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Abstract 

Recent studies of distributional semantic 
models have set up a competition 
between word embeddings obtained from 
predictive neural networks and word 
vectors obtained from count-based 
models. This paper is an attempt to reveal 
the underlying contribution of additional 
training data and post-processing steps on 
each type of model in word similarity and 
relatedness inference tasks. We do so by 
designing an artificial language, training a 
predictive and a count-based model on 
data sampled from this grammar, and 
evaluating the resulting word vectors in 
paradigmatic and syntagmatic tasks 
defined with respect to the grammar. 

1 Introduction 

The distributional tradition in linguistics (e.g., 
Harris, 1954) classically posits that a word’s 
meaning can be estimated by its pattern of co-
occurrence with other words. Modern 
distributional semantic models (DSMs) formalize 
this process to construct vector representations 
for word meaning from statistical regularities in 
large-scale corpora. A typical approach in NLP 
has been to apply dimensional reduction 
algorithms borrowed from linear algebra to a 
word-by-context frequency matrix representation 
of a text corpus (Deerwester et al. 1990, 
Landauer & Dumais, 1997). Words that 
frequently appear in similar contexts will have 
similar patterns across resulting latent 
components, even if they never directly co-occur 
(for reviews, see Jones, Willits, & Dennis, 2015; 
Turney & Pantel, 2010). These models 
dominated the literature over direct count 
methods for over two decades (Bullinaria & 
Levy, 2007, 2012). Recently, DSMs based on 
neural networks have rapidly grown in popularity 
(e.g., Bengio et al., 2003; Collobert et al., 2011; 
Mikolov et al., 2013). Given a word, the model 

attempts to predict the context words that it 
occurs with, or vice-versa. After training on a text 
corpus, the pattern of elements across the model’s 
hidden layer come to reflect semantic similarities, 
i.e., will be similar for words that predict similar 
contexts even if those words do not predict each 
other. In this sense, neural embedding models 
come to a distributed vector representation of 
word meaning that is reminiscent of traditional 
dimensional reduction DSMs, albeit with a 
considerably different learning algorithm. 
   Mikolov et al. (2013a, 2013b) have 
demonstrated state-of-the-art performance using a 
neural embedding model with an efficient 
objective function called word2vec. This 
model rapidly emerged as the leader of the DSM 
pack, outperforming other models on a broad 
range of lexical semantic tasks (Baroni et al. 
2014). However, since the early surge in 
excitement for word2vec, the literature has now 
become more focused on trying to understand the 
conditions under which embedding or traditional 
DSMs are optimal. Levy and Goldberg (2014) 
demonstrated analytically that word2vec is 
implicitly factorizing a word-by-context matrix 
whose cell values are shifted PMI values. In other 
words, the objective function and the input to 
word2vec are formally equivalent to traditional 
DSMs; thus the models should behave alike in 
the limit. The distinction is really one of process 
and parameterization. With optimum 
parameterization of traditional DSMs, more 
recent research is finding insignificant 
performance differences between word2vec 
and SVD factorizations of a PMI matrix 
(Sahlgren & Lenci, 2016). Levy et al. (2015) 
even found a slight advantage for a factorization 
of the bias shifted log-count matrix and for 
traditional PPMI over word2vec on some tasks 
when hyperparameters were optimized.  
   One general distinction between the two types 
of models is that neural embedding models such 
as word2vec seem to underperform when the 
training corpus is small, particularly for low-
frequency words (Asr et al., 2016; Sahlgren & 
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Lenci, 2016). Levy et al. (2015) note that there is 
often a benefit in word2vec of tuning a larger 
parameter space over using a larger training 
corpus. With limited-data mining scenarios 
becoming more common, a better understanding 
of how model type and corpus size interact with 
optimal parameterization is an important topic of 
inquiry.  
   Secondly, interest has shifted from trying to 
determine the best overall model towards a better 
understanding of what kinds of word relations 
each model is best at learning, and under what 
parameterizations. Count-based PMI models are 
very good at representing first-order statistical 
patterns that reflect syntagmatic relationships in 
language (aka “relatedness” data). In contrast, the 
training scheme used by word2vec attempts to 
optimize it for detecting second-order statistical 
patterns that reflect paradigmatic relationships 
in language (aka “similarity” data). Indeed, this 
was the pattern demonstrated by Levy et al. 
(2015): After tuning hyperparameters, 
word2vec performed best on similarity-based 
tasks while PPMI performed best on relatedness 
tasks. SVD-based models attempt to represent 
both statistical patterns. This count-based model 
outperformed both word2vec and PPMI in 
Levy et al. on both types of relations when 
standard parameter sets were used; however, the 
advantage disappeared when hyperparameters 
were tuned. Standard word2vec is optimized 
for paradigmatic tasks but architectural 
adaptations exist to make the model better suited 
for syntagmatic tasks (e.g., Kiela et al., 2015; 
Ling et al., 2015). Making a model better at one 
type of task might come at the cost of making it 
worse at the other if the two types of word 
relations are orthogonal (Andreas & Klein, 2014; 
Mitchell & Steedman, 2015). Optimizing for a 
particular task is also closely tied to the issue of 
training data size (Melamud et al., 2016).  
   Finally, both of these issues are intricately tied 
to post-processing of the embeddings. Levy et al. 
(2015) inspired by Pennington et al., (2014) 
pointed out an important parametrization of the 
word2vec model, where co-occurrence 
information encoded between hidden and output 
layers (context vectors) are used as well as 
weighs between the input and hidden layers 
(word vectors) to construct the final word 
embeddings (w+c representation). When 
calculating word similarity based on this 
composite representation, a mixture between 
first- and second-order coocurrence information 
are considered. This is remarkably similar to 
cognitive models that construct composite 

memory representations from both paradigmatic 
and syntagmatic information (Jones & Mewhort, 
2007). Recent empirical studies in developmental 
psychology have found that children learn word 
relations that have both sources of information 
before relations with either source alone (Unger 
et al., 2016). Levy et al. (2015) found a consistent 
benefit for word2vec and PPMI when the w+c 
post-processing combination was applied. Even 
though, this is an efficient adaptation in that the 
scheme does not require retraining, most studies 
on word similarity and relatedness have only 
employed the default word2vec setting (i.e., 
only using word vectors) and the usefulness of 
context vectors has been left underexplored. 
   It is very plausible to assume that the above 
three issues (corpus size, relation type, post-
processing) interact: Higher-order paradigmatic 
word relations likely require more training data to 
discover, and the merging of w+c blends 
different relation types. The goal of this paper is 
to elaborate on the effect of corpus size and post-
processing on the reflection of syntagmatic and 
paradigmatic relations between words within the 
resulting vector space. It has proven impossible 
in psycholinguistics to select real words that 
cleanly separate paradigmatic and syntagmatic 
relations (McNamara, 2005). Hence, we opted to 
bring the statistical structure of the language 
under experimental control using an artificial 
language adapted from Elman (1990). Unlike in 
natural language corpora, the sources are 
independent: e.g., dog never directly appears with 
cat, and hence any learned relation between them 
could not be due to first-order information. Thus 
by defining crisp semantic categories and 
sentence frames, we investigate how first and 
second-order co-occurrence information sources 
are consumed and represented in terms of 
similarity between words by count-based and 
predictive DSMs. Given current uncertainty in 
the literature on the role of corpus size, relation 
type, and w+c post-processing regarding the 
performance of various DSM architectures, this 
approach affords experimental control to evaluate 
relative performance as a factorial combination of 
information sources and parameters while 
controlling for the many confounding factors that 
exist in natural language corpora; including the 
ambiguity of similarity vs. relatedness of two 
words in evaluation datasets. Section 2 describes 
our framework in details, and section 3 presents 
several experiments exploring the capacity of 
count vs. predict DSMs in modeling relations 
between words. 
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2 Experiment Setup 

2.1 Creation of Corpus 

The artificial language grammar that we use for 
generating sentences in our test corpora is 
depicted in Table 1. This grammar was first 
introduced by Elman (1990) in his exploration of 
language modeling by Recurrent Neural 
Networks (RNNs). The language consists of a 
small vocabulary, a set of explicitly defined 
semantic categories on top of the vocabulary, and 
finally, a set of syntactic rules or possible 
sentence frames, which specifies how words can 
be put together in a sentence with regard to their 
semantic categories. The language generation 
algorithm enumerates all possible sentences in 
the language and the corpus generator returns a 
random sample of the language using a uniform 
distribution across sentence types. The corpus 
size is a variable in our experiments, and we 
mention explicitly when we repeat an experiment 
by re-sampling a corpus to validate the results on 
the semantic similarity tasks. 

2.2 Semantic Similarity Tasks 

All experiments in the current paper are centered 
on the idea that, at least, two types of semantic 
similarity can be identified for word pairs. 
 
Table 1. Artificial language grammar (Elman 1990) 
 

Sentence Frames Example 

	
NOUN-HUM			VERB-EAT			NOUN-FOOD					 
NOUN-HUM			VERB-PERCEPT			NOUN-INANIM					 
NOUN-HUM			VERB-DESTROY			NOUN-FRAG					 
NOUN-HUM			VERB-INTRAN					 
NOUN-HUM			VERB-TRAN			NOUN-HUM					 
NOUN-HUM			VERB-AGPAT			NOUN-INANIM					 
NOUN-HUM			VERB-AGPAT					 
NOUN-ANIM			VERB-EAT			NOUN-FOOD					 
NOUN-ANIM			VERB-TRAN			NOUN-ANIM					 
NOUN-ANIM			VERB-AGPAT			NOUN-INANIM					 
NOUN-ANIM			VERB-AGPAT					 
NOUN-INANIM			VERB-AGPAT					 
NOUN-AGRESS			VERB-DESTROY			NOUN-FRAG					 
NOUN-AGRESS			VERB-EAT			NOUN-HUM					 
NOUN-AGRESS			VERB-EAT			NOUN-ANIM					 
NOUN-AGRESS			VERB-EAT			NOUN-FOOD	 

  
 man eat cookie 
 woman see book 
 man smash glass 
 woman sleep 
 man chase woman 
 woman brake book 
 man move 
 cat eat cookie 
 mouse see cat 
 cat chase mouse 
 mouse move 
 rock move 
 dragon brake plate  
 monster eat man 
 dragon eat cat 
 monster eat cookie 

Semantic Categories 

	
NOUN-HUM:			[man,	woman] 
NOUN-ANIM:			[cat,	mouse] 
NOUN-AGRESS:			[dragon,	monster]	
NOUN-INANIM:			[book,	rock]	
NOUN-FRAG:			[glass,	plate] 
NOUN-FOOD:			[cookie,	sandwich]		
VERB-INTRAN:			[think,	sleep] 
VERB-TRAN:			[see,	chase]			 
VERB-PERCEPT:			[smell,	see] 
VERB-AGPAT:			[move,	break] 
VERB-DESTROY:			[break,	smash] 
VERB-EAT:			[eat]  

 
Thus, we define two distinct methods to evaluate 
performance of the DSMs in learning semantic 
similarity from our artificial language—the 
syntagmatic task and the paradigmatic task.  
 
Syntagmatic task: the objective of this task is to 
identify word pairs that can occur in context 
together (here the scope of a sentence). For 
example, the word pair smash and cookie cannot 
appear in each other’s context according to the 
grammar in Table 1, because no legal sentence 
frame includes the semantic category of both 
words. Conversely, the word pair eat and cookies 
are related in the sense that the two words can co-
occur within a sentence. Evaluation of the vectors 
produced by different DSMs in this task is based 
on the cosine similarity between words occurring 
in common vs. different context frames and is 
calculated by the following accuracy measure: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦'() = 𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤2, 𝑤4
− 	𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤6, 𝑤7  

 
   where (wi , wj) is indicative of the word pairs in 
the vocabulary that appear together in at least one 
sentence frame, and (wk , wl) is indicative of word 
pairs that do not appear in any common frame 
given their semantic categories (e.g., glass and 
chase belong to NOUN-FRAG and VERB-
TRANS, respectively, which never co-occur 
within a sentence).  
   The syntagmatic task is a strict version of 
finding first-order related, directly co-occurring, 
or similar topic words in a natural language. 
Since word pairs are exclusively labeled as co-
occurring vs. non-co-occurring based on the 
grammar of the artificial language, we will have 
the possibility to look into the performance of the 
DSM models in drawing syntagmatic similarities 
without having to deal with other confounds 
present in natural languages. This type of 
evaluation is almost impossible in a natural 
language given the openness of the semantic 
categories and enormous grammar size. In our 
modeling framework, if words are distributed in a 
DSM mostly based on first-order co-occurrence 
information, accuracy of the syntagmatic task 
would be high. 
 
Paradigmatic task: two words should be similar 
if they tend to occur in similar contexts even if 
they never co-occur in the same sentence. Our 
paradigmatic task is defined based on this 
intuition, and the idea of taxonomically similar 
words in natural languages. According to Table 
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1, if two words come from the same semantic 
category (e.g., man and woman) they appear in 
similar sentence frames, thus ideally (when all 
possible sentence formulations exist in the 
generated sample of the language) they should be 
found as fully substitutable words. The 
paradigmatic task evaluates the quality of word 
vectors generated by a DSM by calculating the 
cosine similarity of word pairs belonging to same 
vs. different sematic categories.  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦89: = 𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤2, 𝑤4
− 	𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤6, 𝑤7  

 
   where (wi , wj) indicates all word pairs coming 
from same semantic categories, and (wk , wl) 
indicates word pairs belong to different semantic 
categories. Based on this formulation, the 
paradigmatic accuracy of a model emphasizing 
second-order information would be higher than a 
model favoring first-order information to 
distribute words in the vector space. The reason 
is that, in the former model, the cosine similarity 
between vectors of interchangeable words like 
man and woman would converge to 1, or will be 
at least higher than similarity between other word 
vectors. 1  Both  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦'()  and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦89:  are 
bounded measures within the range of [-2, 2]; in 
practice though, they tend to come out within the 
range of [0, 1]. 
   The above two tasks define the basics of our 
discriminative approach to investigate which 
models or parameter settings work best for each 
type of semantic similarity induction.  

2.3 Distributional Methods 

In our experiments, we use the implementations 
of word2vec Skip-Gram with Negative 
Sampling (SGNS) and PMI matrix factorization 
via Singular Value Decomposition (SVD) by 
Levy et al. (2015).  
   The Skip-gram model (SGNS) is one of the two 
word2vec architectures that predicts based on 
a target word one of its context words at a time. 
Error of prediction is calculated in the output via 
softmax and back-propagated to update two 
                                                             
1 The paradigmatic task can also be defined based on higher-
level taxonomic relations. For example, given the grammar 
in Table 1, we expect models to cluster Verbs and Nouns 
because each of these higher-level word types share some 
within-category contextual similarities and between-
category differences (e.g., all nouns in the grammar have a 
verb in context, whereas verbs don’t have verbs in their 
context). In section 3.5 where semantic spaces are visualized 
we will return to this important point, but for the rest of our 
experiments model performance is evaluated based on the 
two basic tasks defined above. 

weight matrices: the context matrix (CM) 
between the output and the hidden layer []vd, and 
the word matrix (WM) between the input and the 
hidden layer []vd ,where v is the vocabulary size 
and d is the size of the hidden layer, thus 
dimensionality of the final word vectors. In the 
majority of previous work, the word matrix was 
used as the final output of the model. When 
context words are sampled from the same 
vocabulary as that of target words, the final CM 
will have the same dimensionality as WM, thus it 
can also be used as a semantic representation of 
the words. Averaging both matrices for a final 
word representation, rather than just the WM, is 
an optional post-processing method indicated by 
w+c. 
   Singular Value Decomposition (SVD) is a 
classic representation learning technique for 
projecting data into a new, and usually, smaller 
feature space. Other similar techniques in 
machine learning include eigenvalue 
decomposition, the basis of Principle Component 
Analysis. The SVD model in our study is 
representative of the count-based distributional 
semantic models. It begins by calculating a v*v 
matrix of point-wise mutual information between 
word-context pairs. The matrix is then factorized 
and reduced to a v*d matrix, where each row will 
be a word vector in the new semantic space.  

2.4 Implementation and Parameter 
Balancing 

In all our experiments, we try to equate the two 
models by keeping the common parameters 
constant and iterating over different values of the 
method-specific parameters to obtain the best 
performance for each.  
Fixed parameters: parameters that we keep 
constant throughout all experimental conditions 
are the context window size (set to 2, in order to 
cover all words within a sentence in the artificial 
grammar), subsampling & dynamic context (set 
to off; no frequency-based smoothing or 
prioritization is applied to co-occurrence counts), 
rare word removal (set to off, no minimum cut-
off is applied to context words). Therefore, in all 
experimental conditions that result from 
manipulating other parameters exactly the same 
word-context population is extracted from a 
given corpus and fed as input data to the SGNS 
and SVD models. We also use one iteration 
(epoch) in SGNS to keep it equated with SVD, 
and examine the effect of re-occurrences by 
manipulating the corpus size instead. 
Variable parameters: for comparative 
experiments on small vs. big data, we generate 5 

137



independent corpora of each size (between 1K 
and 30K sentences) according to the sampling 
procedure described in Section 2.1. There are 
three important parameters that strongly affect 
the performance of the models, but since they are 
not the focus of our study we chose their values 
through a performance maximization procedure 
in all our experiments. One parameter called dim 
is the number of reduced dimensions or the size 
of final vectors, which is enumerated between 2 
and 14 in our experiments. The other parameter 
neg is only applicable to SGNS and indicates the 
number of negative samples (we try between zero 
and 6 negative samples). Finally, a parameter in 
SVD determines the asymmetry of factorization, 
which was simulated with 0, 0.5 and 1 eig (for 
more details refer to Levy et al., 2015).  

3 Results 

3.1 Vanilla Comparison 

Our first comparison explores the overall 
performance of the two DSMs with their 
common post-processing practice. We only use 
the W matrix to construct the word vectors after 
training SGNS, and the SVD factorization is also 
performed in its default manner. As explained in 
2.4, we sampled five corpora of each size and 
measured the maximum likelihood of a model’s 
performance by manipulating the variable 
parameters. 
   Table 2 shows that both models had very low 
overall accuracies in grouping syntagmatically 
related words. This observation indicates that, by 
default, both SVD and SGNS consume first-order 
co-occurrence information but infer second-order 
information, i.e., paradigmatic similarities 
between words by generalizing over context 
types in which two words can be seen. This 
finding suggests that neither of the models with 
its default configuration is suitable for 
performing word relatedness tasks. Reported best 
performances in the table for SVD were obtained 
at eig = 0.0, and for SGNS at neg = 1. Optimal 
dimensionality was variable but always above 5. 
 
Table 2. Vanilla setup accuracy in paradigmatic and 
syntagmatic tasks with different size training corpuses. 
 

Corpus 
size 

Method Paradigmatic Syntagmati
c 

1K SVD 0.828 0.253 
SGNS 0.535 0.113 

10K SVD 0.832 0.258 
SGNS 0.775 0.092 

3.2 Corpus Size 

Accuracy scores in Table 2 suggest that, even 
with small training data SVD can produce good 
vectors for the paradigmatic task. However, the 
performance of SGNS increases with more 
training data. This quick observation is consistent 
with previous findings regarding the superior 
performance of count models on word similarity 
and categorization tasks when models were 
trained on small corpora and with their default 
post-processing setting (Asr et al., 2016; 
Sahlgren & Lenci, 2016). The main reason stated 
in the literature is that SGNS requires tuning a 
large number of parameters and seeing more and 
more data (either through extra epochs or by 
feeding in a larger corpus of the same distribution 
of words and sentences) helps the model to 
converge. In the next sections we will see how 
otherwise we could enhance this model’s 
performance, possibly in both syntagmatic and 
paradigmatic tasks.  

3.3 Inclusion of Context Vectors 

We hypothesized that using a post-processing 
setup emphasizing first-order information should 
enhance models’ performance in the syntagmatic 
task. To test this, we repeated experiments on 
training corpora of size 1K to 30K with the 
alternative post-processing approaches (inclusion 
of context vectors, i.e., w+c vs. w, which was the 
default setting).  
   Figure 1 shows that the inclusion of context 
vectors enhances the accuracy of both models in 
the syntagmatic task (red lines are on top of the 
blue lines). This enhancement is more 
pronounced in the SGNS model: more data 
increases the accuracy of syntagmatic similarity 
inference consistently when the w+c option is 
used. SVD also benefits from a w+c equivalent 
setting proposed by Levy & Goldberg (2015) in 
performing the syntagmatic task, however the 
enhancement is tightly bounded for this model.  
   For the paradigmatic task, we expected an 
inverse pattern: explicit inclusion of first-order 
co-occurrence information in similarity 
measurement by considering both word and 
context vectors should hurt model’s performance 
because only second-order information is 
important for the paradigmatic task. We can see 
in Figure 2 that our hypothesis is supported for 
SVD, where the accuracy declines significantly 
with the inclusion of the context vectors 
(compare the red and blue dotted lines). 
However, the SGNS model does not exhibit a 
dramatic change of performance in the 
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paradigmatic task with or without the w+c option 
(compare the solid lines). In fact, the 
performance in the paradigmatic task was slightly 
enhanced too. Putting this together with what we 
saw above regarding SGNS performance in the 
syntagmatic task brings us to an interesting 
conclusion about the “optimal parameter setting” 
for this model: using the w+c option is a good 
choice adding to the robustness of SGNS, 
particularly when unsure of which type of 
similarity inference we would like the model to 
perform at the end. The SVD model, on the other 
hand, does not show the capability to learn both 
tasks at the same time; it gets better in one at the 
expense of the other. In the next section we try to 
explain this difference by looking into the way 
the two models distribute words within the high 
dimensional vector space.  
 

 
Figure 1. Accuracy of SGNS and SVD with word only 
vs. word+context vectors trained on corpuses of 
different sizes (1K to 30K sentences) in the 
syntagmatic task.  
 

 
Figure 2. Accuracy of SGNS and SVD with word only 
vs. word+context vectors trained on corpuses of 
different sizes (1K to 30K sentences) in the 
paradigmatic task. 

3.4 Metric Space Expansion/Compression 

The above experiments showed a lower ceiling 
for SVD performance compared to SGNS in both 
tasks when sufficient data was available to the 
models and the parameter space was thoroughly 
explored. In order to explain this observation, we 
took a closer look at the vectors generated by 
each model and specifically examined the range 
of the similarity scores of all word pairs in the 
vocabulary. We found that SVD generated 
numerically closer vectors compared to SGNS. 
This results in a smaller range of similarity 
scores: totally interchangeable words, such as 
man and woman get a cosine similarity score 
close to 1.0; completely different words (that 
neither appear in a sentence together, nor share 
similar contexts) such as glass and chase get a 
negative similarity score typically close to 0.0, or 
around -0.5 in a best case scenario.  
 

 

 

Figure 3. Spectrum of similarity scores between words 
in SVD and SGNS (10K corpus, neg = 1, eig = 0, dim 
= 2 to 9 on the x-axis): (a) with w and, (b) with w+c 
post-processing. 
 
Figure 3 depicts the minimum, maximum and 
average similarity scores obtained for all word 
pairs from the vocabulary through repeated 
experiments on a 10K corpus by manipulating the 
dimensionality (x-axis). It is almost the same for 
SGNS and SVD when the word-only post-
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processing is applied, but as soon as the context 
vectors are included, the spectrum of similarity 
scores widens up for SGNS. This investigation 
may explain why SVD is unable to manifest 
paradigmatic and syntagmatic relations at the 
same time.  
   SVD does not get a huge benefit from more 
training data or the post-processing step for 
inclusion of the context vectors. The underlying 
reason is that SVD always uses a sub-space of the 
entire similarity spectrum [-0.5, 1.0] so 
everything is squeezed – we refer to this 
phenomenon as space compression, which we 
hypothesize is due to the limitations of the 
dimensionality reduction mechanism. On the 
other hand, the distribution of words in the vector 
space obtained from SGNS changes drastically 
both by training on more data and considering 
context vectors.  
   As Figure 3 shows, SGNS has the capacity to 
use up the entire similarity spectrum [-1.0, 1.0], 
i.e., space expansion. We conjecture that this is 
due both to the design of the objective function 
and to the larger number of parameters in the 
neural model being updated independently, 
making it a more flexible method to encode fine-
grained differences between word groups, while 
keeping them in meaningful clusters. More data 
helps the model fine-tune its parameters. 
Furthermore, averaging the word and context 
vectors provides an ensemble voting for 
syntagmatic (relatedness) and paradigmatic 
(similarity) at the same time. 

3.5 Word Clusters in the Semantic Space 

The space expansion of the SGNS model by 
inclusion of the context vectors can be visualized 
with a 2-dimensional projection of the vectors 
obtained from w vs. w+c post-processing 
conditions, depicted in Figures 4 and 5 
respectively. A comparison between the two plots 
shows how the vicinity of paradigmatically 
similar words (interchangeable words such as cat 
and mouse) can be preserved while syntagmatic 
clusters are emphasized (cat and chase) by 
inclusion of context vectors.  
   It is important, however, to note that higher-
level paradigmatic relations are negatively 
affected as the model tries to bring 
syntagmatically related words closer to one 
another. For example, verbs and nouns (clustered 
in gray ovals in Figures 4), which are 
paradigmatically different, get mixed up once the 
syntagmatic clusters start to shape (gray 
rectangles in Figure 5). On the other hand, nouns 
referring to animate categories (that have some 

level of paradigmatic similarity) fall apart in the 
w+c space (red dashed cluster in Figures 4, 
distorted in Figure 5). These observations 
emphasize the importance of the post-processing 
choices based on the final inferences we expect 
from the model. When generalized to a natural 
language setting, the models depending on the 
w+c parameterization would demonstrate 
synonymy, similarity and associative relatedness 
differently.  

 
Figure 4. Paradigmatic clusters in SGNS w vector 
space; Syntagmatic clusters not easily identified (10K 
corpus, dim = 14, neg = 1)  

 
Figure 5. Clear syntagmatic clusters in SGNS w+c 
vector space; some paradigmatically related words are 
kept together and some have fallen apart (10K corpus, 
dim = 14, neg = 1) 
 
One should consider that while dimensionality 
reduction to two dimensions is possible and 
helpful for visualization purposes, these images 
do not reflect the exact distances between words 
in the high-dimension space. Therefore, these 
observations should be understood in 
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combination with other results, e.g., similarity 
spectrums demonstrated in the previous section.  

4 Conclusion 

We proposed a methodology based on artificial 
language generation for studying distributional 
semantic models. This methodology was inspired 
by the prominent study of Elman (1990) and we 
mainly selected that to bring confound factors in 
natural languages under control while assessing 
the effect of model parameters on produced word 
vectors.  
   The experiments in this paper revealed an 
interaction between the training corpus size and a 
variety of parameter settings of two opponent 
DSMs in word similarity/relatedness evaluation. 
Confirming previous findings with small training 
data, we showed that SVD could easily organize 
words based on paradigmatic similarities 
obtained from second-order co-occurrence 
information, whereas SGNS needed more data to 
acquire the same type of knowledge. When it 
comes to syntagmatic relatedness between words, 
both models required accurate parameter settings. 
In particular, the default configuration of both 
SVD and SGNS aims at optimizing the space in a 
way that paradigmatically similar words are put 
together. 
   The optimal setting of the SGNS for an overall 
superior performance in both paradigmatic and 
syntagmatic tasks involved the inclusion of 
context vectors, which is not the typically tested 
setting of word2vec in previous studies. Our 
analysis of similarity scores between vectors 
generated for all words in the artificial language 
showed that averaging word and context vectors 
would result in a more organized SGNS vector 
space. The equivalent post-processing of the 
matrices in SVD for explicit inclusion of first-
order similarity suggested by Levy et al. (2015) 
enhanced the performance of this model in the 
syntagmatic (relatedness) task only in the 
expense of making it worse for the paradigmatic 
(similarity) task.  
   Our observations suggest that SVD has some 
limitations in populating the distributional space 
as evenly as SGNS; thus it always comes up with 
vectors that are on average closer to one another. 
Further study is needed to explain this finding in 
a fundamental way perhaps via mathematical 
derivations. The trade-off between performance 
in paradigmatic and syntagmatic task, specially 
for the SVD model, can explain the occasional 
superiority and inferiority of this model against 
the neural opponents in previous studies: 

similarity and relatedness rankings for words in 
natural languages manifest a mixture of 
paradigmatic and syntagmatic relations among 
words, thus a certain SVD model (with its post-
processing optimized for reflecting either type of 
relation) might outperform SGNS in one task and 
not in the other. 
   Our experiments were a first step towards 
understanding the differences between classic 
and neural distributional models in a more 
controlled setting. The proposed methodology 
can be used in future research, e.g. to assess the 
effect of vocabulary and grammar size on 
resulting word vectors by different models, and in 
turn to select the right distributional approach in 
specific research context. We hope also that our 
work will initiate a general methodology for 
understanding the mechanism of neural networks 
employed in a variety of natural language 
processing tasks. 
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