
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 976–985,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Integrating Subject, Type, and Property Identification for Simple

Question Answering over Knowledge Base

Wei-Chuan Hsiao, Hen-Hsen Huang and Hsin-Hsi Chen

Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan

weichuanhsiao@gmail.com; hhhuang@nlg.csie.ntu.edu.tw; hhchen@ntu.edu.tw

Abstract

This paper presents an approach to

identify subject, type and property

from knowledge base for answering

simple questions. We propose new fea-

tures to rank entity candidates in KB.

Besides, we split a relation in KB into

type and property. Each of them is

modeled by a bi-directional LSTM.

Experimental results show that our

model achieves the state-of-the-art per-

formance on the SimpleQuestions da-

taset. The hard questions in the experi-

ments are also analyzed in detail.

1 Introduction

With the popularity of the Internet, more and more

new information is generated every day. The in-

formation may be stored in unstructured data, such

as Wikipedia, which is presented as an article or

web page, or in the form of structured data.

Knowledge base (KB), such as Freebase (Bol-

lacker et al., 2008) and DBpedia (Lehmann et al.,

2015), is very popular. The information in the KB

is a description of the relationship between two en-

tities and is stored in the form of (subject, relation,

object) triple. In KB, each entity is represented by

a unique id, for example, J.K. Rowling's mid (Ma-

chine ID) in Freebase is “m.042xh”.

With these large-scale open-domain KBs, it is

important to access the knowledge efficiently and

effectively to meet what users need. The most di-

rect and close to people's life is question answering

(QA) system in natural language. People can ask

any questions in their familiar languages, and then

use the QA system to get answers from the web re-

sources. Current QA research is often based on KB

to find appropriate triples for answering question,

which is called QA over KB.

QA systems can be classified by the form of the

question. There are two categories of questions in

QA system, i.e., simple questions and complex

questions. Simple questions can be answered by

exactly one triple in the KB. For example, the

question “Who is the author of Harry Potter?” can

be answered by triple “(Harry Potter, author, J.K.

Rowling)”. Although this category is “simple”

question, retrieving a triple from the KB is not a

trivial task due to the billions of facts in the KB.

Complex questions contain more restrictions.

These questions may involve two or more triples

in the KB, or have other semantic constraints to re-

strict the answers to a smaller set. For example,

“the first” in the question “What is the name of the

first Harry Potter novel?” restricts that there is only

one answer. Previous researches showed that sim-

ple questions are the more common category in

community QA websites (Fader et al., 2013). This

paper focuses on factoid simple question-answer-

ing over Freebase.

Simple question can be answered with the object

of one KB triple. Thus, the systems only need to

find the subject and relation of the triple which can

describe the question properly. The issues of sim-

ple QA are the identification of the subject entity in

a question, and the resolution of the gap between

the natural language expression in the question and

the relation description in the KB. After a QA sys-

tem receives users’ questions, it needs to transform

a question into a KB query, e.g. SPARQL. The

question can then be transformed into the KB query,

which can access KB to get the answer.

976

Previous simple QA model often adopts a two-

step paradigm. Entity-linking step identifies the

subject entities in questions, and forms the candi-

date entity set and relation set. The candidate rela-

tion set is formed by all the relations which have

connections with any entity in candidate entity set.

Relation-finding step further identifies a proper re-

lation from the candidate relation set. Dai et al.

(2016) propose a neural-network based two-step

approach to simple QA over Freebase, and formu-

late the task into a probabilistic form. Given a

question q, the first step is to find the candidate re-

lation r with high probability 𝑃(𝑟|𝑞). The second

step is to find the subject s with high 𝑃(𝑠|𝑟, 𝑞). As

a result, the object in the KB triple which contains

the subject s and the relation r with the highest

𝑃(𝑠, 𝑟|𝑞) is the answer.

The relation in KB triple has hierarchical struc-

ture: domain-type-property. For example, in “peo-

ple.person.place_of_birth”, “place_of_birth” is the

property used to present the birth place of a person.

The type of this relation is “person”, and the do-

main is “people”. In Freebase, many relations have

the same property, but are in different types. For

example, both “film.film.genre” and “music.art-

ist.genre” have the property “genre”, but they are

under different domains and types. These two rela-

tions are regarded as the same if we only consider

the property. The major issue is: they are different

relations although they have the same meaning. On

the other hand, if the whole relation is considered

as a class, the distribution of relations is getting

sparser. The past two-step approaches cannot dis-

tinguish the subtlety in the structured relation.

In this paper, we will propose a novel three-step

approach, including subject, type and property

identification steps, to deal with the hierarchical

structure of the relation. Our approach introduces

new features in subject identification to distinguish

similar entities from different aspects. Moreover,

splitting relation into type and property predicts re-

lation more precisely. Experimental results show

our model outperforms the existing models and

achieves a state-of-the-art accuracy of 76.7%.

This paper is organized as follows. Section 2 in-

troduces related works of QA system. Section 3

presents our three-step paradigm. Section 4 shows

the experiments on the SimpleQuestions dataset

(Bordes et al., 2015) and compares ours with pre-

vious works. We also discuss the importance of

each component of our system. Section 5 analyzes

the errors in the experiments. Section 6 concludes

the remarks.

2 Related Works

Previous simple QA models can be divided into

two categories. The first one is based on semantic

parsing, which maps a question to its logical form.

Then, the logical form can be transformed to

SPARQL for KB retrieval.

Berant et al. (2013) present a semantic parser

that does not need to be trained through the anno-

tated logical form. They construct a lexicon that

maps natural language phrases to KB relations by

aligning large text corpus with Freebase. Candi-

date logical forms can be obtained by this lexicon

and the other bridging operations.

Berant and Liang (2014) propose a semantic

parser via paraphrasing. They use the intermediate

question to deal with the problem of the mismatch

between input question and its logical forms.

Yih et al. (2015) treat a question as a query

graph, which can be directly mapped to its logical

form. Semantic parsing is then equivalent to find-

ing a sub-graph of the KB which can represent the

question.

The semantic parsing approach which often re-

quires the human annotated logical form may in-

crease the cost of obtaining training data. Although

the use of rule-based method to generate logical

forms can reduce the use of annotated data, it limits

the application domain. The second approach is in-

formation extraction, which needs only question-

answer pairs for training. This method retrieves

some candidate answers from KB for each ques-

tion, and ranks the candidates through several fea-

tures. Deep neural network models are often em-

ployed for deriving the vector representations of

questions and the KB elements.

The Memory Network based QA system is pro-

posed by Bordes et al. (2015). By embedding all of

the KB elements and questions in the same vector

space, the system can deal with the relationship be-

tween input language and the KB language.

Glob and He (2016) propose a character-level,

attention-based encoder-decoder QA model. Their

977

model embeds the questions and KB elements by a

long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) encoder and a CNN-based en-

coder, respectively. And a LSTM decoder with at-

tention mechanism is used to predict the appropri-

ate answer entity and relation.

Dai et al. (2016) formulate the QA problem into

a probabilistic form. Given a question, the answer

is the triple in KB containing the subject and rela-

tion with the highest conditional probability. They

first use a focused pruning method to tag the span

in question which is most probable to be the sub-

ject entity and gets the candidate answer triples.

Then they use a relation network and a subject net-

work, both are a two-layer bidirectional-GRU

model, to get the similarity scores between candi-

date triples and question. We modify their proba-

bilistic form with the splitting of the relation part 𝑟

into type 𝑡 and property 𝑝.

Dong et al. (2015) introduce a multi-column

CNNs (MCCNNs) to analyze the question in three

different aspects: answer path, answer context and

answer type. The system represents the question in

three low-dimensional vectors, each of them then

matches to one of the answer aspect to derive the

scores of candidates.

Yin et al. (2016) also use the CNN-based ap-

proach to implement the QA system. They use a

word-level CNN with attentive max-pooling to

model the relationship between KB relations and

question pattern. They also add an active linker,

which is similar to the focused pruning method in

Dai et al. (2016), to reduce the number of candi-

dates and improve the performance significantly.

3 Methodology

Our method includes subject identification, type

identification, and property identification steps, as

shown in Figure 1. We first give an overall picture

and then describe each of them in deep in the fol-

lowing sections.

3.1 A Three-Step Paradigm

The relation in a Freebase triple has a hierarchical

structure in three levels: domain, type, and property.

Many relations have the same property but they are

in different types and domains. For example, both

Figure 1: System Overview.

the relations “wine.wine.color” and

“roses.roses.color” are used to describe the color of

things, but they are in type “wine” and “roses”, re-

spectively. We separate a relation into type and

property parts to understand the question meaning

more precisely.

Given a KB 𝒦 and a question 𝑞, the three-step

paradigm aims at finding a KB triple containing s,

t, and p with the highest probability 𝑃(𝑠, 𝑡, 𝑝|𝑞) ,

where s is a subject, and t and p are type and prop-

erty of a structured relation, respectively. The pro-

cess is formulated by Equations (1) and (2). The

answer of the question is the object o of the triple

(s, r, o) in 𝒦.

𝑃(𝑠, 𝑡, 𝑝|𝑞) = 𝑃(𝑠|𝑞) ∙ 𝑃(𝑡|𝑠, 𝑞)

∙ 𝑃(𝑝|𝑠, 𝑡, 𝑞)
(1)

𝑠∗, 𝑡∗, 𝑝∗ = argmax
𝑠,𝑡,𝑝∈𝒦

𝑃(𝑠, 𝑡, 𝑝|𝑞) (2)

3.2 Entity Identification

The first step is to find potential entities in the

question, and link them to KB. We use the Freebase

subset FB5M in the SimpleQuestions dataset as the

KB. We retrieve all candidate subject entities in

question from the KB and calculate their entity

linking scores on account of eight features, as in

steps A1-A3 of Figure 1.

To find candidate entities for a question, we ex-

tract mentions in the question by maximum string

matching. A mention that matches an entity name

or an entity alias is extracted. When multiple

matches are found in an overlapped span, the long-

est one is taken. And the mention is filtered if it is

a stop word or a number that contains less than four

978

digits. All the entities in 𝒦 that have the same

names or aliases as the mentions form the candi-

date entity set.

After obtaining all the candidate entities, we as-

sign each of the candidates a linking score. The

score is measured by a learning-to-rank model with

eight features in different aspects. The eight fea-

tures are described as follows.

Word Proportion (Yin et al., 2016): We com-

pute the proportion as the length of candidate entity

divided by the length of the question. The length is

measured by the number of words. The longer the

matched entity name is, the more likely it is a sub-

ject.

Char Proportion: Similar to word proportion,

the length is computed by the number of characters

instead.

Relative Position in Question (Yin et al., 2016):

The relative position of a candidate entity is the po-

sition of its last token divided by the length of the

question (in words). That models an observation:

most entity is far from the beginning of the ques-

tion.

 Relative Position to Be Verb/Auxiliary Verb:

Subject entity tends to be close to and behind Be

verb/auxiliary verb in a question. We take the sub-

traction of the Be verb/auxiliary verb position and

the first token of candidate entity position as 𝛼. If

the candidate entity position is before the Be

verb/auxiliary verb, this feature is 𝛼 , which is a

negative number. Otherwise, this feature is 1/𝛼 ,

which is a positive number. If no such verbs exist,

this feature is set to 0

Out-degree: The number of out-going links of

the entity in the KB is taken as Out-degree feature.

The more the number of links the entity has, the

higher the feature value is and the entity in the KB

is more informative. The direction of links from

subject to object represents the impact of the entity.

IDF: We take each question in SimpleQuesions

training set as a document, and compute the in-

verse document frequency of the entity. The higher

the value is, the more specific the entity is.

 NER_LCS: We use the LSTM-CRF named en-

tity recognition (NER) tagger1 (Lample et al., 2016)

to find the span from the question that is most

1 https://github.com/glample/tagger .

Figure 2: Structure of Type_LSTM in entity

identification.

likely to be a subject entity, and compute the length

of the longest common subsequence (in characters)

between the candidate entity and the words in the

tagged span. The tagger consists of an embedding

layer, a bidirectional-LSTM layer, and a condi-

tional random field layer to predict the label for

each word. The higher the NER_LCS value is, the

more possible the candidate is a subject entity.

Type_LSTM: Each entity has entity types in

Freebase to describe its characteristics, e.g., entity

“Alex Golfis” belongs to types “person”, “actor”,

and “deceased_person”. There are total 500 types

for entities in FB5M. For a question, we estimate

the types of its subject. A bidirectional-LSTM with

attention is trained to derive the probability distri-

bution of each question over the 500 types. The

structure of the network is shown in Figure 2. The

training input of the LSTM is the whole questions

and the types of their ground truth entities, and the

training objective is categorical cross entropy. The

test input is a question, and the output is a proba-

bility distribution of the question over the 500

types. We can get the type information of the can-

didate entity from Freebase, and sum over all di-

mensions corresponding to the types to get this fea-

ture. It means how probable the question is in some

types.

 With the above eight features, support vector

machine for ranking (SVMrank) (Joachims, 2006) is

trained to combine these features and derive a

score 𝑢1(𝑠, 𝑞) for each candidate entity s in the

question q. Then each entity has the probability

𝑃(𝑠|𝑞):

979

𝑃(𝑠|𝑞) =
exp(𝑢1(𝑠, 𝑞))

∑ exp(𝑢1(𝑠′, 𝑞))𝑠′

 (3)

where 𝑠′ is an entity in the candidate entity set. For

the entities in the KB but not in the candidate entity

set, their 𝑃(𝑠|𝑞) = 0.

3.3 Type Identification

Given a question q, the type network determines

the type of the relation most likely to be answered.

We use 𝐸(𝑡) to represent the embedding of the

type 𝑡 , and use 𝑔1(𝑞) to represent the vector of

question 𝑞. Our goal is to make the cosine similar-

ity between 𝑔1(𝑞) and the correct type embedding

𝐸(𝑡∗) higher than the cosine similarities between

𝑔1(𝑞) and the other types.
 The network structure is shown in Figure 3.

First, the question vector 𝑔1(𝑞) is generated by a

bidirectional-LSTM model. We change the words

in q to lowercase and remove the punctuation.

Then we put the words into the embedding layer.

After the bidirectional-LSTM layer, the two vec-

tors in left and right directions are concatenated to-

gether. The concatenated vector is put into a linear

projection layer with sigmoid, and the question

vector 𝑔1(𝑞) is generated. After that, we calculate

the similarity between 𝑔1(𝑞) and different type

embeddings 𝐸(𝑡). The embedding 𝐸(𝑡) is trained

with the bidirectional-LSTM model, and has the

same dimension as 𝑔1(𝑞) . 𝐸(𝑡) and 𝑔1(𝑞) are in

the same space so that the cosine similarity

𝑢2(𝑡, 𝑞) can be computed by Equation (4).

𝑢2(𝑡, 𝑞) = cos(𝑔1(𝑞), 𝐸(𝑡)) (4)

The probability of type 𝑡 given the question 𝑞 and

the candidate entity set is defined as follows:

𝑃(𝑡|𝑠, 𝑞) = {

exp(𝑢2(𝑡, 𝑞))

∑ exp(𝑢2(𝑡′, 𝑞))𝑡′
, 𝑖𝑓 𝑡 ℎ𝑎𝑠 𝑙𝑖𝑛𝑘 𝑤𝑖𝑡ℎ 𝑠

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

where 𝑡′ is a type in the candidate type set. To re-

duce the computation and the number of candidate

types, only those types which have links with an

entity in the candidate entity set is chosen into the

candidate type set. 𝑃(𝑡|𝑠, 𝑞) is set to 0 for those

types which are impossible to be the correct answer

due to the lack of links with any candidate entity.

Figure 3: Type identification network.

For training the type network, the hinge loss

with negative samples is the objective function to

be minimized.

ℓ(𝜃𝑡) = ∑ max(0, 𝓂𝑡 − 𝑢2(𝑡∗, 𝑞) + 𝑢2(𝑡𝑖, 𝑞))
𝑁𝑡
𝑖=1 (6)

where 𝜃𝑡 is the parameters to learn, 𝑁𝑡 is the num-

ber of negative samples, 𝓂𝑡 is the margin, 𝑡∗ is

the correct type, and 𝑡𝑖 is the type randomly sam-

pled from all types except 𝑡∗.

3.4 Property Identification

Given a question q, property identification deter-

mines the property of the relation most likely to be

answered. We use 𝐸(𝑝) to represent the embed-

ding of the property 𝑝, and 𝑔2(𝑞) to represent the

vector of question 𝑞. Similar to the type network,

our goal is to make the cosine similarity between

𝑔2(𝑞) and the correct property embedding 𝐸(𝑝∗)

higher than the cosine similarities between 𝑔2(𝑞)

and the other properties.

The structure of the property network is the

same as that of the type network, which is shown

in Figure 3, but all the weights and embedding ma-

trixes are not shared with the type network. After

deriving 𝑔2(𝑞) and 𝐸(𝑝), we compute the cosine

similarity 𝑢3(𝑝, 𝑞):

𝑢3(𝑝, 𝑞) = cos(𝑔2(𝑞), 𝐸(𝑝)) (7)

The probability of property 𝑝 given question 𝑞 ,

candidate entity s, and candidate type t is defined

as follows:

𝑃(𝑝|𝑠, 𝑡, 𝑞) = {

exp(𝑢3(𝑝, 𝑞))

∑ exp(𝑢3(𝑝′, 𝑞))𝑝′
, 𝑖𝑓 𝑝 ℎ𝑎𝑠 𝑙𝑖𝑛𝑘 𝑤𝑖𝑡ℎ 𝑠, 𝑡

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

where 𝑝′ is a property in the candidate property set.

To reduce the computation and the number of can-

didate properties, only the properties which have

links with an entity in the candidate entity set and

980

belongs to a type in the candidate type set are cho-

sen into the candidate property set. 𝑃(𝑝|𝑠, 𝑡, 𝑞) is

set to 0 for those properties which are impossible

to be the correct answer due to the lack of links

with any candidate entity and type.

For training property network, the hinge loss

with negative samples is the objective function to

be minimized.

ℓ(𝜃𝑝) = ∑ max(0, 𝓂𝑝 − 𝑢3(𝑝∗, 𝑞) + 𝑢3(𝑝𝑖 , 𝑞))
𝑁𝑝

𝑖=1
 (9)

where 𝜃𝑝 is the parameters to learn, 𝑁𝑝 is the num-

ber of negative samples, 𝓂𝑝 is the margin, 𝑝∗ is

the correct property, and 𝑝𝑖 is the property ran-

domly sampled from all properties except 𝑝∗.

4 Experiments

The SimpleQuestions2 dataset (Bordes et al., 2015),

which contains 75,910 training data, 10,845 vali-

dation data, and 21,687 test data, is adopted in the

experiments. The evaluation is the same as in Bor-

des et al. (2015). The predicted answer is correct

when the subject-relation pair is the same as the

correct answer. We train our model on the training

set. The validation set is used for early stop and pa-

rameter tuning. The test set is used for evaluation.

4.1 Experimental Setup

The number of negative samples used in SVMrank

is set to 5. Other parameters for SVMrank are C =

0.1, epsilon = 0.01, and loss function option = 2.

The word embeddings used in each neural network

is initialized with the pre-trained GloVe (Penning-

ton et al., 2014) with the dimension of 300. All the

networks are optimized by mini-batch and Adam

(Kingma et al., 2014) with the learning rate 0.001.

The TYPE_LSTM in entity identification step

has a drop rate of 0.2. The hidden size of LSTM is

2 https://research.fb.com/downloads/babi/ .

500. Batch size is 128. The parameters of type net-

work and property network are the same. Maximal

question length is 25. Mini-batch size is 100. The

type and property embeddings are 500-dimen-

sional with randomly initialized. The hidden size

of LSTM is 500. Both hinge loss margins 𝓂𝑡 and

𝓂𝑝 are 0.4. The numbers of negative samples 𝑁𝑡

and 𝑁𝑝 are 65.

4.2 Overall Results

Table 1 shows the performances of our model com-

pared with the other four methods. Bordes et al.

(2015) use a memory network. Dai et al. (2016)

employ a conditional focused neural-network

based approach. Yin et al. (2016) apply attentive

convolutional neural network with the passive or

active linker. Golub and He (2016) use the charac-

ter-level encoder-decoder framework. In our ap-

proach, “probability” means the outcome is the tri-

ple with the highest probability computed by Equa-

tion (1). We find that the subject entity and the

property are more important than the type. The ap-

proach “sum” combines the scores 𝑢1(𝑠, 𝑞) ,

𝑢2(𝑡, 𝑞) , and 𝑢3(𝑝, 𝑞) by weighted summation,

and selects the triple with the highest weighted sum.

The weights are entity:type:property = 4:1:3,

which are tuned on the validation data.

Our “probability” approach outperforms all pre-

vious models on FB5M, including the previous

best model by Yin et al. (2016). The “sum” ap-

proach even significantly outperforms the “proba-

bility” approach on McNemar’s test (p < 0.01).

4.3 Entity Identification Results

This section discusses the performance of the en-

tity identification step. The hit rates of the top N

entities are shown, which means the coverage of

N
(Yin et al., 2016)

Our approach
Passive Active

1 56.6 73.6 80.9

5 71.1 85.0 90.2

10 75.2 87.4 92.2

20 81.0 88.8 93.7

50 85.7 90.4 95.1

100 87.9 91.6 96.0

Table 2: Hit rates of the ground-truth entity.

Method Accuracy (%)

(Bordes et al., 2015) 63.9

(Dai et al., 2016) 75.7

(Yin et al., 2016) 75.9

(Golub and He, 2016) 70.3

Our approach (probability) 76.1

Our approach (sum) 76.7

Table 1: Results on the SimpleQuestions test

data.

981

the ground truth entity by top-N results. 𝑁 ∈
 {1,10,20,50,100}. Entity linker proposed by Yin

et al. (2016) has two versions, passive and active

linker. The difference between them is that they use

the longest consecutive common subsequence be-

tween question and KB entity names to get candi-

dates in the passive linker. On the other hand, the

active linker first gets the span from the question

that is most likely to be a subject entity by sequen-

tial labeling, and the linker uses the labeled span to

search the candidate entity from KB. The number

of the candidates in the active linker is less than the

passive linker, because the active linker uses spe-

cific span in question to search candidates, and en-

tities not in this span are filtered out.

Table 2 shows our performance in entity identi-

fication compares to Yin et al. (2016). Our entity

linker outperforms their approach by over 7% in

top-1 result using FB5M as background KB. We

have six new features to score the entities in differ-

ent aspects. The features “Char Proportion” and

“Relative Position to Be Verb/Auxiliary Verb” can

analyze the entities by their surface form in ques-

tion, e.g., name and relative position. The features

“Out-degree” and “Type_LSTM” can distinguish

entities even if they have the same name. The “IDF”

feature can kick out common entities and keep the

more important ones. And “NER_LCS” feature

has the similar effect to the active linker of Yin et

al. (2016), but our feature can withstand the wrong

subject entity prediction in sequential labeling, be-

cause we do not filter out any candidates, we give

them the lower score instead.

4.4 Importance of Entity Identification

Features

In this section, we discuss the importance of each

feature in entity identification in three ways. We

first show the performances with a single feature.

And then, we consider the performances with one

feature or a group of features being removed.

Performance with Single Feature

Table 3 shows the hit rates of the top N entities gen-

erated by a single feature. The feature “NER_LCS”

has the best performance because this feature con-

tains a part of information from the four surface

 N

Fetures

Hit rates @ N

1 5 10 20 50 100

Word Prop. 41.0 62.7 70.5 77.6 85.8 90.3

Char Prop. 55.5 73.7 78.9 83.4 88.9 91.7

Rel. Position in Q 16.7 36.5 47.7 60.9 77.0 86.4

Rel. Position to

BeV./AuxV.
30.2 44.2 52.6 61.4 75.7 84.2

Out-degree 15.0 39.6 52.5 67.2 82.6 89.5

IDF 43.4 68.9 76.4 82.5 88.5 91.6

NER_LCS 59.5 77.0 81.5 85.5 90.1 92.6

Type_LSTM 44.1 68.8 77.0 85.3 91.6 94.4

Table 3: Hit rates generated by a single feature in

entity linker.

form features: “Word Proportion”, “Char Propor-

tion”, “Relative Position in Question”, and “Rela-

tive Position to Be Verb/Auxiliary Verb”. The NER

tagger labels the span of possible position of the

subject entity in a question, and thus “NER_LCS”

contains the position information. Moreover, the

length of the longest common subsequence be-

tween the candidate entity and the words in the

span gives the length proportion information.

The feature “Out-degree” has the lowest perfor-

mance in N=1 hit rate, because the entities with

many out-going links sometimes represent that

they are general entities. For example, the entity

“album (m.02lx2r)” in question “Which genre of

album is harder……faster?” has 323,467 out-go-

ing links in FB5M, but the subject entity

“harder……faster (m.01jp8ww)” has only 5 links.

Although this feature sometimes highlights the

general entities, it can distinguish entities that have

the same names with the help of other features.

Table 3 also shows that the performance of “Rel-

ative Position to Be Verb/Auxiliary Verb” is almost

twice the performance of “Relative Position in

Question”. It shows that the observation about po-

sition “subject entity tends to be close to and be-

hind Be verb/auxiliary verb in a question” is more

appropriate, and the Be verb/auxiliary verb plays

an important role in identifying entities.

Performance without One of the Features

Table 4 shows the hit rates of the top N entities gen-

erated by removing one of the eight features from

the entity linker. First, we can see that the perfor-

mances without one of the first four features are

982

only reduced by about 1%, because the feature

“NER_LCS” contains a part of the information

from them, and it can make up for the removal of

them. And then, we can find that although the per-

formance of the feature “Out-degree” has the low-

est accuracy in Table 3, its removal affects the per-

formance by more than 2%.

 The removal of “Type_LSTM” has the greatest

impact. The result with this feature outperforms the

result without it by 6%. The comparison shows the

importance of the entity types which can help us

get deeper meanings of an entity. And the

“Type_LSTM” is difficult to make up by other fea-

tures.

Performance without a Group of Features

Table 5 shows the hit rates and overall accuracy of

our “probability” approach generated by removing

a group of features from the entity linker. We group

the features with similar effect together. The first

four features in Table 3 are about surface forms of

entities, and thus they are put together. The “Indi-

vidual features” group contains features “Out-de-

gree” and “Type_LSTM”, which can distinguish

entities with the same name. The features “IDF”

and “NER_LCS” are grouped into “features of

specificity”, which can identify the more likely

subject entities in the question and kick out com-

mon entities.

The removal of individual features reduces the

performance of entity identification by more than

20%. This result shows the importance of identify-

ing entities with the same name. Otherwise, these

entities would have the same score. However, the

removal of these features only reduces the overall

accuracy of 0.7%, because type identification step

can make up a part of the removed “Type_LSTM”

information. For example, the entity with name

“Estonia” can be a country or a book, if one “Esto-

nia” is a “book”, it may not have a property in type

“location”, and thus we can distinguish these two

types of “Estonia” a bit.

The removal of features of specificity affects the

overall accuracy by 2.7%. These two features fo-

cus on more specific words and make the scores of

the general entities, such as “album” or “movie”,

become lower. This behavior is important and can-

not be replaced by the rest of the system.

4.5 Importance of Type Identification

Table 6 shows the importance of our type identifi-

cation step. The models with type identification

significantly outperform the models without type

network on McNemar’s test (p < 0.01), and in-

creases the accuracies by at least 1%, no matter the

final score is by probability or weighted sum. This

shows that the type identification step can effec-

tively handle the hierarchical structure of Freebase

relations, and can better understand the semantics

of the question.

 N

Fetures

Hit rates @ N

1 5 10 20 50 100

All features 80.9 90.2 92.2 93.7 95.1 96.0

w/o Word Prop. 79.8 89.6 91.7 93.3 95.0 96.0

w/o Char Prop. 79.4 89.3 91.4 93.2 94.9 95.9

w/o Rel. Position 79.6 89.6 91.8 93.4 95.0 96.0

w/o Rel. Position

to BeV./AuxV.
79.7 89.6 91.7 93.3 95.0 96.0

w/o Out-degree 78.8 88.6 90.9 92.8 94.6 95.7

w/o IDF 79.1 89.3 91.4 93.1 94.9 95.9

w/o NER_LCS 78.4 88.8 91.1 92.9 94.8 95.8

w/o Type_LSTM 74.9 88.0 90.7 92.7 94.4 95.6

Table 4: Hit rates generated by removing one

feature from entity linker. “w/o” means the re-

moval of the feature.

 N

Feature

Entity identification

(Hit rates @ N)

Overall

(prob.)

1 5 10 100 Acc.

All features 80.9 90.2 92.2 96.0 76.2

w/o Surface form features 78.8 89.1 91.4 96.0 75.1

w/o Individual features 60.7 77.9 82.5 92.8 75.5

w/o Features of specificity 75.8 87.1 89.9 95.6 73.5

Table 5: Hit rates generated by removing group

of features from entity linker.

Settings Accuracy (%)

Probability w/ type identification 76.1

Probability w/o type identification 75.1

Sum w/ type identification 76.7

Sum w/o type identification 75.2

Table 6: Gain by the addition of the type identifi-

cation step.

983

5 Error Analysis

We categorize some errors into the following types.

 Entities with the same name: The subject

entity of the question “What is the place of

birth of Sam Edwards?” is “Sam Edwards”.

Both entities “m.03kt3y” (an actress) and

“m.042gjt” (a physicist) have the same name.

This question does not have enough infor-

mation to distinguish the two entities.

 Deleted entity in Freebase: Some questions’

subject entities are deleted in the Freebase

dump.

 Similar properties: Some relations are very

similar, e.g., both “music.release.track” and

“music.release.track_list” indicate tracks in

an album.

 Incomplete question: Some questions in the

dataset are not complete. For example, the

question “What production company pro-

duced?” does not provide any entities.

 Question from object-relation pair: There

are some questions formed by object-rela-

tion pairs of the triple. E.g., the question

“Name a lawyer.” is from triple (Charlie

Herschel, people.person.profession, lawyer).

We cannot find the subject of the triple from

the question.

 Typo: Some questions contain typo. For ex-

ample, the question “What is Roger Mol-

liens gender?” should be “What is Roger

Mollien’s gender?”

 Wrong answer: Some answers are wrong.

For example, the answer of the question

“Where was David Armstrong born?” is the

triple (Undisputed Comedy Series: Lil Rel,

film.film.language, English). Obviously, it

is not a correct answer to the question.

 Controversial answer: E.g., the relation of

the question “Leo Bertos was born in what

country?” is “people.person.nationality”,

but the more appropriate relation should be

“people.person.place_of_birth”, because

people can have the naturalized citizenship.

6 Conclusion

We propose a three-step approach to identify sub-

ject, type and property from knowledge base (KB)

for answering simple questions. Our ranking

model with additional features outperforms the

previous models in subject entity identification.

The experiments also show that all entity features

are important. Besides, by splitting the structured

relation into type and property, our model benefits

from understanding the question meaning more

precisely. Our model achieves the state-of-the-art

performance on the SimpleQuestions dataset. Er-

ror analysis shows that most errors come from the

problematic questions in the dataset. Extension to

complex questions will be explored.

Acknowledgments

This research was partially supported by Ministry

of Science and Technology, Taiwan, under grants

MOST-104-2221-E-002-061-MY3, MOST-105-

2221-E-002-154-MY3 and MOST-106-2923-E-

002-012-MY3, and National Taiwan University

under grant NTUCCP-106R891305.

References

Jonathan Berant, Andrew Chou, Roy Frostig, and

Percy Liang. 2013. Semantic parsing on freebase

from question-answer pairs. In Proceedings of the

2013 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2013), pages 1533–

1544, Seattle, Washington, USA.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a collab-

oratively created graph database for structuring hu-

man knowledge. In Proceedings of the 2008 ACM

SIGMOD international conference on Management

of data (SIGMOD 2008), pages 1247–1249, Van-

couver, BC, Canada.

Jonathan Berant and Percy Liang. 2014. Semantic

parsing via paraphrasing. In Association for Com-

putational Linguistics (ACL 2014), volume 7, page

92–102, Baltimore, USA.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and

Jason Weston. 2015. Large-scale simple question

answering with memory networks. arXiv preprint

arXiv:1506.02075.

Zihang Dai, Lei Li, and Wei Xu. 2016. CFO: Condi-

tional focused neural question answering with

large-scale knowledge bases. In Association for

Computational Linguistics (ACL 2016), pages 800–

810, Berlin, Germany.

984

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.

Question answering over freebase with multi-col-

umn convolutional neural networks. In Proceedings

of ACL-IJCNLP, volume 1, pages 260–269, Beijing,

China.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.

2013. Paraphrase-driven learning for open question

answering. In Association for Computational Lin-

guistics (ACL 2013), pages 1608–1618. Sofia, Bul-

garia.

David Golub and Xiaodong He. 2016. Character-level

question answering with attention. In Proceedings

of the 2016 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2016),

pages 1598–1607, Austin, Texas.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

short-term memory. Neural computation,

9(8):1735–1780.

Thorsten Joachims. 2006. Training Linear SVMs in

Linear Time. In Proceedings of the ACM Confer-

ence on Knowledge Discovery and Data Mining

(KDD 2006), Philadelphia, Pennsylvania, USA.

Diederik P. Kingma and Jimmy Lei Ba. 2014. Adam:

A method for stochastic optimization. arXiv pre-

print arXiv:1412.6980, 2014.

Guillaume Lample, Miguel Ballesteros, Sandeep

Subramanian, Kazuya Kawakami, and Chris Dyer.

2016. Neural architectures for named entity recog-

nition. In Proceedings of NAACL-HLT 2016, pages

260–270, San Diego, California.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,

Dimitris Kontokostas, Pablo N. Mendes, Sebastian

Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. 2015. Dbpedia-a

large-scale, multilingual knowledge base extracted

from wikipedia. Semantic Web Journal, 6(2):167–

195.

Jeffrey Pennington, Richard Socher, and Christopher

D. Manning. 2014. Glove: Global vectors for word

representation. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language

Processing (EMNLP 2014), pages 1532–1543,

Doha, Qatar.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and

Jianfeng Gao. 2015. Semantic parsing via staged

query graph generation: Question answering with

knowledge base. In Association for Computational

Linguistics (ACL 2015), pages 1321–1331, Beijing,

China.

Wenpeng Yin, MoYu, Bing Xiang, Bowen Zhou, and

Hinrich Schütze. 2016. Simple question answering

by attentive convolutional neural network. In Pro-

ceedings of COLING, pages 1746–1756, Osaka, Ja-

pan.

985

