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A parser formalism for natural languages that is so restricted as to rule out the definition of linguistic 
structures that do not occur in any natural language can make the task of grammar construction easier, 
whether it is done manually (by a programmer) or automatically (by a grammar induction system). A 
restrictive grammar formalism for logic programming languages is presented that imposes some of the 
constraints suggested by recent Chomskian linguistic theory. In spite of these restrictions, this formalism 
allows for relatively elegant characterizations of natural languages that can be translated into efficient 
prolog parsers. 

1 INTRODUCTION 

The best-known parser formalisms for logic programming 
systems have typically aimed to be expressive and effi- 
cient rather than restrictive. It is no surprise that in these 
systems a grammar writer can define linguistic structures 
that do not occur in any natural language. These unna- 
tural structures might suffice for some particular process- 
ing of some particular fragment of a natural language, 
but there is a good chance that they will later need 
revision if the grammar needs to be extended to cover 
more of the natural language. On the other hand, if the 
grammar writer's options could be limited in the right 
way, there would be less to consider when a choice had 
to be made among various ways to extend the current 
grammar with the aim of choosing an extension that will 
not later need revision. Thus a restricted formalism can 
actually make it easier to build large, correct, and 
upward-compatible natural language grammars. A simi- 
lar point obviously holds for automatic language learning 
systems. If a large class of languages must be considered, 
this can increase the difficulty of the (grammar 
induction) problem of correctly identifying an arbitrary 
language in the class. So there are certainly significant 
practical advantages to formalisms for natural language 
parsers that allow the needed linguistic structures to be 
defined gracefully while making it impossible to define 
structures that never occur. 

Recent work in linguistic theory provides some indi- 
cations about how we can limit the expressive power of a 
grammar notation without ruling out any human 
languages. There appear to be severe constraints on the 
possible phrase structures and on the possible 
"movement" and "binding" relationships that can occur. 
The exact nature of these constraints is somewhat 
controversial. This paper will not delve into this contro- 
versy, but will just show how some of the constraints 
proposed recently by Chomsky and others - constraints 
to which all human languages are thought to conform - 
can very easily be enforced in a parsing system that 
allows an elegant grammar notation. These grammars will 
be called restricted logic grammars (RLGs). Two well 
known logic grammar formalisms, definite clause gram- 
mars (DCGs) and extraposition grammars (XGs), will be 
briefly reviewed, and then RLGs will be introduced by 
showing how they differ from XGs. RLGs have a new 
type of rule ("switch rules") that is of particular value in 
the definition of natural languages, and the automatic 
enforcement of some of Chomsky's constraints makes 
RLG movement rules simpler than XGs'. We follow the 
work of Marcus (1981), Berwick (1980), Wehrli (1984) 
and others in pursuing this strategy of restricting the 
grammar formalism by enforcing Chomsky's constraints, 
but we use a simple nondeterministic top-down back- 
tracking parsing method with lookahead, rather than 
Marcus's deterministic LR(k,t)-like parsing method. This 
approach to parsing, which has been developed in logic 
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programming systems by Pereira and Warren (1980) and 
others, allows our rules to be very simple and intuitive. 
Since, on this approach, determinism is not demanded, 
we avoid Marcus's requirement that all ambiguity be 
resolved in the course of a parse. 

2 DEFINITE CLAUSE GRAMMARS 

Definite clause grammars (DCGs) are well known to logic 
programmers. (See Pereira and Warren (1980) for a full 
account.) DCGs are similar to standard context free 
grammars (CFGs), but they are augmented with certain 
special features. These grammars are compiled into 
prolog clauses that (in their most straightforward use) 
define a top-down, backtracking recognizer or parser in 
prolog. 2. In the DCG grammar formalism, every rewrite 
rule must expand exactly one nonterminal. 

A DCG rule that expands a nonterrninal into a 
sequence of nonterminals is very similar to the standard 
CFG notation, except that when the right-hand side of a 
rule contains more than one nonterminal, some operator 
(like a comma) is required to collect them together into a 
single term. The rules of the following grammar provide 
a simple example: 

s -~. n p , v p .  
np ~ de t ,  n. 
vp-*-  v. 

det ~ [the]. 
n -~. [man]. 
n -~. [woman]. 
v ~ [reads]. 

(DCG 1) 

The elements of the terminal vocabulary are distin- 
guished by being enclosed in square brackets. An empty 
expansion of a category cat is written cat ~ [ ]. (DCG 
1) defines a simple context free language that includes 
the woman  reads. 

Two additional features provide DCGs with consider- 
ably more power; that is, they allow us to define a class 
of languages that properly includes the class defined by 
DCGs just described (those with only 0-place grammat- 
ical category symbols). First, the nonterminals in the 
DCG rules may themselves have arguments to hold struc- 
tural representations or special features, and second, the 
right-hand side of any rule may include not only the 
grammatical terminals and nonterminals but also arbi- 
trary predicates or "tests".  The tests must be distin- 
guished from the grammatical vocabulary, and so we 
mark them by enclosing them in braces, e.g., {test}. 

Pereira and Warren (1980) define a simple translation 
that transforms rules like these into Horn  clauses in 
which each 0-place nonterminal occurs as a predicate 
with two arguments. These two arguments provide a 
"difference list" representation of the string that is to be 
parsed under that nonterminal. (DCG 1) is translated 
into the following Horn clauses, where variable names 
begin with an uppercase letter: 

s(L0,L) :- np (L0 ,L1) ,  vp(L1,L).  
np(L0,L) :- de t (L0 ,L1) ,  n(L1,L).  
vp(L0,L) :- v(L0,L).  

det([the I L],L). 
n([man I El,L). 
n([woman [ L],L). 
v([reads I L],L). 

The first of these clauses can be read declaratively as 
"what  remains when L is taken off the tail of L0 is an s if 
the list f rom L0 to L1 is an np, and the list f rom L1 to L 
is a vp". The terminals in the rewrite rules are handled 
differently, since they must actually be present in the 
string being recognized. So, for example, the clause for 
det says that when the difference between its two list 
arguments is just the element the, we have a det. An 
empty expansion of a category cat would be translated 
into the clause cat(L ,L) .  

Given the standard prolog depth-first, backtracking 
proof technique, these clauses define a standard top- 
down backtracking parser. To recognize the sentence the 

m a n  reads, for example, we can ask for a proof  of the 
goal :- s([the, man,  reads],[ ]). The original string gets 
"consumed"  from the front as it is passed to each gram- 
matical predicate that succeeds. 

Prolog tests and extra arguments on grammatical pred- 
icates are easily accommodated in the translation to Horn  
clauses: every n place DCG nonterrninal corresponds to 
an n + 2  place predicate in the prolog translation, where 
the last two added arguments hold the difference lists as 
above; and every test is simply conjoined with the trans- 
lations of the grammatical predicates without adding any 
extra arguments. 

The DCG notation is very powerful. The fact that 
arbitrary prolog tests are allowed makes the notation as 
powerful as prolog is: a DCG can effectively parse or 
recognize exactly the class of effectively parsable or 
recognizable languages, respectively. Even eliminating 
the tests would not restrict the power of the system. We 
get the full power of pure prolog when we are allowed to 
give our grammatical predicates arbitrary arguments. 
With just two arguments to grammatical predicates to 
hold the difference list representation of the string to be 
parsed, we could recognize only context free languages, 
but with the extra arguments, it is not hard to define 
context sensitive languages like anbnc n that are not 
context free (cf., Pereira 1983). 

3 EXTRAPOSITION GRAMMARS 

In spite of the power of DCGs, they are not convenient 
for the definition of certain constructions in natural 
languages. Most notable among these are the 
"movemen t"  constructions. These are constructions in 
which a constituent seems to have been moved from 
another position in the sentence. There are well-known 
traditions in linguistic theory that do not use movement  
rules at all (cf., e.g., Gazdar  et al. 1985), but the 
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Chomskian tradition ("Government-Binding" theory, 
and its predecessors) makes crucial use of movement 
analyses, specifically the rule move-a. It is natural to 
think of this aspect of Government-Binding theory in 
terms Of the movements of constituents, but as Wasow 
(1985) and others have noted, the main work done by 
the movement rules is to relate ("co-index") positions in 
the structural representations of the sentence. So long as 
these relations between structural positions are properly 
constrained, we do not really need to think of the 
relations as having been established by a movement from 
an original position (in "d-structure") to a new position 
(in "s-structure"). 3 

This paper will not provide an introduction to Choms- 
kian syntax, but the basic idea behind movement rules is 
fairly easy to illustrate. There are, for example, good 
reasons to regard the relative pronoun that introduces a 
relative clause as having been moved from a subject or 
object position in the clause. In the following sentences, 
the relative clauses have been enclosed in brackets, and 
positions from which who has moved is indicated by the 
position of the co-indexed trace, [t]: 

The woman 1 [who [t] i likes books] reads. 
The woman [who i booksellers like [t]i] reads. 
The woman [who i the bookseller told me about [t]i] 

reads. 

In ATN parsers like LUNAR (Woods 1970), 
constructions produced by movement are parsed by what 
can be regarded as a context-free parser augmented with 
a "HOLD" list: when a fronted whTphrase like who is 
parsed, it can be put into the HOLD list from which it can 
be brought to fill (or to allow a co-indexed trace to fill) a 
later position in the sentence. Fernando Pereira (1981, 
1983) showed how a very similar parsing method could 
be implemented in logic programming systems. These 
augmented grammars, which Pereira calls extraposition 
grammars (XGs) allow everything found in DCGs and 
allow, in addition, rules that put an element into a HOLD 
list - actually, Pereira calls the data structure analogous 
to the ATN HOLD list an extraposition list. So, for exam- 
ple, in addition to DCG rules, XGs accept rules like the 
following: 

nt ... trace ~ RHS 

where the RHS is any sequence of terminals, nonte- 
rminals, and tests, as in DCGs. The left side of an XG 
rule need not be a single nonterminal, but can be a 
nonterminal followed by ' . . . '  and by any finite sequence 
of terminals or nonterminals. The last example can be 
read, roughly, as saying that nt can be expanded to RHS 
on condition that the category trace is given an empty 
realization later in the parse. We realize nt as RHS and 
put trace on the extraposition list. 

This allows for a very natural treatment of certain 
movement constructions. For example, Pereira points out 
that relative clauses can, at first blush, be handled with 
rules like the following: 

s * n p ,  vp. 
vp -~ v. 
vp ~ v ,  np. 
np ~ de t ,  n ,  optional relative. 

np ~ trace. 

o p t i o n a l r e l a t i v e  --,. [ ]. 
o p t i o n a l r e l a t i v e  -,. relative. 

relative ~ rel marker ,  s. 
relqmarker. . . t race ~ rel pro. 
rel pro --,. [who]. 

These rules come close to enforcing the regularity 
noted earlier: a relative clause has the structure of a rela- 
tive pronoun followed by a sentence that is missing a 
noun phrase. What these rules say is that we can expand 
the relative node to a rel marker and a sentence s, and 
then expand the rel marker to a relative pronoun 
rel.__pro on condition that some np that occurs after the 
relative pronoun be realized as a trace that is not realized 
at all in the terminal string. 

It is not hard to see that this set of rules does not quite 
enforce the noted regularity, though. These rules will 
allow the relative pronoun to be followed by a sentence 
that has no trace, so long as a trace can be placed some- 
where after the relative pronoun. So, for example, there 
rules would accept a sentence like: 

• the woman [who i the man reads the book] reads It] i. 

In this sentence, a trace cannot be found in the sentence 
the man reads the book, but since the second occurrence 
of reads can be followed by an np, we can realize that np 

as the trace associated with the moved np, who. But this 
is clearly a mistake. 

To avoid this problem, Pereira suggests treating the 
extraposition list as a stack, and then "bracketing" rela- 
tive clauses by putting an element on the stack at the 
beginning of the relative clause that must be popped off 
the top before the parsing of the relative can be success- 
fully completed. This can be accomplished by changing 
our rule for relatives to the following: 

relative -~ open ,  rel marker ,  s ,  close. 
open...close -- [ ]. 

This prevents movements that would relate anything 
outside the relative clause to anything inside. 

3.1 THE IMPLEMENTATION OF XGs 

The implementation of XGs is quite straightforward. 
Pereira translates each nonterminal category symbol with 
n arguments into a predicate with n+4 arguments: the 
first two added arguments hold the difference list repre- 
sentation of the string to be parsed (as in DCGs), and the 
second two additional arguments hold a representation of 
the extraposition list (one argument has the list "coming 
in", the other holds the list "going out"). A rule like the 
last rule defining open, translates into two prolog clauses: 
one" that rewrites open as the empty terminal string [ ] 
and adds close to the top of the extraposition list; and 
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another that says that close can be expanded as a "virtual 
constituent" with no terminal realization at all: 

open(L,L,X,x(gap,nonterminal,close,X)). 
close(L,L,X0,X) :- virtual(close,X0,X). 

(The functor that connects the elements of the extraposi- 
tion list is not any standard list constructor, but the func- 
tor x.) The predicate virtual used in the rule for close is 
defined with the single clause: 

virtual(NT,x(C,nonterminal,NT,X),X). 

This just says that we can realize a nonterminal NT (in 
any context C) just by taking it off the top of the extra- 
position list. Like the lists that represent the string to be 
parsed, the extraposition lists are passed down from a 
father to the first sibling, and then from sibling to sibling, 
and so on to every nonterminal node in the tree. This is 
more efficient than treating the gaps as features that are 
passed only to the descendants of a node, because of the 
fact that a particular moved constituent can (in most 
cases) correspond to only one trace in a sentence. Thus, 
if the subject np of a relative clause is trace, the direct 
object cannot be; if the direct object is trace, the indirect 
object cannot be; and so on. It makes sense to pass the 
extraposition list from sibling to sibling rather than just 
down from the parent, because only one np can fill any 
particular gap, and often it can be any of a number of 
categories. 4 

The rest of this paper does not require a full under- 
standing of Pereira's XGs and their implementation. The 
important points are the ones we have noted: the extra- 
position list is used to capture the movement 
constructions that can occur in natural language; it is 
used as a stack so that putting dummy elements on top of 
the stack can prevent access to the list in inappropriate 
contexts; and the extraposition list is passed to every 
node of the derivation tree. 

4 RESTRICTED LOGIC GRAMMARS 

The XG rules for moved constituents are really very 
useful. The restricted logic grammar (RLGs) formalism 
presented now maintains this feature in a slightly 
restricted form, so the best way to introduce RLGs is to 
explain how they differ from XGs. They differ in three 
respects which can be considered more or less independ- 
ently. First, RLGs allow a new kind of rules, which we 
will call switch rules. Second, we will show how the power 
of the XG leftward movement rules can be expanded in 
one respect and restricted in another to accommodate a 
wider range of linguistic constructions. And finally, we 
show how a similar treatment allows constrained right- 
ward movement. 

4.1 SWITCH RULES 

In the linguistic literature, the auxiliary verb system in 
English has been one of the most common examples of 
the shortcomings of context free grammars. The auxiliary 
shows some striking regularities. The basic idea has been 

neatly formulated by Akmajian et al. (1979) in the 
following way: "The facts to be accounted for can be 
stated quite simply: an English sentence can contain any 
combination of modal, perfective have, progressive be, 
and passive be, but when more than one of these is pres- 
ent, they must appear in the order given, and each of the 
elements of the sequence can appear at most once." 
These verbs occur before the main verb of the sentence, 
of course, but the more difficult thing to account for 
elegantly in a context-free definition is that the first in a 
sequence of verbs can occur before the subject. So for 
example, we have: 

I have been successful. 
Have I been successful? 

* I been have successful. 
* Been I have shccessful? 

This is a rather peculiar phenomenon: it is as if the well 
defined sequences of auxiliaries can "wrap" themselves 
around the (arbitrarily long) subject np of the sentence. 5 

Most parsers have special rules to try to exploit the 
regularity between simple declarative sentences and their 
corresponding question forms. Marcus (1980) and 
Berwick (1982), for example, use a "switch" rule which, 
when an auxiliary followed by a noun phrase is detected 
at the beginning of a sentence, attaches the noun phrase 
to the parse tree first, leaving the auxiliary in its 
"unwrapped", canonical position, so that it can be parsed 
with the same rules as are used for parsing the declarative 
forms. 6 

Pereira (1983) does not attempt to provide a full 
grammar for English, but it is interesting that he proposes 
rules that treat the auxiliary inversion on the model of 
movement constructions, proposing a rule rather like the 
following: 

s ~ fronted verb ,  s. 
fronted verb...aux verb(Features) 

aux verb(Features). 

These rules allow us to find an auxiliary verb followed 
by a sentence that is missing an auxiliary verb with the 
same features. This almost captures the regularity we 
want, but it is too permissive in just the way our first set 
of XG rules for relative clauses was. These rules would 
allow us to accept strings like: 

Has he [t] been saying that he has been succeeding? 
* Has he has been saying that he [t] been succeeding? 

The problem is that we want to make sure that the 
a u x  verb put on the extraposition list is removed right 
after the subject is parsed, not later in the sentence. 
There is no elegant way to use the bracketing technique, 
because there is no motivated constituent in these 
sentences that contains the fronted auxiliary, the subject 
noun phrase, and the rest of the auxiliary verbs. Some- 
thing rather different is required. 

It turns out to be very easy to implement a rule very 
much like Marcus's inversion rule in logic programming 
systems. These rules do not put an element in the extra- 

4 Computational Linguistics, Volume 13, Numbers 1-2, January-June 1987 



Edward P. Stabler, Jr. Restricling Logic Grammars with Government-Binding Theory 

position list to be removed sometime before the end of 
the sentence. Rather, when an auxiliary is found at the 
beginning of a sentence, its parsing is postponed while an 
attempt is made to parse an np immediately following it. 
When that np is parsed, it is just removed from the list of 
words left to parse, leaving the auxiliary verb sequence in 
its canonical form. We use a notation like the following: 

s ~  switch(aux v e r b , n p ) , v p .  

The predicate switch triggers this special behavior: when 
the first word in the string to be parsed is an aux___.verb, 
it is ignored while an attempt is made to parse an np; if 
the attempt to parse an np is successful, then an attempt 
is made to parse a vp given the string that has the 
aux verb as its first element, followed by whatever 
followed the np. In general, the argument to switch is 
always a term of the form test1, test2, ..., teStn, cat, where 
test 1 . . . . .  test n are tests on features of the first n lexical 
items in the string, and cat is a nonterminal to be found 
in the string that begins with the n + l s t  element of the 
string to be parsed. 

The implementation of switch rules is surprisingly 
easy. 7 The simple rule given is translated into the follow- 
ing prolog clause: 

s([First I L0],L,X0,X) :- aux verb(First) , 
np(L0,L1,X0,X1),  
vp([First I L1],L,X1,X). 

where aux___.verb(FirsO just checks the dictionary to see if 
this first element of the string is an auxiliary verb. A 
complete treatment of the English auxiliary system (with 
negation and adverbs, etc.) is more complicated, but this 
kind of rule with its simple "look ahead" is exactly what 
is needed. It is even more efficient than the XG approach 
discussed above. 

4.2 LEFTWARD MOVEMENT 

When introducing the movement rules of XGs above, we 
considered some rules for relative clauses but not rules 
for fronted wh-phrases like the one in In which garage 
did you put the car? or the one in Which car did you put in 
the garage?. The most natural rules for these 
constructions would look something like the following: 8 

s * w h  phrase ,s .  
wh phrase...pp trace(wh feature)--,- 

pp(wh feature). 
wh phrase...np trace(wh feature,Case,Agreement) 

np(wh feature,Case,Agreement). 

p p ~  pp trace(wh feature). 
np(Case,Agreement) 

np trace(wh feature,Case,Agreement). 

If we assume that these rules are included in the grammar 
along with the XG rules for relative clauses discussed 
above, then we properly exclude any possibility of find- 
ing the trace of a fronted wh-phrase inside a relative 
clause: 

* What car did the man [who put [np trace] in the 
garage] go? 

* In which garage did the man [who put the car 
[pp trace]]go? 

These sentences are properly ruled out by Pereira's 
bracketing constraint. 

There are other restrictions on movement, though, 
that are not captured by the bracketing constraint on 
relative clauses. The following sentence, for example, 
would be allowed by rules like the ones proposed above: 

* [About what]i did they burn [the politician's book 
[pp trace]i]? 

* What i did he ask where I hid [np trace]i? 
* Who i did I wonder whether she was [np trace]i? 

These movements are unacceptable, but how can they be 
blocked? We cannot just use another bracketing 
constraint to disallow movements that cross vp bounda- 
ries, because that would disallow good sentences like 
What i did they burn [np trace]i?. 

There is a very powerful and elegant set of constraints 
on movement that covers the cases we have considered 
and subsumes the relative clause island constraint: they 
are specified by Chomsky's (1981) theories of corefer- 
ence ("binding") and movement ("bounding"). The 
"co-indexing" of the moved constituent and its trace 
marks a "binding" relationship: the trace is coreferential 
with the moved constituent. The relevant principles can 
be formulated in the following way: 9 

(i) A moved constituent must c-command iis trace, 
where a node a c-commands/3 if and only if a does 
not dominate /3, but the first branching node that 
dominates a dominates/3. 

(ii) No rule can relate a constituent X to constituents Y 
or Z in a structure of the form: 

...Y...[a ...[/3 ...X...]...]...Z .... 

where a and /3 are "bounding nodes". (We will 
assume that the bounding nodes for leftward move- 
ment in English are s and np.) 

The first rule, the c-command restriction on binding, 
suffices by itself to rule out sentences like the following: 

* The computer [which i you wrote the program] uses 
[np trace] i. 

* I saw the man [who i you knew him] and I told 
[np trace] i. 

since the first branching node that dominates who and 
which in these cases is (on any of the prominent 
approaches to syntax) a node that does not dominate 
anything after the him. The second rule, called subjacen- 
ey, is a bounding restriction, a restriction on the constitu- 
ents that can be related by movement. Subjacency rules 
out sentences like 

* Who i [s did [np the man with [np trace] i ] like]? 
* [About what] i [s did they burn [rip my book 

[pp trace]i]]? 

In the first of these sentences, who does c-command the 
np trace, but does so across two bounding nodes. In the 
second of these sentences, notice that the p p t r a c e  is 
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inside the np, so that we are not asking about the burning 
but about the content of the book! This is also properly 
ruled out by subjacency. 

There is one additional complication that needs to be 
added to these constraints in order to allow sentences 
like: 

Who i [s do you think [s I said [s I read [np trace]i]]]? 

Who i [s does Mary think [s you think [s I said 
[s I read [np trace]i]]]]? 

These "movements" of wh-phrases are allowed in 
Chomskian syntax by assuming that wh-phrase move- 
ments are "successive cyclic": that is, the movement to 
the front of the sentence is composed of a number of 
smaller movements across one s-node into its cornp node. 
It is further assumed here that a wh-phrase cannot be 
moved out of an s that already has a wh-phrase in its 
comp. This allows the last examples, while disallowing 
cases like the following: 

* Who i did you wonder whoj trace i saw tracej? 
* Who i did you wonder whoj tracej saw tracei? 

The implementation of RLG movement rules to auto- 
matically enforce these constraints is quite natural. In the 
first place, current syntactic theory does not allow just 
any constituent to be moved, so we do not need to pass 
the extraposition list to every node. It only needs to be 
passed to the nodes that could dominate a trace. For 
example, the passing of the list to det, n, and v nodes is 
just wasted effort since none of these categories can be 
moved or dominate a trace. Allowing only certain cate- 
gories to carry the extraposition list, where those catego- 
ries are all nonterminals, simplifies the translation to 
prolog clauses and makes the resulting parser more effi- 
cient. (It also makes it convenient to use standard list 
notation for the extraposition list.) 

The trick then is to restrict the access to the extraposi- 
tion list so the parser will allow traces only in the posi- 
tions allowed by Chomsky's constraints. The 
c-command restriction can be enforced by indicating the 
introduction of a trace at the first branching node that 
dominates the moved constituent, and making sure that 
the trace is found before the parsing of that dominating 
node is complete. So, for example, we replace the follow- 
ing three XG rules with two indicated RLG rules: 

(XG rules) 
relative * rel marker,  s. 
rel marker . . ,  np t r a c e *  rel pro. 
rel pro ~ [who]. 

(RLG rules) 
r e l a t i v e < < < n p  t r a c e *  rel p r o , s .  
rel p r o - -  [who]. 

The change from the XG functor " . . . "  to " < < < "  is 
made to distinguish this approach to parsing constituents 
that are moved to the left (leaving a trace to the right) 
from RLG rules for rightward movement. The XGs addi- 
tional (linguistically unmotivated) category rel.__.marker 

is not needed in the RLG because the trace is introduced 
to the extraposition list after the first category has been 
parsed. 1° So the translation of these RLG rules is similar 
to the XG translation of XG rules, except that rel.__pros 
are not passed the extraposition list, the traces are 
indexed, and a test is added to make sure that the trace 
that is introduced to the extraposition list is gone when 
the last constituent of the relative has been parsed: 

relative(L0,L,X0,X) :- rel p ro(L0,L1) ,  
s(L1,L,trace(Index).X0,X) , 
tracegone(trace(Index),X). 

This enforces the c-command constraint, because every- 
thing that is c-commanded by the relative pronoun 
rel___pro is under the relative node. 

The RLG grammar compiler can enforce subjacency 
automatically by giving special treatment to grammar 
rules that expand bounding categories. All that is 
required is the addition of an indication of every bound- 
ing node that is crossed to the extraposition list, and then 
changing the XG definition of the predicate virtual to 
allow the appropriate relations across those nodes. The 
grammar compiler takes care of this by introducing an 
element np bound into the extraposition list before any 
daughter of an np is parsed, and removing it when the np 
is complete, and similarly for s nodes. So the following 
RLG rules would be translated as shown: 

(RLG rules) 
s ~ np ,  vp. 
n p - -  de t ,  n ,  relative. 

(PROLOG translations) 
s(L0,L,X0,X) :- 

np(L0,Ll ,[s  b o u n d ( ) I X 0 ] , X 1 ) ,  
vp(L1,L,Xl,[s  b o u n d ( ) I X ] ) .  

np(L0,L,X0,X) :- 
de t (L0,L1) ,  
n (L1 ,L2) ,  
relative(L2,L,[np bound I X0],[np bound I X]). 

The prolog translation for s puts s___.bound(__..) on top of 
the incoming extraposition list X0, and removes it from 
the outgoing extraposition list, returning just X. The 
argument of ~.___bound(...) in this bound indicator is an 
anonymous v a r i a b l e , ,  whose value indicates whether 
the comp node corresponding to the bound has or has 
had a wh-phrase in it. Since nps do not have comp posi- 
tions for elements to move into or through, n p b o u n d  
has no argument. 

Now it is clear that we cannot just use the extraposi- 
tion list as a stack: we have introduced the indications of 
bounding nodes, and we have indexed the traces. The 
latter point means that the traces will have to be placed 
not just in any place where a trace is allowed; each trace 
is uniquely associated with a moved phrase and must be 
placed in a position where the moved phrase could have 
come from. For example, it is easy to see that the follow- 
ing co-indexed relationships are not acceptable: 

* what i does the man whoj trace i reads like tracej? 

6 Computational Lingqdstics, Volume 13, Numbers 1-2, January-June 1987 



Edward P. Stabler, Jr. Restricting Logic Grammars with Government-Binding Theory 

This sentence with the marked movements is ruled out by 
subjacency. The same sentence with properly nested 
co-indexing, on the other hand, is acceptable and is 
allowed by subjacency. 

In any case, it is clear that the extraposition list cannot 
literally be treated as a stack. The presence of the bound- 
ing node markers allows us to implement subjacency with 
the rule that a trace cannot be removed from a list if it is 
covered by more than one bounding marker, unless the 
trace is of a wh-phrase and there is no more than one 
covering bound that has no available comp argument. 

The following rules for virtual are a good first approxi- 
mation: 

virtual(NT,[NT I X],X). 
virtual(NT,[np bound,NT I X],[np bound I X]). 
virtual(NT,[s bound(NT) ,NT I X],[s bound(NT) I X]). 
virtual(NT,[s bound(NT) I X],[s bound(NT) I Y]) :- 

w h ( N T ) ,  virtual(NT,X,Y). 

The first of these rules just takes a trace off the top of 
the list, returning the remainder of the list. The second 
and third rules allow a trace to be removed from under a 
single np bound or s.__bound. The fourth rule allows a 
trace to be removed from under any number of 
s.___bounds, filling the comp argument of each with the 
moved constituent fi to make it unavailable for other 
wh-phrases. 

These rules about access to the extraposition list do 
not allow the removal of one trace from under another: 
the traces themselves are available on a strictly last in, 
first out basis, as if they were in a stack. This has the 
consequence that moved constituent-trace relations can 
only be properly nested, as in: 

[Which violins]i are [the sonatas]j easy to play tracej 
on trace i 

* [Which violins] i are [the sonatas]j easy to play trace i 
on tracej 

An argument against this restriction on co-indexed 
relations comes from sentences like the following: 11 

What i do you know howj to read trace i tracei? 

Fodor (1983) has argued, though, that this sort of cross- 
ing relation can only occur with traces of different cate- 
gories: in the last example, the crossing relations between 
an adverb and a noun phrase can occur, but crossing 
relations between two noun phrases and their traces 
cannot occur (unless that relation is dictated by subja- 
cency or other constraints). So we must allow one trace 
to be removed from the list across another when the trac- 
es are o f  different linguistic categories. This modification 
is easily made: the required modification in the defi~aition 
of virtual is straightforward. 

Since the aim of this paper is to turn over to the gram- 
mar compiler the enforcement of universal constraints in 
order to simplify the task of grammar construction, it 
should be noted that the implementation of subjacency 
just described, while it may be appropriate for English, is 
not appropriate for any language in which the bounding 

nodes are not s and np. Rizzi (1982) has argued that 
there is variation among languages in the selection of 
bounding nodes: in particular, he argues that the bound- 
ing nodes in Italian are s bar and np. The RLG gram- 
mar compiler can easily accommodate  this variable 
parameter: the appropriate bounding nodes just need to 
be marked so that they can be submitted to the special 
treatment described here. Similarly, the approach just 
described requires that the grammar compiler know 
which categories can dominate a trace. It is easy to 
accommodate variation here as well. Our current imple- 
mentation requires that the grammar writer specify what 
these nodes are, but it would be possible to implement a 
two-pass grammar compiler that would compute these 
nodes after its first pass and then do the appropriate 
compilation in to prolog clauses. 12 

In summary, to put the matter roughly, access to the 
RLG extraposition list is less restrictive than access to the 
XGs because the list of traces is not treated as a stack - 
we allow a trace to be removed from the list across 
another of a different category; but it is more restrictive 
in enforcing the c-command and subjacency constraints 
and because of the restrictions on the nodes at which the 
extraposition list is available. These restrictions allow a 
considerable simplification in the grammar rules while 
preserving enough flexibility to allow for relevant vari- 
ations among different natural languages. 13 

4.3 RIGHTWARD MOVEMENT 

Although the preceding account does successfully 
enforce subjacency for leftward movement,  no provisions 
have been made for any special treatment of rightward 
moved constituents, as in sentences like the following: 

[The man [t]i] arrived [who I told you about] i. 
[What book [t] i] arrived [about the arms race]i? 

* The woman [who likes [the man [t]i]] arrived 
[who I told you about] i. 

* What woman [who likes [the book [t]i]] arrived 
[about the arms race]i? 

It is worth pointing out just briefly how these can be 
accommodated with techniques similar to those already 
introduced. 

It should be noted that some phrase structure 
approaches do not relate (what we are treating as) right- 
ward moved constituents to any other positions in the 
sentence structure (leaving that to the semantics), but we 
will follow the Chomskian tradition in assuming that the 
syntactic parser should mark this relation. There are a 
number of ways to do this: 
• The standard top-down left-to-right strategy of 

"guessing" whether there is a rightward moved 
constituent would obviously be expensive. Backtrack- 
ing all the way to wherever the incorrect guess was 
made is an expensive process, since a whole sentence 
with arbitrarily many words may intervene between 
the incorrect guess and the point where the error caus- 
es a failure. 
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• One strategy for avoiding unnecessary backtracking is 
to use lookahead, but obviously, the lookahead cannot 
be bounded by any particular number of words in this 
case. More sophisticated lookahead (bounded to a 
certain number of linguistically motivated constitu- 
ents) can be used (cf., Berwick 1983), but this 
approach requires a complicated buffering and parse- 
building strategy. 

• A third approach would involve special backward 
modification of the parse tree, but this is inelegant and 
computationally expensive. 

• A fourth approach in left-to-right parsing is to leave 
the parse tree to the left unspecified, passing a vari- 
able to the right. 

This last strategy can be implemented quite elegantly and 
feasibly, and it allows for easy enforcement of subjacen- 
cy. 

To handle optional rightward "extraposition from np" 
using this last strategy, we use rules like the following: 

s ~ np, vp, o p t i o n a l a d j u n c t .  

optional adjunct ~ [ ]. 
o p t i o n a l a d j u n c t  ~ adjunct. 

optional r e i n  rel. 
op t iona ln re l  > > > ((adjunct ~ rel) ; Tree). 

In these rules, Tree is the variable that gets passed to the 
right. The last rule can be read informally as saying that 
optional__.rel has the structure Tree, where the content of 
Tree will be empty unless an adjunct category is 
expanded to a rel, in which case Tree can be instantiated 
to a trace that can be co-indexed with rel. 

The situation here is more complicated than the situ- 
ation in leftward movement.  In rightward movement,  
following Baltin (1981), we provide a special node for 
attachment, the adjunct node. This violation of the 
"structure preserving constraint" has been well motivated 
by linguistic considerations. The adjunct node can do 
nothing but capture rightward moved pps or relative 
clauses. 14 

A second respect in which rightward movement  is 
more complicated to handle than leftward movement  is in 
the enforcement of subjacency. Since in a left-to-right 
parse, rightward movement  proceeds from an embedded 
trace position to the moved constituent, we must remove 
boundary indicators across the element in the extraposi- 
tion list that indicates a possible rightward movement.  
So to enforce subjacency, we cannot count boundary 
indicators between the element and the top; rather we 
must count the boundary indicators that have been 
removed across the element. Subjacency can be 
enforced only if the element of the extraposition list that 
carries Tree to the right can also mark whether a bound- 
ing category has been passed (i.e., when the parse of a 
dominating bounding category has been completed). In 
optional movement,  the crossing of a second bounding 
category can just instantiate Tree to the empty list. We 
use an element in the extraposition list of the form 
right(Rule, Tree, BoundFlag). Crossing one bound instanti- 

ates BoundFlag," crossing a second bound instantiates 
Tree to the empty list and removes the element from the 
extraposition list. Again, the elaboration of the definition 
of virtual required to implement these ideas is fairly easy 
to supply. 

One approach to implementing a rightward movement  
rule like the one above is to translate it into two prolog 
clauses, one to initiate the rightward movement ,  and one 
providing the landing site: 

optional reI(L,L,X, 
[right ((adjunct (S0,S,H0,H) :- 

rel(S0,S,H0,H)),Tree,Bound) I X]). 

adjunct(L0,L,X0,X) :- 
r ightward(X0,Xl,adjunct(L0,L,X1,X).  

The head of the Rule, which is the first argument of the 
element right(Rule, Tree, BoundFlag), specifies where the 
moved constituent can "land";  the body of the Rule tells 
us what constituent has been moved. The predicate right- 
ward is defined as part of the grammar interpreter: 

r ightward(X0,X,Cat)  :- 
find consti tuent(X0,X,(Cat:-RHS)),  RHS. 

find constituent (X0,X,(Cat:-RHS)) :- 
X 0 =  [right ( (Ca t : -RHS) , t r a ce , j )  IX]. 

find constituent(X0,[right(R,T,B) I X],(Cat:-RHS)) :- 
X 0 =  [right(R,T,B) IX1],  
find constituent(X1 ,X,(Cat:-RHS)). 

This enforcement of subjacency in rightward movement  
immediately rules out the two ungrammatical examples 
shown above. 

5 CONCLUSIONS AND FUTURE WORK 

Even grammar notations with unlimited expressive power 
can lack a graceful way to define certain linguistic struc- 
tures. DCGs have universal power, but XGs immediately 
offer a facility for elegant characterization of the move- 
ment constructions common in natural languages. RLGs 
are one more step in this direction toward a notation for 
logic grammars that is really appropriate for natural 
languages. RLGs provide "switch rule" notation to allow 
for elegant characterization of " inverted" or "wrapped"  
structures, and a notation for properly constrained left- 
ward and rightward movement,  even when the resulting 
bindings are not properly nested. Getting these results in 
an XG would be considerably more awkward. 15 

A fairly substantial RLG grammar for English has 
been constructed, and it runs efficiently, but the real 
argument for RLGs is that their rules for movement  are 
much simpler than would be possible if constraints on 
movement  were not automatically enforced. We are 
exploring the automatic enforcement of more of the prin- 
ciples of government and binding theory. It is unfortu- 
nate that efficient implementation of these constraints 
requires such careful attention to the procedural details 
of the parsing mechanism. To formalize the problem of 
implementing these constraints, we are designing a 
"grammar  grammar"  that automatically compiles an 
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elegant, modular, logical statement of grammatical princi- 
ples into a parser that properly and efficiently enforces 
them. This work extends the current approach and 
differs from the approach of Barton (1984), Barton and 
Berwick (1985), and others in that the constraints are 
represented explicitly rather than being respected in 
virtue of the of architecture of the parsing mechanism. 
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N O T E S  

1. I am indebted to Janet Dean Fodor, Fernando Pereira, and Yuriy 
Tarnawsky for helpful discussions of this material. Discussions 
after a presentation of parts of this material at the University of 
Toronto in March 1986 also inspired some significant improve- 
ments, as did the comments of an anonymous referee. Richard 
O'Keefe provided valuable advice on aspects of the design of the 
prolog implementations. 

2. Tffe qualification "in their most straightforward use" really is / 
necessary. As noted below, DCGs with tests or with grammatical 
predicates that have more than two arguments have the full 
universal power of prolog. It is no surprise, then, that DCGs can 
be used to define bottom-up parsers, as Pereira (1985) points out. 
The DCG notation is actually a convenient one for the definition 
of all sorts of parsers. They provide a convenient representation 
of the string to be parsed, as we will see. 

3. Chomsky (1981, p.33) points this out as well: "It is immaterial ... 
whether Move-a is regarded as a rule forming s-structure from 
d-structure, or whether it is regarded as a property of s-structures 
that are 'base-generated'.... It is in fact far from clear that there is 
a distinction apart from terminology between these two formula- 
tions." 

4. Parasitic gaps complicate the story here - hence the parenthetical 
qualification "in most cases", above. In certain cases a single 
moved constituent can have two gaps, as in Which articles did 
Dana file [t] without reading It]?. Gazdar et al. (1985) in fact 
proposes an analysis according to which any gap can be passed to 
both the NP and the VP under an S node. Consequently, their 
grammar accepts some strange things like Which authors did review- 
ers of[t] always detest [t]?. In a practical system, one wants to avoid 
getting parses that are as unlikely to occur as these. A more 
restrictive Chomskian analysis of parasitic gaps has been proposed 
and looks like it may be usable in parsing with methods for left- 
ward movement like those described below. Roughly, when the 
"real" trace is found, the trick is to put another special operator in 
the extraposition list that allows a subjacent parasitic gap but 
doesn't require one (Berwick and Weinberg 1985). (I do not mean 
to claim that a restrictive GPSG analysis of parasitic gaps could not 
be formulated - Gazdar et al. (1985) is just an example of a rela- 
tively unrestricted analysis.) 

5. This sort of rule may be useful for other constructions as well. 
Pollard (1984) argues that, even just in English, a similar 
"wrapping" analysis is appropriate for many constructions: the 
phrase take to task seems to wrap around its object in take Kim to 
task; the phrase much taller than Sandy seems wrapped into the 
adjective phrase in Kim is a much taller person than Sandy; and a 
similar wrap analysis is proposed to relate Kim is very easy to please 
and Kim is a very easy person to please. 

6. Actually, Marcus (1980) used a special subject-auxiliary inversion 
rule, and Berwick (1982) noted that the effect of Marcus's rule 
can be achieved with a very simple "switch" mechanism that can 
be assumed to be one of a small set of primitive parser operations. 

7. The "lookahead" technique used here for switch rules is described 
in a slightly more general form in Stabler (1983). 

8. Notice that we need different symbols for traces of different cate- 
gories, since our trace handling mechanism does not check the 
identity of the node dominating a trace It]. 

9. The principles actually proposed in Chomsky (1981) are a little 
more complex, but the versions formulated here suffice for illus- 
trating the basic approach which can be applied to the more 
sophisticated formulations. In spite of the simplification, the 
versions presented here provide the desired simplification of the 
grammar rules. 

10. In any case in which the moved element was not the first sibling 
under the dominating branching node, a different sort of rule 
would have to be used. We allow the three place predicate 
'<<< ' (Nt ,Trace ,N) ,  where Nt can have at most M daughters and 
N E [1,2,...,M-I]. These rules introduce the Trace into the extra- 
position list after the Nth daughter of Nt. Since 
'<<< ' (Nt ,Trace ,1)  is the most common case in English, we give it 
the short form 'N t<<<Trace ' .  
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11. One other common construction with crossing bindings that Fodor 
(1983) mentions is illustrated with examples like Who didyou ask 1 j 
trace whether PRO to blame yourselfi? As indicated the subject of 

, J J ' 
the embedded clause in this construction is not a trace produced 
by a movement but another type of empty category: a base-gener- 
ated pronominal element which is controlled by the higher subject. 
A movement analysis would be inappropriate for these 
constructions (Chomsky 1981; Manzini 1983). 

12. A compiler that will do this is under construction, together with a 
proof of its correctness. A complete account is beyond the scope 
of this paper, but the idea is easy to see. Basically, on the first 
pass we construct a CFG corresponding to.the RLG being proc- 
essed, a CFG that would generate the same derivations as the RLG 
except that it is not restricted by the requirements about the pres- 
ence of appropriate elements in the extraposition list for the 
expansion of np or of a wh phrase to a trace. We then compute 
the nodes that can dominate traces in this CFG, working back- 
wards from the right hand sides of the rules. In specifiable cases 
(which will typically hold), this set will be exactly the set of nodes 
that can in fact dominate the traces in RLG derivations; otherwise, 
it is a superset of the set of nodes that can dominate the traces in 
RLG derivations (though this superset will typically still be a prop- 
er subset of the set of nonterminals, and hence useful). 

13. Notice that the XG rules that were shown as examples are compa- 
rable in complexity to the RLG rules shown, but the XG rules were 

incorrect in the crucial respects that were pointed out! The XG 
rules shown allowed ungrammatical sentences (viz., violations of 
the subjacency and c-command constraints) that the RLG rules 
properly rejected. The XG rules that properly rule out these cases 
would be considerably more complex. 

14. These rules for rightward movement are oversimplified. Most 
linguists in the Government-Binding tradition follow Baltin (1981 ) 
and others in assuming that phrases extraposed from inside a vp 
are attached inside of that vp, whereas phrases extraposed from 
subject position are attached at the end of the sentence (in roughly 
the position we have ~narked adjunct). Baltin (1981) points out 
that this special constraint on rightward movement seems to hold 
in other languages as well, and that we can capture it by counting 
vp as a bounding category for rightward movement. This approach 
could easily be managed in the framework we have set up here, 
though we do not currently have it implemented. Notice that 
although rightward movement is not structure-preserving on this 
linguistic approach, the parser rules for this movement are struc- 
ture-preserving in the trivial sense that they supply the category 
adjunct just to accommodate these movements. 

15. Colmerauer's (1978) MGs, Dahl's (1984) GGs, and other systems 
are very powerful, and they sometimes allow fairly elegant rules 
for natural language constructions, but they are not designed to 
automatically enforce constraints: that burden is left to the gram- 
mar writer, and it is not a trivial burden. 
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