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This article considers the problem of correcting errors made by English as a Second Language
writers from a machine learning perspective, and addresses an important issue of developing an
appropriate training paradigm for the task, one that accounts for error patterns of non-native
writers using minimal supervision. Existing training approaches present a trade-off between
large amounts of cheap data offered by the native-trained models and additional knowledge of
learner error patterns provided by the more expensive method of training on annotated learner
data.

We propose a novel training approach that draws on the strengths offered by the two
standard training paradigms—of training either on native or on annotated learner data—and
that outperforms both of these standard methods. Using the key observation that parameters
relating to error regularities exhibited by non-native writers are relatively simple, we develop
models that can incorporate knowledge about error regularities based on a small annotated
sample but that are otherwise trained on native English data.

The key contribution of this article is the introduction and analysis of two methods for
adapting the learned models to error patterns of non-native writers; one method that applies
to generative classifiers and a second that applies to discriminative classifiers. Both methods
demonstrated state-of-the-art performance in several text correction competitions. In particular,
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the Illinois system that implements these methods ranked at the top in two recent CoNLL shared
tasks on error correction.1 We conduct further evaluation of the proposed approaches studying
the effect of using error data from speakers of the same native language, languages that are closely
related linguistically, and unrelated languages.2

1. Introduction

This article addresses the problem of correcting grammatical context–sensitive mistakes
made by English as a Second Language (ESL) writers, a subject that has recently
attracted significant attention (Izumi et al. 2003; Han, Chodorow, and Leacock 2006;
De Felice and Pulman 2008; Gamon et al. 2008; Tetreault, Foster, and Chodorow 2010;
Gamon 2010; Rozovskaya and Roth 2010a,b, 2011; Dahlmeier and Ng 2011, 2012). ESL
error correction is an important problem because the majority of people who write
in English today are not native English speakers (Gamon 2011). Representative ESL
errors—a verb agreement mistake, an unnecessary article, and an incorrect choice of a
preposition— are illustrated in Figure 1.3 The source word (the word chosen by the ESL
writer) and the label (the correct choice, as specified by a native English speaker) are
emphasized.

A standard approach to dealing with these errors, which also proved highly suc-
cessful in text correction competitions (Dale and Kilgarriff 2011; Dale, Anisimoff, and
Narroway 2012; Ng et al. 2013, 2014), makes use of a machine-learning classifier paradigm
and is based on the methodology for correcting context-sensitive spelling mistakes made
by native speakers. With the exception that learners and native writers exhibit errors of
different types, most of the grammar and usage mistakes made by non-native speakers
of English also fall into the category of context-sensitive errors that result in valid
English words (e.g., articles or prepositions) being confused.

Traditionally, following the work on context-sensitive spelling, classifiers have been
trained on native English data for a particular mistake type (e.g., preposition). Note
that because native data do not have information about learner errors, the model can
only use contextual cues. Thus, when the resulting classifier is applied to non-native
text, the most appropriate preposition is selected based exclusively on the surrounding
context, similar to a cloze task where one needs to “guess” a word that has been replaced
by blank in a sentence. An error is flagged if this most likely candidate is different
from the author’s choice (Eeg-Olofsson and Knuttson 2003; Izumi et al. 2003; Han,
Chodorow, and Leacock 2006; De Felice and Pulman 2008; Gamon et al. 2008; Tetreault
and Chodorow 2008; Tetreault, Foster, and Chodorow 2010). We call this general ap-
proach to error correction the selection training paradigm.

In realistic ESL situations, however, the scenario is different and there is addi-
tional information that could be used by a correction system beyond that used in the
selection paradigm. The ESL learner writes a text, and typically makes mistakes on

1 The Illinois system ranked first in all metrics in the CoNLL-2013 competition and scored second and first
on original and revised annotation metrics, respectively, in the 2014 competition.

2 This article unifies and significantly extends material that appeared previously in Rozovskaya and Roth
(2010b, 2011), Rozovskaya, Sammons and Roth 2012, and Rozovskaya and Roth (2014).

3 The example is taken from the ICLE corpus (Granger, Dagneaux, and Meunier 2002).
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The ruling class of the Soviet Union is represented in Orwell’s book by pigs, who
*gives/give themselves *the/∅ education and privileges, use the power and the force
of terror provided by Napoleon’s dogs to control the other animals in ways that are
different from those *by/of the previous ruling group.

Figure 1
Examples of representative ESL errors.

fewer than 10% of words.4 This baseline accuracy is higher than the performance of the
state-of-the-art classifiers on word selection tasks (Han, Chodorow, and Leacock 2006;
Tetreault and Chodorow 2008). This high baseline also suggests that by just selecting the
author’s word choice we can already do better than using the context alone. In addition
to this baseline bias, the author’s word choice may also be informative because non-
native speakers do not make mistakes randomly. For example, it is well known that
the native language of the learner makes a distinctive impact on their usage of English
(Odlin 1989; Gass and Selinker 1992; Montrul and Slabakova 2002; Ionin, Zubizarreta,
and Bautista 2008). Therefore, we would like to use the author’s word when making a
decision about the appropriate correction.

One way the system can consider the word used by the writer at evaluation time
is by proposing a correction only when the confidence of the classifier is high enough.
However, in this partial solution, the source word is not used in training if the classifier
is trained on native data. Alternatively, one can train on corrected non-native text.
In that case, error patterns provide the model with additional information that is not
available when training on native data. Indeed, in certain scenarios models trained on
annotated learner data perform better than those trained on larger amounts of native
data (Gamon 2010; Han et al. 2010; Dahlmeier and Ng 2011).

Training on native vs. annotated learner data raises the question of the trade-off
between using large amounts of cheap native data and the availability of additional
information provided by the expensive supervision in the form of annotated ESL data.
We propose an approach that draws on the advantages of the two training sources by
combining them in one model. The approach provides models trained on native data
with knowledge about error regularities, with minimal annotation costs: A small amount
of annotated learner data is used to extract knowledge about error patterns that are then
“injected” into models trained on large amounts of native data. We call this approach
of combining a large quantity of native training data with a small amount of annotated
ESL data adaptation with minimal supervision and denote models trained in this way
as adapted to learner errors.

The key contribution of this work is an analysis of novel methods of training
for error correction tasks that use minimal supervision and draw on the strengths of
the two standard approaches—training on native or annotated learner data—and the
advantages provided by each training source. Within this method, we describe how

4 Such error rates are typical for data sets that represent learners with a college level of English; one would
expect higher error rates for beginning-level learners but lower error rates for high-proficiency writers,
for example, the Helping Our Own (HOO) shared task (Dale, Anisimoff, and Narroway 2012). In
addition, error rates may vary by error type. For example, in the FCE corpus (Yannakoudakis, Briscoe,
and Medlock 2011) around 10% of preposition occurrences are errors, and some types of noun and verb
errors occur in fewer than 5% of occurrences.
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error patterns are learned, and introduce two approaches for “injecting” knowledge
about error regularities into a model otherwise trained on native English data. These
two approaches are designed to work with two state-of-the-art machine learning algo-
rithms. The first approach, implemented within the discriminative learning framework,
is based on generating artificial errors in training, where artificial mistakes are intended
to mimic those observed in non-native data. The second approach adapts to error
regularities by updating the prior distribution over the correction candidates. We show
that the resulting adapted models are superior to the standard methods of training
either on annotated or native data alone. This is because, in contrast to training on an-
notated ESL data, the adaptation approach only requires a small amount of annotation
to estimate the parameters related to error regularities, while context parameters can
be learned from native data. In sum, the proposed methods allow us to combine the
advantages of training on native and annotated learner data. The proposed adaptation
framework was implemented as part of the Illinois system that came first in several text
correction competitions, including the prestigious CoNLL shared tasks (Rozovskaya
et al. 2014, 2013). We further evaluate the proposed approaches and study the effect of
adaptation when using error data from speakers of the same native language, languages
that are closely related linguistically, and unrelated languages. This article unifies and
significantly extends material that appeared previously in Rozovskaya and Roth (2010b,
2011, 2014), and Rozovskaya, Sammons and Roth (2012). The novel contribution is
concentrated in Section 5, and evaluates the adaptation approach by comparing perfor-
mance when error statistics are drawn from the writer’s native (target) language data
vs. from data generated by writers of other first-language backgrounds. We also study
the effect of language relatedness on the quality of adaptation, namely, whether using
data from writers whose first language is linguistically related to the author’s native
language is better than using data from writers whose native language is linguistically
unrelated. An additional contribution is introduced in Section 6. There we explain the
significance of the classification approach by reviewing and reassessing the current
approaches to grammatical error correction, both from the point of view of develop-
ing systems that can focus on specific error phenomena, and from the perspective of
the amount of supervision (annotated learner data) that is available and is needed
for training.

This article is organized as follows. Section 2 provides the relevant background and
explains the training paradigms. Section 3 presents the framework for adaptation with
minimal supervision. In Section 4, we present key experimental results on three types
of common ESL mistakes. Language-specific adaptation and analyses are presented
in Section 5. Section 6 reviews related work. We conclude with a discussion of the
adaptation approaches, the advantages of each of these algorithms, and situations in
which one may be preferred over the other in Section 7.

2. Training Paradigms

We start with an overview of the machine learning framework for error correction,
then present the standard word selection approach and show why this paradigm is not
appropriate, as is, for error correction tasks. Next, we describe the correction training
paradigm.

The Machine Learning Classifier Framework The machine-learning classifier method-
ology of training on native error-free data has been adopted for correcting ESL
mistakes from context-sensitive spelling correction, a task that involves correcting spelling
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errors that result in legitimate words, such as confusing peace and piece or your and you’re
(Roth 1998). Correcting these errors requires consideration of the context around the tar-
get word. Because the relevant contextual information may depend on various linguistic
dimensions and is highly variable, the dominant approach to correcting these errors has
been to use machine learning algorithms (Golding and Roth 1996, 1999; Banko and Brill
2001; Carlson, Rosen, and Roth 2001; Carlson and Fette 2007).

In the machine learning approach, we are given a candidate set or a confusion set
of confusable words, for example, {piece, peace}. In training, each occurrence of a
confusable word is represented as a vector of features derived from a context window
around it. A classifier is trained on text assumed to be error-free, where each target word
occurrence (e.g., peace) is treated as a positive training example for the corresponding
word. Given a text to correct, for each confusable word, the task is to select the most
likely candidate from the relevant confusion set.

The machine learning classifier approach has been and remains one of the
prevalent methods in ESL error correction, as is evidenced by the competitions devoted
to grammatical error correction: HOO-2011 (Dale and Kilgarriff 2011), HOO-2012 (Dale,
Anisimoff, and Narroway 2012), CoNLL-2013 (Ng et al. 2013), and CoNLL-2014 shared
tasks (Ng et al. 2014). Thanks to these competitions, the field has also seen a number
of alternative approaches. For example, the CoNLL shared tasks made available
a large annotated learner data set, that enabled the machine translation approach
(Felice et al. 2014; Junczys-Dowmunt and Grundkiewicz 2014) that showed competitive
performance in CoNLL-2014. In this work, our focus is on the classifier-based approach
with an emphasis on techniques that allow for building robust models by leveraging
large amounts of native English data without the use of expensive annotation.

The Selection Training Paradigm In the application of the selection training approach to
ESL error correction, a model is tailored toward one mistake type (e.g., errors involving
preposition usage) and is trained on well-formed native English text with features
defined based on the surrounding context. Task-specific confusion sets are formed.
For instance, in preposition error correction, it is common to include the top n most
frequent English prepositions. The features are generally based on the surface form,
part-of-speech information, and syntactic function of words in the immediate context
around the potentially erroneous word. The classifier is then applied to non-native text
to select the most appropriate candidate from the confusion set in context.

A number of earlier works in ESL error correction followed the selection training
paradigm, with slight differences in the choice of features and machine-learning
algorithm. The latter included maximum entropy models, perceptrons, language
models, and decision trees (Eeg-Olofsson and Knuttson 2003; Izumi et al. 2003; Han,
Chodorow, and Leacock 2006; Chodorow, Tetreault, and Han 2007; De Felice and
Pulman 2007, 2008; Gamon et al. 2008; Tetreault and Chodorow 2008; Yi, Gao, and
Dolan 2008; Bergsma, Lin, and Goebel 2009; Tetreault, Foster, and Chodorow 2010).

The Source Word The key reason that the selection approach has been popular
in error correction is that it does not require annotated data. Native data (presumed to
be correct) is used for training the system; it is cheap and is available in large quantities.
It is clear, though, that there is a problem with this standard approach of training on
native data, as its decision is based solely on the context and ignores the author’s word
choice.

The author’s word choice or the source word is an important piece of information,
as non-native speakers make mistakes in a systematic manner. To begin with, learner
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performance is high, and for many error types, fewer than 10% or even 5% of word
usages are actually mistakes (Han et al. 2010; Rozovskaya and Roth 2010b; Dale
and Kilgarriff 2011; Yannakoudakis, Briscoe, and Medlock 2011).5 This high learner
performance is better than the performance of the state-of-the-art classifiers on word
selection tasks not only on learner texts but also on well-formed data (e.g., Han,
Chodorow, and Leacock 2006). Furthermore, learner errors follow specific error
patterns, as discussed in more detail in the next section. These error patterns may be
prominent across multiple first languages or be first-language dependent. The effect of
“language transfer”—applying knowledge from the native language, when learning a
foreign language—has been the subject of considerable study in the second-language
acquisition literature (Odlin 1989; Gass and Selinker 1992; Montrul 2000; Montrul and
Slabakova 2002; Oh and Zubizaretta 2003; Ionin, Zubizarreta, and Bautista 2008). These
facts have also been confirmed empirically by studies that quantitatively examine
learner corpora (Han, Chodorow, and Leacock 2006; Lee and Seneff 2008). For example,
speakers of languages that do not have a determiner system (e.g., Russian) tend to
make 4–5 times more article mistakes in English than speakers whose first language has
articles (Rozovskaya and Roth 2010b). In addition to the error regularities due to first
language influence, some confusions are much more likely to occur than others across
multiple first languages. For example, regardless of the first language, ESL writers are
38 times more likely to incorrectly use “in” rather than “by” in place of the correct word
“on” (Table 2, Section 3.1).

Training for Correction Tasks Depending on whether the author’s word choice
is used by the model, we distinguish between two training paradigms. In the selection
paradigm, the decision of the classifier depends only on the context around the author’s
word, whereas in the correction training paradigm, both the context and the source
word are used. The two training paradigms and the information available to the
models in training and at prediction time in each case are illustrated in Figure 2. A
straightforward way to use the source word is to train on annotated learner data. In that
case, the source word can also be used as a feature. The problem is that this approach
requires large amounts of annotated ESL data (Gamon 2010).

Training on native versus annotated learner data raises the question of the trade-off
between the useful information provided in the form of expensive supervision and the
robustness obtained from training on large amounts of native data. In this article, we
address the question of what is the most appropriate way to train for correction tasks
given the limitations and advantages of each data source. We propose an approach to
building models that incorporates the best of both modes: training on native texts to
facilitate the possibility of training from large amounts of data without the need for
annotation, but using the correction mode with a modest amount of annotated ESL
data so that the model can adapt to writers’ errors. As a result, at evaluation time, these
models can make use of the potentially erroneous information provided by the writer.
We show that adaptation is beneficial on various levels: when error patterns are specific
for a given first language and for groups of linguistically-related languages, as well as
when error patterns are collected across multiple first language backgrounds that are
available and that may include various related or unrelated languages.

5 We stress that, though seemingly low, these error rates correspond to at least one mistake in every
sentence.
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Selection paradigm 

 He is an engineer with a passion ___ what he does. 

 

 

 

 

Correction paradigm 
  He is an engineer with a passion to what he does. 

 

 

Context features 

w1B=passion, w1A=what, 

w2Bw1B=a-passion, … 

Context features 

w1B=passion, w1A=what, 

w2Bw1B=a-passion, …, 

source=to 

The source feature is not used 

in this model. 

label=for source=to 

Figure 2
Two training paradigms for error correction tasks. In the selection training paradigm, models use
only contextual information in training and when making a prediction. In the correction
paradigm, the author’s word is also used by the model.

3. Adaptation to Learner Errors with Minimal Supervision

In the previous section, we argued that the key advantage of the selection paradigm is
that it is cheap, as we can use large amounts of native data. However, because learners’
errors are systematic, we would like to provide the models with knowledge about
typical mistakes learners make. As discussed earlier and as we show in the rest of the
article, using the source word in prediction is better than just using the context. We
therefore want to train on ESL data but we have a very limited amount of it. We thus
need to develop ways that can use ESL data in prediction even when very little of it is
available, which we do by exploiting large amounts of native data together with a small
amount of ESL data. We call this approach adaptation to learner errors. The rest of this
section describes the adaptation algorithms that we develop for this purpose.

After we describe how error patterns are learned, two adaptation methods are
presented. The proposed methods are designed to work with two state-of-the-art ma-
chine learning algorithms: The artificial errors adaptation method is applicable for a
discriminative learning algorithm (implemented here within Averaged Perceptron –
henceforth AP), and the priors adaptation method for the Naive Bayes (NB) algorithm.
These two algorithms demonstrated superior performance in a study that compared
several learning frameworks for ESL error correction tasks (Rozovskaya and Roth 2011).
This study also included language models and other count-based methods.

3.1 Learning Error Patterns

Error patterns are extracted from annotated learner data; these error patterns are
referred to as error statistics. As we show here, unlike the context parameters, the error
statistics are very simple, and thus we only need a small annotated sample to estimate
them.

Given a specific task, we collect all source/label pairs from the annotated sample,
where both the source and the label belong to the confusion set, and generate two
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Table 1
Confusion matrix for article errors used in the artificial errors method. Based on the training data
from the FCE corpus. The left column shows the correct article. Each row shows the author’s
article choices for that label and Prob(source|label). The numbers next to the targets show the
count of the label (or source) in the data set.

Label Sources

a ∅ the
(7,408) (44,916) (16,719)

a (7,945) 0.885 0.099 0.016
∅(44,096) 0.006 0.977 0.017
the (17,002) 0.008 0.060 0.932

confusion matrices, one where each cell represents Prob(source=s|label=l) (used in the
artificial errors method, Section 3.2), and the other, inverse matrix, where each cell
shows Prob(label=l|source=s), which is used by the priors adaptation method for NB
(Section 3.3).

Tables 1, 2, and 3 show confusion matrices of the first type for article, preposition,
and verb agreement mistakes, respectively. These matrices are based on the training
part of the FCE data set, a corpus of annotated ESL essays (see Section 4.1). Consider,
for example, the preposition matrix: We show eight rows and columns, but the entire
table contains 12 rows and columns, one for each of the top 12 English prepositions;6

each entry shows Prob(pi|pj), the probability that the author chose preposition pi given
that the correct preposition is pj. These probabilities are used in the artificial errors method.
The matrix also shows the preposition count for each source and label in the data set.
Given the matrix and the counts, it is possible to generate the matrix for Prob(pj|pi), the
probability that the correct preposition is pj given that the author’s preposition is pi.
This second matrix is used for adapting NB with the priors method.

The confusion matrices show that the distribution of alternatives for each source
word is very different from that of the others. For instance, using the row corresponding
to the preposition for in Table 2, it can be observed that instead of the preposition for,
non-native writers are 18 times more likely to use the preposition to than to use the
preposition by. This strongly suggests that errors are systematic. The matrices also give
a sense of the error baseline. Specifically, as the numbers show, most words are used
correctly, and the error rates are very low (the error rates can be estimated by looking
at the matrix diagonals in the tables). Although the error rates vary, they are typically
below 10% or 5%, and in some cases less than 1%. For example, the error rate for the
preposition of is lower than for on, since 97.4% of the occurrences of the label of are
correct, but only 85.2% of the label on are correct.

3.2 Adaptation for a Discriminative Model

The artificial errors method is an adaptation technique for discriminative classifiers
that we implement with the AP algorithm: Learner errors are simulated in training
through artificial mistakes at a rate that reflects the errors made by ESL writers, which

6 Typically, the top n most frequent English prepositions are included in the preposition confusion set. We
use the set used in earlier work (e.g., Rozovskaya and Roth 2014): {in of on for to at about with from by
into during}.
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Table 2
Confusion matrix for preposition errors used in the artificial errors method. Based on the
training data from the FCE corpus. The left column shows the correct preposition. Each row
shows the author’s preposition choices for that label and Prob(source|label). The numbers next
to the targets show the count of the label (or source) in the data set. The table is based on the
confusion matrix for 12 prepositions but only rows corresponding to eight most frequent
prepositions are shown to make the table readable.

Label Sources

on for of to at in with by
(1,897) (3,995) (5,945) (3,897) (2,726) (6,367) (2,011) (625)

on (1,829) 0.852 0.020 0.014 0.008 0.012 0.076 0.008 0.002
for (4,034) 0.002 0.939 0.019 0.018 0.001 0.007 0.001 0.001
of (5,795) 0.002 0.004 0.974 0.001 0.001 0.009 0.002 0.001
to (3,990) 0.004 0.015 0.010 0.936 0.007 0.018 0.008 -
at (2,898) 0.011 0.002 0.007 0.009 0.889 0.076 0.002 0.001
in (6,274) 0.040 0.003 0.011 0.003 0.013 0.924 0.002 0.001
with (2,046) 0.002 0.008 0.009 0.009 0.002 0.015 0.933 0.009
by (621) 0.008 0.010 0.011 - 0.002 0.008 0.008 0.934

Table 3
Confusion matrix for verb agreement errors used in the artificial errors method. Based on the
training data from the FCE corpus. S and INF stand for third person singular and bare verb
form, respectively. The left column shows the correct verb. Each row shows the author’s verb
choices for that label and Prob(source|label). The numbers next to the targets show the count of
the label (or source) in the data set.

Label Sources

S INF WAS WERE
(627) (2,205) (601) (149)

S (640) 0.961 0.039 - -
INF (2,192) 0.005 0.995 - -
WAS (593) - - 0.997 0.003
WERE (157) - - 0.064 0.936

is ensured by generating artificial mistakes using the confusion matrix. The idea of
using artificial errors goes back to Izumi et al. (2003) and Foster and Andersen (2009).
The approach discussed here refers to the adaptation method originally proposed in
Rozovskaya and Roth (2010b) and its modified version in Rozovskaya, Sammons, and
Roth (2012). In Rozovskaya and Roth (2010b), artificial errors are generated using the
distribution of naturally-occurring errors. This version of the approach suffers from the
low recall problem, as discussed subsequently. Rozovskaya, Sammons, and Roth (2012)
describe a more general method of using artificial errors for adaptation and also solve
the low recall problem. This is the method we describe here.

Generating Artificial Errors with Error Statistics In the original method, the transition
probabilities Prob(source=s|label=l) shown in Tables 1, 2, and 3 are used to generate
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artificial errors in the training data. For example, from Table 2, label on corresponds
to source on in 85.2% of the cases and corresponds to source in in 7.6% of the cases.
In other words, in 7.6% of the cases when the preposition on should have been used,
the writer instead used in. Thus, for each example in the training data (which are from
native text and therefore assumed to be correct), with probability 7.6% we flip on in
the training data to in. Note that the label of these examples is not changed, only the
surface form is replaced. The native training examples now approximate the behavior
of ESL data: The prepositions will now be incorrect with the same frequency and
distribution as those from the corresponding target ESL user. Note that we refer to the
replacement as source, as we refer to ESL writer word choice: Both for training (native
data) and test (ESL data), source denotes the surface form that the classifier sees as a
feature (which could be an error), and label denotes the correct word. For ESL data, the
source corresponds to the word chosen by the author, whereas for native data, the source
corresponds to the artificially produced (and possibly erroneous) surface form.

Error Sparsity and Low Recall The artificial errors approach just described generates
errors with the frequency of naturally occurring mistakes, thereby creating a low-recall
model that tends to abstain rather than flag a possible error. This happens because of
error sparsity, or the low error rates in the learner data. The values of the source feature
thus tend to have a very skewed label distribution, that is, most of the time the source
feature value corresponds to the label. The system will learn that in the majority of
cases the source word corresponds to the label, and will tend to over-predict it, which
will result in very few mistakes being flagged.

The Error Inflation Method The two training modes—(1) training without the
source word, or the knowledge about learner errors; and (2) training with the source
feature, where the classifier relies on it too much—represent two extreme choices for
training for correction tasks.

In the error inflation method, in order to preserve the ability of the model to take
into account learner error patterns, while also increasing the model’s recall, we reduce
the confidence that the system has in the source word, while preserving the knowledge
the model has about likely confusions (typical errors). This is achieved by decreasing the
proportion of correct examples and distributing the extra probability mass among con-
fusion pairs in an appropriate proportion by generating additional error examples. This
inflates the error rate in the training data, while keeping the probability distribution
among likely corrections the same. Increasing the error rate improves the recall.

Algorithm 1 shows the pseudo-code for generating artificial errors in training data;
it takes as input training examples the confusion matrix CM (as shown in Tables 1, 2, and
3) and the inflation constant C, and generates artificial source features for correct train-
ing examples. An inflation constant value of 1.0 corresponds to the original adaptation
method that simulates learner mistakes without inflation. For each training example, a
probability distribution of the artificial sources is generated inside the second for-loop,
using the confusion matrix CM and the inflation constant C. A list of tuples ProbRanges is
created that contains for each source the probability range represented by two numbers,
start and start + Prob(t), where Prob(t) is the probability of the source t, and start is set to
0 at the beginning of the execution of the for-loop, and is increased by Prob(t) on every
iteration. After the for-loop is executed, a random number x between 0 and 1 is generated,
and in the next for-loop we pick the target whose range includes x. This is the artificial
source. Table 4 shows the proportion of artificial errors created in training using the
inflation method for different inflation rates for preposition errors.
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Algorithm 1 Data Generation with Inflation
Input: Training examples E with correct sources, confusion matrix CM, inflation
constant C
Output: Training examples E with artificial errors
for Example e in E do

Initialize lab← e.label, e.source← e.label
ProbRanges← []
Initialize start← 0
for target t in targets do

if t equals lab then
Prob(t) = CM[lab][t] · C

else
Prob(t) = 1.0−CM[lab][lab]·C

1.0−CM[lab][lab] · CM[lab][t]
end if
ProbRanges.append((start, start + Prob(t), t))
start = start + Prob(t)

end for
x← Random[0, 1]
for tuple t in ProbRanges do

start = tuple[0]
end = tuple[1]
target = tuple[2]
if x > start and x < end then

e.source← target
Break

end if
end for

end for
return E

Table 4
Artificial errors. Percentage of preposition examples converted into artificial mistakes in
training, using the inflation method with different inflation rates.

Inflation rate
1.0 (Original) 0.9 0.8 0.7 0.6 0.5

7.20% 16.48% 25.76% 35.04% 44.32% 53.60%

3.3 Adaptation for the Naive Bayes Algorithm

The NB adaptation method makes use of the observation that error regularities can
be viewed as a distribution of priors over the correction candidates. As shown in
Equation (1), in NB, a score computed for candidate p in the context S corresponds to
the joint probability of p and the feature space F. This makes candidate prior a special
parameter in NB. When NB is trained on native data, candidate priors correspond to
the relative frequencies of the candidates in the native corpus and do not provide any
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information on the real distribution of mistakes and the dependence of the correction
on the word used by the author.

g(S, p) = log{prior(p) ·
∏

f∈F(S,p)

P( f |p)}

= log(prior(p)) +
∑

f∈F(S,p)

log(P( f |p)) (1)

In the NB adaptation method, candidate priors are changed using an error con-
fusion matrix based on learner data that specifies how likely each confusion pair is.
Importantly, adapted candidate priors are dependent on the author’s word choice. Let s
be a preposition appearing in text, and p, a correction candidate. Then the adapted prior
of p given s is:

prior(p, s) =
C(s, p)
C(s)

where C(s) denotes the number of times s appeared in the learner data, and C(s, p)
denotes the number of times p was the correct preposition when s was used.

Using the information from Table 2, we can compute adapted priors, that is,
Prob(label|source), for preposition mistakes.7 Table 5 shows adapted priors for two au-
thor’s choices—on and by. First, note how the distribution of adapted priors differs from
that of the global priors: According to the global priors, the most likely candidate for
both of the author’s prepositions is of ; it is four times more likely than with. However,
the adapted prior of with when the author’s choice is by is almost ten times higher than
the adapted prior of of (0.028 vs. 0.003), reflecting the fact that learners are more likely
to incorrectly use with when by is intended than to use of. The second distinction of
the adapted priors is the high probability assigned to the author’s choice: The adapted
prior for on given that it is also the author’s choice is 0.817, vs. the 0.07 prior based on
the native data. This reflects the fact that the majority of prepositions are used correctly.
Finally, higher probabilities are also assigned to those candidates that are most often
observed as corrections for the author’s preposition (in bold in the table). For example,
the adapted prior for in when the writer chose on is 0.139, because on is frequently
incorrectly chosen instead of in. Similarly, the most likely confusion for the source
by is with.

To determine a mechanism to inject the adapted priors into a model, note that the
NB architecture directly specifies the prior probability as one of its parameters. We thus
train NB in a traditional way, on native data, and then replace the prior component in
Equation (1) with the adapted prior to get the score for p of the NB-adapted model:

g(S, p) = log{prior(p, s) ·
∏

f∈F(S,p)

P( f |p)}

It should be stressed that in the NB adaptation method there is no need to re-train
the model to adapt to a different set of learner error patterns, as is the case with the

7 Adapted priors for article and verb agreement errors can be generated in a similar way using Tables 1
and 3.
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Table 5
Examples of adapted candidate priors used to adapt NB (Prob(candidate label|source (author’s
choice))) for two of the author’s choices—on and by. Global prior denotes the probability of the
candidate in the standard model and is based on the relative frequency of the candidate in native
training data. Adapted priors are dependent on the author’s preposition. Adapted priors for the
author’s choice are very high. Other candidates are given higher priors if they often appear as
corrections for the author’s choice (shown in bold). Based on preposition errors in the FCE
training data.

Candidate Global prior Adapted priors

label prior for when prior for when
the author’s choice is on the author’s choice is by

of 0.25 0.005 0.003
to 0.22 0.007 0.001
in 0.15 0.139 0.013
for 0.10 0.005 0.005
on 0.07 0.817 0.006
by 0.06 0.003 0.928
with 0.06 0.002 0.028
at 0.04 0.017 0.006

artificial errors approach. Only one model is trained, and only at decision time do we
change the prior probabilities of the model. Furthermore, even though NB does not
typically perform as well as a discriminative classifier when both models are trained on
the same data and features (Rozovskaya and Roth 2011, 2014), the algorithm also has
advantages in several training scenarios (see Section 7).

4. Key Adaptation Experiments

We now present experiments demonstrating that the adaptation approaches with min-
imal supervision proposed in this work outperform the standard methods of training
on native data and when training on annotated learner data alone. In the following
sections, we describe the data sets, and present key adaptation experiments on three
error types. Section 5 presents language-specific adaptation.

4.1 Data Sets

We use native English data and an annotated corpus of learner essays. The native
English data is used for training, and the ESL data is used both for training and
evaluation.

Native English Data Sets Two corpora of native English are used. The first corpus,
WikiNYT, is a selection of texts from English Wikipedia and the New York Times section
of the Gigaword corpus (Parker et al. 2009). Unless otherwise stated, the training sizes
for native data are fixed, as follows: 1.8M examples for agreement errors, 3M examples
for articles, and 5M for prepositions (the training sizes are chosen based on the size of
the confusion sets for each error type). Note that the entire WikiNYT corpus contains
more training examples; these sizes are those used in the key experiments.
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Table 6
Statistics on the native training data sets used in the key experiments. For the WikiNYT corpus,
training sizes indicate the number of relevant training examples (articles/prepositions/verbs) in
millions. (The entire WikiNYT corpus contains more examples; the table shows the sizes used in
the key experiments.) Training sizes for the Web1T corpus are approximate and are based on the
corpus size (1012 words).

Data set Training sizes

Articles Prepositions Verb agreement

WikiNYT 3M 5M 1.8M
Web1T 40,000M 20,000M 25,000M

The second corpus is Google Web1T 5-gram (Brants and Franz 2006) (henceforth
Web1T), which is a collection of n-gram counts of lengths one to five over a corpus of
1012 words. Table 6 shows the sizes of the two native data sets. Because Web1T does
not come with complete sentences, we approximate the number of training examples
for each error type for Web1T based on the sizes of Web1T and WikiNYT and the
frequencies of the respective target words in WikiNYT. To compare with the WikiNYT,
Web1T contains on the order of 10,000 more training examples for each error type.

Using the two corpora allows us to evaluate the proposed adaptation methods
when applying two state-of-the-art machine learning algorithms and to demonstrate
how to take advantage of the benefits provided by each data source and each machine
learning framework. On WikiNYT, we train discriminatively using the AP algorithm
and rich syntactic features shown to be useful for article and verb agreement errors
(Lee and Seneff 2008; Rozovskaya and Roth 2014) and for preposition errors (Tetreault,
Foster, and Chodorow 2010). Because of the special format of the Web1T corpus, it
is difficult to generate rich feature annotations for this data, and to make use of a
discriminative classifier on this corpus, as one would have to limit the surrounding
context to two words on each side of the mistake. Because we wish to make use of the
context features that extend beyond the two-word window, it is only possible to use
count-based methods (e.g., NB or language models). We thus train the NB algorithm.

Learner Data Several annotated learner data sets were made available recently,
including the data set used in the HOO competition, the CoNLL data set (Dahlmeier,
Ng, and Wu 2013), and the FCE data set (Yannakoudakis, Briscoe, and Medlock 2011), a
subset of the Cambridge Learner corpus. Because we want to explore the effects of first
language backgrounds, we use the FCE corpus in this work. This corpus contains data
from learners of multiple language backgrounds, including information on the first
language of the writer. The work described in Section 5 makes use of this information.
We discuss other corpora and approaches in Section 6.

The FCE corpus contains 1,244 essays (500,000 words) produced by learners of 16
first language backgrounds. The data set is fully corrected and error tagged. For the key
adaptation experiments, we split the data into training and test (according to the split
used in the HOO-2012 shared task [Dale, Anisimoff, and Narroway 2012]), selecting
1,000 files of the FCE corpus as training data. We use the remaining 244 documents
from the FCE data for testing. Table 7 shows the number of training and test examples,
as well as the number of incorrectly used instances and the error rates (the percentage
of mistakes with respect to the total number of examples). The error rates are below
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Table 7
Statistics on articles, prepositions, and verbs in the ESL data set. Error rate denotes the
percentage of examples (articles, prepositions, or verbs in the data) that are mistakes.

Data set Total examples Errors (error rate)

Arts. Preps. Verb agr. Arts. Preps. Verb agr.

Train 60,743 32,699 35,322 2,892 (4.76%) 2,936 (8.98%) 490 (1.39%)
Test 15,398 7,927 8,695 787 (5.11%) 750 (9.46%) 137 (1.58%)

10% but vary by error type (from slightly more than 1% for verb agreement, to 5% for
articles, to almost 9% for prepositions).

In the key experiments, we generate combined statistics across writers of all 16
first language backgrounds. For first-language and other fine-grained adaptations, see
Section 5.

4.2 Experimental Set-up

Depending on what training data source is used, we refer to the models as follows:

1. Native-trained models: trained on native English data in the selection
paradigm

2. ESL-trained models: trained on annotated learner data in the correction
training paradigm

3. Adapted models: trained on native English data and adapted using
annotated learner data

Features AP models trained on WikiNYT use rich features tailored to each error type.
These features were used in the components of the Illinois system in several shared
tasks (Rozovskaya et al. 2011, 2013) and are presented in Appendix Tables A.1, A.2, A.3,
and A.4 for convenience. The Web1T models are trained on word n-gram features.

Parameter Tuning Ten percent of the training data is used to optimize the inflation
rate for the AP-adapted models (0.8 for articles and prepositions, and 0.85 for verb
agreement).

4.3 Note on Evaluation Metrics

Various metrics have been proposed and used in error correction. These can be broken
down roughly into metrics that compute the accuracy of the system and those that use
the F-measure. The HOO competitions adopted F1, which can take into account both
precision and recall of the systems; the M2 scorer used in CoNLL is also F-based but
can take into account phrase-based edits (Dahlmeier and Ng 2012). Overall, accuracy
and F-measure are equivalent, with the exception of tuning; F-measure is flexible in that
it allows for calibrating precision and recall. In CoNLL-2014, F0.5 was used (precision
was weighed twice as high as recall).
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Three papers have been published recently that addressed the appropriateness of
commonly used metrics for error correction; two of these also proposed new metrics
that are different from the standard F1 adopted in the shared tasks but are variations
of accuracy or F-measure. Felice and Briscoe (2015) proposed an I-measure that is
accuracy-based and Napoles et al. (2015) proposed a variation of the BLEU metric used
in Machine Translation (called GLEU). Further, Napoles et al. (2015) and Grundkiewicz,
Junczys-Dowmunt, and Gillian (2015) also compare the outputs of the systems in the
CoNLL shared task against human judgments and show that the need for new metrics
is motivated by a lack of correlation between F1 and human judgments. However, the
newly proposed GLEU metric does not fare much better in terms of correlation with
human judgments than the F-measure and the I-measure.

Developing a new, more appropriate metric is an involved issue that is beyond the
scope of this work. We are not dealing with phrase-based edits here, so we follow the
evaluation metrics based on precision, recall, and F1 that were used in the shared tasks
on grammar correction.

4.4 Key Adaptation Results

The key question addressed in this section is the following:r Does adding a little bit of learner data to large amounts of native training
data result in better models compared with training on native data alone?

We compare native-trained models and adapted models implemented within the two
algorithms—AP and NB, trained on two native corpora—and evaluate on three types of
mistakes. Adapted models use a small amount of learner data (about 6K, 3K, and 3.5K
article, preposition, and verb agreement examples, respectively) extracted from an an-
notated FCE sample of 40K words, which constitutes 10% of the FCE training data. Ad-
ditionally, we show performance for models adapted using all of the FCE training data.

Table 8 presents the results. First, we compare native-trained models and adapted
models that use 10% of learner training data. For AP adapted models, we show two
variants in each case: one with inflation rate 1.0 (this is the baseline adapted model that
uses the error rates that correspond to naturally occurring mistakes) and one that uses
an inflation rate that was optimized on the development sample. Adaptation consis-
tently improves the performance for both algorithms and all three types of mistakes:
The improvements range between 1.5 F1 points for articles to 2 F1 points for agreement
and preposition mistakes. It should be stressed that we are using a small annotated
sample. In the following description, we also show that training an entire model on this
learner sample results in poor performance as context parameters cannot be estimated
robustly.

Interestingly, when we adapt using all of the FCE training data (also shown in the
table), we only observe improvements for verb agreement errors and a small boost
for preposition error correction with AP models. Clearly, article error patterns can be
reliably estimated using just a small ESL sample. This is because these errors are not
as sparse as verb agreement errors (see Table 7) and have a smaller confusion set than
preposition errors. In contrast, verb agreement errors are more sparse, thus adding more
data for adaptation is beneficial.

Finally, note that NB models perform better than AP models on article and
preposition error correction, even though prior work showed that AP outperforms NB
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Table 8
Key adaptation experiments. Models are trained on WikiNYT data or Web1T. Two types of
adapted models are shown: those that use 100 files (10%) of the FCE training data and those that
use all of the learner training data for error statistics. Inflation rate is optimized on the
development set. All differences are statistically significant (McNemar’s test, p < 0.0001).

Model Training size Infl. rate Performance

Native ESL P R F1

Articles
Native-trained (AP, WikiNYT) 3M - - 26.72 36.80 30.96
Adapted (AP, WikiNYT) 3M 6K 0.80 28.73 41.60 33.99
Adapted (AP, WikiNYT) 3M 6K 1.0 43.91 15.66 23.08
Adapted (AP, WikiNYT) 3M 60K 0.85 30.84 36.23 33.32
Adapted (AP, WikiNYT) 3M 60K 1.0 43.20 14.51 21.73
Native-trained (NB, Web1T) 40,000M - - 28.13 41.83 33.64
Adapted (NB, Web1T) 40,000M 6K - 31.74 39.43 35.17
Adapted (NB, Web1T) 40,000M 60K - 31.87 38.97 35.06

Prepositions
Native-trained (AP, WikiNYT) 5M - - 26.07 22.80 24.32
Adapted (AP, WikiNYT) 5M 3K 0.80 31.27 22.27 26.01
Adapted (AP, WikiNYT) 5M 3K 1.00 56.12 7.33 12.27
Adapted (AP, WikiNYT) 5M 32K 0.80 31.73 22.93 26.62
Adapted (AP, WikiNYT) 5M 32K 1.00 45.32 8.40 14.17
Native-trained (NB, Web1T) 20,000M - - 28.47 27.87 28.16
Adapted (NB, Web1T) 20,000M 3K - 31.42 30.00 30.69
Adapted (NB, Web1T) 20,000M 32K - 31.33 29.20 30.23

Verb agreement
Native-trained (AP, WikiNYT) 1.8M - - 36.43 34.31 35.34
Adapted (AP, WikiNYT) 1.8M 3.5K 0.85 33.00 72.99 45.45
Adapted (AP, WikiNYT) 1.8M 3.5K 1.00 48.28 30.66 37.50
Adapted (AP, WikiNYT) 1.8M 35K 0.90 36.72 68.61 47.84
Adapted (AP, WikiNYT) 1.8M 35K 1.00 54.88 32.85 41.10
Native-trained (NB, Web1T) 25,000M - - 46.67 30.66 37.00
Adapted (NB, Web1T) 25,000M 3.5K - 43.36 35.77 39.20
Adapted (NB, Web1T) 25,000M 35K - 42.06 38.69 40.30

(Rozovskaya and Roth 2011, 2014), when both are trained under the same conditions.
This is because NB and AP results are not directly comparable here, since even though
NB is trained using a less rich set of features (word n-grams only), it uses much more
data.

4.5 A Graphical View of ESL Adaptation

We now summarize the adaptation idea graphically using the preposition error correc-
tion task and the AP learning framework as an example. As shown in Figure 3, we can
view adaptation by considering a graph with an x-axis representing the amount of ESL
data and the y-axis representing the amount of native data used in training. Each box
corresponds to a model, and the numbers in boxes show F1 results. The boxes on the
x-axis indicate models that are trained exclusively on ESL data, and the boxes on the
y-axis represent native-trained models. The boxes in the middle are adapted models that
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Figure 3
Adaptation: a two-dimensional summary, using the preposition error correction task and the AP
learning framework as an example. Increasing the amount of training data is important, but one
type of data is much more costly than the other. Adaptation methods are shown to gain from a
small increase in the costly dimension. The x-axis shows the ESL data continuum as a percentage
of the annotated training examples. The y-axis shows the native training data. Note how the
native data size is in fact several orders of magnitude larger than the ESL data. The numbers in
boxes show F1 results.

are trained on much native data and adapted using different amounts of ESL data. The
x-axis is expensive, and the y-axis is cheap. The data sizes are shown for each axis in log
scale, because the sizes of the native data are several orders of magnitude larger than
the sizes of the ESL training data: The entire ESL data set contains 32,000 preposition
examples, and the 3,000 also shown on the graph corresponds to 10% of the data (the
amount used for adapting the models in Table 8). The native data size varies from
1 million to 13 million prepositions. To have a fair comparison, in all cases, we train
AP classifiers using the same set of rich features. The same results are also presented in
tabular form (Table 9).

First, consider models trained on learner data: A model trained on 3,000 non-native
examples obtains an F1 score of 14.62. We can improve to 26.73 if we use 10 times more
ESL training data (32,000 examples). Even though annotating so much data is a big
effort, this is still not much data to train a robust model. On the other hand, when
training on native data, increasing the training size is easy. A native-trained model that
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Table 9
Adaptation using the preposition error correction task as an example. Models are trained on
different sizes of native (WikiNYT) and learner data suing the AP algorithm. Each cell shows the
F1 score. The same results are presented in Figure 3.

Amount of native training data Amount of learner training data

0 3K 32K

0 - 14.62 26.73
1M 22.01 23.92 23.30
5M 24.32 26.01 26.62
13M 26.43 29.48 29.73

uses 1 million examples obtains an F1 score of 22.01, and we can improve further, to
24.32 and 26.43, if we use 5 million and 13 million training examples, respectively. We
continue to improve as we add more data (28.16) when training on Web1T using the NB
algorithm (Table 8). This demonstrates the importance of using native data for learning
parameters relating to context features.

The results in the graph can be summarized as follows. The main lesson is that
the two types of training data are complementary, although increasing the amount of
training data is important, but one type of data is a lot more costly than the other. The
adaptation methods are shown to gain very much from a small increase in the costly
dimension: The key result (marked as line “1” on the graph) is that a model trained
on 5 million native prepositions and adapted with 3,000 ESL prepositions outperforms
a native-trained model that uses the same number of training examples from native
data (26.01 versus 24.32 F1 points). Similarly, there is a 3-point improvement due to
adaptation when the models use 13 million prepositions from the native data. These
results demonstrate that even a little bit of ESL data can make a big difference.

The comparison marked as line “2” demonstrates the importance of using native
data: an ESL-trained model that uses 3,000 prepositions performs very poorly, because
there is not enough evidence to learn all parameters reliably. We can improve consider-
ably to 23.92 and 29.48 by adding 1 million and 13 million native examples, respectively.

The result marked as line “3” shows that the model adapted with just 3,000 prepo-
sitions is very close to the performance of the model adapted with 10 times more data.
This shows that by using a small amount of annotated ESL data, it is possible to estimate
the mistake parameters reliably.

Finally, we continue to improve as more native data are used (we improve by 2 F1
points (from 24.32 to 26.43) for native-trained models when using 13 million preposi-
tions instead of 5 million). Importantly, adding learner data always helps, regardless
of how much native data is used, because learner data contributes knowledge on the types
of mistakes that are not available in the native data: Adding a little bit of learner data for
adapted models, we improve by more than 3 F1 points (from 26.01 to 29.48) compared
with native-trained models that use the same amount of native data.

4.6 Prepositions: Top Three Evaluation

One thing that can be observed is that the performance numbers are quite low, especially
for preposition mistakes. One reason that is related to this is the learner baseline, or
the performance of non-native writers, which is quite high to begin with. Typically,

741



Computational Linguistics Volume 43, Number 4

Table 10
Prepositions: Top three evaluation. Models are trained on WikiNYT data or Web1T. Adaptation
uses 100 files (10%) of the FCE training data.

Model Training size Infl. rate Performance

Native ESL P R F1

Top 1
Native-trained (AP, WikiNYT) 5M - - 26.07 22.80 24.32
Adapted (AP, WikiNYT) 5M 3K 0.8 31.27 22.27 26.01

Native-trained (NB, Web1T) 20,000M - - 28.47 27.87 28.16
Adapted (NB, Web1T) 20,000M 3K - 31.42 30.00 30.69

Top 3
Native-trained (AP, WikiNYT) 5M - - 31.84 41.60 36.07
Adapted (AP, WikiNYT) 5M 3K 0.5 72.70 38.00 49.91

Native-trained (NB, Web1T) 20,000M - - 44.13 43.07 43.59
Adapted (NB, Web1T) 20,000M 3K - 59.87 38.00 46.49

fewer than 10% of instances are erroneous (one would expect that a higher baseline
[i.e., a lower error rate] would imply a more difficult learning task). However, although
the preposition baseline is lower than for the other mistakes, the performance is also
the lowest, which seems counterintuitive. We attribute this to the large confusion set
(12 prepositions), and to the fact that, typically, preposition usage is highly ambiguous
(multiple prepositions can be licensed in a given context [Tetreault and Chodorow
2008]), whereas the FCE annotation does not allow for multiple acceptable answers.
De Felice (2008) investigated preposition performance when going beyond the top
match and found that performance would improve when looking at the top n candidate
corrections.

Given that preposition usage is highly variable, we conduct further evaluation
using the top three choices provided by the classifiers (Table 10). In the top three
evaluation, a classifier’s prediction is counted as “correct” if the gold label is among
any of the top three candidates selected by the classifier. F1 performance increases for
all the models when top three choices are considered. However, adapted models fare
much better: Precision increases substantially from 31.27 to 72.70 for AP-adapted and
from 31.42 to 59.87 for NB-adapted models, whereas it only improves slightly from
26.07 to 31.84, and from 28.47 to 44.13 for their respective native-trained counterparts.
These improvements suggest that it is not just the first candidate that is better but the
overall ranking is better in adapted models. The top three evaluation thus provides ad-
ditional evidence that knowledge of error patterns available in the adapted models is extremely
important.

Whether presenting the top three candidates to the user is reasonable depends on
the evaluation of how good the top three candidates are. Thus, we also wish to assess
top three candidates directly because the top three F1 measure values presented are
computed for a gold standard that allows only a single correct answer, when in fact
there may be multiple possible correct answers. More specifically, given that preposition
usage is variable, we would like to know how often the top three candidates include
multiple valid options. To this end, for each adapted model, we selected a sample of
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Table 11
Prepositions: Top three evaluation. Column 1 shows the number of correct predictions among
the top three candidates (between 0 and 3). Each cell shows the percentage of cases with this
number of correct predictions among the top three.

Number of correct predictions Percentage of preposition examples

among the top 3 candidates (AP-adapted, %) (NB-adapted, %)

0 6.3 14.3
1 79.4 71.4
2 14.3 12.5
3 0 1.8

200 preposition instances where the classifier’s top choice was different from the gold
label. These were manually annotated by one of the authors, a native English speaker,
who was given a preposition in a context (where by “context” we consider the entire
sentence where the preposition appears) and was asked to specify how many of the top
three choices are acceptable in a given context. Results of the evaluation are shown
in Table 11. Column 1 shows the number of correct predictions among the top three
candidates (between 0 and 3). Each cell shows the percentage of cases with this number
of correct predictions among the top three. We found that for the majority of the cases,
at least one of the top three candidates is valid; row 1 shows that only 6.3% and 14.3%
of the examples for AP- and NB-adapted models, respectively, did not have a single
correct candidate among the top three choices. More importantly, 14.3% of examples
for each of the classifiers have two or three valid preposition choices among the top
three candidates (last two rows in the table). We believe that these numbers confirm
earlier findings with respect to the highly variable preposition usage and thus justify
presenting multiple options to the user, at least for preposition mistakes. Finally, it is
interesting to note that AP-adapted has a higher percentage of correct prepositions in
the top three evaluation than NB-adapted, even though NB-adapted does better in the
top 1 evaluation. We believe that this indicates that AP-adaptation is better than NB-
adaptation at ranking the appropriate candidates. This result is also consistent with
those in Table 10 that show that the precision (and F-score) of AP-adapted models in the
top three evaluation improves from 31.27 to 72.70, whereas for NB-adapted models the
improvement is more modest (from 31.42 to 59.87). Lastly, as the results show, whereas
precision numbers increase markedly, the recall does not. This happens because the
top three evaluation is performed on models that were optimized with respect to top
one evaluation. It is also possible to optimize models based on top three evaluation, in
which case both precision and recall would increase, resulting (most likely) in improved
F1 scores. However, the evaluation and additional annotation that we perform already
demonstrate how multiple preposition usage underestimates top one evaluation.

5. Adaptation by Language

In the previous experiments, models were adapted based on error patterns of learners
from a variety of first-language backgrounds. In this section, we investigate the
question of using error patterns from the writers of the same first language vs. other
(linguistically related or unrelated) language backgrounds. In this article, we consider
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Table 12
Number of examples and errors for the 11 languages used in the experiments on
language-specific adaptation.

First Error type
language Articles Prepositions Verb agreement

Total Errors Correct Total Errors Correct Total Errors Correct
(%) (%) (%)

Chinese 5,054 273 94.60 2,337 224 90.42 2,615 54 97.93
French 9,296 328 96.47 4,419 390 91.17 4,807 92 98.09
Greek 4,962 212 95.73 2,296 244 89.37 2,584 34 98.68
Italian 4,848 178 96.33 2,377 181 92.39 2,358 17 99.28
Japanese 5,073 331 93.48 2,387 177 92.58 2,464 43 98.25
Korean 6,006 374 93.77 2,708 215 92.06 2,932 29 99.01
Polish 5,335 397 92.56 2,507 174 93.06 2,802 45 98.39
Russian 5,703 440 92.28 2,793 229 91.80 2,769 22 99.21
Spanish 12,317 339 97.25 5,866 588 89.98 6,444 80 98.76
Thai 4,371 277 93.66 2,107 170 91.93 2,316 58 97.50
Turkish 5,275 355 93.27 2,459 213 91.34 2,802 24 99.14

Total 68,240 3,504 94.97 32,256 2,805 91.30 34,893 498 98.57

two groups of closely related languages: Russian and Polish (Slavic), and Spanish and
Italian (Romance).8 As discussed in Section 2, research in second-language acquisition
as well as empirical studies in natural language processing indicate that the effect of the
native language on learner error patterns is strong. In fact, because writers of related
languages use similar structures transferred from their native language to English, it
is even possible to recover language family structures by analyzing writing patterns of
non-native speakers (Nagata and Whittaker 2013; Berzak and Katz 2015).

Here, we study to what extent having language-specific patterns affects the quality
of adaptation. We use three phenomena—articles, prepositions, and verb agreement—
as these occur in the FCE data from 11 first languages (shown in Table 12), excluding
languages that only have a handful of examples, and study these phenomena within
the NB adaptation framework, training on the native data from the Web1T corpus
and adapting using learner data from different first-language groups. Specifically, we
denote by target, other, related, and unrelated, error patterns obtained from the learners
of the same first-language background, all other first languages (excluding the target),
languages related to the target, and those unrelated to the target, respectively. The group
other includes both related and unrelated languages to the target.

Because experiments in this section are performed individually by first-language
group, we do not separate the data into training and testing partitions. Instead, results
are reported in 10-fold cross-validation, where each time we evaluate on 10% of target-
language data, and 90% of the target data is used to estimate prior parameters of the
target-based adaptation model. Similarly, in all other settings—related, unrelated, and
other—we select the same amount of data to estimate priors from other, related, or
unrelated languages.

8 Section 5.2 details the definitions of related languages adapted for our experiments.
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Table 13
Adapting NB with data from the target language background and other language backgrounds.
Numbers in the parentheses show the relative improvement of using adapted models vs. the
native-trained models. All improvements of adapted models vs. native-trained models are
statistically significant (McNemar’s test, p < 0.001).

Error Native-trained Adapted (other) Adapted (target)

P R F1 P R F1 P R F1
(rel. improv.) (rel. improv.)

Article 28.06 41.49 33.47 31.17 40.65 35.28 (5.4%) 32.21 41.33 36.20 (8.2%)
Prep. 18.41 24.97 21.19 23.25 23.82 23.63 (11.5%) 23.80 24.95 24.25 (14.4%)
Verb agr. 28.52 46.51 35.32 32.73 43.78 37.44 (6.0%) 33.58 45.96 38.80 (9.9%)

The following key questions are addressed.

1. Target priors vs. other priors. Suppose we have annotated data from a set
of writers of various linguistic backgrounds, and we need to adapt to
writers from a different linguistic background that is not part of our
corpus. Is there a benefit in collecting error patterns on this new set of
learners for adaptation? In other words, can we do better using error
patterns from writers of the target language than when adapting using
data from other speakers?

2. Target priors vs. related language priors vs. unrelated language priors.
Here, we investigate in more detail the effect of language relatedness
on the quality of adaptation. For a given target language, among all
languages that are different from the target, we distinguish between those
that are linguistically related to the target and unrelated languages. We
study whether there is a difference between adapting using target priors,
priors based on languages that are closely related linguistically to the
target, and priors from languages unrelated to the target.

5.1 Target Priors vs. Other Priors

Table 13 compares three types of models: Native-trained, adapted with other priors,
and adapted with target priors. In all adapted models, priors are estimated on the same
amount of data: from the same language (target); or from a set of ten other languages
(other). We note that adapting using both target and other language data is effective
compared with training on native data only. However, for all error types, there is an
advantage to using target language priors over priors estimated from data written
by speakers of other first language backgrounds: The relative improvement of using
adapted models vs. native-trained models ranges between 5.4% to 11.5% for other-
language adaptation, but ranges between 8.2% to 14.4% for target-language adaptation.

We now consider whether all languages benefit in the same way when target-
language adaptation is used in place of other-language adaptation. Table 14 shows that,
with a few exceptions, both target-language and other-language adaptations help for
all language groups and error phenomena. With respect to the difference in the effect
of target-language adaptation and other-language adaptation, whereas many language
groups and phenomena benefit from target language adaptation vs. other-language
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Table 14
Target-language adaptation. Adapting NB with data from the target language background and
other language backgrounds. Results are presented by first-language background where
languages are ordered by the amount of target error data available. Bold is used to indicate
results where target-language adaptation is better than other-language adaptation.

Language F1

(number of errors) Native- Adapted Adapted Adapted
trained (other langs.) (target lang.) (other+target)

Articles
Russian (440) 37.72 39.59 40.14 39.47
Polish (397) 40.93 43.33 43.43 43.22
Korean (374) 38.96 40.97 41.37 41.34
Turkish (355) 39.12 40.94 40.67 40.71
Spanish (339) 23.58 24.52 25.31 24.82
Japanese (331) 39.82 42.82 42.80 42.74
French(328) 26.86 27.18 27.70 27.56
Thai (277) 34.92 35.80 35.79 35.79
Chinese (273) 30.34 32.51 32.27 32.13
Greek (212) 29.89 31.84 33.53 32.51
Italian (178) 28.56 30.42 31.13 30.86

Prepositions
Spanish (588) 23.88 26.44 28.07 27.65
French (390) 19.85 20.95 23.35 21.08
Greek (244) 27.63 30.27 32.03 31.43
Russian (229) 17.16 20.81 22.92 20.85
Chinese (224) 23.11 25.36 24.77 24.88
Korean (215) 19.17 22.83 20.70 23.17
Turkish (213) 18.41 23.33 21.20 22.94
Italian (181) 22.97 22.50 26.26 23.64
Japanese (177) 16.13 17.99 16.66 18.32
Polish (174) 24.25 25.86 24.42 24.52
Thai (170) 18.12 18.87 17.23 19.64

Verb agreement
French (92) 38.99 38.79 42.33 39.97
Spanish (80) 36.59 39.74 40.56 39.46
Thai (58) 27.84 27.79 28.08 29.99
Chinese (54) 43.39 44.71 47.78 43.71
Polish (45) 49.00 52.51 54.71 53.18
Japanese (43) 34.23 33.35 38.48 31.92
Greek (34) 28.06 31.54 30.35 30.14
Korean (29) 33.51 36.57 32.63 37.12
Turkish (24) 36.90 41.00 39.29 40.93
Russian (22) 27.03 31.54 30.65 29.70
Italian (17) 21.34 25.87 24.41 26.30

adaptation (these results are in bold in the table), some language groups do better with
adaptation based on other languages than on their own target data.

It is interesting to observe that preposition and verb agreement errors behave
similarly, in that languages that do not benefit from target priors as much as from
priors extracted from other languages are those that have less error evidence for prior
estimation: Specifically, for verb agreement and preposition errors there is a strong
correlation between the amount of target error evidence and the ability to improve over
priors estimated from other languages. We conjecture that this happens because when
more error data are available, differences related to language-specific mistake patterns
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become more pronounced, and thus there is more benefit when using target-language
data for adaptation vs. other-language data. It should be noted, however, that data size
for prior estimation depends on error type, or, specifically, the error rate and the size
of the confusion set (small for agreement, large for prepositions). Thus, for agreement
mistakes, even 40 errors provide a good estimate of error patterns. For preposition
mistakes, it is a good idea to have over 200 errors to obtain reasonable estimates. To
collect preposition data, this would require about 2K words of annotated learner texts
(we assume an average error rate of 10% for preposition mistakes and that prepositions
typically account for 10% of words). For verb agreement errors, error rates are often less
than 2%, therefore the amount of annotation required might be even higher, despite a
smaller confusion set.

Another interesting observation is that, unlike for preposition and verb agreement
mistakes, for articles there is no correlation between the size of error data used in adap-
tation and the benefit obtained from using target-language adaptation. In fact, observe
that we have both more data to estimate article error patterns (Table 12) and a smaller
confusion set compared with prepositions, which suggests that estimated language-
specific parameters are quite robust. We conjecture that the reason for a smaller benefit
from target priors for article mistakes for some of the language groups is that patterns
of article errors are more similar across languages than patterns of other error types.
Table 15 illustrates article usage patterns in the languages for which we use learner
English data. For instance, even though Russian and Korean are not closely related
linguistically, because neither of these languages has articles, the error patterns can be
expected to be similar.

Finally, the last column shows performance of models that are adapted both with
target and other language data, where 20% of the data for adaptation come from the
target language. These results help answer the question “if we already have other-
language data, would it be helpful to also acquire target-language data?” To this end,
we compare adaptation using “other” language data only with adaptation that uses
other+target data. For article errors, there is no clear benefit to combining target- and
other-language data. This is consistent with the adaptation results on articles that do
not show an advantage to using target- priors over other-language priors. However,
some languages do exhibit a consistent small improvement when target-language data
is added to other-language data for adaptation. Specifically, these are the same lan-
guages that also exhibit an improvement when target-language data is used instead
of other-language data. In general, languages that benefit more from target-language
priors are also the same languages that benefit when target priors are added to other
priors (see the last two columns). For Greek, for example, adding target-language priors
to other-language priors is particularly beneficial.

Similarly, for prepositions, typically adding target-language prior data helps
in those cases when target-language adaptation is beneficial compared with

Table 15
Article usage across different first languages.

Language Def. article Indef. article

French/Greek/Italian/Spanish + +
Japanese/Korean/Polish/Russian/Thai − −
Turkish − +
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other-language adaptation. For some languages, however (e.g., Thai and Japanese),
other+target adaptation outperforms both the target-language and the other-language
adaptations. We conjecture that this happens when target data are scarce and mixing
that with other-language data introduces a good balance of common and language-
specific error patterns. Finally, for verb agreement, it is not clear when adding
target-language data to other data is beneficial.

Similarity of Error Patterns and Its Effect on Adaptation This observation about
articles suggests that we should expect target-language adaptation to be particularly
useful compared with other-language adaptation, when the error patterns based on
the other languages are dissimilar to the target language error patterns. To determine
whether this is indeed the case, for two phenomena (articles and verb agreement)
we selected two languages that behave differently when it comes to target-language
adaptation. For article mistakes, we chose Russian and Greek: Greek is a language that
benefits substantially from target priors compared with other-language priors, which
is not the case for Russian. Similarly, for verb agreement mistakes, we chose Japanese
and Thai.

Table 16 illustrates for each error type and language two error distributions: (1) the
distribution of various confusions based on the target data and (2) the distribution of
confusions based on data from other languages. For example, the confusion of type
∅-the (the definite article is incorrectly omitted) accounts for 27.5% of all article errors
in the data by Greek writers, and accounts for 40.24% of all mistakes in the Russian
data. Based on the evidence from other 10 language backgrounds, this confusion
accounts for about 37% of all article mistakes. The relative frequency of this confusion
in the Russian data is thus closer to the “averaged” frequency than for the Greek data.
Overall, for the majority of article errors in the Russian data (over 66%) the distribution
is very similar to “averaged” error statistics, which is not the case for Greek. More
generally, we hypothesize that the reason Greek benefits most from moving from
“other” priors to “target” priors is because the distribution of article errors for Greek
writers is very different from the “averaged” distribution. In contrast, for Russian, both
of the distributions are quite close.

If we assume that we have a measure for the distributional distance between “tar-
get” and “other” error patterns, then we wish to determine whether there is indeed
a correlation between the distributional distance and the benefit from moving from
“other” priors to “target” priors. To this end, for a given language background and error
type, we compute weighted L2 distance between the “target” error distribution and
“other” error distribution, where the coefficients (weights) correspond to the frequency
of the occurrence of the specific confusion type. More formally, let t denote the error
distribution of the “target,” and o denote the error distribution of the “other” (these are
the distributions shown in Table 16). Then ti and oi refer to the frequencies of the specific
confusion in “target” and “other,” respectively (as shown in Table 16). For instance, the
frequency of the confusion type ∅-the in the Greek target data is 27.50%. We compute
weighted L2

w distance as follows:

L2
w(t, o) =

√√√√ n∑
i=1

(ti − oi)2 · ti

Table 17 demonstrates that, indeed, larger L2
w distances correspond to bigger advantages

when using “target” priors in place of “other” priors.

748



Rozovskaya, Roth, and Sammons Adapting to Learner Errors with Minimal Supervision

Table 16
Comparison of distributions of article and verb agreement confusions. For each language,
confusions based on the target data and data from other 10 languages are shown.

Distributions of article confusion sets
Confusions Greek Russian

Target (%) Other (%) Target (%) Other (%)

∅-the 27.50 37.35 40.24 37.09
∅-a 30.50 25.11 26.43 24.51
the-∅ 30.50 19.94 11.43 22.11
a-∅ 7.50 8.07 9.05 7.97
a-the 1.00 5.21 7.14 4.51
the-a 3.00 4.32 5.71 3.81

100.00 100.00 100.00 100.00

Distributions of verb agreement confusion sets
Confusions Japanese Thai

Target (%) Other (%) Target (%) Other (%)

INF-S 32.57 51.42 53.45 49.32
S-INF 39.53 29.45 25.86 30.91
WAS-WERE 18.60 14.51 8.62 15.68
WERE-WAS 9.30 4.40 10.34 4.09
INF-WAS - 0.22 1.73 -

100.00 100.00 100.00 100.00

Table 17
Distance between error distributions vs. benefit from using target priors compared to priors
averaged on other language data. Relative advantage reflects the relative improvement that we get
between priors estimated on target data vs. other data.

Articles
Language Weighted L2 dist. Target vs. other priors: rel. advantage

Greek 83.55 5.31%
Russian 43.37 1.38%

Verb agreement
Language Weighted L2 dist. Target vs. other priors: rel. advantage

Japanese 126.98 15.38%
Thai 49.09 1.04%

5.2 Adaptation by Target, Related, and Unrelated Languages

We now address the second question, that of comparing the contribution of priors
estimated from the target language, from related languages, and from languages that
are not related to the target. Two pairs of closely related languages among the 11 are
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identified: Russian/Polish and Spanish/Italian. For each of the four languages, we
compare four models:

1. Native-trained (unadapted)

2. Adapted with target priors

3. Adapted with data from related languages: For Russian, we used Polish data;
for Polish, we used Russian; for Italian, we used Spanish; and for Spanish,
we used Italian.

4. Adapted with data from unrelated languages

Table 18 shows the performance for the four languages using these four models.
First, we note that all adapted models perform better than the unadapted ones, even
when adaptation only uses data from unrelated languages. Second, there is very little
difference between the models adapted with target data (2) and those adapted using
data from related languages (3). Only for verb agreement mistakes, there is about
1 point difference in F1 performance, whereas for the other errors results are quite
close. However, adaptation using target data substantially outperforms adaptation
using unrelated language data, by 1.1 to 2.7 F1 points for different errors. Similarly,
there is a big gap when using data from related languages vs. unrelated ones: 1.5 F1
points or more of a difference. On average, adaptation that uses unrelated language
error data gives a relative improvement with respect to unadapted models between
3.49% and 5.45%, and for adaptation that is based on related language data and target
language data improvements range between 7.85% to 13.53% and between 7.17% to
16.12%, respectively.

To conclude, the experiments that separate related and unrelated language priors
indicate that error data from related languages helps much more than error data from
unrelated languages. Thus, when we only have data from unrelated languages avail-
able, it makes sense to invest a little bit and add data from the target language.

Table 18
Adaptation using data from target language, related languages, and unrelated languages. All
models are trained using NB on the Web1T corpus. In all settings, the total number of examples
used to estimate priors is the same. Averaged results for Russian, Polish, Spanish, and Italian.
Best results for each phenomenon are emphasized in bold. In the parentheses, relative
improvement of each adapted model with respect to the corresponding native-trained model is
shown. All improvements of adapted models vs. native-trained models and improvements of
the best adapted models vs. models adapted using unrelated language data are statistically
significant (McNemar’s test, p < 0.001).

Error Performance (F1)
type (1) Native-trained (2-4) Adapted models

(2) Target (3) Related (4) Unrel.

Article 30.70 32.90 (7.17%) 33.11 (7.85%) 31.77 (3.49%)
Prep. 22.40 26.01 (16.12%) 25.43 (13.53%) 23.62 (5.45%)
Verb agr. 34.67 38.76 (11.80%) 37.56 (8.34%) 36.07 (4.04%)
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6. Related Work

Two Approaches to Grammar Correction There are two dominant approaches to
grammatical error correction: Classification and statistical machine translation (MT).
Not only are they orthogonal technically, they have two key differences in terms of
the amount of annotated data required and in terms of the types of mistakes they address.
The two approaches are complementary, and each of them is essential to getting good
results (Rozovskaya and Roth 2016). This article deals with the classifier-based
approach.

In terms of differences in targeting different types of mistakes, results in the litera-
ture show that the approach studied in this work can be used to improve state-of-the-art
MT models, as some error phenomena, such as article and verb agreement errors, are
better handled using classifiers (Rozovskaya and Roth 2016).

Regarding the amount of supervision, MT systems require significant annotation:
All of the recently published MT systems are trained using Lang-8 corpus, which con-
tains between 11M and 48M words of annotated learner data, depending on the corpus
version and the pre-processing that was performed (Susanto, Phandi, and Ng 2014;
Chollampatt, Taghipour, and Ng 2016; Hoang, Chollampatt, and Ng 2016; Junczys-
Dowmunt and Grundkiewicz 2016; Mizumoto and Matsumoto 2016; Yuan and Briscoe
2016).

Although most of the recent publications report results on the CoNLL-2014 test
set, those systems are evaluated on global behavior (i.e., the whole corpus) and do not
focus or evaluate performance on specific error phenomena, as we do in this work.
Further, because we care about specific first-language backgrounds, CoNLL is not an
appropriate data set to use: The FCE corpus is the only one that contains data from
learners of multiple language backgrounds and information on the first language of the
writer, used in Section 5. Therefore, in this work we make use of the FCE data set.

However, we also show that the models described here are competitive with state-
of-the-art on the CoNLL-2014 test set. Table 19 shows the performance of the classifier
system from our most recent work (Rozovskaya and Roth 2016) that is based on the
classifiers described here, and places it in the context of other recently published sys-
tems. The systems are divided into three categories: classifier-based, MT, and combined.
For each system, the size of the annotated learner data used to train the system is also
shown. Depending on the type of training data available, a specific approach should
be preferred. In particular, classification systems can be trained from significantly less
annotated data and can focus on specific errors, whereas MT-based systems do not have
this capability. Best result in each category is in bold.

Observe that the performance of the MT systems depends heavily on the size of the
supervision. Specifically, when an MT system is trained only on the CoNLL corpus, the
performance is quite poor (28.25). Thus, all other MT systems use an additional source
of supervision—either the Cambridge Learner corpus (CLC), which is a larger version
of FCE, or the publicly available Lang-8 corpus. The Lang-8 corpus used in the literature
has several versions, depending on when it was collected and how much noise has been
removed from it. The smallest version used by Hoang, Chollampatt, and Ng (2016) and
Chollampatt, Taghipour, and Ng (2016) contains about 11M words; the one in Mizumoto
and Matsumoto (2016) is about twice as large; the version in Junczys-Dowmunt and
Grundkiewicz (2016) contains about 30M words; the MT component in Rozovskaya
and Roth (2016) has 48M words. Because of these differences in size and quality, the
comparisons are not fair. For instance, Junczys-Dowmunt and Grundkiewicz (2016)
report an F0.5 score of 52.21 using a version closer to 50M words, which was used in
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Table 19
State-of-the-art systems on CoNLL-2014 data set. The systems are divided into three categories:
classifiers, MT, and combined. For each system, we also show the size of the annotated learner
data used to train the system. Depending on the type of training data available, a specific
approach should be preferred. In particular, classification systems can be trained from
significantly less annotated data and can focus on specific errors, whereas MT-based systems do
not have this capability. Best result in each category is in bold.

System type System name Annotated learner data F0.5

CoNLL Lang-8 CLC
1.2M 11-48M 29M

Classif. Susanto, Phandi, and Ng (2014) X 35.44
Rozovskaya and Roth (2016) X 43.11

MT

Mizumoto and Matsumoto (2016) X X 40.00
Yuan and Briscoe (2016) X X 39.90
Chollampatt, Taghipour, and Ng (2016) X X 41.75
Hoang, Chollampatt, and Ng (2016) X X 41.19
Rozovskaya and Roth (2016) X 28.25
Rozovskaya and Roth (2016) X X 39.48
Junczys-Dowmunt and Grundkiewicz (2016) X X 49.49

Combined Susanto, Phandi, and Ng (2014) X X 39.39
Rozovskaya and Roth (2016) X X 47.40

Rozovskaya and Roth (2016), however, because of the differences in pre-processing,
these data sets are also not the same.

Note that the system presented in this paper is better than most of the recently
published works, including those in the MT category, even though the classifiers only
use the CoNLL training corpus (1.2M words) as learner data, whereas all other systems,
all of which use the MT approach, train on much more annotated learner data. We wish
to emphasize that the present work focuses on approaches that use a small amount of
annotation. This should be particularly useful when building error correction systems
when very little or no annotated data is available, which is the case today for languages
other than English.

Finally, it should be pointed out that, although the absolute F0.5 score for the
combined system of Rozovskaya and Roth (2016) is slightly lower than the MT
approach of Junczys-Dowmunt and Grundkiewicz (2016), the combined system uses
a much weaker MT component (which scores 39.48 F0.5, when used by itself). We
expect that a combined system that used a better MT component would perform
significantly better than Junczys-Dowmunt and Grundkiewicz (2016) and, in addition,
would handle better some types of mistakes that MT systems do not do well on.

Adaptation Using Artificial Errors Several other researchers study the effect of the
adaptation framework that uses artificial errors. The two most closely related stud-
ies are the works by Cahill et al. (2013) and Felice and Yuan (2014). Cahill et al.
researched the effects of different training paradigms with different data sets on the
preposition error correction task. They show improvements when using artificial errors,
although their selection models were not optimized with respect to F-score (typically,
models trained on well-edited text use a threshold, as we do in this work, because
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otherwise these models tend to have extremely low precision, which negatively affects
the F-score). Because the original models were not optimized, it is not clear whether the
improvements were due to adding artificial errors.

Felice and Yuan (2014) follow the adaptation framework originally proposed in
Rozovskaya and Roth (2010b) but they introduce artificial errors by taking into account
additional, contextual information, such as the POS tags of the head nouns for article
errors, the surface form of the verbs for verb agreement mistakes, and semantic classes
of the nouns for preposition mistakes. The adaptation method is evaluated in the
context of training statistical machine translation systems for grammar correction,
so that work is not directly comparable to ours. Furthermore, no improvements are
reported of the baseline of training on a corpus containing natural errors.

Large-scale Error-annotated Corpora Two large-scale error-annotated corpora became
available recently—Lang-8 (Mizumoto et al. 2012) and corpus Wikirev (Cahill et al.
2013)—that several researchers have used in developing grammar correction systems.
Similar to results reported in this work, Cahill et al. (2013) show that using these corpora
with artificially generated errors or naturally occurring errors typically outperforms
models trained in the selection paradigm.9 We wish to emphasize that the focus of the
current work is on methods that use minimal supervision, when error-annotated data are
not available, such as low-frequency errors and languages other than English.

7. Discussion and Conclusion

This article addressed the question of developing an appropriate training paradigm for
error correction tasks that can consider the regularities in learner errors using minimal
supervision. Although several large-scale error-annotated corpora recently became avail-
able in English, such corpora require significant effort to create and we are therefore
unlikely to reach a state where such resources exist for all, or even many, languages
of interest. Thus, the techniques that we describe are going to be very useful once this
line of work extends to other languages that do not have many resources. Further, even
when one has annotation of learner data in a specific genre, it could be different from the
genre of the data that one needs to correct. In this case, one can envision applying the
adaptation framework and training models on native data that is of a similar genre to
the target learner data. More generally, the techniques that we develop should be useful
once one moves out of the familiar, ideal setting where we have annotation of learner
data that is both in the target language and of a similar type of writing.

The proposed training paradigm is made possible using parameters related to error
patterns, which are very simple and thus do not require a lot of annotated data for
estimation. This is in contrast to features encoding contextual information, which can
be estimated using native English data. As a result, the proposed adaptation approach
allows one to combine large amounts of native data (which is cheap and can be used to
learn context features) with a small amount of annotated ESL data for estimating error
patterns.

We described how error patterns can be learned from a small annotated sample and
proposed two methods of “injecting” knowledge about error regularities into models

9 One issue here is that selection models are not optimized in this work and the results are reported
without decision thresholds.
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that are otherwise trained on native English data, within the framework of two state-
of-the-art machine learning algorithms: a discriminative classifier (Averaged Percep-
tron) and Naive Bayes. NB and AP were chosen as two algorithms that exhibited top
performance in error correction tasks, with AP being the best model (Rozovskaya and
Roth 2011). It is important to emphasize, though, that although discriminative classifiers
tend to outperform NB, sometimes it is preferable not to train discriminatively. For
instance, we used the Web1T corpus that contains pre-computed n-gram counts that can
be used to train a NB model, but not an AP model. Another advantage of the NB
adaptation is that it does not require generating new training data and re-training in
order to adapt to a different error distribution.

We showed that adapted models outperform native-trained models that use the
same amount of native data for training. Crucially, the effect of adaptation remains
strong as the size of the native training data is increased. This is because learner
data contains knowledge about error patterns that is not available in native data. The
adapted models also outperform ESL-trained models that use the same amount of data.
This is because context parameters require much more data for estimation than error
parameters, so it is a good idea to use native data for learning the parameters of the
context features.

We first applied the adaptation approach across multiple first-language back-
grounds and learned error regularities that are not specific to the first language
background of the writer. Next, we used the idea that error patterns are often first-
language-dependent and showed that performance can be further improved with
target-language adaptation, and even in cases when error statistics are obtained from
related languages or languages that exhibit similar behavior in error patterns.

In this work, we studied the adaptation framework, as applied to data produced by
learners of intermediate and advanced language proficiency. In our previous work, we
showed that adaptation is effective using multiple learner corpora that contain various
levels of proficiency (intermediate [FCE], advanced [NUCLE, Illinois], and highly profi-
cient non-native writers [HOO]). Our expectation is that adaptation would be effective
also at beginning language levels, although it is more likely that such writing might
require whole-sentence correction, which is out of the scope of this work.

Although this work focuses on a technical contribution to the text correction area
and shows how to develop models that are aware of learner error patterns using
minimal supervision, there is another important but orthogonal direction, which is how
to eventually build a good system that is able to improve the quality of the text. This
question is also related to evaluation metrics, which we touched upon in Section 4.3.
The F-measure by itself does not indicate what the quality of the text is as a result of
running the system; instead, this is done by looking at accuracy and comparing it with
the learner baseline. On the other hand, accuracy measure is only a single point and in
order to get improvement it pushes the system toward low recall.

Thus one important direction for future work is a focus on designing a system that
can improve the quality of the text compared with the learner baseline. This evaluation
should also take into account the question of annotation: Because we are starting with
such a high baseline, having annotation judgments for as many valid choices as possible
is key. In fact, Bryant and Ng (2015) show that evaluation performance increases with
the number of annotators used to correct the same text, as multiple annotators can better
account for the fact that there are typically multiple ways to correct the same text (as
we discussed in Section 4.6 in the context of correcting preposition mistakes). These
findings indicate that the results obtained using just one annotator (as is done in the
FCE corpus) likely underestimates the system performance for all errors.
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Appendix A. Features

Table A.1
Features used in the article error correction system trained discriminatively. wB and wA denote
the word immediately before and after the target, respectively; and pB and pA denote the POS
tag before and after the target. headW denotes the NP head. NC stands for noun compound and
is active if the second to last word in the NP is tagged as a noun. Verb features are active if the
NP is the direct object of a verb. Preposition features are active if the NP is immediately preceded
by a preposition. Adj feature is active if the first word (or the second word preceded by an
adverb) in the NP is an adjective. NpWords and npTags denote all words (POS tags) in the NP.
Adapted models also use the author’s article as a feature.

Feature
type

Feature group Feature list

Word wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB,
wAw2A, w3Bw2BwB, w2BwBwA, wBwAw2A,
wAw2Aw3A, w4Bw3Bw2BwB, w3Bw2BwBwA,
w2BwBwAw2A, wBwAw2Aw3A, wAw2Aw3w4A

POS pB, p2B, p3B, pA, p2A, p3A, pBpA, p2BpB, pAp2A,
pBwB, pAwA, p2Bw2B, p2Aw2A, p2BpBpA, pBpAp2A,
pAp2Ap3A

NP1 headW, npWords, NC, adj&headW, adjTag&headW,
adj&NC, adjTag&NC, npTags&headW, npTags&NC

NP2 headW&headPOS, headNumber

Chunk wordsAfterNP headW&wordAfterNP, npWords&wordAfterNP, headW&2wordsAfterNP,
npWords&2wordsAfterNP, headW&3wordsAfterNP,
npWords&3wordsAfterNP

wordBeforeNP wB&fi ∀i ∈ NP1

Verb verb, verb&fi ∀i ∈ NP1

Preposition prep&fi ∀i ∈ NP1

Table A.2
Features used in the preposition error correction system trained discriminatively. wB and wA
denote the word immediately before and after the target, respectively; the other features are
defined similarly. compHead denotes the head of the preposition complement. wB&compHead,
w2BwB&compHead are feature conjunctions of compHead with wB and w2BwB, respectively.
Adapted models also use the author’s preposition as a feature.

Feature
Type

Feature list

Word
n-gram

wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB, w2BwBwA,
wBwAw2A, wAw2Aw3A, w4Bw3Bw2BwB, w3w2BwBwA, w2BwBwAw2A,
wBwAw2Aw3A, wAw2Aw3w4A

Preposition
complement

compHead, wB&compHead, w2BwB&compHead
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Table A.3
Features used in the verb agreement error correction system trained discriminatively. wB and wA
denote the word immediately before and after the target, respectively; and pB and pA denote the
POS tag before and after the target. Syntactic features are described in Table A.4. Adapted
models also use the author’s verb as a feature.

Feature
type

Feature list

Word wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB,
w2BwBwA, wBwAw2A, wAw2Aw3A, w4Bw3Bw2BwB, w3Bw2BwBwA,
w2BwBwAw2A, wBwAw2Aw3A, wAw2Aw3w4A

POS pB, p2B, p3B, pA, p2A, p3A, pBpA, p2BpB, pAp2A, pBwB, pAwA, p2Bw2B,
p2Aw2A, p2BpBpA, pBpAp2A, pAp2Ap3A

Syntax subjHead, subjPOS, subjDet, subjDistance, subjNumber, subjPerson,
subjHead&subjDistance, subjPOS&subjDistance, subjNumber&subjPerson

Table A.4
Verb agreement features that use syntactic knowledge.

Feature name Description

(1) subjHead, subjPOS the surface form and the POS tag of the subject head

(2) subjDet determiner of the subject NP

(3) subjDistance distance between the verb and the subject head

(4) subjNumber Sing – singular pronouns and nouns; Pl – plural pronouns
and nouns

(5) subjPerson 3rdSing – “she”, “he”, “it”, singular nouns; Not3rdSing – “we”,
“you”, “they”, plural nouns; 1stSing – “I”

(6) conjunctions (1) and (3); (4) and (5)
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