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In this paper, we describe a framework for developing probabilistic classifiers in natural language 
processing. Our focus is on formulating models that capture the most important interdependencies 
among features, to avoid overfitting the data while also characterizing the data well. The class 
of probability models and the associated inference techniques described here were developed in 
mathematical statistics, and are widely used in artificial intelligence and applied statistics. Our 
goal is to make this model selection framework accessible to researchers in NLP, and provide 
pointers to available software and important references. In addition, we describe how the quality 
of the three determinants of classifier performance (the features, the form of the model, and 
the parameter estimates) can be separately evaluated. We also demonstrate the classification 
performance of these models in a large-scale experiment involving the disambiguation of 34 
words taken from the HECTOR word sense corpus (Hanks 1996). In lO-fold cross-validations, 
the model search procedure performs significantly better than naive Bayes on 6 of the words 
without being significantly worse on any of them. 

1. Introduction 

This paper describes a framework for developing probabilistic classifiers in natural 
language processing (NLP). 1 A probabilistic classifier assigns the most probable class to 
an object, based on a probability model of the interdependencies among the class and a 
set of input features. This paper focuses on formulating a model that captures the most 
important interdependencies, to avoid overfitting the data while also characterizing 
the data well. The goal is to achieve a balance between feasibility and expressive 
power, which is needed in an area as complex as NLP. 

The class of probability models and the associated inference techniques described 
here were developed in mathematical statistics, and are widely used in artificial intel- 
ligence and applied statistics. However, these techniques have not been widely used 
in NLP, although the software required to implement these procedures is freely avail- 
able. Within this framework, we can unify many of the metrics and types of models 
currently used in NLP. The class of models, decomposable models, is large and ex- 
pressive, yet there are computationally feasible model search procedures defined for 
them. They can include any kind of discrete variable, and the formality of the method 
supports evaluation. 

In this paper, our goal is to make this model selection framework accessible to re- 
searchers in NLP, by providing a concise explanation of the underlying theor~ pointing 
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out relationships to existing NLP research, and providing pointers to available soft- 
ware and important references. In addition, we describe how the quality of the three 
determinants of classifier performance (the features, the form of the model  and the 
parameter estimates) can be separately evaluated. 

We also demonstrate the classification performance of these models in a large- 
scale experiment involving the disambiguation of 34 words taken from the HECTOR 
word sense corpus (Atkins 1993; Hanks 1996). We compare the performance of classi- 
fiers based on models selected by this algorithm with the performance of naive Bayes 
classifiers (classifiers based on the naive Bayes model). Naive Bayes classifiers have 
been found to be remarkably successful in many applications, including word sense 
disambiguation (Mooney 1996). In 10-fold cross-validations, the model search proce- 
dure achieves an overall 1.4 percentage point improvement over naive Bayes, and is 
significantly better on 6 of the words without being significantly worse on any of 
them. 

2. Probabilistic Modeling 

We will use word sense disambiguation of the word interest as a concrete example in 
this section. For simplicity, we will use only two contextual features, the part of speech 
of the word to the left and the part of speech of the word to the right. Assume that 
there are 8 senses of interest and 20 part of speech tags. We will map the features to 
feature variables and the sense tag to the classification variable, yielding a discrete, 
finite random vector X -- (FV1 . . . . .  Fl,~w, CV) (where w here is 2). 

Suppose that there are N occurrences of interest in the training sample. The training 
sample is viewed as being composed of a set of N independent and identical trials 
drawn from a three-variable population distribution. The outcome of each trial is 
a particular combination of the values of the three variables, i.e., one of the 3,200 
(8 x 20 x 20) possible configurations of the variables in X. Let y~ be the frequency and 
Pi the probability of the i th configuration of the variables in X. Then (/:1 . . . . .  f3,200) has 
a multinomial distribution with parameters (N, P1, . . . ,  P3,200), where N is fixed. The 
parameters P1 . . . . .  P3,200 define the joint probability distribution of the variables in X. 
These parameters could be estimated directly from counts in the training data; that 
is, we could use the unrestricted maximum-likelihood estimate of Pi (Mood, Graybill, 
and Boes 1974): 

= ~ .  

If there is not enough training data for the estimation task at hand, then there are 
many configurations of the variables that seldom or never occur in the training data. 
For these, the unrestricted maximum-likelihood estimates are unreliable. 

An alternative is to hypothesize conditional independence assumptions of the 
form: variables FVi and FVj are conditionally independent of one another, given the 
values of the remaining variables. Then, we need only count the configurations of the 
sets of variables that are still interdependent. 

A simple example will show why (Whittaker 1990). Recall that X is a vector of 
three binary variables, X = (FV1, FV2, CV). There are 3,200 parameters to be estimated, 
namely: 

P(FV1 = 0, FV2 = O, CV = 0), P(FV1 = O, FV2 = O, CV = 1) . . . . .  

P(FV1 -- 19, FV2 = 19, CV -- 6), P(FV1 = 19, FV2 = 19, CV = 7). 
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The joint distribution can be expressed as follows, according to a basic axiom of prob- 
ability theory (where fVl, fv2, and cv represent particular values of FV1, FV2, and CV, 
respectively): 

P(fvl,fv2, cv) = P(fVl ] y~02, cv)P(fv2 I cv)P(cv) (1) 

But if fV 1 and fv2 are conditionally independent given the value of cv, then the joint 
distribution can be expressed as follows: 

P(fPl , fv2,  cv) = P(fu  I ] £v)P(fv  2 ]cv)P(cv)  

P0COl, cv) P(fv2, cv) n, , 
- -  P ( c v )  

= P0rvl, cv)P(fv2, cv) (2) 
P(cv) 

The parameters of the model expressed in (2) are the terms on the right-hand 
side of the equation. They describe the marginal distributions of just the interdepen- 
dent variables. Thus, we see that the conditional-independence constraint allows us 
to express the joint distribution in terms of these smaller marginal distributions. 

The marginal distribution of FV1 and CV is the full joint distribution "collapsed" 
over FV2. For example, the estimate for P(FV1 = O, CV = 0) is the sum of the relative 
f r e q u e n c i e s  of  (FV1 = O, C V  = O, FV2 = 0), (FV1 = O, C V  = 0,FV2 = 1 ) , . . . , ( F V 1  = 
0, CV = 0, FV2 = 19), i.e., the relative frequency of configurations for which FV1 -- 0 
and CV = 0, whatever the value of FV2. Maximum likelihood estimates of the parame- 
ters of marginal distributions are more reliable than those of the full joint distribution, 
because, in a given sample of training data, the frequency of each combination of 
values of the variables in a marginal distribution is always as large or larger than the 
frequency of each combination of the values of the variables in the full distribution. 

There are many possible sets of noninteraction assumptions that could be made 
regarding a set of variables. The various possibilities can be formalized as probabili ty 
models .  A probability model (more specifical134 its parametric form) expresses the rela- 
tionships among the variables of the model, and specifies a family of distributions--all 
distributions in which those relationships hold. For example, the model in which FV1 
is conditionally independent of FV2 given the value of CV is the family of all distribu- 
tions for vector X in which this constraint holds. The differences among the members 
of this family result from differences in the values of the parameters. 

A probabilistic model (a parametric form complete with parameter estimates) 
forms the basis of a probabilistic classifier. The classifier assigns to each ambigu- 
ous object the category or tag that has the highest probability of occurring, given the 
observed values of the feature variables: 

P ( C V, j~ol, fv2, fv3 . . . . .  fVn ) 
P (CW If'Ol,fOa,dO 3 . . . . .  f?dn) ~- p ( f v l , f v2 , f v  3 . . . . .  yon ) (3) 

Since the denominator is the same for all classes, the numerator, i.e., the joint distri- 
bution defined by the model, determines which class is assigned. 

3. The Class of  Models  

Recall that the parametric form of a model expresses a set of noninteraction assump- 
tions regarding the relationships among the variables. Different model classes allow 
for different types of noninteraction assumptions. 
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The class of log-linear models is the most widely used class of probability models 
for analyzing discrete data. It supports a wide range of noninteraction assumptions and 
the use of maximum likelihood parameter estimates (Bishop, Fienberg, and Holland 
1975). Graphical models are the subset of log-linear models in which the only kind 
of noninteraction is conditional independence (Whittaker 1990). 

The interdependencies among the variables in a graphical model can be expressed 
graphically, in a dependency graph. A dependency graph is formed by mapping each 
variable in the model to a node in the graph and drawing an edge between the nodes 
corresponding to interdependent variables. All variables that are not directly con- 
nected are conditionally independent given the values of the variables mapping to 
the connecting nodes. Therefore, the maximal sets of interdependent variables corre- 
spond exactly to the cliques of the graph (where a clique is a maximal fully connected 
component). 

As shown by Darroch, Lauritzen, and Speed (1980), each graphical model describes 
a Markov random field. The fundamental property of a Markov random field is that 
the conditional probability of a variable given the values of the others is the same 
as the conditional probability of that variable given only the values of the variables 
corresponding to adjacent nodes. Thus: 

P(Xi = xi I Xj = xj;j # i) = P(Xi -- xi I Xk = Xk , . . . ,  Xm = Xm) 

where Xk through Xm are the adjacent variables. It is this property of conditional 
independence that was used to formulate equation (2) from (1). 

The framework described in this paper uses decomposable models, a subclass of 
graphical models (Whittaker 1990; Darroch, Lauritzen, and Speed 1980), because they 
offer many computational advantages while retaining a great deal of expressive power. 

There are a number of different ways to define the class of decomposable models, 
one of which is the following: The class of decomposable models is composed of all 
graphical models that have triangulated dependency graphs, i.e., all cycles of length _> 
four in the dependency graph contain a chord. A chord is an edge between nonadjacent 
nodes in the cycle. 

Another definition of decomposable models is the following: They are those graph- 
ical models that express the joint distribution of a set of variables as the product of 
marginal distributions of those variables, where the new expression is a full factor- 
ization (Whittaker 1990) of the joint distribution. A product of marginal distributions 
is a full factorization of a joint distribution if the former is derived from the latter by 
factorization steps such as that between equations (1) and (2), and "an independence 
statement corresponding to every pair of non-adjacent vertices in the dependency 
graph of X is applied exactly once to factorize the joint distribution into the product 
of marginal distributions" (Whittaker 1990, 393). 

Consider a set of five random variables, X = (A, B, C, D, E) (E, say, might be the 
classification variable, and the others the feature variables). We will consider the model 
in which: 

CI1: A is conditionally independent of B given the values of C, D, and E; 
CI2: A is conditionally independent of C given the values of B, D, and E; and 
CI3: B is conditionally independent of C given the values of A, D, and E. 

This model is a decomposable model. We will derive the full factorization of the 
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A A 

D C D C 

a. b. 

Figure 1 
Decomposable models. 

A A 

B 

D C D C 

c. d. 

joint distribution by applying an independence statement corresponding to each of 
(CI1)-(CI3) in turn. 2 

As in equation (1), the joint distribution of the variables can be expressed as: 

P(a, b, c, d, e) = P(a ] b, c, d, e)P(b [ c, d, e)P(c ] d, e)P(d ] e)P(e) (4) 

The dependency graph of the model corresponding to this equation is shown in 
Figure l(a). Applying (Ch) to (4), the following factorization can be performed, by the 
definition of conditional independence. 

P(a ] b, c, d, e) = P(a [ c, d, e) (5) 

The resulting model is: 

P(a, b, c, d, e) = P(a ] c, d, e)P(b ] c, d, e)P(c ] d, e)P(d ] e)P(e) 

P(a, c, d, e) P(b, c, d, e) P(c, d, e) P(d, e) p 
P(c,d,e) P(c,d,e) P(d,e) ~ ( e )  (e) 

P(a, c, d, e)P(b, c, d, e) 
P(c, d, e) 

(6) 

The dependency graph of the model containing (CIt) is shown in Figure l(b). 
Factorization (5) can be understood in terms of this dependency graph by noting that 
the neighbors of A in this graph are {C, D, E} (and not {B, C, D, E}). 

Applying (CI2) to (6): 
P(a I c, d, e) = P(a I d, e) (7) 

The resulting model is: 

P(a, b, c, d, e) = P(a I d, e)P(b I c, d, e)P(c I d, e)P(d I e)P(e) 

P(a, d, e)P(b, c, d, e) 
P(d,e) 

(8) 

The dependency graph of the model containing (CI1)-(CI2) is shown in Figure 1(c). To 
see that (7) can be performed, note that the neighbors of A in Figure 1(c) are {E, D}, so 

2 Such a factorization exists for any  decomposable  model,  bu t  the independence  s ta tements  m u s t  be 
appl ied in an  appropria te  order  to achieve the  factorization; see Whi t taker  (1990). 
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that A is conditionally independent of {B, C} given the values of {E, D}, and it follows 
from a basic axiom of probability that A is conditionally independent of {C} given the 
values of {E, D}. 

Finally, applying (C/3) to (8): 

P(b I c, d, e) = P(b I d, e) (9) 

The final model incorporating all factorizations is: 

n(a, b, c, el, e) = P(a I c l, e)P(b [ d, e)P(c l d, e)P(d l e)P(e ) 

= P(a, d, e)P(b, d, e)P(c, d, e) (10) 
P(d,e)P(d,e) 

The dependency graph of the model containing all three conditional independencies 
is shown in Figure l(d). 

Thus, a decomposable model expresses the joint distribution of a set of variables 
as a product of the marginal distributions of the maximal sets of interdependent vari- 
ables (the cliques in the dependency graph) scaled by the marginal distributions of 
the variables common to two or more of these maximal sets. The fact that this kind of 
closed-form expression of the joint distribution exists provides one of the key advan- 
tages in using decomposable models. The parameters of the marginal distributions can 
be estimated directly from the counts in the data. The joint distribution is expressed in 
terms of these, as in equations (6), (8), and (10). Thus, we can estimate the parameters 
from the data without the need for an iterative fitting procedure (as used in NLP max- 
imum entropy modeling [Berger, Della Pietra, and Della Pietra 1996]). This property 
is unique to decomposable models (Pearl 1988; Whittaker 1990). 

4. M o d e l  Se lec t ion  

We showed above how conditional independence assumptions can be used to simplify 
the expression of the joint distribution. Given a particular set of variables, there are 
often very many different conditional independence assumptions that could be made. 
The generation and testing of different sets of assumptions can be computationally 
realized as a search through a space of probability models, in our case decomposable 
models. Removing an edge from a dependency graph of a decomposable model is 
equivalent to adding a conditional independency to the model. Another way to view 
the derivation of equations (6), (8), and (10) is as the process of beginning with the fully 
connected model, in which all variables are interdependent, and successively removing 
edges, corresponding to adding conditional independencies (CI1)-(CI3). This is how 
backward search is done. In forward search, we start with the fully disconnected model, 
in which all variables are independent, and successively add edges, corresponding to 
adding interdependencies. The space of decomposable models is very large, so greedy 
search is typically done. In a backward search, at each step, all edges in the current 
model are evaluated, and one is removed; in forward search, at each step, all edges 
that could be added are evaluated, and one is added. (Note that decomposable models 
are not closed under the operations of adding and deleting edges, so a test must be 
performed to assure that all the models considered are decomposable.) 

As in decision tree induction, feature selection is also performed as a result of 
model search (Pedersen, Bruce, and Wiebe 1997). If a feature is not connected to the 
classification variable in a model, then that feature cannot affect which class is assigned 
by a classifier based on that model. 
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The goal of the search process is to find a model  with the fewest interdependencies  
that fits the data well. The fit of the model  is how  closely the counts observed in a 
training sample correspond to those that would  be expected if the model  being tested 
were the true populat ion model.  This is measured using a goodness-of-fit statistic. 

Read and Cressie (1988) have shown that most  measures used to evaluate model  fit 
are instances of the power  divergence statistic, where  different measures are generated 
by  changing a single parameter.  These include Pearson's X 2, the Kullback-Leibler 
information divergence D, which is also known  as cross entropy; and the log-likelihood 
ratio statistic, G 2. The two most  commonly  used measures in NLP, D and G 2, are 
trivially expressed in terms of each other. In the general case, D is used to evaluate 
the difference between any two density functions gy and fy for the same r andom vector 
Y. When D is used to evaluate model  fit, gy is the distribution of Y in the data sample, 
fy is the distribution of Y predicted by  the model,  and G 2 is 2N x D(gy;fy). 

In the model  search described above, models  are modif ied an edge at a time. In 
evaluating an edge, we are testing the model  of conditional independence  between 
the two variables connected by  that edge. The information divergence applied in this 
case is the same as conditional mutual  information, another  widely  used measure in 
NLP. 

Using decomposable models  affords an important  advantage in assessing model  
fit: the test for conditional independence  of two nodes as described above is simplified. 
Rather than assessing the conditional independence  of the two nodes condit ioned on 
all of the other variables, we need only consider the other nodes  in the same clique in 
the dependency  graph. 

In general, a goodness-of-fit statistic can be thought  of as a cost function, where  a 
lower value represents a better model  fit. Model  selection can be based directly on the 
value of a goodness-of-fit  statistic, or it can be based on a cost function that combines 
a goodness-of-fit  statistic with a penal ty for model  complexity, such as the Akaike 
information criterion (AIC) (Akaike 1974) or the Bayesian information criterion (BIC) 
(Schwarz 1978). 

The final model  selected can be based on a predef ined cutoff value. In the case 
of measures such as AIC and BIC, a cutoff on the value of the measure itself can be 
defined. In the case of statistics such as G 2, the appropriate  cutoff is a predetermined 
threshold defining statistical significance. Alternatively, all the models  generated dur- 
ing search can be considered, and the one with the highest accuracy on a held-out  
port ion of the training data can be selected as the final model  (Kayaalp, Pedersen, and 
Bruce 1997; Wiebe, Bruce, and Duan 1997). 3 

The freely available software package CoCo performs forward  and backward 
search using all of the measures described above (Badsberg 1995). 4 Pedersen, Bruce, 
and Wiebe (1997) present  the results of experiments  covarying these measures and 
the direction of search. In addit ion to these methods,  Buntine (1996) describes other 
search strategies and measures, such as min imum description length, that can be used 
for model  selection. 

There are a number  of other ways  to utilize the results of a model  search procedure  
that are extensions to the basic framework.  In model  switching (Kayaalp, Pedersen, 
and Bruce 1997) and the naive mix (Pedersen and Bruce 1997), more than one of 
the models  generated dur ing search is used to per form classification. In Boutilier et al. 

3 One could also consider applying this kind of test to evaluate each edge, replacing the goodness-of-fit 
or cost metric. However, this would be more computationally expensive, and would not directly 
measure conditional independence. 

4 CoCo is available at http: / / web.math.auc.dk/jhb / CoCo / others.html 
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(1996), context-sensitive models are formulated. These models include independencies 
that hold only in certain contexts, that is, they hold only given specific assignments 
of values to variables. 

5. Diagnostic Analysis 

As seen above, the model selection framework provides many choices. Because the 
approach is a formal approach to probabilistic modeling, we can analyze the quality of 
the three determinants of classifier performance: the features, the form of the model  
and the parameter estimates. In the paragraphs below, we describe how to isolate the 
contribution that each of them makes to classification error. This analysis can provide 
insight into which choices are most appropriate for a particular data set. 5 

Features. For diagnostic purposes, it is revealing to train and test the model on the same 
data. 6 First, consider training and testing the fully connected model on the same data. 
Since the fully connected model contains no conditional independence assumptions, 
and the model parameters are not estimated on a separate training set, the model 
describes the exact joint distribution of the data. Because of this, classification errors 
can only be due to a lack of discriminatory power of the features. That is, there must 
be combinations of feature values that occur with more than one class. 

Form of the model. Consider training and testing other models on the same data. As for 
the fully connected model, the parameter estimates are optimal for that data. However, 
we have added approximations to the model in the form of conditional independence 
assumptions. Thus, for the same data and feature set, variations in the performance of 
different models are due only to the different conditional independence assumptions 
made in those models. 

Parameter estimates. Consider a comparison in which the features, test set, and model 
form are fixed, but in one case, the parameters are estimated on a separate training 
set, and in the other case, the parameters are estimated from the test set, as above. 
Differences in the performance of two such models can only be due to the parameter 
estimates. 

As more conditional independence assumptions are made, the parameter esti- 
mates become more reliable, in the sense that they are based on the same or greater 
frequencies (see Section 2). Even so, if important interdependencies are removed from 
the form of the model, model performance may actually degrade. Thus, by evaluating 
the contribution that each of the above factors makes to model performance, we can 
assess how well the model search procedure is balancing model expressiveness and 
the reliability of the parameter estimates. 

6. Shortcomings 

We have described a very general and expressive framework, but of course there are 
some shortcomings. The approach is a supervised learning approach, and therefore re- 
quires manually tagged training data. In fact, to take full advantage of high-complexity 
models, a large amount of data may be required. However, by generating models of 

5 The material in this section was originally published in Bruce, Wiebe, and Pedersen (1996). 
6 Held-out portions of the training data can be used. 
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varying complexity, the model search procedure can adjust the complexity of the final 
model to the amount of data that is available. 

Another point of concern is the computational complexity of the search procedure. 
Because it is greedy, the search procedure itself is not inefficient: the number of edges 
evaluated during the search is polynomial in the number of variables. However, the 
measures used to evaluate edges during the search procedure are inefficient. Section 4 
mentions a number of these measures, which can all be expressed as a function of G 2. 
The complexity of calculating G 2 is a function of the number of configurations of the 
variables, which is exponential in the number of variables. Therefore, the worst-case 
time complexity of any search procedure that uses a function of G 2 is exponential in 
the number of variables. In practice, the method is feasible for a reasonable number 
of variables (certainly on the order of 100 in the final model), and, once the model is 
developed during training, the process does not need to be repeated. 

7. Relationships to Other Classes of Models 

It is common in NLP to simply assume a particular model form rather than searching 
for one that is appropriate for the data. Two kinds of statistical models widely used in 
NLP are the n-gram and naive Bayes models. These models a r e  decomposable models. 
In an n-gram model  the variables are the class assigned to the current object and the 
classes assigned to the previous N -  1 objects, and there are edges between all pairs 
of variables. A naive Bayes model includes edges between the classification variable 
and each feature variable (and contains no other edges). Because n-gram and naive 
Bayes models are decomposable, they are possible candidates during model selection. 
However, they would be selected only if they appear to be the most appropriate 
models for the particular data. 

In maximum entropy modeling as applied to NLP (Berger, Della Pietra, and Della 
Pietra 1996; Ratnaparkhi 1997), feature selection and model search are typically com- 
bined, but the procedure differs from that described here. It is important to note that 
decomposable models are a subset of maximum entropy models. Even so, no effort is 
made to select for decomposable models (and take advantage of their benefits), or to 
demonstrate the need for a broader class of models. 

Bayesian networks are extensively used in artificial intelligence. They are popular 
because of their graphical representations and because there are probability propa- 
gation algorithms for computing the joint and conditional distributions of the vari- 
ables. Decomposable models can be represented as Bayesian networks. In fact, in the 
widely used probability propagation algorithm described by Lauritzen and Spiegel- 
halter (1988) and Pearl (1988), a Bayesian network is ultimately transformed into a 
decomposable model, to take advantage of the computational benefits of that class of 
models (see the triangulation step described in Pearl [1988]). 

Although decision trees are not formal probability models, there are similarities 
between decision tree induction (Breiman et al. 1984) and the model selection frame- 
work presented here. Both search procedures perform feature selection and reduce the 
interdependencies between features to avoid overfitting the data. For a further dis- 
cussion of the relationships between graphical models and decision trees, see Buntine 
and Roy (1995). 

8. Word Sense Disambiguation Results 

In a recent collection of experiments, we applied the basic method to word sense 
disambiguation of 34 words from the HECTOR corpus (Atkins 1993; Hanks 1996). The 
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words were not chosen by the authors, but were randomly selected from a set of 38 
words included in the training set for the SENSEVAL evaluation project (Kilgarriff 
1998). The data set for each word consisted of all sentences containing that word 
in the corpus. The results are presented in Figure 2. Tenfold cross validation was 
performed for each word, for a total of 340 experiments. On each fold, a forward 
search with G 2 as the goodness-of-fit test was performed. In addition, we ensured 
that naive Bayes was included as a competitor in each fold. For each fold, evaluation 
on a single held-out portion of the training data was performed to choose the final 
model. The results of applying this model to the actual test set, averaged over folds, 
are shown in the column labeled Model Selection. The results of applying naive Bayes 
exclusively (averaged over folds) are shown in the column labeled Naive Bayes. The 
column labeled Best Model shows the highest results on the actual test set obtained 
by any of the models generated during search (again, averaged over folds). The same 
types of features were used in each model: the part-of-speech tags one place to the 
left and right of the ambiguous word; the part-of-speech tags two places to the left 
and right of the word; the part-of-speech tag of the word; and a collocation variable 
for each sense of the word whose representation is per-class-binary as presented in 
Wiebe, Bruce, and Duan (1997). 7 

Naive Bayes has been shown to be competitive with state-of-the-art classifiers, and 
has proven remarkably successful on many AI and NLP applications (see, for exam- 
ple, Leacock, Towell, and Voorhees [1993]; Friedman, Geiger, and Goldszmidt [1997]; 
Mooney [1996]; Langley, Iba, and Thompson [1992]). As can be seen by comparing 
columns 5 and 6, the model selection procedure achieves an overall average accuracy 
that is 1.4 percentage points higher than exclusively using the naive Bayes classifier. 
Evaluating the results on a per-word basis more clearly shows the benefits of per- 
forming model selection in these experiments. There are more words for which model 
selection is better than there are words for which model selection is worse. Further, we 
assessed the statistical significance of the differences in accuracy presented, in Figure 2 
between the two methods for the individual words, using a paired t-test (described 
in Cohen [1995]) with 0.05 as the significance level. For six of the words, the model 
selection performance is significantly better than the performance of exclusively using 
naive Bayes. Further, the model selection procedure is not significantly worse than 
naive Bayes for any of the words. 

In addition, on average, the set of words for which model selection is superior are 
more difficult than the ones on which naive Bayes is superior: for the former set, the 
average number of senses is 10 and the average entropy is 2.2; for the latter set, the 
average number of senses is 7 and the average entropy is 1.7 (see columns 2 and 4 in 
Figure 2). We can also see that, on average, there is less annotated data available for 
the words on which model selection does better, a total of 524 tagged instances (see 
column 3 in Figure 2), than for those on which it does worse, a total of 645 tagged 
instances. 8 This supports the idea that model selection tailors the complexity of the 
model to the amount of data that is available. 

As shown in column 8, models are generated during model search that provide 
high accuracy. In fact, the accuracy of the best model generated is consistently higher 
than that of both naive Bayes and the final model actually selected during the search. 
This illustrates that there are further potential gains to be exploited by investigating 
alternative methods for selecting the best model for each fold. 

7 The variable for each sense S is binary, corresponding to the absence or presence of any word in a set 
specifically chosen for S. A word W is chosen for S if P(S I W) > 0.5. 

8 In 10-fold cross validation, 90% of the data is used for training on each fold. 
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Data Set Naive Model 
Word Number (10% used as a test Entropy Bayes Selection M S  - N B  Majority Best 

of Senses set on each fold) (NB)  (MS)  Classifier Model 
Tagged Word 

Instances Count 
sick 14 659 15066 2.969 56.8 65.1 +8.3 30.8 67.4 

storm 18 752 20806 2.895 63.4 71.6 +8.2 39.6 73.6 
drift 17 520 13484 2.889 56.0 63.3 +7.3 31.7 66.0 

curious 3 459 12950 0.833 83.0 87.8 +4.8 76.9 89.1 
beam 17 328 8824 2.950 61.1 65.8 +4.8 35.4 70.4 
drain 16 595 15033 3.253 57.3 60.9 +3.6 19.3 64.2 
brick 15 547 16530 2.289 68.1 71.7 +3.6 47.9 74.1 
raider 6 174 4481 2.216 79.6 82.8 +3.3 36.2 89.6 
dawn 8 494 14558 2.328 74.3 77.3 +3.0 47.0 81.4 
sugar 7 841 20580 1.786 82.5 84.9 +2.4 52.9 88.8 

creamy 3 100 2556 1.012 72.3 74.5 +2.3 68.0 82.7 
bake 11 349 10871 2.691 79.1 80.9 +1.8 23.8 84.3 

impress 4 637 16751 0.758 89.3 90.8 +1.6 85.6 92.3 
govern 7 585 18584 2.139 67.1 68.7 +1.5 43.4 74.0 
layer 10 605 14139 1.806 80.3 81.6 +1.4 44.6 85.9 
boil 14 664 13831 2.443 68.7 70.1 +1.4 42.9 75.8 

collective 9 550 14729 2.347 64.3 65.4 +1.1 39.5 73.2 
civilian 3 581 16043 1.504 88.2 88.4 +0.2 48.7 92.2 

provincial 4 331 11202 0.293 96.5 96.5 0.0 95.8 97.3 
overlook 5 435 11765 1.597 86.1 86.1 0.0 41.6 90.9 

impressive 1 709 19790 0200 100 100. 0.0 100. 100. 
bucket 10 176 4873 1.974 71.4 71.4 0.0 56.8 80.3 

complain 4 1109 29170 0.701 89.7 89.6 -0.1 87.5 90.5 
spite 4 577 17865 0.404 96.5 96.4 -0.2 94.3 97.6 
lemon 10 245 5549 2.398 71.2 70.6 -0.6 36.3 76.2 

literary 5 678 20510 1.661 66.5 65.7 -0.9 48.7 70.6 
connect 12 351 15029 2.283 56.8 55.8 -0.9 52.7 64.3 

attribute 5 360 10871 1.949 7610 75.0 -1.0 46.9 82.2 
confine 6 583 16743 1.392 83.9 82.8 -1.1 74.1 87.3 
comic 7 516 14300 2.033 74.9 73.8 -1.1 52.9 77.5 
cell 9 689 18683 2.099 74.6 73.5 -1.1 49.2 77.6 
cook 11 1523 48038 2.386 77.7 76.4 -1.3 46.3 80.3 

intensify 3 232 6872 1.316 72.8 71.2 -1.5 51.7 79.9 
expression 10 873 26279 2.137 64.0 61.1 -2.9 36.4 69.9 

average 1 8 . 4 7 1 1 5 5 3 . 7 1 1 5 4 3 5 . 6  I 1.874 I 75.0 I 76.4 I +1.4 l 52.5 I 80.8 I 

Figure 2 
C o m p a r i s o n  of accuracy. 

9. Summary 

T h i s  p a p e r  h a s  d e s c r i b e d  a n  i m p o r t a n t  c l a s s  o f  p r o b a b i l i t y  m o d e l s  a n d  p r o c e d u r e s  fo r  

m o d e l  s e l e c t i o n  t h a t  h a v e  n o t  b e e n  w i d e l y  u s e d  in  NLP.  T h e  p r o c e d u r e s  c o m p l e m e n t  

t h e  s e t  o f  a v a i l a b l e  m e t h o d s  fo r  b a l a n c i n g  e x p r e s s i v e n e s s  a n d  feas ib i l i ty .  T h e  f r a m e -  

w o r k  is  u n d e r s t a n d a b l e ,  p o w e r f u l ,  a n d  c o m p u t a t i o n a l l y  f ea s ib l e .  I ts  e f f e c t i v e n e s s  f o r  

a n  N L P  p r o b l e m  is d e m o n s t r a t e d  h e r e  i n  a l a r g e - s c a l e  w o r d  s e n s e  d i s a m b i g u a t i o n  

e x p e r i m e n t .  
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