (ei ∈ Em). Using this
strategy, we randomly select up to 250K examples
as training instances for each mention. Although
augmenting the training set has the advantage of
providing more training instances, it also has the
drawback of distorting the number of examples for
each entity. For instance, in the case of the men-
tion EU most of the examples in Wikipedia refer
to the European Union (around 2800) and only a
few to Europe (the continent, 716). When aug-
menting the training set with examples for the en-
tities, we add more examples for Europe (around
44000) than for European Union (around 13000),
changing the ratio of labels in the training data
significantly. In order to counter-balance this ef-
fect, we tried to combine the priors from the orig-
inal data with the output of the classifier trained
with the augmented dataset. Alternatively, we
combined both original and augmented classifiers,
yielding better results in development. We thus
train two classifiers for each mention, one using
the original training set P (e|c)orig, and one using
the augmented dataset P (e|c)aug. Finaly, we com-
bine their scores to produce the combined output
P (e|c):

P (e|c) = P (e|c)origP (e|c)aug (1)

3 Experiments

We developed and evaluated our model in standard
datasets for easier comparison to the state of the
art. The main dataset is the Aida CoNLL dataset
which is composed of news documents from the
Reuters corpus. It comprises three parts: Aida-
train training set, Aidatesta development set and
Aidatestb test set. We also include the three earli-
est Text Analysis Conference (TAC) datasest, that
focus on highly ambiguous mentions from news,
web and discussion forums: Tac2010, Tac2011
and Tac2012. As we are interested in building a
robust model based on Wikipedia alone, we ignore
the training data accompanying each dataset. We
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testa testb tac2010 tac2011 tac2012
mentions 5917 5616 2250 2250 2229
inKB mentions 4792 4485 1020 1124 1177
uniq mentions 2600 2441 750 1315 781
uniq inKB mentions 1850 1685 386 628 509
inKB mentions in dict 1841 1675 382 597 499

Table 1: Statistics of the datasets (see text for details).

use Aidatesta for model selection only (i.e. the pa-
rameters were tuned on a subset of Wikipedia, cf.
Section 2), and Aidatestb, Tac2010, Tac2011 and
Tac2012 for out-of-domain test.

Note that we used Aidatesta only to select the
best models, given that all hyperparameters where
tuned over Wikipedia itself. Table 1 shows the
statistics for all datasets. From all mentions, only
a subset of them actually refers to an entity in the
KB provided by the dataset authors (“inKB men-
tions” row). Our dictionary covers most but not all
of those KB entities (“uniq inKB mentions in dict”
row). Some of the mentions in the datasets are re-
solved as NIL, for cases where the mention refers
to an entity which is not in the KB. The simplest
method to return NIL is to first resolve over all
Wikipedia entities, and if the selected entity is not
in the KB then to return NIL. We focus the evalu-
ation in the mentions linked to an entity in the re-
spective KB, and use the so-called inKB accuracy
as the evaluation measure, which is defined as the
fraction of correctly disambiguated mentions di-
vided by the total number of mentions which are
linked to the KB. We perform 3 runs for each re-
ported result, reporting mean accuracy and stan-
dard deviation values. We also include MFS base-
lines in the results: given a mention, the baseline
is computed assigning the entity in the dictionary
with highest prior probabilities.

During testing, given a mention, we search the
document and try to find the longest string that a)
contains the mention and b) matches an entry in
the dictionary. Next, we replace every mention
string with that longer string in the document.5 We
also apply the ’One entity per Document’ hypoth-
esis, averaging the results of the occurrences for
the same mention in the same document (Barrena
et al., 2014).

5Mentions that are named as a DBPedia entity classified
as location are not expanded.

3.1 Development results

Table 2 shows the performance of each of the con-
text representation models and data augmentation
options in Aidatesta. The MFS baseline obtains
71.91, which is a good point of comparison to
benchmark our candidate model (the dictionary)
with respect to other systems. All our models im-
prove over the MFS baseline by a large margin.
As mentioned in Section 2.5, we have three classi-
fiers for each mention. P (e|c)orig uses the orig-
inal training set, P (e|c)aug uses the augmented
training set, and P (e|c) combines both. The ta-
ble shows that the results of the original and aug-
mented classifiers are more or less comparable,
while the combination consistently yields the best
results for all context representations options.

Regarding the representation models, we can
observe that the sparse Bag-of-word model yields
worse results than the continuous Bag-of-words.
The LSTMs learned separately do not improve
over continuous BoW, while the LSTM transferred
from the single model obtains the best results. In
addition to the results in the table, the single model
obtains an accuracy of 45.95, well below the rest.

These results confirm our intuitions. Regard-
ing the single model vs. word experts, the classi-
fier has a much easier task in the second case, as
the number of classes to predict is much smaller
for each classifier. Regarding the performance
of the word expert LSTMs, our hypothesis was
that, given the long tail distribution of the num-
ber of training instances, the per-mention LSTMs
of many mentions would not have enough training
instances to learn effective representations. We
checked this hypothesis plotting the results for
each method according to the number of train-
ing instances. Figure 2 shows the inKB accuracy
for mentions bucketed according to the number
of training instances6. Continuous BoW overpe-
forms LSTMs on mentions with a small number of

6We set 10 buckets with an equal number of mentions in
each bucket
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Sparse BoW CBoW LSTM Transfer
P (e|c)orig 79.65±0.06 82.48±0.48 80.35±0.05 84.70±0.06
P (e|c)aug 79.54±0.26 81.74±0.21 80.66±0.26 82.39±0.42
P (e|c) 83.28±0.17 86.19±0.19 84.35±0.30 86.87±0.14

Table 2: Development results (Aidatesta) as inKB accuracy and standard deviation for Sparse BoW, Continuous
BoW, LSTM and transferred LSTMs. Each row corresponds to the original training data, augmented training data,
and combination.

Figure 2: Development results (Aidatesta) as inKB ac-
curacy according to number of training instances.

training instances, while the situation is reversed
for mentions with a large number of training in-
stances. The graph also shows that the transferred
LSTM yields better results for all frequencies, and
that the Sparse BoW model underperforms the rest
of models consistently. As an aside, we observed
that for the words which have more than 200.000
training instances, both the per-mention LSTM
and the transferred LSTM yield similar results.

3.2 Final results

In this section we compare our system with the
state-of-the-art in Named Entity Disambiguation.
Given the vast number of NED systems, we only
report the results of the most relevant high per-
forming systems only. Note that, contrary to
us, many high-performing systems use in-domain
training data (Ganea and Hofmann, 2017; Glober-
son et al., 2016), and/or external candidates and
link counts when building the dictionary (Lazic
et al., 2015; Globerson et al., 2016; Yamada et al.,
2016).

Table 3 shows the inKB results on Aidatestb, the
most popular evaluation dataset. The results show

Method testb
Local models
(Lazic et al., 2015) sup. 79.7
Sparse BoW 86.72±0.23
Continuous BoW 89.39±0.44
LSTM 88.44±0.26
Transfer LSTM 91.19±0.07
(Lazic et al., 2015)† semi-sup. 86.4 †
(Yamada et al., 2016)* 87.2*
(Ganea and Hofmann, 2017)* 88.8*
Local & Global models
(Chisholm and Hachey, 2015)* 88.7*
(Globerson et al., 2016)* 91.0*
(Yamada et al., 2016)* 91.5*
(Ganea and Hofmann, 2017)* 92.2*

Table 3: Test results on Aidatestb as inKB accuracy. *
for systems trained on in-domain data. † for systems
using semi-supervised methods.

that all our models improve over locals out-of-
domain systems trained solely on Wikipedia, but,
most notably, also over in-domain systems which
were trained on Aidatrain (marked with *) and the
semi-supervised system (marked with †), which
uses large numbers of un-annotated data. As ex-
pected, the relative performance of our systems is
the same as in development.

All the systems included in Table 3 (except
Lazic et al., 2015) use the “means” tables of
YAGO as candidates, as this was the entity inven-
tory used by the developers of the dataset (Hof-
fart et al., 2011). In our case, as we link mention
to Wikipedia entities, we just ignore those enti-
ties not belonging to the YAGO “means” table. In
order to provide head-to-head comparison, the re-
sults of our best system when not using the YAGO
information is 89.93, more than three points better.

Table 4 shows the inKB accuracy results on
the three TAC datasets. In this case, the dataset
is accompanied by a KB which is a subset of
the Wikipedia 2008 snapshot. Following stan-
dard procedure (Globerson et al., 2016), we fil-
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Method tac10 tac11 tac12
Local models
(Lazic et al., 2015) sup. — 74.5 68.7
Sparse BoW 85.82 80.25 63.12
Continuous BoW 86.96 81.55 67.49
LSTM 86.73 81.44 67.32
Transfer LSTM 87.32 84.41 72.58
(Lazic et al., 2015)† semi-sup. — 79.3† 74.2†
(Chang et al., 2016)* 84.5* — —
(Yamada et al., 2016)* 84.6* — —
Local & Global models
(Cucerzan, 2012)* — — 72.0*
(Chisholm and Hachey, 2015)* 80.7* — —
(Globerson et al., 2016)* 87.2* 84.3* 82.4*
(Yamada et al., 2016)* 85.2*

Table 4: Test results on TAC datasets as inKB accuracy.
* for systems trained on in-domain data. † for systems
using semi-supervised methods.

ter out entities not listed in the KB before eval-
uating the results. The table shows that the rel-
ative performance of our systems is stable. Our
best system outperforms the results of the local
system trained on Wikipedia on both Tac2011 and
Tac2012 (10 and 3 points). Regarding the com-
parison with other local systems (in-domain and
semi-supervised), our results are the best, includ-
ing global methods. The only exception is on the
TAC2012 dataset, where the mentions were short
and known to be specially challenging. In fact, the
winner of the task (Cucerzan, 2012) performed an
especial effort on finding longer correferent men-
tions in the document. In the case of (Lazic et al.,
2015; Globerson et al., 2016), they use a coref-
erence resolver, which could explain their better
results on this dataset.

Note that in this section we do not report results
of systems which use the candidate dictionary of
(Pershina et al., 2015). As observed by (Glober-
son et al., 2016), among others, that candidate dic-
tionary has been manually pruned and extended to
contain the gold standard entity, yielding a dictio-
nary that has a 100% upperbound and very lim-
ited ambiguity. This makes the results of systems
using this dictionary look much better than those
using automatically constructed candidate models.
We thus miss results from some papers (Pershina
et al., 2015; Sil et al., 2018), and report the re-
sults using automatically constructed dictionaries
for the rest (e.g. Globerson et al., 2016).

4 Related Work

In this section we will briefly review NED systems
and text representation literature. Hachey et al.

(2012) present a detailed overview of all possible
components, but in this section we will focus on
the most relevant high performing systems. Please
see (Ling et al., 2015) for a more detailed review
of past research.

4.1 NED systems

Among local systems that are trained on
Wikipedia alone, (Lazic et al., 2015) was the
best performing one to date. Their system is
based on probabilistic estimation, with a rich pre-
processing pipeline, including dependency pars-
ing, common noun phrase identificacion and
coreference resolution. They present the re-
sults for both a supervised version, and a graph-
based semi-supervised extension which improves
results. We think that the results of our method
could be improved using richer pre-processing,
specially the use of coreference to find longer
coreferent mentions, which reduces the ambiguity
of the mention and improve results.

Among global models, (Chisholm and Hachey,
2015) use a learning to rank algorithm which
combines local and global features, trained on
in-domain corpora (Aidatrain and Tac2010 train,
respectively). They improve the results signif-
icantly by extending the information extracted
from Wikipedia with a web crawl.

In (Yamada et al., 2016), the authors jointly
learn word and entity embeddings using
Wikipedia. The similarity of word and en-
tity embeddings are used as features to train a
Gradient Boosted Regression Trees on in-domain
data. They report both local and global results,
with a clear improvement when adding a global
component.

Ganea and Hofmann (2017) also present a lo-
cal and global algorithm. In their local algorithm,
they combine word and entity embeddings with an
attention mechanism trained on in-domain data.
The global component is Loopy Belief Propaga-
tion, which optimizes the global sequence coher-
ence initialized by the local algorithm. They report
the best results among both local and global al-
gorithms in Aidatestb, but, unfortunately they don
not provide results on the TAC datasets. Given that
their global algorithm yields an improvement of 3
points, and that our local method exploits comple-
mentary information, we would like to combine
both in future work.

Globerson et al. (2016) add a global compo-
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nent to Plato (Lazic et al., 2015), whose weights
are used to initialize a multi-focal attention mech-
anism. The global model is trained and optimized
on in-domain training datasets. They report the
best performance for TAC datasets to date, and
very good results on Aida. Their very strong re-
sults on TAC 2012 (together with those of Lazic
et al., 2015) seem to be due to the use coreference
in the candidate model, as this dataset includes
shorter target mentions than the rest.

More recently, Sil et al. (2018) introduce a deep
neural cross-lingual entity linking system using
a combination of CNN, LSTM and NTNs, with
strong results. Their method performs similar to
ours on TAC2010, but using the manually curated
dictionary of (Pershina et al., 2015), which, as
stated before, greatly simplifies the task (c.f. Sec-
tion 3.2).

All NED systems mentioned above build a sin-
gle model for all possible target mentions. The
only word expert approach that we are aware of
is briefly mentioned in (Chang et al., 2016). This
paper compares NED and word sense disambigua-
tion, and builds a bag of words logistic regression
classifier for each mention. Their results on the
TAC2010 dataset is 84.5, below our results.

4.2 Text representation

Text representation for deep learning is a hot
topic on natural language processing (LeCun et al.,
2015), and several evaluation frameworks have
been proposed (Conneau and Kiela, 2018; Wang
et al., 2018). Our 500K classification tasks can be
seen as an additional large-scale testbed for text
representation proposals.

In a setting similar to ours, (Yuan et al., 2016;
Peters et al., 2018) propose to train a language
model based on LSTMs and then use it for word
sense disambiguation. Instead of using the con-
text representations to learn a classifier directly as
we do, they use label propagation in representa-
tion space. In our case, instead of using a language
model, we train the text representation model on a
more closely related task, i.e., that of disambiguat-
ing all possible entities.

While bags of pre-trained word embeddings and
LSTMs are the most popular approaches for text
representation, many alternatives exist. For in-
stance, ELMo (Peters et al., 2018) obtains word
embeddings that include contextual information,
and then combine them using bag-of-words or

other alternative. Alternatively, universal sentence
encoding models that are useful in many tasks are
being proposed (Arora et al., 2017; Logeswaran
and Lee, 2018; Subramanian et al., 2018; Cer
et al., 2018). We think that, in supervised classi-
fication tasks such as ours, the transferred LSTM
already captures well contextual information and
that the performance bottleneck might lie on the
classifier. If that is the case, stronger context rep-
resentation models might not make much of a dif-
ference. We plan to explore this in future work.

5 Conclusions and Future Work

In this paper we propose to break the task of NED
into 500K classification tasks, one for each target
mention, as opposed to building a single model for
all 500K mentions. The advantage of this word ex-
pert approach is that each of the 500K classifica-
tion tasks is simpler. On the negative side, scarcity
of training data is made worse. We show that this
problem can be effectively alleviated with data-
augmentation and specially with transfer learning.

A set of 500K classification problems pro-
vides a great experimental framework for testing
text representation and classification algorithms.
Given the scarce data available, learning a classi-
fier directly on a bag-of-words or LSTM represen-
tation yields weak results. Bringing in pre-trained
embeddings improves results, but the key to strong
performance is to learn a single model for all en-
tities using an LSTM and then transfer the LSTM
to each of the word experts.

Our model is a local system using Wikipedia in-
formation alone, yielding the best results among
local systems, comparable to systems trained on
in-domain data and incorporating global coher-
ence models. All training examples and models
in this paper, as well as the pytorch code to repro-
duce results is availabe 7.

For the future, the performance of our sys-
tem can be easily improved combining it with
a global method such as (Ganea and Hofmann,
2017). There are also specific improvements that
can be done, such as using correference (Lazic
et al., 2015) or additional information from web
crawls (Chisholm and Hachey, 2015). Regarding
the use of in-domain training, we think that our
out-of-domain results reflect the most realistic sce-
nario, as in-domain training data is rare in practice.

7https://github.com/anderbarrena/
500kNED

https://github.com/anderbarrena/500kNED
https://github.com/anderbarrena/500kNED
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Regarding text representation, we tested some
straightforward alternatives. Recent work has pro-
posed stronger options which could improve the
results of our word experts further.
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