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This paper describes a method for ensuring the termination of parsers using grammars that freely 
posit empty nodes. The basic idea is that each empty no& must be associated with a lexical item 
appearing in the input string, called its sponsor. A lexical item, as well as labeling the no&for 
the corresponding word, provides labels for a fixed number, possibly zero, of empty nodes. The 
number of nodes appearing in the parse tree is thus bounded before parsing begins. Termination 
follows trivially. The technique is applicable to any standard parsing algorithm. 

1. Introduction 

One way of guaranteeing that a parsing algorithm will terminate is to ensure that each 
step consumes some finite amount of the input. There are two main situations in which 
this does not automatically occur, both arising from properties of the grammar. The first 
comes from nonbranching dominance chains of unbounded length. The second comes 
from empty nodes. Most modern grammars do not admit unbounded nonbranching 
chains, so that the problem of handling the phenomenon in parsing does not arise 
in practice. It is widely believed that these grammars also do not admit unbounded 
numbers of empty nodes. However, these generally constitute a problem in the design 
of parsing algorithms because the parser's domain of locality does not coincide with 
that of the constraints that govern their appearance. 

This paper presents a proposal for constraining the appearance of empty nodes that 
is applicable to a wide variety of parsing strategies and linguistic theories, including 
many of those within the GB framework. Ideas like the ones to be presented here have 
been a part of other parsing systems, e.g., Fong (1991a, 1991b) and Millies (1991), and 
our notion of sponsorship, which we introduce below, can be viewed as a weak version 
of lexicalization in TAGs that is specifically focused on determining the distribution of 
empty nodes. The novelty of our approach lies principally in the identification of a 
single simple constraint as sufficient to ensure termination of the process. While its 
motivation is computational, its justification is primarily linguistic. The next section 
presents the problem that empty nodes pose for standard parsing techniques. Section 3 
introduces the notion of sponsorship, and Section 4 discusses linguistic examples that 
demonstrate the role we see it playing. Section 5 shows how this proposal might be 
integrated into general parsing strategies. The conclusion summarizes what has been 
achieved, suggests avenues for further development, and draws parallels with some 
different approaches. 
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Figure 1 
Extraposition and verb movement. 

2. The Problem with Empty Nodes 

The empty-node problem arises for the following reason. Given a parsing scheme with 
a standard notion of locality, there is no limit on the number of empty nodes that it 
might be necessary to posit before a configuration emerges in which the constraints 
governing the appearance of any of them can be verified. 

We claim that most standard parsing algorithms will face difficulties in constrain- 
ing the appearance of empty nodes in structures like the one in Figure 1. 

A bottom-up parser would have to consider the possibility that every V' should 
be combined with a following empty NP, like the upper V' in Figure 1, to form another 
V', which could then be treated in like manner. If the subcategorization frame of the V 
head were available, it could be used to bound the number of V r nodes posited. But, in 
a structure involving verb movement, the head of the V chain is only integrated onto 
the structure after all of the V' nodes have been constructed, so its subcategorization 
frame is not available when the V ~ nodes are constructed. Similarly, the head of the 
NP chain is integrated too late to constrain the positing of V' nodes. 

A top-down parser would fare no better because the example is a classic case of 
left recursion. It might be argued that a top-down parser would have encountered the 
I head of the V chain before beginning to construct the V' nodes and could therefore 
use its subcategorization frame to determine how many to construct. However, this 
would require an analysis of the grammar that is beyond the scope of standard parsing 
procedures. Notice that the V trace from which the subcategorization frame is projected 
is incorporated into the structure only after all the of V ~ nodes have been constructed. 
Finally, the number of VP nodes is not determined by the subcategorization frame. 
No amount of grammar analysis will allow a top-down parser to predict the number 
of adjuncts attached to VP. 

A head-first parser (Kay 1989; van Noord 1993) seems best adapted to the treat- 
ment of empty nodes. This mixed parsing strategy in effect predicts a head top-down 
and builds its complements and specifiers bottom-up. The trace of the verb would 
be identified immediately after the I gave had been recognized, since that trace is the 
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head of the complement of the I. But it is not clear how such a strategy would cope 
with empty nodes that do not stand in a head-to-head relationship, such as the trace 
associated with the adjoined NP. The construction of the NP a big picture of George 
would take place only after that of all of the V ~ nodes to its left. 

In summary, all of these parsing strategies suffer from the problem that they can 
posit too many-- in  some cases infinitely many---empty nodes. They do this because 
there is no limit on the number of empty nodes that can be posited before the con- 
straints governing their appearance are verified. 

Sometimes relatively simple strategies suffice to constrain the appearance of empty 
nodes and ensure parser termination. For example, given a grammatical constraint 
that all empty nodes be siblings of appropriate lexical heads, then simply delaying the 
introduction of an empty node until the node that dominates it is constructed suffices 
to constrain the number of empty nodes that a bottom-up parser posits. Similarly, 
for some theories of filler-gap dependencies, notably those based on 'slash features' 
(Gazdar, Klein, Pullum, and Sag 1985; Pereira 1981), it is possible to use a kind of 
prediction to constrain the possible occurrences of empty nodes in a wide variety of 
parsing strategies. However, with more complex theories of grammar, such as those 
within the GB framework, it is no longer so clear how, or even if, these sorts of 
techniques can be applied. 

3. Sponsoring 

Our solution to this problem is a device inspired by the notion of licensing in GB 
(Abney 1986). According to this conception, the presence and location of each empty 
node is justified by the specific structural relations it stands in with other nodes. For 
example, every noun phrase might be required to receive Case and a &role, and it 
may be that the phrase would have to appear at different places in the structure for 
both of these assigrunents to be made. However, it may also be that the phrase can 
be represented in one, or both, positions by a related empty category, a trace of the 
phrase, which is licensed by its fulfillment of this specific role. 

To guarantee that only a finite number of empty nodes is posited in any analysis, 
we propose that, whatever parsing strategy is used, there be a global constraint on the 
number of empty nodes that can be posited in any single search path. We require that 
every empty node be sponsored by some lexical or morphological item that appears 
in the input. By sponsoring we mean that every empty node is associated with some 
nonempty lexical item, which we call its sponsor, and that the number of empty nodes 
that a single lexical token can sponsor is fixed by the lexicon, so that the set of all 
empty nodes to appear in the parse can be determined directly by a simple inspection 
of the lexical items in the input string. 

Sponsorship is closely related to lexicalization in TAGs and CFGs (Schabes 1990, 
1992; Schabes, AbeillG and Joshi 1988; Schabes and Waters 1993; Vijay-Shanker and 
Schabes 1992). In a lexicalized grammar every node in the parse tree originates from 
some lexical entry, so parsing becomes a jigsaw puzzle-like problem of finding a 
consistent way of assembling the pieces of trees associated with each lexical item. 
Sponsoring is a weaker notion, in that only some of the constituent structure, namely 
the lexical items and empty nodes, are specified in lexical entries. This seems plausible 
in a framework in which general principles of grammar (e.g., X ~ theory, Case theory, 
etc.) determine the overall structure of the parse tree. In addition, finding an appro- 
priate association of constituent structure nodes with lexical items can be a difficult 
task. Because the sponsoring approach is only concerned with empty nodes, it should 
be easier to apply it to a wider variety of grannnatical theories than a lexicalization 
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Figure 2 
The structure of the lexicon and ELIs. 

approach, which requires that every node (empty or not) be associated with a lexical 
item (but see the remarks in the conclusion below). 

We now discuss one way to formulate a sponsoring approach. A lexical item and 
the set of empty categories that it sponsors constitute an extended lexical item (ELI) as 
sketched in Figure 2. In simple systems, such as the parser described in the next section, 
each lexical and morphological entry explicitly specifies the traces that it sponsors, but 
in more sophisticated implementations this could be determined automatically from 
principles of the grammar and properties of the lexical entry. It is not intended that 
sponsoring be used to change grammar, but only to impose relatively weak global 
constraints on the appearance of empty categories. 

There are several variants of the basic idea. For example, one could require that 
all the empty nodes supplied by the lexicon be used in the analysis. On the one hand, 
this could lead to a proliferation of lexical entries. On the other, it could prune the 
search space more effectively if the role of each empty node were made as specific as 
possible. 

As we remarked, previous proposals have made the number of empty nodes- 
posited a function of the length of the input string. The novelty of our proposal is 
twofold. First, it provides a finer way of estimating the number of empty nodes that 
will occur. In fact, in the simplest version of the theory, the number of empty and 
nonempty terminals in a sentence is simply the sum of the sizes of the ELIs of the 
words in it. The number of empty categories is therefore this number minus the num- 
ber of words. The fact that the number of empty nodes is bounded before parsing 
begins is the most important part of our proposal. 

Our second proposal is that each of the items in an ELI is marked to show the 
specific role it must fill. Only one member, for example, will be capable of receiving 
a 0-role, and this member will not be capable of filling any position in which a 0-role 
is not assigned. 
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Figure 3 
Cyclic WH-movement in English. 

4. Linguistic Aspects of Sponsoring 

The goal of this section is to demonstrate that the constraints that sponsoring imposes 
are plausible with respect to current linguistic assumptions. To the extent that they 
are, an important step will have been taken in establishing the decidability of these 
theories. 

Consider once again the example in Figure 1. Because there is a government rela- 
tionship between the V trace and the NP trace, and a movement relationship between 
the gave node under I and the V trace, it seems reasonable to include both of these 
traces in the ELI that permits gave to appear under I. The alternative clearly exists of 
allowing every N to sponsor an NP trace to allow, for example, for heavy NP shift of its 
maximal projection. It does not matter that this would lead to the provision of empty 
NP nodes in cases where no movement could occur, because the structures produced 
by the parser must independently satisfy all the requirements of the grammar. 

Now consider an example involving cyclic WH-movement, as depicted in Figure 3. 
For English, WH-items such as which could sponsor the NP trace at the base of the 
chain (in Figure 3 the NP trace in embedded object position). However, we have 
already motivated a trace for the subcategorized complement, which should also serve 
as the foot of the WH-chain. Sponsors must also be found for the intermediate traces. 
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Figure 4 
Empty C and PRO in English. 

Because the number of intermediate traces that can appear in WH-constructions is not 
bounded, these intermediate traces cannot be sponsored by either the WH-item or the 
embedded verb. However, they can be sponsored by the bridge verbs that govern their 
CP parents. For example, the intermediate NP trace in Figure 3 is sponsored by the 
verb think. 

Another possibility, inspired by the work of Grimshaw (1990) and Speas and Fukui 
(1986) on extended projections, is that inflection sponsors a complete set of empty 
functional nodes (and their specifiers) that can appear in the clause. In this example, 
the intermediate trace would be sponsored by the inflection -s on knows. While the 
first approach is perhaps more elegant, the second one also covers relative clauses, as 
discussed below. Either way, each potential location of an intermediate trace will have 
a sponsor; it is the independent constraints on WH-movement that are responsible for 
ensuring that, if a trace appears, it will be properly incorporated into a WH-chain. 

The verb movement in Figure 3 can be treated as before. Presumably the ELI for 
does that permits it to appear under C also sponsors the corresponding trace in I, and 
the ELI for knows (or perhaps for the inflectional ending -s) that permits the verb to 
appear under I also sponsors the trace in V. 

Next, consider the example in Figure 4. As well as the by now familiar V to ! 
movement, it also exhibits two examples of empty categories that are not members 
of chains, so their sponsors cannot be determined on this basis. Responsibility for 
sponsorship of the empty C as well as the PRO could be ascribed to the verb wants 
that governs the CP in which they appear. This is a control verb and is in any case 
responsible for identifying George as the antecedent of the PRO. According to this 
view the inflected verb wants (i.e., the lexical stem and the inflection) sponsors a total 
of three empty categories. Alternatively, one could allow the infinitive marker to to 
sponsor PRO and the empty complementizer. This approach is consistent with the 
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Figure 5 
Empty operators in relative clauses. 

view that inflection sponsors all of the empty functional nodes of the clause in which 
it appears. 

English relative clauses are a major challenge for the sponsoring approach. Even 
though relative clauses share many of the structural properties of WH-question con- 
structions such as cyclic movement, they can appear in a greater diversity of forms. All 
we attempt here is a survey of the problems encountered in developing the sponsoring 
account of empty nodes in relative clause constructions and their possible solutions. 

Consider the case of a relative clause introduced by an empty operator Op (rather 
than an overt relative pronoun), such as the example in Figure 5. 

The analyses discussed above provide sponsors for every empty node except the 
empty relative operator Op in the specifier position of CP. Because the number of 
relative clauses introduced by empty operators is not bounded (examples such as Ex- 
ample I seem to be indefinitely iterable) we are effectively forced to the conclusion that 
inflection, or some other lexical element present inside each relative clause, sponsors 
the empty operator Op in examples such as Example 1 and Figure 5. 

Example 1 
A man lOp1 Kim likes hi, lOp2 Sandy hates t2] . . .  and [Op3 Ivan ignores t3] .. .  

Even though the structure of reduced relative clauses such as Example 1 is not as 
well understood as ordinary relatives, they presumably involve empty operators as 
well. Assuming that we analyze the passive morphology on the participle as inflection 
(this seems linguistically motivated if we assume that movement to subject position 
is A-movement), the empty operator and all of its traces would be appropriately 
licensed. 
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Relative clause extraposition. 

E x a m p l e  2 
A horse [cpOp[ipt[vp r idden t] past the barn ]] fell. 

Finally, relative clauses can extrapose quite freely, as in Figure 6. (This diagram as- 
sumes that extraposed relative clauses adjoin to IP, but  nothing rests on this assump- 
tion.) 

The sponsoring mechanisms discussed above account for all of the empty nodes 
except for the trace of the extraposed relative clause (adjoined to N ~ in Figure 6). As an 
anonymous  Computational Linguistics reviewer points out, an apparently unbounded  
number  of relative clauses can be extraposed from a single NP. 

E x a m p l e  3 
A [N'[N'[N' photo tl]t2]t3] appeared in today's  paper [CP3 taken by Mapplethorpe] 
[cP2 showing him smil ing] . . .  [cp, that I think you would  like]. 

Just as in the case of empty  operator relative clauses, this iterability suggests that 
the extraposition traces must  be sponsored by lexical items that appear inside the 
extraposed relative clauses. The inflection element in the relative clause seems to be 
the most appropriate lexical item to sponsor these traces. 

To summarize,  it seems that it is possible to identify sponsors for the empty  nodes 
for a variety of linguistic constructions. Of course, the above examples do not demon- 
strate that it will always be possible to identify appropriate sponsors. In any given 
theory a detailed analysis of each construction is required to determine the appropriate 
sponsors. 
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5. Implementation 

The diagram in Figure 7 shows the structure of a possible implementation of a parsing 
system that exploits the notion of sponsoring. Square cornered boxes are used for data, 
and round corners for processes. Lexical access is applied to the input string to produce 
(nondeterministically) the extended lexical item (ELI) of each word. Its output is split 
into a sequence of lexical items and a bag of empty nodes. 

The parser can be based on any standard algorithm. It is special only in that all the 
terminal items in the phrases it constructs come either from the string of lexical items 
or from the bag of empty nodes, so it is impossible for any empty node to appear 
more than once in an analysis. 

An obvious defect of the architecture in this simple form is that, in the absence 
of some form of prediction, the parser will consider at all points in the string all 
the structures that can be built entirely from empty nodes. A simple solution to this 
problem is to compute all the trees consisting solely of empty nodes sponsored by 
lexical items appearing in the utterance to be parsed before beginning the main parsing 
process. This will make it possible to use a parser that does not deal with empty nodes 
explicitly. The idea is to modify the interface between the parser and the grammar. 
The fact that sponsoring can be implemented entirely within the "rule-maker" interface 
shows that it can be used with any parsing algorithm. We take it that the main job of 
this interface will be to manufacture "rules" that enshrine the local well-formedness 
constraints on individual nodes. The modification consists in adding rules to this set. 

A rule a ~ bl . . .  bn will be passed in its original form to the parser, which can use it 
to build a phrase from n nonempty daughters. In addition, the rule maker supplies the 
parser with rules derived from this one by replacing k < n of the bi with empty trees, 
yielding a rule with n - k  items on the right-hand side. The parser treats all these rules 
on equal footing. Apart from the sponsoring relationship, there is no requirement that 
any of the k empty trees be related to the n - k  nonempty trees that the parser proper 
gets to see. 

There are certain bookkeeping tasks that can best be undertaken by the rule maker. 
The most important of these have to do with ensuring that no empty terminal appears 
more than once in any structure. Concomitantly, it makes it possible to verify, at the end 
of the parse, that all empty terminals appear in the structure, if this is a requirement. 
The rule maker can also be used to percolate constraints up or down the tree, possibly 
discharging some of them in the process. 

One remaining problem is to arrange for the parser to include the empty trees 
in the structures that it builds. We assume that this information accompanies the 

Input 
string 

~ Lexical 
items 

Empty 
nodes 

Analyses 

Figure 7 
A simple architecture. 
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Figure 8 
The modified architecture. 

rule, perhaps in the form of features on the parent category, as in many unification 
grammars. 

6. Conclusions 

It has not been our purpose here to solve the problem of parsing for GB, but only to 
provide a mechanism for ensuring that empty nodes do not cause nontermination of 
parsing in an important class of cases. We have made only very general remarks on the 
architecture of a parsing system that would incorporate these ideas, largely because 
we believe that the details of such a design would depend heavily on the mechanism 
that was chosen for managing constraints. Efficient implementation would depend on 
a good resolution of a number of interacting trade-offs, and there are several of these 
within our scheme that need to be explored. In particular, the components of an ELI 
could be more or less narrowly specified for the roles they are to fill. If the nodes are 
highly specialized, there will be greater ambiguity in the lexicon and consequently 
greater nondeterminism in the parser. On the other hand, many of these search paths 
will presumably be curtailed earlier than they would have been with less specialized 
nodes. 

A major determinant of system performance will clearly be the manner in which 
constraints are enforced. It is possible to distinguish a class of constraints that arise in 
the course of parsing but  which cannot, in general, be discharged there, and should 
therefore be treated as part of the result that the parser delivers. Notable among these 
are contraindexing constraints from the Binding theory. 

Ensuring that each node in an ELI fills the role for which it was intended could 
be resolved through the general constraint mechanism. However, more specialized 
mechanisms could sometimes be useful. Suppose, for example, that the lexical entry 
for a noun contained a node specifically intended to receive Case. If these were the 
only nodes whose Case attribute was unspecified, all others having an explicit zero 
value, the required mechanism could consist simply in having all rules assign a value 
to this feature, that value being zero except for rules that assign a substantive Case. 

A somewhat different problem consists of verifying that nodes from a given ELI 
appear in a certain structural configuration. Assigning each node a unique identifier 
allows this problem to be solved straightforwardly by the general constraint mecha- 
nism. 

It might be advantageous for the ELI to encode very specific information about 
a lexical item and the empty nodes that it sponsors. For example, the ELI for a WH 
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item might specify that the traces it sponsors are coindexed with the WH item itself. 
Assuming that indices are just unbound variables (thus coindexing is unification and 
contraindexing is an inequality constraint), an interesting technical problem arises if 
the basic parsing engine uses a chart (Kay 1967, 1980). Because it is fundamental to 
such devices that the label on an edge is copied before it is used as a component of 
a larger phrase, the variables representing indices will be copied or renamed and the 
indices on the WH item and its sponsored trace will no longer be identical. However, 
it is important that the sharing of variables among the components of an ELI be 
respected when they come together in a phrase. One way of overcoming this problem 
is to associate a vector of variables with each edge, in which each variable that is 
shared between two or more edges is assigned a unique position. Whenever edges are 
combined their associated vectors are unified, thus ensuring that the corresponding 
variables in each edge are identified. 

Finally, our linguistic examples suggest to us that a more focused notion of spon- 
soring might be formulated. We observe that, modulo adjunction, empty nodes tend 
to stand in fixed structural relations to their sponsors. If this is indeed generally true, 
then these strong locality constraints should clearly be exploited in the parsing process. 
This amounts to adopting the framework of Tree Adjoining Grammars (Frank 1990; 
Joshi, Levy, and Takahashi 1975; Kroch and Joshi 1985; Schabes 1990). The emphasis 
would then fall on deriving the initial and auxiliary trees from the general principles 
of grammar. 
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