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1. Beginnings and Background

I am deeply grateful for the honor of this award, all the more so for its being completely
unexpected. I am especially pleased by the recognition this award gives to our early
attempts to build computational models of dialogue and to develop algorithms that
would enable computer systems to converse sensibly with people. ACL was my first
academic home. I presented my first paper, the paper that laid out the basics of a
computational model of discourse structure, at the 1975 ACL meeting. Then, after
several decades of research centered on dialogue systems, my research focus shifted
to modeling collaboration. This shift was driven in part by the need for computational
models of collaborative activities to support dialogue processing, a topic which I explore
briefly below, and in part by limitations in speech processing and semantics capabilities.
Research in these areas has advanced significantly in the last decade, enabling advances
in dialogue as well, and I have recently returned to investigating computer system
dialogue capabilities and challenges. I am glad to be back in my intellectual home.

The use of language has been considered an essential aspect of human intelligence
for centuries, and the ability for a computer system to carry on a dialogue with a person
has been a compelling goal of artificial intelligence (AI) research from its inception.
Turing set conversational abilities as the hallmark of a thinking machine in defining
his “imitation game,” more commonly referred to as “The Turing Test.” In the 1950
Mind paper in which he defines this game, Turing conjectures thus, “I believe that
at the end of the century the use of words and general educated opinion will have
altered so much that one will be able to speak of machines thinking without expecting
to be contradicted.” (Turing 1950, p. 442). Though the Turing Test remains an elusive
(and now debatable) goal, this conjecture has proved true. Natural language processing
research has made great progress in the last decades, with personal assistant systems
and chatbots becoming pervasive, joining search and machine translation systems in
common use by people around the world. Although it is commonplace to hear people
talk about these systems in anthropomorphic terms — using “she” more frequently than
“it” in referring to them — the limitations of these systems’ conversational abilities fre-
quently leads people to wonder what they were thinking or if they even were thinking.
As the dialogue in Figure 1 illustrates, at root these systems lack fundamental dialogue
capabilities. The first assignment in a course I have been teaching, “Intelligent Systems:
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B: Where is the nearest gas station?
S: [list of 16 nearby gas stations]
B: Which ones are open?
S: Would you like me to search the web for “Which ones are open?”
Figure 1
A typical problematic dialogue with a personal assistant.

Design and Ethical Challenges,” is to test phone-based personal assistants. Although
some systems might handle this particular example, they all fail similarly, and the
range of dialogue incapabilities students have uncovered is stunning. As I have argued
elsewhere, the errors that systems make reveal how far we still have to go to clear
Turing’s hurdle or to have systems smart enough to (really) talk with us (Grosz 2012).

The first generation of speech systems, which were developed in the 1970s, divided
system components by linguistic category (e.g., acoustic-phonetics, syntax, lexical and
compositional semantics), and dialogue challenges of that era included identifying
ways to handle prosody and referring expressions, along with nascent efforts to treat
computationally language as action. In contrast, current spoken language research
takes a more functional perspective, considering such issues as sentiment analysis,
entrainment, and deception detection. Typical current dialogue challenges include such
functions as turn-taking, clarification questions, and negotiation. The database query
applications of earlier decades, which lacked grounding in dialogue purpose, have
been replaced by template filling and chat-oriented applications that are designed for
relatively narrowly defined tasks.

Various findings and lessons learned in early attempts to build dialogue systems
have potential to inform and significantly improve the capabilities of systems that
currently aim to converse with people. Although the computational linguistic methods
that have recently enabled great progress in many areas of speech and natural-language
processing differ significantly from those used even a short while ago, the dialogue prin-
ciples uncovered in earlier research remain relevant. The next two sections of this paper
give brief summaries of the principal findings and foundations in models of dialogue
and collaboration established in the 1970s through the 1990s. The following section
examines principles for dialogue systems derived from these models that could be used
with current speech and language processing methods to improve the conversational
abilities of personal assistants, customer service chatbots, and other dialogue systems.
The paper concludes with scientific and ethical challenges raised by the development
and deployment of dialogue-capable computer systems.

2. Foundations: From Sentences to Dialogue

My first papers on dialogue structure (Grosz [Deutsch] 1974, 1975; Grosz 1977) were
based on studies of task-oriented dialogues I collected to inform the design of the
discourse component of a speech understanding system. In these dialogues, an expert
(who was eventually to be replaced by the system) instructed an apprentice in equip-
ment assembly. The expert and apprentice were in separate rooms, they communicated
through a teletype interface (with a camera available for still shots on demand), and the
apprentice was led to believe the expert was a computer system. These dialogues were
collected as part of what were, to my knowledge, the first “Wizard of Oz” experiments.1

1 The moniker “Wizard of Oz” for such experiments was coined only several years later by a group at
Johns Hopkins University.
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(1) E: First you have to remove the flywheel.
(2) A: How do I remove the flywheel
(3) E: First loosen the two small Allen head setscrews holding it to the shaft, then pull
it off.
(4) A: OK
Subdialogue about the two setscrews.
(5) A: The two setscrews are loose, but I’m having trouble getting the wheel off.
(6) E: Use the wheelpuller. Do you know how to use it?
(7) A: No . . .
(8) E: Loosen the screw in the center and place the jaws around the hub of the wheel,
then tighten the screw.
Figure 2
Evidence of structure in “naturally occurring” dialogues.

Figure 2 is one example from this collection. It illustrates the influence of dialogue
structure on definite noun phrase interpretation. In Utterance (3), the expert (E) directs
the apprentice (A) to loosen two setscrews. In Utterance (8), the expert instructs the
apprentice to loosen “the screw in the center”. The only intermediate explicit mention
of screw-like objects are subsequent references to the setscrews in Utterance (5) and the
elided subdialogue about them between Utterances (3) and (5). With only two objects,
one cannot be in the center. Indeed, the screw to which the expert refers in Utterance (8)
is in the center of the wheelpuller. This dialogue fragment has a structure that parallels
the task of removing the flywheel. When the first step of that task (loosening the
setscrews) is completed, as indicated by the apprentice in Utterance (5), the focus of
attention of expert and apprentice move to the step of pulling off the wheel with the
wheelpuller. At the point of mention of “the screw in the center”, the setscrews are no
longer relevant or in context; the wheelpuller is.

A more striking example is provided by the dialogue sample in Figure 3. Each of
the successful assemblies of the air compressor ended in one of the ways shown in this
figure. Despite admonitions of grammar teachers and editors that pronouns be used
to refer to the last object mentioned that matches in number and gender, actual use of
pronouns can vary markedly. In this case, the pronoun “it” is used to refer to the air
compressor after half an hour of dialogue in which there was no explicit mention of it.

Again, context and the focus of attention has shifted over the course of the assembly
and the expert-apprentice dialogue related to it. At the point at which the last utterance
occurs, the air compressor is assembled and is the focus of attention. Not only did the
participants in these dialogues have no trouble understanding what was to be plugged
in or turned on (even though they were in a room full of equipment that might have
provided other options), but also readers of the transcripts of these dialogues are not
confused.

E: Assemble the air compressor.
30 min. later, with no intervening explicit mention of the air compressor.
E: Plug it in. / See if it works.
Figure 3
The initial, most striking examples of dialogue structure influencing referring expressions.
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John came by and left the groceries.
Stop that you kids.

And I put them away after he left
Figure 4
Intonation and Discourse Structure.

The narrative fragment in Figure 4, which is from the work of Polanyi and Scha
(1983), shows that this kind of discourse structure influence on referring expressions is
not restricted to task dialogues. The linearly nearest referent for the pronoun “them” in
the last utterance is the children mentioned in the previous utterance. It is the groceries
that were put away though, not the children. This example also illustrates the role of
prosody in signaling discourse structure. Intonation is crucial to getting the interpreta-
tion of this story right. The second utterance is said as an aside, with strong intonational
markers of this separation. Prosody, then, is integral to dialogue processing, and spoken
dialogue cannot be handled as a pipeline from speech recognition to pragmatic plan
recognition.

These fragments illustrate a primary finding of my early dialogue research: dia-
logues are not linear sequences of utterances nor simply question–answer pairs. This
work established that task-oriented dialogues are structured, with multiple utterances
grouping into a dialogue segment, and their structure mirrors the structure of the task.
Subsequently, Candy Sidner and I generalized from task dialogues to discourse more
generally, defining a computational model of discourse structure (Grosz and Sidner
1986). This model defines discourse structure in terms of three components as shown in
the schematic in Figure 5. The linguistic structure comprises the utterances themselves,
including their various linguistic features, which cluster into dialogue segments. Just
as written language is broken into paragraphs, the utterances of spoken language nat-
urally form groups. The attentional state tracks the changes in focus of attention of the
dialogue participants as their conversation evolves. The intentional structure comprises
the purposes underlying each dialogue segment and their relationships to one another.
Relationships between dialogue segment purposes (DSPs) determine embedding re-
lationships between the corresponding discourse segments (DS), and thus they are
foundational to determining changes in attentional state. These three components of
discourse structure are interdependent. The form of an utterance and its constituent
phrases are affected by attentional state and intentional structure, and they in turn may
engender changes in these components of discourse structure.

Sidner and I examined two levels of attentional state. The global level, which
is portrayed in Figure 5, is modeled by a focus space stack. Focus spaces contain

DS1

DS2

DS1

DS3

linguistic structure attentional state

...

...

...

fs2

fs1

fs3

fs1

intentional structureintentional structure

DSP1 dominates DSP2

DSP1 dominates DSP3

IS relations: DOM, SP

Figure 5
The tripartite model of discourse structure.
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representations of the objects, properties, and relations salient within a discourse seg-
ment as well as the discourse segment purpose. When a new dialogue segment is
started, a space is pushed onto the stack, and when the segment completes, the cor-
responding focus space is popped from the stack. This level of attentional state in-
fluences definite noun phrase interpretation and generation and intention recognition
processes. Access to objects, properties, and relations at lower levels of the stack may
not be available at higher levels. The local level of attentional state, which Sidner and I
referred to as “immediate focus” (“local focus” being a tongue twister), models smaller
shifts of attention within a discourse segment. Sidner (1979, 1981, 1983a) deployed
immediate focusing as a means of controlling the inferences required for interpreting
anaphoric expressions like pronouns and demonstratives by limiting the number of
entities considered as possible referents. Webber’s contemporaneous work on the range
of anaphors a single seemingly simple definite noun phrase could yield made clear
the importance of being able to limit candidates (Webber 1979, 1986). It is important to
note that “focus” has been used for various other ideas in linguistics. For instance, the
Prague School of computational linguistics uses topic/focus information structures to
relate sentences to discourse coherence (Hajicova 2006), and “topic” is used to refer to
speech signal properties in the prosody literature and to syntactic properties in some
grammatical theories.

A short while later, Joshi and Weinstein investigated ways to control a system’s
overall reasoning by using information about which entity was central in an utterance.
They defined a concept of “centers of a sentence in a discourse,” which bore strong
similarity to immediate focus. They used this concept to derive initial results on how
differences in centers changed the complexity of inferences required to integrate a
representation of the meaning of an individual utterance into a representation of the
meaning of the discourse of which it was a part (Joshi and Weinstein 1981). A year
after their paper appeared, I was fortunate to be invited by Joshi to be a visiting
faculty member at the University of Pennsylvania. During that visit Joshi, Weinstein,
and I merged their centering ideas with Sidner’s discourse ideas into what became
known as “centering theory,” which highlighted the process of “centering of attention”
and considered constraints on generation as well as interpretation (Grosz, Joshi, and
Weinstein 1983; Grosz, Weinstein, and Joshi 1995). We adopted centering terminology
because of the already widely varying uses of “focus.” A vast literature on centering
has followed, including cross-linguistic empirical and psycholinguistic investigations
of centering predictions in English, German, Hebrew, Italian, Japanese, Korean, Turk-
ish, and many other languages; variations in ways centers are realized in language;
and development of a range of centering algorithms. Recently, Kehler and Rohde
have developed a probabilistic model that combines centering with coherence-relation
driven theories (Kehler and Rohde 2013).

Investigations of linguistic markers of discourse boundaries soon followed.
Hirschberg and Pierrehumbert launched research in this area with their influential work
on the intonational structuring of discourse. They showed that pitch range, amplitude,
and timing correlated with global and local structures defined in the tripartite model
Sidner and I had developed (Hirschberg and Pierrehumbert 1986; Pierrehumbert and
Hirschberg 1990). Hirschberg and Litman (1987, 1993) showed that pitch accent and
prosodic phrasing distinguish between discourse and sentential usage of such cue
phrases as “now.” Their example from a radio talk show, “So in other words I will have
to pay the full amount of the uh of the tax now what about Pennsylvania state tax?” il-
lustrates the importance of determining which use a speaker intended. Later Hirschberg
and I investigated empirically ways in which speakers use intonation to mark discourse
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structure boundaries (Grosz and Hirschberg 1992). For her Ph.D. research, Nakatani
worked with us on determining ways in which accent placement varied with grammat-
ical function, form of referring expression, and attentional status (Hirschberg, Nakatani,
and Grosz 1995; Hirschberg and Nakatani 1996).

One challenge for these investigations of intonational markers of discourse
structures was to obtain examples from multiple people of spontaneous speech with
essentially the same content. In one of the earlier attempts to develop a corpus of
spontaneous, naturally occurring dialogue, we designed a set of tasks which led mul-
tiple speakers to give similar directions around the Cambridge/Boston area. To con-
nect intonation with discourse structure, the resulting Boston Directions Corpus was
annotated by multiple trained annotators for prosodic events using the ToBI labeling
conventions (Hirschberg and Beckman; Beckman, Hirschberg, and Shattuck-Hufnagel
2004) as well as for discourse structure using a guide based on the tripartite model
of discourse structure. The design of materials that can evoke spontaneous speech of
a near identical nature from multiple speaker remains a challenge, one that urgently
needs to be addressed for the improvement of capabilities of personal assistant and
chatbot systems.

3. Intentional Structure and Formalizing Collaborative Plans for Dialogue

The third component of discourse structure, the intentional structure, has roots in
work on language as action in philosophy (Austin 1962; Grice 1969; Searle 1969) and
subsequent work on language as planned behavior in artificial intelligence (Bruce 1975;
Cohen and Perrault 1979; Allen and Perrault 1980; Sidner 1983b). The example in Fig-
ure 6, adapted from Bruce (1975), provides an example of the need to infer the intentions
behind an utterance to respond appropriately. In this dialogue fragment, C is attempting
to get B to get rid of the bugs on the rhubarb plant, not completely successfully. I have
used this example because it is less task-oriented than others and so illustrates the
general need for this capability. This research on language as planned behavior yielded
several algorithms for recognizing speakers’ intentions and generating utterances that
communicated them. This work, though, was largely focused on individual utterances
or pairs of utterances, and the planning methods it used were based on AI research on
single agent planning.

Sidner and I attempted to generalize these methods to the dialogue setting, but
eventually determined that intentional structure could not be represented by any sum
of single agent plans. This realization led us to formulate a computational formal-
ization of collaborative two-agent plans, which we called SharedPlans (Grosz and
Sidner 1990). Kraus and I subsequently generalized this initial model to one able to
handle an arbitrary number of agents and more complex recipes for actions (Grosz
and Kraus 1996, 1999). Hunsberger in his Ph.D. dissertation subsequently modified the
initial formalizations to enable proving properties of SharedPlans (Hunsberger 1998)
and to formally integrate decision making (Grosz and Hunsberger 2006). Lochbaum’s

C: The rhubarb has holes.
B: So?
C: It’s covered with little bugs
B: We should use vegetable friendly spray to get rid of them
Figure 6
A small example of language as planned behavior (adapted from B. Bruce, 1975).
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dissertation research showed how SharedPlans could be used as the basis of the inten-
tional structure of dialogue (Lochbaum 1998). In recent years, supporting evidence for
the importance of collaboration to language processing has come from research in brain
sciences and developmental psychology that has established the importance of social
interaction to brain development and language learning.

Figure 7 provides English glosses of the major elements of the SharedPlans spec-
ification of collaboration. The term “recipe” in (2) refers to (knowing) a way to do an
action. In the formal SharedPlans specification, each of the requirements for commit-
ment is represented in terms of intentions and those for consensus in terms of mutual
belief. There can be no intention without ability: Philosophical and logical theories of
intention require that an agent be able to do any action it forms an intention to do.
As a result, the commitments stipulated in various parts of the specification implicitly
carry such a requirement. The literature on teamwork demonstrates that each element is
required for teamwork to succeed by showing ways in which teamwork could fail if the
requirements on agent beliefs or intentions that it specifies are not met. For instance, if
some team members do not commit as in (1), those team members could walk away
from the activity without meeting their obligations or neglect to inform other team
members if they were unable to meet their obligations; if they do not commit to each
other’s success as in (5), they could fail to provide help to each other. In such cases,
the teamwork could fail. The interactions among the intentions and (mutual) beliefs in
this specification are an embodiment of the need for the capabilities for collaboration
to be designed into systems from the start (Grosz 1996). Alternative computational
theories of teamwork (Cohen and Levesque 1991; Sonenberg et al. 1992, inter alia) differ
in the particulars, but have similar types of principles, which if not adhered to cause the
teamwork to fail.

Each of the requirements or constraints in the SharedPlan specifications might en-
gender extended dialogue related to satisfying it. The dialogue in Figure 2 can be used to
sketch the way Lochbaum (1998) used SharedPlans to model intentional structure and
to illustrate the kind of reasoning about intentions that is needed to recognize dialogue
structure and understand utterances in a dialogue. In essence, the intentional structure
is a collection of SharedPlans (some partial, some completed) and relationships between
these plans (e.g., that one is needed as part of another) determine relationships between
the DSPs constituting the structure. As the schematic in Figure 8 shows, the expert and
apprentice have a (partial) SharedPlan (PSP) to remove the pump, which includes as a
substep removing the flywheel (i.e., doing so is part of the recipe). Clause [2ai] in the
figure is part of the logical specification for element (4) in the SharedPlan specification

1. Each team member commits to the team’s performance of the group
activity.

2. Team members must reach consensus on a (high-level) “recipe”;
in SharedPlans, recipes may be partial, revised over time.

3. Team members must reach consensus on allocation of (subtasks), taking
into account agents’ capabilities.

4. Team members commit to assigned subtasks.

5. Team members commit to each others’ success.
Figure 7
SharedPlans model of collaboration.
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PSP({a,e}, remove(pump(acl),{a}))
    {remove(flywheel(acl), {a})} in 
        Recipe(remove(pump(acl),{a}))        [1]
BCBA(a, remove(flywheel(acl){a}), R)    [2ai]

PSP({a,e},  Achieve(has.recipe(a, 
                                  remove(flywheel(acl), {a}), R)))

Utterances (3)-(4) are understood and produced in this context
Figure 8
Analysis of the first subdialogue.

in Figure 7; it stipulates that the apprentice must believe s/he is able to remove the
pump. This stipulation leads the expert and apprentice to have a subsidiary (partial)
SharedPlan for the apprentice to know how to perform the flywheel removal action
(i.e., have the recipe for doing so). Utterances (3) and (4) in the dialogue relate to
this subsidiary SharedPlan. This clarification subdialogue corresponds to one type of
knowledge precondition for action, the requirement of knowing the recipe for an action
to be able to do that action. Another type of clarification dialogue can result from
the knowledge precondition that an agent needs to be able to identify the objects that
participate in an action; the elided subdialogue about setscrews in Figure 2 is just such
a knowledge-precondition clarification subdialogue. With Utterance (5), the apprentice
closes off these subdialogues and opens a new one related to pulling off the flywheel.
The focus spaces containing representations of the setscrews are popped from the stack
so that only the flywheel and, after Utterance (6), the wheelpuller are in focus when
Utterance (8) occurs. They are the objects relevant to determining the referent of “the
screw in the center.”

4. From Theories to Design Principles

Even in this era of big data, machine learning, and efforts to build end-to-end dialogue
systems, theoretical work on dialogue can provide guidance for systems design and test-
ing. Interestingly, in a different AI domain, Shoham has argued persuasively for the use-
fulness of logically sound theories for design of interactive systems (Shoham 2015). A
major challenge in applying the theories of dialogue structure and collaboration I have
described in current dialogue systems, though, is that such systems typically will not
have the kinds of detailed planning and recipe knowledge that Lochbaum’s approach
required. Allen’s work on TRAINS (Allen et al. 1995) and Traum’s negotiation dialogue
systems (Traum et al. 2008) have developed ways to limit the amount of domain knowl-
edge needed. I will digress briefly to show an alternative, design-oriented approach to
deploying the principles these theories establish in dialogue systems. To do so, I need to
sketch the way we have used the theory of collaboration in a similarly plan-knowledge
poor setting to yield design principles for information sharing in the context of our
work on health care coordination (Amir et al. 2013).

There are multiple ways one can deploy the kind of theoretical frameworks these
theories provide. They can serve to generate system specifications or portions of them,
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as represented by Kamar’s Ph.D. research on interruption management (Kamar, Gal,
and Grosz 2009; Kamar 2010; Kamar, Gal, and Grosz 2013). They can guide design, as
they have in recent research on collaborative interfaces for exploratory learning en-
vironments (Gal et al. 2012; Amir and Gal 2013; Uzan et al. 2015; Segal et al. 2017).
They can also provide an analytic framework for understanding behavior before design
or for performance analysis. Our health care work deployed SharedPlans in these last
two ways. In work with Stanford pediatricians, we are developing methods to improve
information sharing among the 12–15 care providers typically involved in meeting the
ongoing heath care needs of children with complex conditions.

Formative interviews with parents of such children, physicians, and therapists
revealed several characteristics of teamwork in this setting that not only raise challenges
for coordination, but also make for a poor fit with prior AI planning methods (Amir
et al. 2015). Based on these characteristics, we dubbed this kind of teamwork FLECS,
because the team has a flat structure (no one is in charge); the team’s activities are
loosely coupled, have extended duration, and are continually being revised; and team
members typically act in a syncopated manner, not synchronously. As a result, team
members have very little of the detailed knowledge of each other’s plans required by
value-of-information approaches to determining what information to share. Figure 9
shows a mapping between SharedPlans constraints, designated by italics, and the kinds
of capabilities they suggest a system should provide to a health care team in light of the
extreme locality of information about tasks in FLECS teamwork. This analysis led Amir
in her Ph.D. research to develop an interaction-based algorithm to support information
sharing for the FLECS teamwork settings (Amir, Grosz, and Gajos 2016).

For systems to reply appropriately to people and in a way that makes sense in an
extended dialogue, it will be crucial to get the structure and intentions right. Doing so
will matter for linguistic form and for content. Figure 10 enumerates some possible ways
to use SharedPlans principles to ameliorate flaws in the behavior of current dialogue
systems that are based on machine learning of various sorts. The top list shows some
ways in which dialogue structure can derive from participants’ decision making and
from their activities. The second list shows ways in which participants’ commitments,
abilities, and needs might give rise to dialogue structure. Regardless of a dialogue
system’s underlying implementation methods, incorporating into the design of these
methods some knowledge of dialogue structure and collaboration could improve the
system, just as adding knowledge of syntactic structure or semantic relations seems
to help squashing algorithms perform better (Peng, Thomson, and Smith 2017), and

SP challenge for information sharing without information overload:
extreme locality of information about delegated tasks

SP: Consensus on recipe: Provide support for providers establishing
agreement on high-level approach and establishing mutual belief.

SP: Recipes may be partial and evolve over time: Support dynamically
evolving plans.

SP: Team members commit to performance of group activity and to each other’s
success: Support communication and coordination at appropriate levels
and times.

Figure 9
Analytic use of SharedPlans theory for health care coordination.
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Decision making and participant activities (physical or mental):
Purposes of the dialogue interaction: What are dialogue
participants doing? Why are they talking?
Consensus on recipe: How are they carrying out the activities
directed toward their purposes?
Consensus on subtasks: Who is doing what?

Commitments that lead to structures spawned by participants’ abilities
and needs:

to group activity
to assigned subtasks
to each other’s success

Figure 10
Potential uses of SharedPlans theory for dialogue systems.

hierarchical reinforcement learning (Georgila, Nelson, and Traum 2014) overcomes
some of the incoherence of dialogue systems based on flat reinforcement learning.
Encouraging results of recent work on incorporating centering-like information into
generative models for coreference resolution in text processing (Ji et al. 2017) also
provides support for pursuing this research direction.

5. Scientific and Ethical Challenges for Dialogue Systems

Two themes have guided my dialogue research from its start: people matter and lan-
guage itself matters. The characteristics of dialogue that I have described raise chal-
lenges for current systems. They are the reason that open domains (e.g., social chatbots,
Twitter) are harder to handle than closed domains (travel assistants, customer service)
and that short dialogues (Q/A pair) are easier than extended dialogue. Real human
dialogues, though, are typically extended, and people frequently stray outside of any
closed domain as their needs shift from those expected by system designers. To build
systems capable of conversing sensibly with people requires close observation and
analysis of ways people talk with one another, collecting data in real situations, and
celebrating the full glory of language use rather than building systems that require
people to control their language use. The extraordinary progress in computational
linguistics recently argues for being more ambitious in our scientific and engineering
goals. Some challenges I hope researchers will take on include:

How can we integrate the fundamental principles of dialogue and
collaboration models with data-driven machine-learning approaches?

How can we build generalizable models that transfer from one domain to
another, given the handcrafting required by semantic-grammar based
systems and the large amounts of dialogue data machine learning methods
would require (e.g., for incorporating dialogue purpose in their models)?

How can we meet the societal needs of handling dialogue across the full
range of natural languages and different cultures?

How can researchers help ensure that research results are better integrated
into deployed systems, so that they do not make avoidable errors,
potentially causing ethical problems?
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Computational linguistics and natural-language processing systems also raise some
of the most serious ethical challenges at the current moment. In addition to the potential
harm of dialogue system failure, these challenges include the effect of social chatbots on
ways people communicate with one another and of systems inadequately performing
jobs like customer service costing people in time and effort. A principle that is derivable
from the intentions included in the SharedPlans specification is that agents cannot com-
mit to doing an activity that they know they are incapable of doing. This principle is one
every dialogue system should obey, but few current systems do. The dialogue fragment
in Figure 1 is annoying or humorous, depending on one’s perspective. Other kinds of
mistakes made by current dialogue systems, though, are not just awkward or annoying,
but raise ethical concerns. Students in the course I mentioned earlier have found serious,
potentially life-threatening errors in their investigations of personal assistant systems
and in toys that claim to be dialogue capable. For instance, based on experiences
of talking with each other, people naturally generalize from individual instances of
language capability. So, we would expect that a system able to answer the question
“Where is the nearest ER?” would also be able to provide answers to “Where can I get
a flu shot?” and “Where can I go to get a sprained ankle treated?”. Unfortunately, there
are systems that fail on such seemingly related questions. Providing a list of web pages
that describe how to treat a sprained ankle, as one system students tested did, may not
be so serious for a sprained ankle, but a similar failure could be disastrous were the
question about a heart attack or other serious medical condition.

Just as capabilities for collaboration cannot be patched on but must be designed
in from the start (Grosz 1996), so too ethics must be taken into account from the start
of system design. So, I will end by asking readers to think about the data they use,
the systems they build, and the claims they make about those systems from an ethical
perspective, and to do so from the initial stages of their formulating the design of these
systems.

6. Concluding Thanks and A Bit of Personal History

I thank ACL, the people who nominated and recommended me for this honor, and
the selection committee. I am awed to join the company of earlier awardees, a list that
includes many people whose work I have greatly admired from my earliest days in
computational linguistics. Eva Hajicova, Aravind Joshi, and Karen Sparck Jones, in
particular, taught me a great deal about language structure and function, and their
work and advice helped shape my research on dialogue.

Alan Kay inspired my move from theoretical areas of computer science to AI,
by suggesting as a thesis topic the challenge of building a system that would read a
children’s story and then re-tell it from one character’s point of view. (This challenge
remains open so far as I know.) Around the time I realized that children’s stories, full as
they are of cultural and social lessons, were more difficult to understand than ordinary
discourse, Bill Paxton and Ann Robinson lured me to the SRI speech understanding
group. The challenge they posed to me was to build the discourse and pragmatics
components of the SRI speech system. Everyone involved in the early 1970s speech
systems efforts recognized that their systems needed to take context into account, but
no one had yet formulated ways to operationalize context in a natural-language system.
Bill and Ann argued (correctly) that task-oriented dialogue was simpler than children’s
stories and (incorrectly, at least at the time) that speech was easier than text because it
carried more information. They along with Jane Robinson and Gary Hendrix gave me
a natural-language processing platform on which I could explore various approaches

11
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to dialogue models, and they taught me a great deal about AI and linguistics, neither
of which I had formally studied. Led by Don Walker, the SRI speech group was an
amazingly supportive research environment, one that inspired my approach to leading
my own research group, and also to building computer science efforts at Harvard.

My research has been enriched greatly by collaborations with Candy Sidner, a part-
ner in developing the tripartite model of discourse structure and the initial SharedPlans
model of collaborative plans; with Julia Hirschberg, whose work convinced me the
time had become right for integrating dialogue models with speech and intonation; and
with Sarit Kraus, a partner in generalizing SharedPlans and investigations of teamwork.
The students, postdoctoral fellows, and younger colleagues with whom I have worked
have enabled the research advances described in this paper, inspired me, and enriched
my academic life. I have been fortunate throughout these years to work with superb
Harvard students, undergraduate and graduate, and also with students based in other
universities whose interest in dialogue or in collaboration led them to ask me to join
their dissertation committees and even to become unofficial advisers. I thank them all
for their science and for the joy they brought to our investigations.

In the talk on which this paper is based, I also revealed some lessons I learned
as my career progressed, which I have tried to pass on to my own students. I include
brief mention of them here in hopes they will encourage subsequent generations of
graduate students and other early career stage researchers to tackle hard, important
problems, and to persist in investigating novel approaches unpopular though they
may seem at first. One lesson is not to be discouraged too easily by the skepticism
of senior researchers, who may have their own biases and be wrong. When he heard
about my thesis research, Noam Chomsky remarked that it was an interesting problem
but advised I would never succeed because dialogue could not be formalized. John
McCarthy told me an understanding of people’s cognitive processes was irrelevant to
AI, and I failed to convince him that it did matter if one was interested in language use.
A second lesson is to persist despite negative feedback from peers about the importance
of a problem. When Sidner and I first presented SharedPlans, arguing that AI models of
planning for individual agents would not suffice for modeling collaborations, several AI
planning and reasoning researchers suggested we just think harder. Some of them later
developed their own teamwork models, having realized we were right. Einstein said
“To raise new questions, new possibilities, to regard old problems from a new angle
requires creative imagination and marks real advances in science.” (Einstein and Infeld
1938). With the increasing prevalence of computer systems communicating in natural
languages and being used to analyze human language for all manner of features, the
importance of addressing the deepest problems of language and communication has
become even greater than it was when I first ventured down the path of discovering
ways to operationalize context.
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