
Book Reviews

Introducing Speech and Language Processing

John Coleman
(University of Oxford)

Cambridge University Press (Cambridge introductions to language and
linguistics), 2005, xi+301 pp; hardbound, ISBN 0-521-82365-X, $90.00; paperbound,
ISBN 0-521-53069-5, $39.99

Reviewed by
Mary Harper
Purdue University

In October 2003, a group of multidisciplinary researchers convened at the Symposium
on Next Generation Automatic Speech Recognition (ASR) to consider new directions in
building ASR systems (Lee 2003). Although the workshop’s goal of “integrating multi-
disciplinary sources of knowledge, from acoustics, speech, linguistics, cognitive science,
signal processing, human computer interaction, and computer science, into every stage
of ASR component and system design” is an important goal, there remains a divide
among these communities that can only be addressed through the educational process.
The book Introducing Speech and Language Processing by John Coleman represents a bold
effort to educate students in speech science about some of the important methods used
in speech and natural language processing (NLP). This book represents an important
first step for forging effective collaborations with the speech and language processing
communities.

Coleman states in chapter 1 of his book that “This is a first, basic, elementary and
short textbook in speech and natural language processing for beginners with little or no
previous experience of computer programming” (page 2). Coleman targets the book at
students in a variety of disciplines, including arts, humanities, linguistics, psychology,
and speech science, as well as early science and engineering students who want a
glimpse into natural language and speech processing. However, since it assumes prior
knowledge of basic linguistics, the text is likely to be less accessible to traditional
science and engineering students. Coleman’s motivation for writing this book is that
the currently available textbooks in NLP and speech require knowledge that students
from more of a humanities background would not have (e.g., programming, signal
processing). The author also astutely points out that there tends to be a divide between
the areas of signal processing and computational linguistics, although in recent years
with ubiquity of statistical modeling and machine learning techniques in both areas,
this divide is becoming much smaller. The author’s motivation for this book is excellent:
“a refusal to let the old sociological divide between arts and sciences stand in the way
of a new wave of spoken language researchers with a foot in both camps” (page 4).

The textbook covers a variety of techniques in speech and natural language process-
ing, along with computer programs implementing many of them in either C or Prolog,
and it capitalizes on Coleman’s insights from courses offered to graduate linguistics
students. It comes with a companion CD containing software needed to compile and/or
execute the programs in the book, as well as source code for all of the described
implementations. The readme file on the CD contains helpful installation notes, while
the text describes how to compile and use each of the programs. Chapter 1 contains

Computational Linguistics Volume 32, Number 1

a comprehensive list of topics that are covered from “first principles,” provides de-
tails about the computational environment that is needed to compile and execute the
programs provided on the CD, and a listing of computer skills one would need to
get started. Coleman encourages the reader/student (I will use student henceforth) not
just to run the programs but to also to “tinker” with them in order to gain a deeper
understanding of the way they work. Chapter 1 also lays out the structure of the text
graphically in order to depict the dependencies among the chapters. In addition to the
book chapters, there is an appendix on ASCII characters, a helpful glossary, a list of
references, and a comprehensive index. Importantly, there is also a companion website
with errata, solutions to selected exercises, bug reports, software updates, additional
programs, links to third-party software, and some nice bibliography links. Presumably,
this page will be updated over time.

The overall chapter organization of the book is quite nice. Each chapter begins with
a preview and a list of key terms (allowing the student an opportunity to look up the
definitions prior to beginning to read the chapter content) and ends with a chapter
summary, a set of exercises that are helpful for developing a deeper understanding of
the materials discussed in the chapter, suggestions for further reading, and suggestions
for readings to prepare for the next chapter. I will discuss chapters 2 through 9 in turn.

Chapter 2 discusses issues related to the digital representation of a signal with a
focus on the composition of a sound file and how such a file can be loaded into a sound-
editing program for audio display. The chapter starts off by guiding the student through
the process of listening to a cosine waveform and then viewing the same file using a
sound editing program such as Cool Edit 2000. The student is asked to fill in a worksheet
with values for a cosine function and then plot the values. Coleman then presents
important information on the digital representation of sound and on sampling theory.
Given this knowledge, the student is walked through the process of generating and
playing a cosine wave. The chapter contains a just-in-time introduction to C sufficient
for a student to read and comprehend the cosine wave generation program coswave.c.
Various computing terms (e.g., bit, compilation, machine code) are defined, followed
by a discussion of C numeric data types and differences in representation across ar-
chitecture. The C code presented in this chapter makes concrete Coleman’s discussion
of loops, arrays, calculation of mathematical expressions, overall program layout, and
file output. The chapter ends with several helpful exercises. The first provides a very
detailed set of instructions for compiling and executing the coswave program and then
playing the generated output signal in Cool Edit 2000. It should be noted that Cool Edit
2000 is not a public-domain package and is no longer available through the original
developers. Alternatives mentioned on the text’s Web site (e.g., wavesurfer, Praat) can
be used instead, although no details are offered about using them for the exercises.
Students may face some challenges in opening and playing raw data files with these
alternatives.

Chapter 3 introduces methods for modifying the digital representations of sound; in
particular, the concept of filtering is introduced, followed by a very brief discussion of
how filters are employed in a Klatt formant synthesizer. The chapter first discusses how
operations can be applied to number sequences in C to set the stage for discussion of
several speech-processing applications. RMS energy is then defined and a correspond-
ing C program is discussed in detail. Next, a moving-average program is presented as
an example of a low-pass filter. The concept of recursion is next introduced in order to
pave the way for a discussion of IIR (Infinite Impulse Response) filters. High-, low-, and
band-pass filters are defined and tables of coefficients for various filters are provided.
An implementation of an IIR filter is discussed quite briefly; here the author relies on the

138

Book Reviews

fact that there is similarity to the earlier moving-average program. Finally, after the basic
introduction to filters, the Klatt synthesizer is discussed and a schematic diagram for the
system is presented together with a brief discussion of the control parameters that are
used to synthesize sound. IIR filters are tied in because they are used for modeling the
glottal wave and filter-specific frequency components in order to obtain the resonant
frequencies of the vocal tract required for the sound to be synthesized. A consonant–
vowel example is used to demonstrate the synthesizer in action. There is a series of
three exercises at the end of the chapter that should help the student get a better sense
of filters and the type of sound generated by the Klatt synthesizer. The synthesizer
exercises have a cookbook feel to them and give only a glimpse of what is needed to
actually synthesize speech. At the end of the chapter, no further readings on filters are
provided, although readings are recommended for the Klatt synthesizer and methods
for estimating its parameters.

Chapter 4 discusses several programs to extract acoustic parameters from a speech
signal. First up is the fast Fourier transform (FFT), for which a C implementation is
presented and described in detail. The student is asked to apply the compiled code
to an example speech file in order to generate its spectrum, which is then plotted in
Excel or Matlab for comparison to the spectral analysis obtained using Cool Edit. Given
this example, there is a discussion of the types of peaks found in the spectrum, the
resonances of the vocal tract, and the harmonics, as a prelude to the discussion of
cepstral analysis. Coleman first provides a high-level discussion of cepstral analysis,
which employs an inverse FFT, followed by the discussion of its C implementation and
an example using the executable. Cepstral analysis is then used to build a rudimentary
pitch tracker, which is applied to a speech example. This leads to the discussion of
a voicing detection algorithm. Next, the autocorrelation method for pitch tracking is
presented together with its C implementation. Finally, the chapter discusses linear
predictive coding (LPC) and various applications. The chapter ends with exercises to
compare the cepstral and autocorrelation pitch trackers, to modify the output of the LPC
program, and to analyze the vowels in a speech sample and use the LPC spectrum to
estimate their formants. Additional readings are provided on the algorithms presented
in this chapter.

Chapter 5 offers a change of pace as the book introduces finite-state machines
(FSMs) with a focus initially on symbolic language applications. There is a shift from
C to Prolog, although it would have been perhaps more coherent to stick with C. The
discussion of the peculiarities of Prolog could be distracting to a novice programmer.
Furthermore, the representation of an FSM in Prolog is tedious to read, and it may
be difficult for the uninitiated to observe correspondences between the Prolog code
and depictions of corresponding models. Simple examples are used to introduce the
concept of, rather than a formal definition of, FSMs. Issues of coverage, over-generation,
determinism, and nondeterminism of an FSM are discussed briefly. Although Coleman
makes clear that backtracking is an issue for a nondeterministic FSM and notes that
there are methods for converting such an FSM to a representationally equivalent deter-
ministic form, existing tools that could be used for carrying out this conversion (e.g., the
AT&T FSM library) are not discussed. Coleman next presents a Prolog implementation
of an interesting English-like monosyllable FSM. A box is used to introduce a collection
of facts about Prolog, and then there is a walk-through of the code. A nice set of exercises
follows in which the student loads the FSM program and executes it in various ways,
followed by a discussion of some examples of using the FSM to generate strings with
particular constraints. A more formal presentation of FSMs is then provided togeth-
er with a discussion of the state-transition-table representation. The chapter ends by

139

Computational Linguistics Volume 32, Number 1

introducing the concept of finite-state transducers and providing several examples from
various levels of processing, including phonetics, phonology, orthography, and syntax.
Exercises at the end of the chapter build nicely upon the Prolog code already discussed.
The suggested additional readings are appropriate, but perhaps too broad, as many are
textbooks.

Chapter 6 turns to the topic of automatic speech recognition. Coleman provides
a general discussion of knowledge-based and pattern-recognition approaches to ASR
without a historical perspective. The knowledge-based method with its focus on fea-
ture extraction and knowledge integration is described at a very high level without
the benefit of any hands-on exercises. Coleman uses dynamic time warping (DTW)
to exemplify the pattern-matching approach, as it is a fairly straightforward dynamic
programming algorithm of which the student can gain some understanding by filling
in tables of distances. The chapter also contains a nice discussion on the sources of
variability in speech, although no insights are offered on how they would be addressed
by the two approaches to ASR. Only two exercises are found in this chapter, one to fill
in matrices used by the dynamic time-warping algorithm and one asking the student to
think about pitfalls of the pattern-matching approach. The chapter does not discuss the
implementation of any of the methods discussed, although I believe a C implementation
of DTW could have been added to good effect. There are some helpful recommended
readings on ASR techniques, many of which are textbooks or edited books of papers.

Chapter 7 introduces probabilistic finite-state approaches, bringing together acous-
tic analysis with finite-state models. The chapter begins with a discussion of Markov
models and the use of probabilistic methods for coping with uncertainty. Part-of-speech
n-gram models are introduced together with a very brief discussion of probabilities
and Markov models (along with a few simple exercises). Coleman then provides an
informal discussion of the hidden Markov model (HMM), followed by a discussion of
trigram models, data incompleteness, and backoff. Finally, the three basic problems for
HMMs (Rabiner 1989; Rabiner and Juang 1993) are discussed, providing the student
with a clearer understanding of the kinds of questions that can be addressed with them.
There are two very short sections on using HMMs for part-of-speech tagging and speech
recognition, but there are no code or exercises associated with them. The chapter ends
with a discussion of Chomsky’s objections to Markov models and a response to each.
The only exercises appearing in this chapter concern probability and Markov models.
The chapter does not discuss implementations of any of the approaches discussed, and
yet it would seem that the student would gain a deeper understanding of many of the
topics presented in this chapter by playing, for example, with a simple part-of-speech
tagger. There are many publicly available resources that could be used to fill in this
hole.

Chapter 8 moves on to parsing, building upon the knowledge of Prolog gained
in chapter 5. A simple definite-clause grammar is introduced, followed by an intuitive
discussion of parsing and recursive descent parsers. A second grammar, dog grammar.pl,
is then discussed together with difference lists in Prolog so that the grammar can be
updated to produce a tree structure. Coleman then provides an example grammar
that breaks phoneme sequences into syllables. The chapter ends with a very brief
introduction to various parsing algorithms, chart parsing, issues of search, deterministic
parsing, and parallel parsing. The chapter would have been improved by the addition
of exercises; however, the student could load the grammars discussed in the chapter
into Prolog and play with them. Several textbooks are recommended for additional
reading, although the novice might gain a richer perspective by consulting the chapters
on parsing of Allen (1994).

140

Book Reviews

Chapter 9, the final chapter in the book, discusses the incorporation of probability
into a context-free parsing algorithm. Coleman begins with a discussion about why a
probabilistic approach is useful in computational linguistics, ranging from the fact that
human judgments of grammaticality are gradient and at times uncertain of providing a
good mechanism to account for collocations and the learnability of grammars. A simple
probabilistic context-free grammar (CFG) is then presented, along with a discussion of
how to obtain the grammar rules and estimate their probabilities. The chapter ends by
discussing limitations of probabilistic CFGs and briefly introducing two alternative ap-
proaches, tree-adjoining grammars and data-oriented parsing. This chapter contains no
exercises for the student. However, it does provide a list of materials to assist the student
in learning more about C programming, digital signal processing, the Klatt synthesizer,
speech recognition, Prolog, computational linguistics, and probabilistic grammars.

Overall, Coleman has written a textbook that more than adequately fulfills his goal
of introducing the uninitiated to a variety of techniques in speech and language process-
ing. Due to its broad coverage, the text is unable to delve deeply into many of the details,
although this is mitigated in part by the fact that he provides additional readings for
students with an interest in a particular topic. The reading list on the companion website
would be improved by including more modern sources, pointers to current conferences
and journals in speech and natural language processing (e.g., Bird 2005), and links to
helpful resources available on the Internet (e.g., DISC 1999; Hunt 1997; Jamieson 2002;
Kita 2000; Krauwer 2005; Manning 2005; Picone 2005). Additionally, although the book
is not aimed at students with a strong background in mathematics or computer science,
they would benefit from additional readings in these areas. The book would benefit
from additional editing, as it contains errors that could easily confuse a novice, as well
as from the addition of more hands-on exercises, particularly in Chapters 6 through 9.
Quibbles aside, if the book builds bridges between the communities Coleman desires,
it will have a broad impact that could be felt for years to come. I believe education is an
important first step to building multidisciplinary solutions to some of the most pressing
problems in speech and natural language processing. It would be wonderful to see more
books with Coleman’s vision.

References
Allen, James. 1994. Natural Language

Understanding. The Benjamin/Cummings
Publishing Company Inc., Redwood
City, CA.

Bird, Steven, editor. 2005. ACL Anthology:
A digital archive of research papers in
computational linguistics.
acl.ldc.upenn.edu/.

DISC. 1999. A survey of existing methods
and tools for developing and
evaluation of speech synthesis and
of commercial speech synthesis
systems. www.disc2.dk/tools/SGsurvey.
html.

Hunt, Andrew. 1997. CompṠpeech
frequently asked questions.
fife.speech.cs.cmu.edu/comp.speech/.

Jamieson, Leah H. 2002. Notes for EE649
lectures: Speech processing by
computer. shay.ecn.purdue.edu/ee649/
notes/.

Kita, Kenji. 2000. Speech and language Web
resources. www-a2k.is.tokushima-u.ac.
jp/member/kita/NLP/.

Krauwer, Steven. 2005. Tools for NLP and
speech. www.elsnet.org/toolslist.html.

Lee, Chin-Hui. 2003. NSF Symposium on
Next Generation ASR.
users.ece.gatech.edu/chl/ngasr03/.

Manning, Christopher. 2005. Linguistics,
natural language, and computational
linguistics meta-index. www-nlp.stanford.
edu/ links/ linguistics.html.

Picone, Joseph. 2005. Automatic speech
recognition. www.cavs.msstate.edu/hse/ies/
projects/speech/.

Rabiner, Lawrence R. 1989. A tutorial on
hidden Markov models and selected
applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286.

Rabiner, Lawrence and Biing-Hwang Juang.
1993. Fundamentals of Speech Recognition.
Prentice-Hall, Inc., Upper Saddle River, NJ.

141

Computational Linguistics Volume 32, Number 1

Mary Harper joined the faculty of Purdue University in 1989, where she holds the rank of Professor
in the School of Electrical and Computer Engineering. She recently finished a term of slightly
more than three years as the Program Director for the Human Language and Communication
Program at the National Science Foundation with the goal of advancing research in speech, nat-
ural language, and multimodal processing. Her research focuses on computer modeling of human
communication with a focus on methods for incorporating multiple types of knowledge sources,
including lexical, syntactic, prosodic, and, most recently, visual sources. Harper is currently at the
Center for Advanced Study of Language, University of Maryland, College Park, MD 20742-0025;
e-mail: harper@purdue.edu, mharper@casl.umd.edu; URL: yara.ecn.purdue.edu/∼harper.

142

