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ABSTRACT 

PLATON (Programming LAnguage for Tree OperatioN) 
facilities of pattern matching and flexible backtracking, 
language is developed t~ simplify writing analysis programs 
The pattern matching process has the facility to  extract sub- 
input sentence and invoke semantic and contextual checking fo?. 
actions between syntactic and other components are easily obt 
processing r e s u l t s  i n  a failure, a message which expresses t :  
failure will be sent up. The control w i l l  be modified accoru 
enables us t o  write f a i r l y  complicated non-deterministic progr 
manner. An example of structural analysis using PLATON is a l s  
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I In t roduc t ion  

In t h i s  paper we describe a new programming language which is designed 

to facilitate the writing of natural language grammars. A s i m p l e  structural 

analysis program using this language is given as an example. There are two 

key issues in analyzing natural language by computer: 1) how to represent 

knowledge (semantics, pragmatics) and t h e  state (context) of the  world, and 

2) how to advance the programming technology appropriate for syntactic- 

semantic, syntactic-contextual interface. The point in designing a programming 

language is  to make this kind of programming less painful. 



T r a d i  t i m a 1  systems whi.ch r e p r e s e n t  grammars as  a set  of rewrit ing 

rules ust ia l ly  'have poor c o n t r o l  mechanisms, and flexible in teract ion  between 

thc syntac t  LC and other con~ponents is not  possible. Systems in which rules  

o f  gr-;lnmlilrs . r l rc  cn11,i-dilcd i n  proccdrlrcs ,  an.  tllc other hand, make it p o s s i b l c  

to  i n t  t - r m i s  ttrct 6 yrltnc t 'lc and seniant i c  anaIyst?s  i n  an i r~t i innte  way. Llowcvcr, 

thest. systcos are apt. t . 0  c.lestroy the i n t c . l l i g i h : i l  ity and r e g u l a r i t y  o f  

natural  language gramars,  because i n  these systems both ru le s  and their 

control  mechanisms are contained i n  the same program. 

Recently various syscems for natural  language a n a l y s i s  have  been 

developed T .  Winograd's (1971) "PROGRAMMAR" i s  a typ ica l  example of 

procedure oriented systems. In this system the syntactic and other components 

can interact c l o s e l y  i n  the course of analyzing sentences.  However, d e t a i l s  

o f  the program are lost i n  the richness  o f  this in teract ion .  LINGOL, 

developed by V .  Pratt (1973) a t  MIT, is  a language appropriate to  syntax- 

semantics interface and in which it is easy t o  write grammars in t h e  form of 

rewriting r u l e s .  The TAUM group a t  Montreal University (1971)  has evolved a 

programming languagc name : I  System-Q in which expressions of t r e e s ,  strings 

and lists o f  them can be  matched against  p a r t i a l  expressions ( s t r u c t u r a l  

patterns) c o n t a i n i n g  variables and can be transformed i n  any a r b i t r a r y  

fast1 i 0 1 1 .  

Thc augmcn t c d  t r i111~ i L I o n  ilc twork (A1l'N) proposccl by W Woods (19 70) 

from our p o i n t  of view gives an e spec ia l l y  good framework for natural  

Xa~~guage a n a l y s i s  systems. One of- t h e  most attract ive  features is the  clear 

dtscrimination between grammatical rules and t h e  control mechanism. T h i s  

enables us t o  develop the  model by adding various f a c i l i t i e s  to  its control 

mechanism. 

The ATN model has the following additional merits :. 
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1. It prov ides  power of e x p r e s s i o n  equiva len t  t o  t r a n s f o r m a t i o n a l  

grammars 

2. I t  mai11tai .n~ much of the r e n d a b i l i t y  of context-free grammars. 

3 .  R u l e s  of n grammar can b e  changed easily, so we can improve them 

through a t r i a l - a n d - e r r o r  process whi1.e w r i t i n g  t h e  grammar. 

4. I t  i s  p o s s i b l e  t o  impose various types of semant ic  and pragmat ic  

c o n d i t i o n s  on the branches  between s ta tes .  By doing  this, c l o s e  i n t e r a c t i o n s  

between the s y n t a c t i c  and other components can be  e a s i l y  accomplished.  

However ATN h a s  the f o l l o w i n g  shor tcomings ,  e s p e c i a l l y  when we a p p l y  

i t  to the p a r s i n g  of Japanese s e n t e n c e s :  

1. It scans words one-by-one from the leftmost end of an input 

s e n t e n c e ,  checks t h e  a p p l i c a b i l i t y  of a r u l e ,  and makes t h e  t r a n s i t i o n  from 

one s t a t e  t o  ano the r .  This method may be  w e l l  s u i t e d  for Engl i sh  s e n t e n c e s ,  

but because  t h e  o r d e r  of words and p h r a s e s  i n  Japanese sen tences  is r e l a t i v e l y  

free, i t  is preferable t o  check t h e  a p p l i c a b i l i t y  o f  a r u l e  by a flexible 

pat te rn-matching  method. I n  a d d i t i o n ,  w i t h o u t  a p a t t e  rn-matching mechanism, 

a s ingle  rewriting ru le  of an o r d i n a r y  grammar i s  often to b e  expressed by 

several rules belonging to d i f f e r e n t  states i n  Woods ATN parser. 

2. An ATN model e s s e n t i a l l y  performs a k ind  of top-down analysls of 

s e n t e n c e s .  Therefore  recovery f ronl f a i l u r e s  in predic t f .on  is most d1.f f i c u l t .  

Consider ing these fac tors ,  w e  d e v e l o p e d  PLATON (a Programming 

Lhnguage f o r  Tree-Ol>cratioN), which is based  on the A1'N model and has v a r i o u s  

a d d i t i o n a l  c a p a b i l i t i e s  such as pattern-matching, f l e x i b l e  back t rack ing ,  and 

so  on. As in S y s t e w Q  and LINGOL, PLATON's pat tern-matching fac i l i ty  makes 

i t  e a s y  to write rewriting r u l e s .  Moreover, i t  extracts s u b s t r u c t u r e s  from 

the i n p u t s  and invokes a p p r o p r i a t e  semant ic  and  c o n t e x t u a l  checking func t ions .  
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These may be arbitrary LISP functions def ined  by t h e  user, the arguments of 

w h i ~ n  are the  extracted substructures.  

A backtracking mechanism is a l so  necessary for l a n g u ~ e  understanding 

as in other fields of a r t i f i c i a l  intelligence. During t h e  analysis, various 

sorts of h e u r i s t i c  information should be u t i l i z a b l e .  A t  any s tage ,  analysis 

based on criteria which may re la te  t o  syntactic, semantic or contextual 

considerat ions taken separately may be unre l iable .  The result which f u l f i l s  

all the criteria, however, w i l l  b e  a correct one. The program shou ld  b e  

designed such  that i t  can choose the most satisfactory rule from many 

cand ida te s  according t o  the criteria at hand. In further processing, i f  the 

choice i s  found to  b e  wrong by other criteria, the  program must be able to  

backtrack to  the p o i n t  at which the .relevant decision w a s  made. In PLATON 

we can e a s i l y  set  up arbitrary numbers of dec i s ion  po int s  in t h e  program. 

Then, i f  subsequent processing resu l t s  i n  some failure, control w i l l  come 

back t o  the points relevant t o  the cause of the f a i l u r e .  

11. Pattern-matching 

Before proceeding to  the detailed description of  PLATON, w e  w i l l  

explain the  r e p r e s e n t a t i o n  schema for i n p u t  sentences and parsed trees. The 

process of analyzing a sentence, roughly speaking, may be regarded as the 

process of transforming an ordered list of words t o  a tree s tructure ,  which 

shows e x p l i c i t l y  the interrelationships of each word in the input  sentence. 

During the process, trees which correspond to the parts already analyzed, and 

1 h t s  which have not been processed y e t ,  may c o e x i s t  together i n  a s i n g l e  

s tructure .  We therefore wish to represent such a coexisting structure o f  

trees and lists. A l ist  structure is a s tructure  i n  which the order of element 

i s  not changeable. On the other hand, a tree structure cons i s t s  of a single 



root node and several nodes which are tied t o  the root node by d i s t inguishable  

re lat ions .  Because relations between the root and the  other nodes are 

e x p l i c i t l y  spec i f ied ,  t he  order  of nodes in a tree is changeable except for 

the root node which is placed in the leftmost posit ion.  Different matching 

schemas w i l l  be a p p l i e d  to  trees and lists. 

The formal definition of such coexisting structures is as f o l l o w s .  

<structure> i s  the fundamental data-structure into which a l l  data processed 

by PLATON must be transformed. Hereafter we refer to  this  as the "structure" 

The formal definition of <structure) is: 

(list) ::= ($ ts tructures> ) 

(structures> : := 1 <structure> ( structures > 
<tree> : := ( node, I ( (node) < branches) ) 

<branches> : := (brancl~) 1 (branch, branches ) 

(branch) ::= ( < r e l a t i o n >  (tree, ) 

( node, : := C l i s  t > I !UBITRARY LISP-ATOM 

< relation > : := ARBITRARY LISP-ATOM 

A simple example is shown in Figure 1. 

Coexisting Structure of 
Trees and Lists 

Corresponding Expression 
i n  PLATON 

Figure 1 Expression of Structure i n  PLATON 



Two lists which have the same elements but dif ferent  orderings (for example, 

( X  A B C) and ($ A C B)) , should be regarded as different structures.  On 

the other hand, two tree structures such  as ( A ( R1 B ) ( R2 C ) )  and 

( A ( R2 C ) (  R1 B ) )  are regarded as i d e n t i c a l .  Besides the usual rewrite 

rules which treat such s tr ings ,  s tructural patterns  which contain variable 

expressions are permitted in PLATON. The PLATON-interpreter matches 

structural patterns containing variable expressions against the structure 

under process and  checks whether the s p e c i f i e d  p a t t e r n  is found in it. At 

the same time, the variables in the pattern are bound t o  the corresponding 

subs tructurzs . 
Variables  i n  patterns are indicated as :X (X i s  an arbitrary LISP 

atom). The following can be expressed by variables in the above definition 

(1) arbitrary numbers of < structures> , that i s  to say, l i s t  elements in 

the definition of < list > (Figure  2, Ex. 1). We can also specify the 

Structural Pat terns Structures Resul ts  o f  Matching 

Example 1 

SUCCESS 

I n  A :K 

C C 

Example 2 

SUCCESS 

SUCCESS 

Figure 2 Illustration of Matching 
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number of l ist  elements by i n d i c a t i n g  variables as :X+number. For 

example, the  variable :D2 w i l l  match with two elements in a list. 

(2) arbitrary numbers of <branches > , i n  t h e  definition of (tree > 
(Figure 2, Ex. 2). 

(3) < tree) in the  de f in i t i on  of < branch) (Figure 2, Ex. 3 ) .  

We s h a l l  fail such s t r u c t u r a l  p a t t e r n s  ( s t r u c t u r e - 1  > . By using the same 

variable several times i n  a p a t t e r n ,  we can express a structure i n  which  t he  

same sub-structure appears i n  two o r  more different places. The c h a r a c t e r  

! i n  a list indicates that the  n e x t  e lement  following t he  c h a r a c t e r  i s  

o p t i o n a l .  

111 Basic Operat ions  of PLATON 

A grammar, whether gene ra t ive  o r  a n a l y t i c a l .  is represen ted  as a 

d i r e c t e d  graph with labeled states  and branches. There is one state d i s  tin- 

guished as the Start State  and a s e t  of sta tes  called F i n a l  States.  Each 

branch is a rewriting r u l e  and has the fol lowing elements: 

(1) applicability condi t ions  of t h e  rule, typical ly  represen ted  as 

a  structural p a t t e r n  

(2)  a c t i o n s  which must be executed, i f  the r u l e  is a p p l i c a b l e  

(3) a s t r u c t u r a l  pa t tern  i n t o  which the i n p u t  s t r u c t u r e  should  be  

t ransformed.  

Each s ta te  has  several branches ordered according t o  the preference  of tho 

rules. When the control jumps to  a state ,  i t  checks t h e  rules associated 

with the state  one-by-one until it finds an appl i cab le  rule. If such a rule 

is found, the i n p u t  s t r u c t u r e  is transformed i n t o  another  s t r u c t u r e  s p e c i f i e d  

by t h e  r u l e  and the control makes the s t a t e  t r a n s i t i o n .  
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In addit ion to  the above basic mechanism t h e  system i s  provided with 

push-down and pop-up operations. The push-down operat ion  is such that i n  t h e  

process of a p p l y i n g  a rule ,  several substructures  are extracted from the 

whole s t r u c t u r e  by v a r i a b l e  binding mechanisms of pattern-matching. Then each 

i s  analyzed from a dif ferent  state. The pop-up operation i s  such that after 

each substructure i s  analyzed appropriately, control comes back to the 

suspended rule  and execution continues. Usills these operations, embedded 

s t r u c t u r e s  can b e  handled e a s i l y  (See Figure 3) . 

Fipure  3 Sta te  Diapram 

Table 1 shows the formal d e f i n i t i o n  cf  a grarmr of  PLATON (See follow- 

i n g  page).  It shows t h a t  branches or rewriting rules in an ATN parser 

correspond to six-tuples  ( i  e., (pcon)  , < s t r x >  , dcon> , ( c transr  ) , 

( 4 a c t s >  ) , dendb . < s t r x >  corresponds to the left side of a 

rewriting rule and describes the s t r u c t u r a l  pattern t o  which a rule is 

applicable. ( strx > i s ,  by de f in i t i on  

(1) / or 

(2)  s truc ture-1 



TABLE 1 Formal Definition of Grammar in PLATON 

( s t a t e s ,  :: = <state> 1 <state> 4states> 

4 rules) . . - cru le>  < r u l e s >  
- =  - I 

4 rule > . .  . . = ( ( pcon) cstrx, <con> ( <trans> ( 4 acts? tend 3 ) 

< trans> .. . . = I < t r a n s i 0 C  trans, 

Iregister-name, < transit, : : = ( (  (state-name , <structure-2> ) derrorps) 
4 variable-nam- 

4 pros, .. - . . - <pro> I <pro> 4 pros> 

4 pro > .. = .. (EXEC < t r a n s >  ) I(TRANS ( (state-name> 4 s t s y >  ) )  

(end '> .. .. = (NEXT estate-name) <stry> 

I (NEXTB 4 s  ta te-name> rstry 2 ) 

((POP 4 stry> ) I (FM < failure-message ) 

.facts> .. . . = I 4 act><acts> 

<set > : : = <form , I (SR (register-name> d form> 

I (SU 4 regis ter-name > < form > ) 

~ ( S D  <register-name > cf orm. ) 

< strx > .. = . . <structure-I> 1 / 

<s try, .. = . . <structure-2, 1 1 

dpcoTl),<con> : : = <form> 

( form) : : = (GR .<register-name> ) I (GV (variable- name > ? 

~ ( T R   structure-2. ) I(TR / )  1 ARBITRARY LISP FORM 

<variable- :: = :X (X is an arbitrary LISP atom) 
name 7 

<register- : : = /X (X is an arbitrary LISP atom) 
name) 



shows t h a t  a r u l e  i s  a p p l i c a b l e  no matter what the s t r u c t u r e  under process 

is  The v a r i a b l e s  used i n  ( s t r u c t u r e - 1 )  are bound t o  cor responding  

s u b s t r u c t u r e s  when matching succeeds. The results  of Example 1 (See Figure 2 )  

i n d i c a t e  that the v a r i a b l e  :K i s  bound t o  the s u b s t r u c t u r e  (* ( B ( R1 C)) D ) 

The scope of v a r i a b l e  binding is l i m i t e d  t o  w i t h i n  the  realm of the 

part icular  r u l e .  The same variable name i n  d i f f e r e n t  r u l e s  has dif ferent  

i n t e r p r e t a t i o n s .  I n  t h i s  sense, :X-type v a r i a b l e s  i n  < s t r u c t u r e - I >  are 

ca l led  Local Variables. On t h e  o t h e r  hand, w2 can s t o r e  c e r t a i n  kinds of re- 

s u l t s  from the application of rules in registers and refer back t o  them i n  

d i f f e r e n t  r u l e s .  These cons tftue variables which we c a l l  r e g i s t e r s .  They 

a r e  r e p r e s e n t e d  by t h e  symbols / X  (X is an a r b i t r a r y  LISP atom). 

Besides the pattern-matching, < peon> and < con ) can . ~ l s o  check 

the a p p l i c a b i l i t y  of a rule. Certain parts  of the results from the applica- 

t i o n  of p rev ious  rules are conta ined  i n  r e g i s t e r s ,  n o t  in the s t r u c t u r e .  

We can check the c o n t e n t s  of t h e s e  r e g i s t e r s  by using < pcon > -part functions 
like GR, GU, e t c .  (these f u n c t i o n s  are l i s ted  i n  Table  2) and o t h e r  LISP 

functions d e f i n e d  by the usual LISP function, DEFINE. (See following page for 

Table  2 . )  

Semantic and c o n t e x t u a l  co-ord ina t ian  between s u b s t r u e t u r e s  can b e  

checked by using appropriate functions in the (con > - p a r t  o f  a r u l e .  

Semantic and contextual analyses cannot be expressed in the  form of s i m p l e  

r e w r i t i n g  rules. These analyses have differing requirements  such as l e x i c a l  

information about words which may in turn represent knowledge of t h e  world 

and contextual in format ion  which may. express t h e  s t a t e  of the world. We can 

use arbitrary LISP-forms i n  the 4 con 7 -part ,  according to what semantic and 

contextual models we choose. 



TABLE 2 Functions of PLATON 

w 

Func t ion 

SR 

SV 

GR 

GV 

Argument 

(regis ter-name> 
LISP - < form> 

4 var i ab  le-nam- 
LISP - 4 form> 

(regis ter-name> 

(variab le-name> 

Effect  

SR s t o r e s  the r e s u l t  of the 
evaluation of the 2nd argu- 
ment i n  the r e g i s t e r .  

SV s t o r e s  the result of the 
evaluat ion of the  2nd argu- 
ment i n  the var iab le  

GR ge t  t h e  content of the 
r e g i s t e r  

GV g e t s  the  value of t h e  
variable 

TR 

SU 

SD 

GU 

PUSHR 

4 

Value .- - 

the  r e s u l t  of the 
evaluat ion of the  
2nd argument 

A 

the r e s u l t  of the 
evaluat ion of the 
2nd argument 

the content of 
the reg i s ter  

the value of 
the variable 

I <structure-2, 
or  / 

, 

rregis ter-name, 
LISP - 4 form) 

Cregis ter-name 
LISP - <form> 

(register-name> 

4 regis ter-name > 
LISP - 4 form) 

, 

TR transforms the  v a r i z b l e s  
and r e g i s t e r s  i n  the  s t ruc -  
t u r a l  p a t t e r n  i n t o  t h e i r  
values.  

SU sets the reigster of t he  
- higher level processing 

SD sets the  r e g i s t e r  of the  

the transformed 
s t r u c t u r e  

the result of the 
evaluat ion of the 
2nd argument 

I 

lower l e v e l  processing. 

GU g e t s  the  content of the 
register of the  higher 
level. 

PUSHR is defined as the 
following. 

(SR r regis ter-name> 
(CONS 4 form, 

(GR < reg i s t e r -  
name3 1 1) 

the r e s u l t  of the  
eva lua t ion  of the  
2nd argument 

the content of 
the r e g i s t e r  

the result of the 
evalua t ion  of the  
2nd argument 



For example, suppose 

s t r x  = ( ADJ ( TOK :N ) ) (  N(TOK : N 1  ) )  :I ) 

con = ( SEM :N : N 1  ) 

Here TOK is the l i n k  between a word and i t s  p a r t  of  speech. :N and : N 1  are 

t h e  words o f  an i n p u t  s e n t e n c e .  SEM is a f u n c t i o n  d e f i n e d  by t h e  u s e r  which 

checks the  s e m a n t i c  co -o rd ina t ion  between t h e  a d j e c t i v e  :N and t h e  noun : N 1 .  

By t h i s  f u n c t i o n  SEM, w e  can s e a r c h ,  i f  n e c e s s a r y ,  through b o t h  l e x i c a l  

entries and the contextual data  bases. 

U i t h  t h i s  approach,  i f  a c e r t a i n  s y n t a c t i c  p a t t e r n  is found i n  t h e  

input s t r u c t u r e ,  i t  i s  p o s s i b l e  f o r  an a p p r o p r i a t e  semantic r u n c t i o n  t o  b e  

c a l l e d .  Hence t h e  i n t i m a t e  i i i t c r c c t i o n s  between s y n t a c t i c  and semant i c  

components can b e  ob ta ined  easily w i t h o u t  d e s t r o y i n g  the clarity of  n a t u r a l  

language grammars. 

A r b i t r a r y  LISP-forms can be a l s o  used i n  < a c t >  - p o r t i o n .  They w i l l  

be  e v a l u a t e d  when t h e  r u l e  is a p p l i e d .  I f  n e c e s s a r y ,  w e  can set  i n t e r m e d i a t e  

r e s u l t s  i n t o  r e g i s t e r s  and v a r i a b l e s  by u s i n g  t h e  f u n c t i o n s  l i s t e d  i n  Table  2 

( e n d  > comprises f ~ u r  v a r i e t i e s ,  and r u l e s  are divided i n t o  four 

t y p e s  accord ing  t o  t h e i r  ( end > t y p e s .  

1. NEXT-type : The < end+ i s  i n  t h e  form (NEXT dstate-name,  4 s try> ) . 
The b s t r y )  cor responds  to  the  r i g h t  s i d e  o f  a r e w r i t i n g  r u l e ,  and 

r e p r e s e n t s  t h e  t ransformed s t r u c t u r e .  A r u l e  of  this type causes  

s t a t e - t r a n s i t i o n  t o  t h e  ds ta t e -name)  , when i t  is  a p p l i e d .  

2. NEXTB-type: This r u l e  a l s o  causes  state-transition. Unlike w i t h  the 

NEXT-type, s t a t e - s a v i n g  is done and i f  f u r t h e r  p r o c e s s i n g  r e s u l t s  i n  

some f a i l u r e s ,  c o n t r o l  comes back t o  t h e  s ta te  where t h i s  r u l e  is a p p l i e d .  

The environments ,  t h a t  is ,  t h e  c o n t e n t s  of v a r i o u s  r e g i s t e r s  w i l l  be 

r e s t o r e d ,  and t h e  nex t  r u l e  be longing  t o  t h i s  s ta te  w i l l  b e  t r i e d  
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3. POP-type : The (end > -part of t h i s  type is in the form (POP < s  try > ) 

When i t  is applied, the  processing of this l e v e l  is ended and the 

c o n t r o l  r e t u r n s  t o  t he  h igher  l e v e l  with the  va lue  s t r y  > . 
4 .  FM-type: The <end ) - p a r t  of this t y p e  is  i n  t h e  form (FM <failure- 

message) ) .  The s i d e  effects  of  he processing a t  t h i s  l e v e l ,  t h a t  i s ,  

r e g i s t e r  s e t t i n g s  and so  on, a r e  cancel led  (see s e c t i o n  4 ) .  

I n  < s t r y  > we can use two kinds of variables, t h a t  i s ,  the variables used 

i n  d s t r x  > and r e g i s t e r s .  We f i n d  t h i s  s t r u c t u r a l  p a t t e r n ,  c a l l e d  

4 s  t ruc ture-2  > , more s u i t a b l e  f o r  w r i t i n g  t ransformat ional  r u l e s  than 

Woods BUILDkoperation. By way of i l l u s t r a t i o n  cons ider  the following: 

inpu t  s t r i n g  = C D E ( A ( R l ( *  B ) ) ) F G )  

strx = (8 :I ( A ( Rl :N ) )  :J ) 

StrgT = (* (A  ( FU (* :I :N ) ) (  R2 /REG ) )  :J) 

the  content  of /REG = ( G  ( R3 H ) )  

A s  the  r e s u l t  of matching, the  v a r i a b l e s  :I, :N and :J a r e  bouad t o  the 

subs t ruc tu re s  (& C D E ) ,  ($ B) and (3 F G ) respect ively .  The r e s u l t  of 

eva lua t ing  the  < s t r y  > is 

( ( A ( R1 (# C  D E B  ) ) (  R2 ( G ( R3 H ) ) ) )  F G ) .  

I f  the r u l e  is a POP-type one, then this s t r u c t u r e  w i l l  be returned t o  the  

h igher  level processing. If i t  is NEXT- or NEXTB-type, then the c o n t r o l  w i l l  

move t o  the  s p e c i f i e d  state with t h i s  s t r u c t u r e .  

IV Push-down and Pop-up Operations 

By means of NEXTB-type r u l e s ,  w e  can s e t  up decision poin t s  i n  a 

program. We can a l s o  do this by using push-down and pop-up operat ions.  A 

ru l e  i n  PLATON f i n d s  particular s y n t a c t i c  c lues  by i ts  s t r u c t u r a l  desc r ip t ion  



( strx> ; and a t  the same time, extracts  substructures from the input 

st'king From the structural description i t  i s  predicted that the substructures 

may have particular constructions, that is ,  t h e y  may comprise noun phrases, 

relative clauses or whatever. It is-necessary to transfer the subst~r~ctures  

t o  s t a t e s  appropriate f o r  analyzing these constructions predicted and to return 

the analyzed structures back into the appropriate places In PLATON, these 

operations can be described in the Ctrans > -part o f  a rule. For example, 

suppose the <trans >-part of a rule is 

( ( (  Sl :K :K ) )  ( (  S2 ( :I : J ) / R E G  ) )  ) 

When the cantrol interprets t h i s  statement, the substructures corresponding 

to  the v a r u b l e  :K and ( :I : J ) are transferred t o  the s t a t e s  S1 and S 2  

respectively If the process ings  starting from these s t a t e s  are normally 

completed (by a POP-type r u l e ) ,  then the resu l t s  are stored i? the variable 

:K and the regzster /REG. In this manner, by means of the push-down and 

pop-up mechanisms, substructures can be analyzed from appropriate states. 

Processing from kese s t a t e s ,  however, may sometimes result in failure, 

That is ,  predictions that certain relationships w i l l  be  found among the 

elements of  substructures may not be f u l f i l l e d .  In such instances the pushed 

down state  w i l l  send an error-message appropriate t o  the cause of the failure 

by an W t y p e  rule.  An FM-type rule points o u t  that a certain error has 

occurred in the processing. If NEXTB-type rules were used i n  the previous 

processing a t  this l e v e l ,  control w i l l  go back to  the most recently used 

NEXTB-type r u l e .  If NEXTB-type rules were not used at this  processing leve l ,  

tne error-message specif ied by the FM-type rule w i l l  be sent t o  the <trans> 

part of the rule which directed this push-down operation ( see  Figure 4) 
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Figure 4 Illustration of Backtracking 
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According t o  these error-messages, control-flow can be changed 

appropriately. For example, w e  can direct  processings by describing the 

4 trans > -part i n  the following way. 

( ( (  s l  :K :K ) (  ERR1 ( EXEC ( (  S5 :K :K 1) (( 56 ( :I :J ) /REG ) ) ) )  

( ERR2 ( T U N S  ( S8 / ) ) I  

( ( S 2  (j6 : I  :J ) /REG ) )  ) 

I n  t h e  above example, the processing of the substructure :K from the s t a t e  

S1 will produce one of the  fo l lowing  three results .  According to the 

returned value, the appropriate  step w i l l  b e  taken: 

(1) Normal return: the processing of :K is ended by a POP-type 

rule. The resul t  i s  s t o r e d  i n  the variable  :K and the n e x t  push-down 

performed, that i s  : I  : J ) w i l l  be  transferred t o  the state S2. 

(2) Return w i t h  an error-message: t h e  processing of :K results in 

a f a i l u r e  and an FM-type r u l e  sends up an error-message. If the  message is 

ERR1, them :K and :f :J ) w i l l  b e  analyzed from the states S5 and S6 

respectively (EXEC-type). If i t  is  ERRS, the interpreter  w i l l  give up the  

application o f  the present  rule, and pass the control to another state  S8 

(TRANS- type) .  If it is neither ERRl nor ERR2, the  same s t e p  as (3) w i l l  be 

taken 

(3)  Re turn w i t h  the value NIL: the processing Prom t h e  state S1 

w i l l  send up the value NIL if it runs into a blind alley, that is, there are no 

appl icable  r u l e s .  The interpreter w i l l  give up the a p p l i c a t i o n  of the present  

rule and proceed to the next rule attached t o  th is  state .  

Mechanisms, such that control flow can be appropriately changed 

according to the error-messages from lower level processings are n o t  found in 

Woods ATN parser, We can obtain flexible backtracking f a c i l i t i e s  by combining 

these mechanisms wi th  NEXTB- type rules. 



V A Simple  Example 

We are now developing a deduc t ive  question-answering sys tern with 

n a t u r a l  language i n p u t s  -- Japanese  sentences. The i n t e r n a l  data-base is 

assumed t o  be a set  o f  deep case s t r u c t u r e s  o f  i n p u t  sen tences .  We a d o p t e d  

and m o d i f i e d  Fillmore's (1968) case grammar t o  analyze the i n p u t  of Japanese  

sen tences .  Japanese is  a t y p i c a l  example o f a n  SOV-language i n  which t h e  

o b j e c t  and o t h e r  c o n s t i t u e n t s  governed by a verb usually appear before  :he 

verb i n  s sentence. A typical c o n s t r u c t i o n  of a Japanese sentence is  shown 

in Figure  5.  

Figure 5 T y p i c a l  Construction of a 
Japanese Sentence 

A verb may govern several noun phrases preceding it. A relative clause 

modifying a noun may appear  i n  t he  form -- verD + noun -- The r i g h t  

boundary of t h e  clause is easily identified by f i n d i n g  the verb. The left 

boundary i s  o f t e n  much more d i f f i c u l t  t o  i d e n t i f y .  I n  Figure  5, t h e  noun 

phrase N P k r  is a c a s e  element of t he  verb V On the o t h e r  hand, t h e  noun 

phrase NPi is governed by the  verb Va Because the  r u l e  of p r o j e c t i o n s  holds 

i n  JaFnese as i n  o t h e r  languages, a l l  the noun phrases between NP c'+ I and 

V are governed by V , and the noun phrases b e f o r e  NP,: are governed by VA 

However, i n  the cou.rse of a n a l y s i s ,  such boundaries cannot be determined 

uniquely. The analysis program fixes a temporary boundary and proceeds t o  

the next s t e p  i n  process ing I f  the temporary boundary is not correct,  the 

succeeding processing w i l l  f a i l  and the con t ro l  w i l  come back to t he  po in t  



a t  which the temporary boundary was fixed. 

Now we w i l l  show a simple example of structural ana lys i s  by PLATON 

The example explains how the backtracking f a c i l i t y  is  used i n  analyzing 

Japanese sentences. Because we want t o  v i sua l i ze  t h e  operations of PLATON 

w i t h o u t  bo the r ing  w i t h  microscopic d e t a i l s  of Japanese sentences, we w i l l  

take an imaginary problem as an example. The parser which is written in 

PLATON is described in another paper by M Nagao and J. T s u j i i  (1976) 

An input s t r i n g  is assumed to be a l i s t .  The elements of the  list 

are in tegers  and trees are i n  the form of ( X (SUM 0)). Here 'X' may be  

regarded as a term modif ied  by 'SUM 0' These two kinds of elements are 

arranged i n  an arbitrary order, except that the last element i s  the tree 

(X(SUM 0)). The following is an example of an  i n p u t  s t r i n g :  

( 5 2 1 3  (x ( S r n  0)) 3 1 (X (SUM 0)) 2 2 ( x (SUM 0)) ) 

Figure 6 An Example String t o  be Analyzed 

The result of the transformation is  expected to be i n  the following fotm: 

( ( X  (Sm4)) (XSm6)) (X (Sm9)) 1 

This result is regarded as representing the following relationships between 

integers and 'X' . 

The number associated with  an 'X' by the relation 'SUM' shows the sum of 

the integers which are governed by the X .  We can look upon the relations 

r between integers and an X' as the re la t ions  between noun phrases and the verb 

i n  Japanese sentences. The resul t  of the analysis  is assumed to satisfy 

the following conditions. 
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(1) Governor-governed re la t ionsh ips  between in tegers  and an 'X' must obey 

the project ion rule (i.e., clauses  do not  over lap) .  

( 2 )  A s  a simulation o f  a semantic r e s t r i c t i o n ,  w e  attach a condit ion that 

the sum of the in tegers  governed by an ' X '  should not  erceed ten .  

(3 )  As a s imulat ion  of a contextual r e s t r i c t i o n ,  w e  attach the condit ion 

that  a r e s u l t  (F ( X  (SUM num-1)) (X (SUM num-2)) . . . . ( X  (SUM num-N)) ) 

s h o u l d  maintain the r e l a t i o n ,  n u m l  4 num-2 - 5 . . . .. < u m - N .  - 
set 05 r u l e s  i s  shown i n  the following. The corresponding state- 

diagram is shown i n  Figure  7 .  

START 

NEXTB NEXTB 

POP 

NEXT 

Fipure 7 State Mapram of a S i  wple Example 



S L ?  -1- s t rx :  = :I :I1 ( X  (SUM :N)) :J) 

con: = ( GREATERP 10 (PLUS : N : 11) ) 

a c t :  = ( (SV :N (PLUS :N :I1 ) )  

(PUSHR /REG :Il l  ) 

end: = (NEXT SUMLm C)c :I (X (SUM :N)) : J) ) 

-2- s trx  : = (* :I (X (SUM :N)) r J )  

con: = (CONTEXTCHECK /RESULT (TR (X (SUM :N)))) 

act :  = NIL 

end: = (NEXT BACKTRACK /) 

-3- strx: = (% :I (X (SLW :N)) :J) 

con: =: T 

act: = NIL 

end: = (FM-ERROR) 

-4- s t r x :  = (8  ) 

con: = T 

a c t :  = ( (SR /RESULT (CONS ' X  /RESULT ) )  ) 

end: = (POP /RESULT) 

BACKTRACK 

-1- strx:  = :I (X (SLW :PI)) :.J) 

con: = T 

a c t :  = ( (SR /REG N I L )  

(SR /RESULT (APPEND /RESULT ( TR (X (SUM :N))))) ) 

end: = (NEXTB SUMUP (S# :I :J )) 

-2- strx: = (* :I ( X  (SUM :N)) :J) 

con: = T 

act: = ( (POPR /TEMP /REG) 

(SV :N (MINUS :N /TEMP)) ) 

end: = (NEXT BACKTRACK 01: : I /TEMP (X (SUM :N)) : J) ) 



The input  string is  the! l is t  shown i n  Figure 6. Since the start state 

is S W P ,  the f i r s t  r u l e  attached t o  this state  is app l i ed .  This  r u l e  w i l l  

find the l e f tmos t  'x' and an integer just before  t he  ' x '  (by SUMUP -I-, strx). 

The v a r i a b l e  :I1 is bound to tius i n t e g e r .  This i n t e g e r  is added t o  t h e  sum 

of the i n t e g e r s ,  :N,  i f  the t o t a l  does n o t  exceed t en  (SUMUP -I-, con) .  

PUSHR, used i n  the  < a c t  > - p a r t ,  i s  a PLATON funct ion which puts  t h e  

second a rgument  on the head of the first argument (SUMUP -I-, a c t )  After 

t h i s  r u l e  is a p p l i e d ,  t h e  con t ro l  will enter the s t a t e  SUMUP again ( S W  -I-, 

end). That is, t h i s  rtile is app l ied  u n t i l  there a r e  no ~ n t e g e r s  before the 

f i r s t  ' X' or  the sum of the integers.  exceeds ten.  A s  the result, the 

environment i s  the following: 

s t r u c t u r e  under processing 

= qY 5 (X (SUM 6 ) )  3 1 ( X  ( S U M  0)) 2 2 ( X  (SUM 0)) ) 

r e l a t i o n s h i p  temporarily fixed be tween i n t e g e r s  and 'X' 

content  of /REG 

= ( 2 1 3 )  

The second rule of SUMUP w i l l  be a p p l i e d  next .  T h i s  rule checks by its 

1 con> p a r t  whether the r e s u l t  a t  hand s a t i s f i e s  the t h i r d  condition, 

t h a t  is, the contextual  r e s t r i c t i o n .  Because the  content  of /RESULT is NIL, 

t he  function CONTEXTCHECK r e t u r n s  the value T (SllMUl' -2-, con). So t h i s  

r u l e  i s  app l icab le .  Control makes the  s t a t e - t r a n s i t i o n  t o  the s t a t e  

BACKTRACK (SUMUP -2-, end.) Because the  first r u l e  of BACKTRACK is  a NEXTB- 

type yule,  s ta te-saving is performed. That i s ,  tbe fol lowing environment i s  

saved: content  of /REG = ( 2 1 3) 

content  of /RESULT = NIL 

structure under processing = 

# 5 (X (SUM 6 ) )  3 1 ( X (SUM 0 ) )  2 2 (X (SUM 0 ))  ) 
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By t h i s  ru les ,  the registers /REG and /RESULT are set  as follows ( BACKTRACK 

-I-, a c t ) .  /REG : = NIL 

/RESULT: = ( ( X (SUM 6 ) ) ) 

And the structure is transformed t o  

(X 5 3 1 (X (SUM 0)) 2 2 (X (SUM 0)) ) 

A XEXTB- type  rule causes a s tate  transition as does a NEXT-type rule. So 

control returns to the state SUMUP (BACKTRACK -I-, end) . At tt.is s t a t e ,  a 

process s imilar t o  t h e  one described above is performed. As a result, the 

following governor-dependent relationships are es t a b l i s h e d .  

Here the  b o l d  l ines  indicate the  newly es tab l i shed  relat ionships.  By the 

f i r s t  rule of BACKTRACK the following environment is saved. 

conten t  of  /REG = ( 5 3 1 ) 

conten& of /RESULT = ( ( X (SLW 6 ) )  ) 

structure under processing = (# (X (SUM 9)) 2 2 (X (SUM 0)) ) 

And /REG and /RESULT are set as the following (BACKTRACK -1-, act) . 
/REG: = NIL 

/RESULT: = ( ( X  (SUM 6)) (X (SUM 9 ) )  ) 

The transformed structure is (BACKTRACK -10, end) 

Cjl 2 2 ( x  ( S U M O ) )  1 

The control is transferred to the sta te  SUMUP. By applying t h e  f irst  rule 

of t h i s  s t a t e  repeatedly on the above structure the fol lowing structure is 

obtained.  

(j( ( x SUM 4 ) )  1 
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However this result does not s a t i s f y  the  con textual restriction. 

So the application of t h e  second ru le  of SLJMl.JP f a i l s  because the  funct ion 

CONTEXTCHECK used i n  <con ) -part returns  the value NIL (SUMUP -2-, con) 

That is : 

con textcheck [(  (X (SUM 6 )  ) (X (SUM 9) ) ) : (X ( S U M  4 ) )  1 = N I L  

The third rule, therefore, w i l l  be  a p p l i e d  next. Because t h i s  rule is a 

%type r u l e  ( S U M U P  -3-, end) ,  it causes  an error and c o n t r o l  comes back t o  

the  point at which a NEXTB-type r u l e  w a s  appl i ed  most recently. The saved 

nv iro~ment  is restored. This is: 

/REG: = ( 5 3 1 ) 

/RESULT: = ( (X (SUM 6 ) )  ) 

s t r u c t u r e  under processing: = (* (X (SUM 9) )  2 2 (X (SUM 0)) ) 

Then by applying the second rule of BACKTRACK, the governor-governed 

r e l a t i o n s h i p  e s t a b l i s h e d  l a s t l y  in the previous process  i s  c a n c e l l e d .  The 

s t r u c t u r e  and the  r e g i s t e r  /REG are changed as below (BACKTRACK -2-, act) : 

/REG: = ( 3 1 ) 

structure  under process ing:  ( 5 ( X  (SUM 4)) 2 2 (X (SUM 0 ) )  ) 

Control enters the  BACKTRACK state again. The application of the 

first r u l e  saves the e n v i r o n ~ w n t  : 

content of /REG = ( 3 1 ) 

content of /RESULT = ( (X (SUM 6 ) )  

s tructure  under processing = (1< 5 ( X (SUM 4)) 2 2 (X (SUM 0 ) )  ) 

That is,  the  r e l a t i o n s h i p  indicated by t h e  dotted l i n e  i n  the fol lowing is  

cance l l ed:  



Control t r a n s i t s  t o  t h e  s t a t e  SUMUP (BACKTRACK -I-, end) and a 

similar process i s  performed. However, because the governor-governed 

relationship between t h e  i n t e g e r  5 and t h e  second 'Xr i s  c a n c e l l e d ,  t h e  sum 

of the i n t e g e r s  governed by the  f i r s t  'X', ( 2 1 3 ) ,  i s  g r e a t e r  than t h a t  

of the second ' X' , ( 3 1 ) . The contextual cond i t i on ,  t h e r e f o r e ,  is  no t  

fulfilled, and the a p p l i c a t i o n  of the second r u l e  of SUMUP will n o t  succeed.  

So the t emporar i ly  established relationships w i l l  be c a n c e l l e d  one-by-one as 

follows. 

After  these r e l a t i o n s h i p s  have been cance l l ed ,  the desired r e s u l t  is  obta ined 

by the f o l l owing  sequence. 
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A t  t h e  final stage of the  processing, the  f o u r t h  r u l e  of S W  a 

POP-type r u l e ,  i s  a p p l i e d  and r e t u r n s  the  value 

( (X (SUM 4 ) )  CX (SUM 6)) (X  (SUM 9) 1 

V I  Conclusion 

We have described a programming language c a l l e d  PLATON f o r  n a t u r a l  

language processing.  The language has s e v e r a l  a d d i t i o n a l  capabilities beyond 

the ATN parser of W. Woods. 

Grammars written i n  t h e  language n o t  only maintain c l a r i t y  of 

representation but a l s o  provide adequately a n a t u r a l  i n t e r f a c e  between the 

s y n t a c t i c  component and o t h e r  components. By means of t h e  pa t te rn-matching  

facility, w e  can write grammars i n  a quite n a t u r a l  manner. And because of 

the  PLATON v a r i a b l e  b inding mechanism, semantic and con tex tua l  LISP f u a c t i o n s  

a e a s i l y  incorpora ted  i n  s y n t a c t i c  patterns. 

Flex ib l e  backtracking mechanisms and push-down opera t ions  make com- , 

r, Acatecr non-de te rmin i s t i c  processing possible i n  a very simple way. 

We a r e  now deveLoping an analysis program f o r  Japanese using t h i s  

language. The program can accept  f a i r l y  complicated s e n t e n c e s  i n  a textbook 

of elementary chemistry It can u t i l i z e  t h e  lexical and contextual  information 

of chemistry adequately during the  analysis. Such in format ion  i n  our system 

is expressed i n  the form of a semantic network s i m i l a r  t o  that of R. F. Simmons 

(1973 ) .  

Perhaps,  PLATON i t s e l f  must be e q u i p p e d  w i t h  more semantics and 

context-oriented o p e r a t i o n s  such as specified lexical d e s c r i p t i o n s  and funct ions  

us ing  them. However, what desc r ip t ion  method is most efficient, and moreover, 

what semantic information must be stored i n  the lexicon, a r e  not y e t  entirely 

clear. So, as the f i r s t  s t e p ,  PLATON leaves many p a r t s  of these  problems f o r  
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the user t o  spec i fy  by LISP programs. PLAMN is written in LIS1'1.5 and 

implemented on a FACOM 230-60 a t  the Kyoto University computing center and a 

TOSBAC-40 mini-computer in our laboratory. The interpreter of PLATON i t s e l f  

requires only 4 . 5  K c e l l s .  
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