
American Journal of Computational Linguistics Microfiche 37 28

MAKOTO NAGAO AND JUN-ICHI TSUJII

Department of Electrical Engineering

Kyoto University

Kyoto, Japan

ABSTRACT

PLATON (Programming LAnguage for Tree OperatioN)
facilities of pattern matching and flexible backtracking,
language is developed t~ simplify writing analysis programs
The pattern matching process has the facility to extract sub-
input sentence and invoke semantic and contextual checking fo?.
actions between syntactic and other components are easily obt
processing r e s u l t s i n a failure, a message which expresses t :
failure will be sent up. The control w i l l be modified accoru
enables us t o write f a i r l y complicated non-deterministic progr
manner. An example of structural analysis using PLATON is a l s

- ,le
1. The
1 language
Erom thc
Intc

- -. rf
Ise of .

Th i :-
; i n : ;

e d "

I In t roduc t ion

In t h i s paper we describe a new programming language which is designed

to facilitate the writing of natural language grammars. A s i m p l e structural

analysis program using this language is given as an example. There are two

key issues in analyzing natural language by computer: 1) how to represent

knowledge (semantics, pragmatics) and t h e state (context) of the world, and

2) how to advance the programming technology appropriate for syntactic-

semantic, syntactic-contextual interface. The point in designing a programming

language is to make this kind of programming less painful.

T r a d i t i m a 1 systems whi.ch r e p r e s e n t grammars as a set of rewrit ing

rules ust ia l ly 'have poor c o n t r o l mechanisms, and flexible in teract ion between

thc syntac t LC and other con~ponents is not possible. Systems in which rules

o f gr-;lnmlilrs . r l rc cn11,i-dilcd i n proccdrlrcs , an. tllc other hand, make it p o s s i b l c

to i n t t - r m i s ttrct 6 yrltnc t 'lc and seniant i c anaIyst?s i n an i r~t i innte way. Llowcvcr,

thest. systcos are apt. t . 0 c.lestroy the i n t c . l l i g i h : i l ity and r e g u l a r i t y o f

natural language gramars, because i n these systems both ru le s and their

control mechanisms are contained i n the same program.

Recently various syscems for natural language a n a l y s i s have been

developed T . Winograd's (1971) "PROGRAMMAR" i s a typ ica l example of

procedure oriented systems. In this system the syntactic and other components

can interact c l o s e l y i n the course of analyzing sentences. However, d e t a i l s

o f the program are lost i n the richness o f this in teract ion . LINGOL,

developed by V . Pratt (1973) a t MIT, is a language appropriate to syntax-

semantics interface and in which it is easy t o write grammars in t h e form of

rewriting r u l e s . The TAUM group a t Montreal University (1971) has evolved a

programming languagc name : I System-Q in which expressions of t r e e s , strings

and lists o f them can be matched against p a r t i a l expressions (s t r u c t u r a l

patterns) c o n t a i n i n g variables and can be transformed i n any a r b i t r a r y

fast1 i 0 1 1 .

Thc augmcn t c d t r i111~ i L I o n ilc twork (A1l'N) proposccl by W Woods (19 70)

from our p o i n t of view gives an e spec ia l l y good framework for natural

Xa~~guage a n a l y s i s systems. One of- t h e most attract ive features is the clear

dtscrimination between grammatical rules and t h e control mechanism. T h i s

enables us t o develop the model by adding various f a c i l i t i e s to its control

mechanism.

The ATN model has the following additional merits :.

30

1. It prov ides power of e x p r e s s i o n equiva len t t o t r a n s f o r m a t i o n a l

grammars

2. I t mai11tai .n~ much of the r e n d a b i l i t y of context-free grammars.

3 . R u l e s of n grammar can b e changed easily, so we can improve them

through a t r i a l - a n d - e r r o r process whi1.e w r i t i n g t h e grammar.

4. I t i s p o s s i b l e t o impose various types of semant ic and pragmat ic

c o n d i t i o n s on the branches between s ta tes . By doing this, c l o s e i n t e r a c t i o n s

between the s y n t a c t i c and other components can be e a s i l y accomplished.

However ATN h a s the f o l l o w i n g shor tcomings , e s p e c i a l l y when we a p p l y

i t to the p a r s i n g of Japanese s e n t e n c e s :

1. It scans words one-by-one from the leftmost end of an input

s e n t e n c e , checks t h e a p p l i c a b i l i t y of a r u l e , and makes t h e t r a n s i t i o n from

one s t a t e t o ano the r . This method may be w e l l s u i t e d for Engl i sh s e n t e n c e s ,

but because t h e o r d e r of words and p h r a s e s i n Japanese sen tences is r e l a t i v e l y

free, i t is preferable t o check t h e a p p l i c a b i l i t y o f a r u l e by a flexible

pat te rn-matching method. I n a d d i t i o n , w i t h o u t a p a t t e rn-matching mechanism,

a s ingle rewriting ru le of an o r d i n a r y grammar i s often to b e expressed by

several rules belonging to d i f f e r e n t states i n Woods ATN parser.

2. An ATN model e s s e n t i a l l y performs a k ind of top-down analysls of

s e n t e n c e s . Therefore recovery f ronl f a i l u r e s in predic t f .on is most d1.f f i c u l t .

Consider ing these fac tors , w e d e v e l o p e d PLATON (a Programming

Lhnguage f o r Tree-Ol>cratioN), which is based on the A1'N model and has v a r i o u s

a d d i t i o n a l c a p a b i l i t i e s such as pattern-matching, f l e x i b l e back t rack ing , and

so on. As in S y s t e w Q and LINGOL, PLATON's pat tern-matching fac i l i ty makes

i t e a s y to write rewriting r u l e s . Moreover, i t extracts s u b s t r u c t u r e s from

the i n p u t s and invokes a p p r o p r i a t e semant ic and c o n t e x t u a l checking func t ions .

31

These may be arbitrary LISP functions def ined by t h e user, the arguments of

w h i ~ n are the extracted substructures.

A backtracking mechanism is a l so necessary for l a n g u ~ e understanding

as in other fields of a r t i f i c i a l intelligence. During t h e analysis, various

sorts of h e u r i s t i c information should be u t i l i z a b l e . A t any s tage , analysis

based on criteria which may re la te t o syntactic, semantic or contextual

considerat ions taken separately may be unre l iable . The result which f u l f i l s

all the criteria, however, w i l l b e a correct one. The program shou ld b e

designed such that i t can choose the most satisfactory rule from many

cand ida te s according t o the criteria at hand. In further processing, i f the

choice i s found to b e wrong by other criteria, the program must be able to

backtrack to the p o i n t at which the .relevant decision w a s made. In PLATON

we can e a s i l y set up arbitrary numbers of dec i s ion po int s in t h e program.

Then, i f subsequent processing resu l t s i n some failure, control w i l l come

back t o the points relevant t o the cause of the f a i l u r e .

11. Pattern-matching

Before proceeding to the detailed description of PLATON, w e w i l l

explain the r e p r e s e n t a t i o n schema for i n p u t sentences and parsed trees. The

process of analyzing a sentence, roughly speaking, may be regarded as the

process of transforming an ordered list of words t o a tree s tructure , which

shows e x p l i c i t l y the interrelationships of each word in the input sentence.

During the process, trees which correspond to the parts already analyzed, and

1 h t s which have not been processed y e t , may c o e x i s t together i n a s i n g l e

s tructure . We therefore wish to represent such a coexisting structure o f

trees and lists. A l ist structure is a s tructure i n which the order of element

i s not changeable. On the other hand, a tree structure cons i s t s of a single

root node and several nodes which are tied t o the root node by d i s t inguishable

re lat ions . Because relations between the root and the other nodes are

e x p l i c i t l y spec i f ied , t he order of nodes in a tree is changeable except for

the root node which is placed in the leftmost posit ion. Different matching

schemas w i l l be a p p l i e d to trees and lists.

The formal definition of such coexisting structures is as f o l l o w s .

<structure> i s the fundamental data-structure into which a l l data processed

by PLATON must be transformed. Hereafter we refer to this as the "structure"

The formal definition of <structure) is:

(list) ::= ($ ts tructures>)

(structures> : := 1 <structure> (structures >
<tree> : := (node, I ((node) < branches))

<branches> : := (brancl~) 1 (branch, branches)

(branch) ::= (< r e l a t i o n > (tree,)

(node, : := C l i s t > I !UBITRARY LISP-ATOM

< relation > : := ARBITRARY LISP-ATOM

A simple example is shown in Figure 1.

Coexisting Structure of
Trees and Lists

Corresponding Expression
i n PLATON

Figure 1 Expression of Structure i n PLATON

Two lists which have the same elements but dif ferent orderings (for example,

(X A B C) and ($ A C B)) , should be regarded as different structures. On

the other hand, two tree structures such as (A (R1 B) (R2 C)) and

(A (R2 C) (R1 B)) are regarded as i d e n t i c a l . Besides the usual rewrite

rules which treat such s tr ings , s tructural patterns which contain variable

expressions are permitted in PLATON. The PLATON-interpreter matches

structural patterns containing variable expressions against the structure

under process and checks whether the s p e c i f i e d p a t t e r n is found in it. At

the same time, the variables in the pattern are bound t o the corresponding

subs tructurzs .
Variables i n patterns are indicated as :X (X i s an arbitrary LISP

atom). The following can be expressed by variables in the above definition

(1) arbitrary numbers of < structures> , that i s to say, l i s t elements in

the definition of < list > (Figure 2, Ex. 1). We can also specify the

Structural Pat terns Structures Resul ts o f Matching

Example 1

SUCCESS

I n A :K

C C

Example 2

SUCCESS

SUCCESS

Figure 2 Illustration of Matching

3 4

number of l ist elements by i n d i c a t i n g variables as :X+number. For

example, the variable :D2 w i l l match with two elements in a list.

(2) arbitrary numbers of <branches > , i n t h e definition of (tree >
(Figure 2, Ex. 2).

(3) < tree) in the de f in i t i on of < branch) (Figure 2, Ex. 3) .

We s h a l l fail such s t r u c t u r a l p a t t e r n s (s t r u c t u r e - 1 > . By using the same

variable several times i n a p a t t e r n , we can express a structure i n which t he

same sub-structure appears i n two o r more different places. The c h a r a c t e r

! i n a list indicates that the n e x t e lement following t he c h a r a c t e r i s

o p t i o n a l .

111 Basic Operat ions of PLATON

A grammar, whether gene ra t ive o r a n a l y t i c a l . is represen ted as a

d i r e c t e d graph with labeled states and branches. There is one state d i s tin-

guished as the Start State and a s e t of sta tes called F i n a l States. Each

branch is a rewriting r u l e and has the fol lowing elements:

(1) applicability condi t ions of t h e rule, typical ly represen ted as

a structural p a t t e r n

(2) a c t i o n s which must be executed, i f the r u l e is a p p l i c a b l e

(3) a s t r u c t u r a l pa t tern i n t o which the i n p u t s t r u c t u r e should be

t ransformed.

Each s ta te has several branches ordered according t o the preference of tho

rules. When the control jumps to a state , i t checks t h e rules associated

with the state one-by-one until it finds an appl i cab le rule. If such a rule

is found, the i n p u t s t r u c t u r e is transformed i n t o another s t r u c t u r e s p e c i f i e d

by t h e r u l e and the control makes the s t a t e t r a n s i t i o n .

35

In addit ion to the above basic mechanism t h e system i s provided with

push-down and pop-up operations. The push-down operat ion is such that i n t h e

process of a p p l y i n g a rule , several substructures are extracted from the

whole s t r u c t u r e by v a r i a b l e binding mechanisms of pattern-matching. Then each

i s analyzed from a dif ferent state. The pop-up operation i s such that after

each substructure i s analyzed appropriately, control comes back to the

suspended rule and execution continues. Usills these operations, embedded

s t r u c t u r e s can b e handled e a s i l y (See Figure 3) .

Fipure 3 Sta te Diapram

Table 1 shows the formal d e f i n i t i o n cf a grarmr of PLATON (See follow-

i n g page). It shows t h a t branches or rewriting rules in an ATN parser

correspond to six-tuples (i e., (pcon) , < s t r x > , dcon> , (c transr) ,

(4 a c t s >) , dendb . < s t r x > corresponds to the left side of a

rewriting rule and describes the s t r u c t u r a l pattern t o which a rule is

applicable. (strx > i s , by de f in i t i on

(1) / or

(2) s truc ture-1

TABLE 1 Formal Definition of Grammar in PLATON

(s t a t e s , :: = <state> 1 <state> 4states>

4 rules) . . - cru le> < r u l e s >
- = - I

4 rule > = ((pcon) cstrx, <con> (<trans> (4 acts? tend 3)

< trans> = I < t r a n s i 0 C trans,

Iregister-name, < transit, : : = (((state-name , <structure-2>) derrorps)
4 variable-nam-

4 pros, .. - . . - <pro> I <pro> 4 pros>

4 pro > .. = .. (EXEC < t r a n s >) I(TRANS ((state-name> 4 s t s y >))

(end '> = (NEXT estate-name) <stry>

I (NEXTB 4 s ta te-name> rstry 2)

((POP 4 stry>) I (FM < failure-message)

.facts> = I 4 act><acts>

<set > : : = <form , I (SR (register-name> d form>

I (SU 4 regis ter-name > < form >)

~ (S D <register-name > cf orm.)

< strx > .. = . . <structure-I> 1 /

<s try, .. = . . <structure-2, 1 1

dpcoTl),<con> : : = <form>

(form) : : = (GR .<register-name>) I (GV (variable- name > ?

~ (T R structure-2.) I(TR /) 1 ARBITRARY LISP FORM

<variable- :: = :X (X is an arbitrary LISP atom)
name 7

<register- : : = /X (X is an arbitrary LISP atom)
name)

shows t h a t a r u l e i s a p p l i c a b l e no matter what the s t r u c t u r e under process

is The v a r i a b l e s used i n (s t r u c t u r e - 1) are bound t o cor responding

s u b s t r u c t u r e s when matching succeeds. The results of Example 1 (See Figure 2)

i n d i c a t e that the v a r i a b l e :K i s bound t o the s u b s t r u c t u r e (* (B (R1 C)) D)

The scope of v a r i a b l e binding is l i m i t e d t o w i t h i n the realm of the

part icular r u l e . The same variable name i n d i f f e r e n t r u l e s has dif ferent

i n t e r p r e t a t i o n s . I n t h i s sense, :X-type v a r i a b l e s i n < s t r u c t u r e - I > are

ca l led Local Variables. On t h e o t h e r hand, w2 can s t o r e c e r t a i n kinds of re-

s u l t s from the application of rules in registers and refer back t o them i n

d i f f e r e n t r u l e s . These cons tftue variables which we c a l l r e g i s t e r s . They

a r e r e p r e s e n t e d by t h e symbols / X (X is an a r b i t r a r y LISP atom).

Besides the pattern-matching, < peon> and < con) can . ~ l s o check

the a p p l i c a b i l i t y of a rule. Certain parts of the results from the applica-

t i o n of p rev ious rules are conta ined i n r e g i s t e r s , n o t in the s t r u c t u r e .

We can check the c o n t e n t s of t h e s e r e g i s t e r s by using < pcon > -part functions
like GR, GU, e t c . (these f u n c t i o n s are l i s ted i n Table 2) and o t h e r LISP

functions d e f i n e d by the usual LISP function, DEFINE. (See following page for

Table 2 .)

Semantic and c o n t e x t u a l co-ord ina t ian between s u b s t r u e t u r e s can b e

checked by using appropriate functions in the (con > - p a r t o f a r u l e .

Semantic and contextual analyses cannot be expressed in the form of s i m p l e

r e w r i t i n g rules. These analyses have differing requirements such as l e x i c a l

information about words which may in turn represent knowledge of t h e world

and contextual in format ion which may. express t h e s t a t e of the world. We can

use arbitrary LISP-forms i n the 4 con 7 -part , according to what semantic and

contextual models we choose.

TABLE 2 Functions of PLATON

w

Func t ion

SR

SV

GR

GV

Argument

(regis ter-name>
LISP - < form>

4 var i ab le-nam-
LISP - 4 form>

(regis ter-name>

(variab le-name>

Effect

SR s t o r e s the r e s u l t of the
evaluation of the 2nd argu-
ment i n the r e g i s t e r .

SV s t o r e s the result of the
evaluat ion of the 2nd argu-
ment i n the var iab le

GR ge t t h e content of the
r e g i s t e r

GV g e t s the value of t h e
variable

TR

SU

SD

GU

PUSHR

4

Value .- -

the r e s u l t of the
evaluat ion of the
2nd argument

A

the r e s u l t of the
evaluat ion of the
2nd argument

the content of
the reg i s ter

the value of
the variable

I <structure-2,
or /

,

rregis ter-name,
LISP - 4 form)

Cregis ter-name
LISP - <form>

(register-name>

4 regis ter-name >
LISP - 4 form)

,

TR transforms the v a r i z b l e s
and r e g i s t e r s i n the s t ruc -
t u r a l p a t t e r n i n t o t h e i r
values.

SU sets the reigster of t he
- higher level processing

SD sets the r e g i s t e r of the

the transformed
s t r u c t u r e

the result of the
evaluat ion of the
2nd argument

I

lower l e v e l processing.

GU g e t s the content of the
register of the higher
level.

PUSHR is defined as the
following.

(SR r regis ter-name>
(CONS 4 form,

(GR < reg i s t e r -
name3 1 1)

the r e s u l t of the
eva lua t ion of the
2nd argument

the content of
the r e g i s t e r

the result of the
evalua t ion of the
2nd argument

For example, suppose

s t r x = (ADJ (TOK :N)) (N(TOK : N 1)) :I)

con = (SEM :N : N 1)

Here TOK is the l i n k between a word and i t s p a r t of speech. :N and : N 1 are

t h e words o f an i n p u t s e n t e n c e . SEM is a f u n c t i o n d e f i n e d by t h e u s e r which

checks the s e m a n t i c co -o rd ina t ion between t h e a d j e c t i v e :N and t h e noun : N 1 .

By t h i s f u n c t i o n SEM, w e can s e a r c h , i f n e c e s s a r y , through b o t h l e x i c a l

entries and the contextual data bases.

U i t h t h i s approach, i f a c e r t a i n s y n t a c t i c p a t t e r n is found i n t h e

input s t r u c t u r e , i t i s p o s s i b l e f o r an a p p r o p r i a t e semantic r u n c t i o n t o b e

c a l l e d . Hence t h e i n t i m a t e i i i t c r c c t i o n s between s y n t a c t i c and semant i c

components can b e ob ta ined easily w i t h o u t d e s t r o y i n g the clarity of n a t u r a l

language grammars.

A r b i t r a r y LISP-forms can be a l s o used i n < a c t > - p o r t i o n . They w i l l

be e v a l u a t e d when t h e r u l e is a p p l i e d . I f n e c e s s a r y , w e can set i n t e r m e d i a t e

r e s u l t s i n t o r e g i s t e r s and v a r i a b l e s by u s i n g t h e f u n c t i o n s l i s t e d i n Table 2

(e n d > comprises f ~ u r v a r i e t i e s , and r u l e s are divided i n t o four

t y p e s accord ing t o t h e i r (end > t y p e s .

1. NEXT-type : The < end+ i s i n t h e form (NEXT dstate-name, 4 s try>) .
The b s t r y) cor responds to the r i g h t s i d e o f a r e w r i t i n g r u l e , and

r e p r e s e n t s t h e t ransformed s t r u c t u r e . A r u l e of this type causes

s t a t e - t r a n s i t i o n t o t h e ds ta t e -name) , when i t is a p p l i e d .

2. NEXTB-type: This r u l e a l s o causes state-transition. Unlike w i t h the

NEXT-type, s t a t e - s a v i n g is done and i f f u r t h e r p r o c e s s i n g r e s u l t s i n

some f a i l u r e s , c o n t r o l comes back t o t h e s ta te where t h i s r u l e is a p p l i e d .

The environments , t h a t is , t h e c o n t e n t s of v a r i o u s r e g i s t e r s w i l l be

r e s t o r e d , and t h e nex t r u l e be longing t o t h i s s ta te w i l l b e t r i e d

40

3. POP-type : The (end > -part of t h i s type is in the form (POP < s try >)

When i t is applied, the processing of this l e v e l is ended and the

c o n t r o l r e t u r n s t o t he h igher l e v e l with the va lue s t r y > .
4 . FM-type: The <end) - p a r t of this t y p e is i n t h e form (FM <failure-

message)) . The s i d e effects of he processing a t t h i s l e v e l , t h a t i s ,

r e g i s t e r s e t t i n g s and so on, a r e cancel led (see s e c t i o n 4) .

I n < s t r y > we can use two kinds of variables, t h a t i s , the variables used

i n d s t r x > and r e g i s t e r s . We f i n d t h i s s t r u c t u r a l p a t t e r n , c a l l e d

4 s t ruc ture-2 > , more s u i t a b l e f o r w r i t i n g t ransformat ional r u l e s than

Woods BUILDkoperation. By way of i l l u s t r a t i o n cons ider the following:

inpu t s t r i n g = C D E (A (R l (* B))) F G)

strx = (8 :I (A (Rl :N)) :J)

StrgT = (* (A (FU (* :I :N)) (R2 /REG)) :J)

the content of /REG = (G (R3 H))

A s the r e s u l t of matching, the v a r i a b l e s :I, :N and :J a r e bouad t o the

subs t ruc tu re s (& C D E) , ($ B) and (3 F G) respect ively . The r e s u l t of

eva lua t ing the < s t r y > is

((A (R1 (# C D E B)) (R2 (G (R3 H)))) F G) .

I f the r u l e is a POP-type one, then this s t r u c t u r e w i l l be returned t o the

h igher level processing. If i t is NEXT- or NEXTB-type, then the c o n t r o l w i l l

move t o the s p e c i f i e d state with t h i s s t r u c t u r e .

IV Push-down and Pop-up Operations

By means of NEXTB-type r u l e s , w e can s e t up decision poin t s i n a

program. We can a l s o do this by using push-down and pop-up operat ions. A

ru l e i n PLATON f i n d s particular s y n t a c t i c c lues by i ts s t r u c t u r a l desc r ip t ion

(strx> ; and a t the same time, extracts substructures from the input

st'king From the structural description i t i s predicted that the substructures

may have particular constructions, that is , t h e y may comprise noun phrases,

relative clauses or whatever. It is-necessary to transfer the subst~r~ctures

t o s t a t e s appropriate f o r analyzing these constructions predicted and to return

the analyzed structures back into the appropriate places In PLATON, these

operations can be described in the Ctrans > -part o f a rule. For example,

suppose the <trans >-part of a rule is

(((Sl :K :K)) ((S2 (:I : J) / R E G)))

When the cantrol interprets t h i s statement, the substructures corresponding

to the v a r u b l e :K and (:I : J) are transferred t o the s t a t e s S1 and S 2

respectively If the process ings starting from these s t a t e s are normally

completed (by a POP-type r u l e) , then the resu l t s are stored i? the variable

:K and the regzster /REG. In this manner, by means of the push-down and

pop-up mechanisms, substructures can be analyzed from appropriate states.

Processing from kese s t a t e s , however, may sometimes result in failure,

That is , predictions that certain relationships w i l l be found among the

elements of substructures may not be f u l f i l l e d . In such instances the pushed

down state w i l l send an error-message appropriate t o the cause of the failure

by an W t y p e rule. An FM-type rule points o u t that a certain error has

occurred in the processing. If NEXTB-type rules were used i n the previous

processing a t this l e v e l , control w i l l go back to the most recently used

NEXTB-type r u l e . If NEXTB-type rules were not used at this processing leve l ,

tne error-message specif ied by the FM-type rule w i l l be sent t o the <trans>

part of the rule which directed this push-down operation (see Figure 4)

Higher level

Lower level p

processing -------------

/

/ \

/ \
I \

/
\

r o c e s s i n g ~ \
---I -

I
\

I
\ i
\

/ NExTB-type rules were
not a p p l i e d in this l eve l

Lower level processing
c----

/This r u l e will be applied n e x t .

Figure 4 Illustration of Backtracking

43

According t o these error-messages, control-flow can be changed

appropriately. For example, w e can direct processings by describing the

4 trans > -part i n the following way.

(((s l :K :K) (ERR1 (EXEC ((S5 :K :K 1) ((56 (:I :J) /REG))))

(ERR2 (T U N S (S8 /)) I

((S 2 (j6 : I :J) /REG)))

I n t h e above example, the processing of the substructure :K from the s t a t e

S1 will produce one of the fo l lowing three results . According to the

returned value, the appropriate step w i l l b e taken:

(1) Normal return: the processing of :K is ended by a POP-type

rule. The resul t i s s t o r e d i n the variable :K and the n e x t push-down

performed, that i s : I : J) w i l l be transferred t o the state S2.

(2) Return w i t h an error-message: t h e processing of :K results in

a f a i l u r e and an FM-type r u l e sends up an error-message. If the message is

ERR1, them :K and :f :J) w i l l b e analyzed from the states S5 and S6

respectively (EXEC-type). If i t is ERRS, the interpreter w i l l give up the

application o f the present rule, and pass the control to another state S8

(TRANS- type) . If it is neither ERRl nor ERR2, the same s t e p as (3) w i l l be

taken

(3) Re turn w i t h the value NIL: the processing Prom t h e state S1

w i l l send up the value NIL if it runs into a blind alley, that is, there are no

appl icable r u l e s . The interpreter w i l l give up the a p p l i c a t i o n of the present

rule and proceed to the next rule attached t o th is state .

Mechanisms, such that control flow can be appropriately changed

according to the error-messages from lower level processings are n o t found in

Woods ATN parser, We can obtain flexible backtracking f a c i l i t i e s by combining

these mechanisms wi th NEXTB- type rules.

V A Simple Example

We are now developing a deduc t ive question-answering sys tern with

n a t u r a l language i n p u t s -- Japanese sentences. The i n t e r n a l data-base is

assumed t o be a set o f deep case s t r u c t u r e s o f i n p u t sen tences . We a d o p t e d

and m o d i f i e d Fillmore's (1968) case grammar t o analyze the i n p u t of Japanese

sen tences . Japanese is a t y p i c a l example o f a n SOV-language i n which t h e

o b j e c t and o t h e r c o n s t i t u e n t s governed by a verb usually appear before :he

verb i n s sentence. A typical c o n s t r u c t i o n of a Japanese sentence is shown

in Figure 5.

Figure 5 T y p i c a l Construction of a
Japanese Sentence

A verb may govern several noun phrases preceding it. A relative clause

modifying a noun may appear i n t he form -- verD + noun -- The r i g h t

boundary of t h e clause is easily identified by f i n d i n g the verb. The left

boundary i s o f t e n much more d i f f i c u l t t o i d e n t i f y . I n Figure 5, t h e noun

phrase N P k r is a c a s e element of t he verb V On the o t h e r hand, t h e noun

phrase NPi is governed by the verb Va Because the r u l e of p r o j e c t i o n s holds

i n JaFnese as i n o t h e r languages, a l l the noun phrases between NP c'+ I and

V are governed by V , and the noun phrases b e f o r e NP,: are governed by VA

However, i n the cou.rse of a n a l y s i s , such boundaries cannot be determined

uniquely. The analysis program fixes a temporary boundary and proceeds t o

the next s t e p i n process ing I f the temporary boundary is not correct, the

succeeding processing w i l l f a i l and the con t ro l w i l come back to t he po in t

a t which the temporary boundary was fixed.

Now we w i l l show a simple example of structural ana lys i s by PLATON

The example explains how the backtracking f a c i l i t y is used i n analyzing

Japanese sentences. Because we want t o v i sua l i ze t h e operations of PLATON

w i t h o u t bo the r ing w i t h microscopic d e t a i l s of Japanese sentences, we w i l l

take an imaginary problem as an example. The parser which is written in

PLATON is described in another paper by M Nagao and J. T s u j i i (1976)

An input s t r i n g is assumed to be a l i s t . The elements of the list

are in tegers and trees are i n the form of (X (SUM 0)). Here 'X' may be

regarded as a term modif ied by 'SUM 0' These two kinds of elements are

arranged i n an arbitrary order, except that the last element i s the tree

(X(SUM 0)). The following is an example of an i n p u t s t r i n g :

(5 2 1 3 (x (S r n 0)) 3 1 (X (SUM 0)) 2 2 (x (SUM 0)))

Figure 6 An Example String t o be Analyzed

The result of the transformation is expected to be i n the following fotm:

((X (Sm4)) (XSm6)) (X (Sm9)) 1

This result is regarded as representing the following relationships between

integers and 'X' .

The number associated with an 'X' by the relation 'SUM' shows the sum of

the integers which are governed by the X . We can look upon the relations

r between integers and an X' as the re la t ions between noun phrases and the verb

i n Japanese sentences. The resul t of the analysis is assumed to satisfy

the following conditions.

46

(1) Governor-governed re la t ionsh ips between in tegers and an 'X' must obey

the project ion rule (i.e., clauses do not over lap) .

(2) A s a simulation o f a semantic r e s t r i c t i o n , w e attach a condit ion that

the sum of the in tegers governed by an ' X ' should not erceed ten .

(3) As a s imulat ion of a contextual r e s t r i c t i o n , w e attach the condit ion

that a r e s u l t (F (X (SUM num-1)) (X (SUM num-2)) (X (SUM num-N)))

s h o u l d maintain the r e l a t i o n , n u m l 4 num-2 - 5 < u m - N . -
set 05 r u l e s i s shown i n the following. The corresponding state-

diagram is shown i n Figure 7 .

START

NEXTB NEXTB

POP

NEXT

Fipure 7 State Mapram of a S i wple Example

S L ? -1- s t rx : = :I :I1 (X (SUM :N)) :J)

con: = (GREATERP 10 (PLUS : N : 11))

a c t : = ((SV :N (PLUS :N :I1))

(PUSHR /REG :Il l)

end: = (NEXT SUMLm C)c :I (X (SUM :N)) : J))

-2- s trx : = (* :I (X (SUM :N)) r J)

con: = (CONTEXTCHECK /RESULT (TR (X (SUM :N))))

act : = NIL

end: = (NEXT BACKTRACK /)

-3- strx: = (% :I (X (SLW :N)) :J)

con: =: T

act: = NIL

end: = (FM-ERROR)

-4- s t r x : = (8)

con: = T

a c t : = ((SR /RESULT (CONS ' X /RESULT)))

end: = (POP /RESULT)

BACKTRACK

-1- strx: = :I (X (SLW :PI)) :.J)

con: = T

a c t : = ((SR /REG N I L)

(SR /RESULT (APPEND /RESULT (TR (X (SUM :N))))))

end: = (NEXTB SUMUP (S# :I :J))

-2- strx: = (* :I (X (SUM :N)) :J)

con: = T

act: = ((POPR /TEMP /REG)

(SV :N (MINUS :N /TEMP)))

end: = (NEXT BACKTRACK 01: : I /TEMP (X (SUM :N)) : J))

The input string is the! l is t shown i n Figure 6. Since the start state

is S W P , the f i r s t r u l e attached t o this state is app l i ed . This r u l e w i l l

find the l e f tmos t 'x' and an integer just before t he ' x ' (by SUMUP -I-, strx).

The v a r i a b l e :I1 is bound to tius i n t e g e r . This i n t e g e r is added t o t h e sum

of the i n t e g e r s , :N, i f the t o t a l does n o t exceed t en (SUMUP -I-, con) .

PUSHR, used i n the < a c t > - p a r t , i s a PLATON funct ion which puts t h e

second a rgument on the head of the first argument (SUMUP -I-, a c t) After

t h i s r u l e is a p p l i e d , t h e con t ro l will enter the s t a t e SUMUP again (S W -I-,

end). That is, t h i s rtile is app l ied u n t i l there a r e no ~ n t e g e r s before the

f i r s t ' X' or the sum of the integers. exceeds ten. A s the result, the

environment i s the following:

s t r u c t u r e under processing

= qY 5 (X (SUM 6)) 3 1 (X (S U M 0)) 2 2 (X (SUM 0)))

r e l a t i o n s h i p temporarily fixed be tween i n t e g e r s and 'X'

content of /REG

= (2 1 3)

The second rule of SUMUP w i l l be a p p l i e d next . T h i s rule checks by its

1 con> p a r t whether the r e s u l t a t hand s a t i s f i e s the t h i r d condition,

t h a t is, the contextual r e s t r i c t i o n . Because the content of /RESULT is NIL,

t he function CONTEXTCHECK r e t u r n s the value T (SllMUl' -2-, con). So t h i s

r u l e i s app l icab le . Control makes the s t a t e - t r a n s i t i o n t o the s t a t e

BACKTRACK (SUMUP -2-, end.) Because the first r u l e of BACKTRACK is a NEXTB-

type yule, s ta te-saving is performed. That i s , tbe fol lowing environment i s

saved: content of /REG = (2 1 3)

content of /RESULT = NIL

structure under processing =

5 (X (SUM 6)) 3 1 (X (SUM 0)) 2 2 (X (SUM 0)))

49

By t h i s ru les , the registers /REG and /RESULT are set as follows (BACKTRACK

-I-, a c t) . /REG : = NIL

/RESULT: = ((X (SUM 6)))

And the structure is transformed t o

(X 5 3 1 (X (SUM 0)) 2 2 (X (SUM 0)))

A XEXTB- type rule causes a s tate transition as does a NEXT-type rule. So

control returns to the state SUMUP (BACKTRACK -I-, end) . At tt.is s t a t e , a

process s imilar t o t h e one described above is performed. As a result, the

following governor-dependent relationships are es t a b l i s h e d .

Here the b o l d l ines indicate the newly es tab l i shed relat ionships. By the

f i r s t rule of BACKTRACK the following environment is saved.

conten t of /REG = (5 3 1)

conten& of /RESULT = ((X (SLW 6)))

structure under processing = (# (X (SUM 9)) 2 2 (X (SUM 0)))

And /REG and /RESULT are set as the following (BACKTRACK -1-, act) .
/REG: = NIL

/RESULT: = ((X (SUM 6)) (X (SUM 9)))

The transformed structure is (BACKTRACK -10, end)

Cjl 2 2 (x (S U M O)) 1

The control is transferred to the sta te SUMUP. By applying t h e f irst rule

of t h i s s t a t e repeatedly on the above structure the fol lowing structure is

obtained.

(j((x SUM 4)) 1

50

However this result does not s a t i s f y the con textual restriction.

So the application of t h e second ru le of SLJMl.JP f a i l s because the funct ion

CONTEXTCHECK used i n <con) -part returns the value NIL (SUMUP -2-, con)

That is :

con textcheck [((X (SUM 6)) (X (SUM 9))) : (X (S U M 4)) 1 = N I L

The third rule, therefore, w i l l be a p p l i e d next. Because t h i s rule is a

%type r u l e (S U M U P -3-, end) , it causes an error and c o n t r o l comes back t o

the point at which a NEXTB-type r u l e w a s appl i ed most recently. The saved

nv iro~ment is restored. This is:

/REG: = (5 3 1)

/RESULT: = ((X (SUM 6)))

s t r u c t u r e under processing: = (* (X (SUM 9)) 2 2 (X (SUM 0)))

Then by applying the second rule of BACKTRACK, the governor-governed

r e l a t i o n s h i p e s t a b l i s h e d l a s t l y in the previous process i s c a n c e l l e d . The

s t r u c t u r e and the r e g i s t e r /REG are changed as below (BACKTRACK -2-, act) :

/REG: = (3 1)

structure under process ing: (5 (X (SUM 4)) 2 2 (X (SUM 0)))

Control enters the BACKTRACK state again. The application of the

first r u l e saves the e n v i r o n ~ w n t :

content of /REG = (3 1)

content of /RESULT = ((X (SUM 6))

s tructure under processing = (1< 5 (X (SUM 4)) 2 2 (X (SUM 0)))

That is, the r e l a t i o n s h i p indicated by t h e dotted l i n e i n the fol lowing is

cance l l ed:

Control t r a n s i t s t o t h e s t a t e SUMUP (BACKTRACK -I-, end) and a

similar process i s performed. However, because the governor-governed

relationship between t h e i n t e g e r 5 and t h e second 'Xr i s c a n c e l l e d , t h e sum

of the i n t e g e r s governed by the f i r s t 'X', (2 1 3) , i s g r e a t e r than t h a t

of the second ' X' , (3 1) . The contextual cond i t i on , t h e r e f o r e , is no t

fulfilled, and the a p p l i c a t i o n of the second r u l e of SUMUP will n o t succeed.

So the t emporar i ly established relationships w i l l be c a n c e l l e d one-by-one as

follows.

After these r e l a t i o n s h i p s have been cance l l ed , the desired r e s u l t is obta ined

by the f o l l owing sequence.

52

A t t h e final stage of the processing, the f o u r t h r u l e of S W a

POP-type r u l e , i s a p p l i e d and r e t u r n s the value

((X (SUM 4)) CX (SUM 6)) (X (SUM 9) 1

V I Conclusion

We have described a programming language c a l l e d PLATON f o r n a t u r a l

language processing. The language has s e v e r a l a d d i t i o n a l capabilities beyond

the ATN parser of W. Woods.

Grammars written i n t h e language n o t only maintain c l a r i t y of

representation but a l s o provide adequately a n a t u r a l i n t e r f a c e between the

s y n t a c t i c component and o t h e r components. By means of t h e pa t te rn-matching

facility, w e can write grammars i n a quite n a t u r a l manner. And because of

the PLATON v a r i a b l e b inding mechanism, semantic and con tex tua l LISP f u a c t i o n s

a e a s i l y incorpora ted i n s y n t a c t i c patterns.

Flex ib l e backtracking mechanisms and push-down opera t ions make com- ,

r, Acatecr non-de te rmin i s t i c processing possible i n a very simple way.

We a r e now deveLoping an analysis program f o r Japanese using t h i s

language. The program can accept f a i r l y complicated s e n t e n c e s i n a textbook

of elementary chemistry It can u t i l i z e t h e lexical and contextual information

of chemistry adequately during the analysis. Such in format ion i n our system

is expressed i n the form of a semantic network s i m i l a r t o that of R. F. Simmons

(1973) .

Perhaps, PLATON i t s e l f must be e q u i p p e d w i t h more semantics and

context-oriented o p e r a t i o n s such as specified lexical d e s c r i p t i o n s and funct ions

us ing them. However, what desc r ip t ion method is most efficient, and moreover,

what semantic information must be stored i n the lexicon, a r e not y e t entirely

clear. So, as the f i r s t s t e p , PLATON leaves many p a r t s of these problems f o r

53

the user t o spec i fy by LISP programs. PLAMN is written in LIS1'1.5 and

implemented on a FACOM 230-60 a t the Kyoto University computing center and a

TOSBAC-40 mini-computer in our laboratory. The interpreter of PLATON i t s e l f

requires only 4 . 5 K c e l l s .

BIBLIOGRAPHY

D. do3row, B . Fraser, "An augmented state transition network analysis proce-
dure", Proc. 1st IJCAI, p p . 557-568, (1969).

A . Colmerauer . "Les sys temes-q ou un f o r m a l i s ~ e pour analyser e t s y n t h e t i s e r
d 2 ~ phrases sur ordinateur", Project de Traduction automatique de llUniversite
de Xontreal, TAD1 71, Jan., (1971) .

C. J. Fillmore. "The case for case", i n Bach and Harms (e d s .) , Universals i n
Linguistic Theory, Ho l t , Rinehart 5 krinston, p p . 1-90, (1968).

C . Hewitt. "PMNKER: A language f o r manipulating models and proving theorems
in a Robot", in Artificial Intelligence, Washington, D. C , May, (1969)

?i. Xagao, J . Tsujii. '"~echanism of deduction in a question answering system
with natural language input", Proc. 3rd IJCAI, pp. 285-290, (1973).

I I Y - Sagao, J . T s u j i i . Programing language for natural language processing -
PLATOX", J.IPSJ, Val. 15, p p . 6 5 4 - 6 6 1 , (1974).

I I M. Nagao, J . Tsujii. Analysis of Japanese Ser tences by Using Semantic and
Contextual Information". (forthcoming in AJCL-1976)

V. P r a t t . "A l inguist ic oriented programming language", Proc. 3rd I J C A I ,
pp. 372-381, (1973).

'I 1 J. Rulifson, e t . a l . QA4-A language far writing problem-solving programs",
SRI Technical Xote 48, Kovember , (i970).

J. Thcrpe, I?. Brat ley, H. Dewar. "The syntactic analysis of English by
machine". In Michie (e d .) , Machine In te l l i gence 3 , New York, American
Elsevier, (1968).

T. Vinograd. "Procedures as a representation for data i n a computer program
for understanding natural language", MIT Thesis, (19 71) .

I I W. Woods. Augmented transition network grammars for natura l language
analysis", CACM, Vol. 13, pp. 591-602, (1970).

