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A B S T R A C T  
The study reported in this paper addresses three issues related 

to phonetic classification: 1) whether it is important to choose an 
appropriate signal representation, 2) whether there are any ad- 
vantages in extracting acoustic attributes over directly using the 
spectral information, and 3) whether it is advantageous to intro- 
duce an intermediate set of linguistic units, i.e. distinctive fea- 
tures. To restrict the scope of our study, we focused on 16 vowels 
in American English, and investigated classification performance 
using an artificial neural network with nearly 22,000 vowels tokens 
from 550 speakers excised from the TIMIT corpus. Our results 
indicate that 1) the combined outputs of Seneff's auditory model 
outperforms five other representations with both undegraded and 
noisy speech, 2) acoustic attributes give similar performance to 
raw spectral information, but at potentially considerable com- 
putational savings, and 3) the distinctive feature representation 
gives similar performance to direct vowel classification, but po- 
tentially offers a more flexible mechanism for describing context 
dependency. 

I N T R O D U C T I O N  
The overall goal of our study is to explore the use of dis- 

tinctive features for automatic speech recognition. Distinc- 
tive features are a set of properties that  linguists use to clas- 
sify phonemes [1,13]. More precisely, a feature is a minimal 
unit which distinguishes two maximally-close phonemes; for 
e x a m p l e / b / a n d / p / a r e  distinguished by the feature [voicE]. 
Sounds are more often confused in relation to the number of 
features they share, and it is believed that around 15 to 20 
distinctive features are sufficient to account for phonemes in 
all languages of the world. Moreover~ the values of these fea- 
tures, such as [+HIGH] or [-aOUND], correspond directly to 
contextual variability and coarticulatory phenomena, and of- 
ten manifest themselves as well-defined acoustic correlates in 
the speech signal [3]. The compactness and descriptive power 
of distinctive features may enable us to describe contextual 
influence m o r e  parsimoniously, and thus to make more effec- 
tive use of available training data. 

1This research was supported by DARPA under Contract N00014- 
82-K-0727, monitored through the Office of Naval Research. 

In order to fully assess the utility of this linguistically 
well-motivated set of units, several important  issues must be 
addressed. First, is there a particular spectral representa- 
tion that  is preferred over others? Second, should we use the 
spectral representation directly for phoneme/feature classi- 
fication, or should we instead extract and use acoustic cor- 
relates? Finally, does the introduction of an intermediate 
feature-based representation between the signal and the lexi- 
con offer performance advantages? We have chosen to answer 
these questions by performing a set of phoneme classification 
experiments in which conditional variables are systematically 
varied. The usefulness of one condition over another is in- 
ferred fl'om the performance of the classifier. 

In this paper, we will report our study on the three ques- 
tions that  we posed earlier. First, we will report our compar- 
ative study on signal representations. Based on these results, 
we will then describe our experiments and results on acous- 
tic attr ibute extraction, and the use of distinctive features. 
Finally, we will discuss the implications and make some ten- 
tative conclusions. 

T A S K  A N D  C O R P U S  
The task chosen for our experiments is the classification 2 

of vowels in American English. The corpus consists of 13 
monothongs /i, I, c, e, a~, a, o, A, o, u, u, ii and 3"/ and 3 
diphthongs /aY, o y, aw/. The vowels are excised from the 
acoustic-phonetically compact portion of the TIMIT corpus 
[6], with no restrictions imposed on the phonetic contexts of 
the vowels. For the signal representation study, experiments 
are based on the task of classifying all 16 vowels. However, 
the dynamic nature of the diphthongs may render distinctive 
feature specification ambiguous. As a result, we excluded the 
diphthongs in our investigation involving distinctive features, 
and the size of the training and test sets were reduced cor- 
respondingly. The size and contents of the two corpora are 
summarized in Table 1. 

sit is a classification task in that the left and right boundaries of 
the vowel token are known through a hand-labelling procedure, and the 
classifier is only asked to determine the most likely label. 
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I 

Training Testing 
Speakers (M/F) Speakers (M/F) 

(357/143) 50 (33/17) 
500 (357/143) 50 (33/17) 

Training Testing 
Tokens Tokens 
20,000 2,000 
19,000 1,700 

Table 1: Corpus I consists of 16 monothong and diphthong vow- 
els. It is used for investigation of signal representation. Corpus 
II is a subset of Corpus I. It consists of the monothongs only, and 
is used for investigation of distinctive features. 

For the experiments dealing with distinctive features, we 
characterized the 13 vowels in terms of 6 distinctive features, 
following the conventions set forth by others [13]. The feature 
values for these vowels are summarized in Table 2. 

The classifier for our experiments was selected with the 
following considerations. First, to facilitate comparisons of 
different results, we restrict ourselves to use the same classi- 
fier for all experiments. Second, the classifier must be flexible 
in that it does not make assumptions about specific statis- 
tical distributions or distance metrics, since different signal 
representations may have different characteristics. Based on 
these two constraints, we have chosen to use the multi-layer 
perceptron (MLP) [7]. In our signal representation exper- 
iments, the network contains 16 output units representing 
each of the 16 vowels. The input layer contains 120 units, 
40 units each representing the initial, middle, and final third 
of the vowel segment. For the experiments involving acous- 
tic attributes and distinctive features, the input layer may 
be the spectral vectors, a set of acoustic attributes, or the 
distinctive features, and the output layer may be the vowel 
labels or the distinctive features, as will be described later. 

All networks have a single hidden layer with 32 hidden 
units. This and other parameters had previously been adapted 
for better learning capabilities. In addition, input normaliza- 
tion and center initialization have been used [8]. 

S I G N A L  R E P R E S E N T A T I O N  

R e v i e w  o f  P a s t  W o r k  

Several experiments on comparing signal representations 
have been reported in the past. Mermelstein and Davis [10] 
compared the reel-frequency cepstral coefficients (MFCC) with 
four other more conventional representations. They found 
that a set of 10 MFCC resulted in the best performance, 
suggesting that the reel-frequency cepstra possess significant 
advantages over the other representations. Hunt and Lefeb- 
vre [4] compared the performance of their psychoacoustically- 
motivated auditory model with that of a 20-channel mel- 
cepstrum. They found that the auditory model gave the 
highest performance under all conditions, and is least affected 
by changes in loudness, interfering noise and spectral shap- 
ing distortions. Later, they [5] conducted another comparison 
with the auditory model output, the reel-scale cepstrum with 

various weighing schemes, cepstrum coefficients augmented 
by the 5-cepstrum coefficients, and the IMELDA represen- 
tation which combined between-class covariance information 
with within-class covariance information of the reel-scale fil- 
ter bank outputs to generate a set of linear discriminant func- 
tions. The IMELDA outperformed all other representations. 

HIGH 

TENSE 
LOW 

BACK 

I~OUND 

RETIrt0FLEX 

i I e, ~ ~ a o o A U ~ 0 fi 
+ +  + - + +  

. . . . .  + + + + + i + ' +  - 

. . . . . .  + + - + ~ +  + ! +  

. . . . . .  _ ~ _ _ + - _ 

Table 2: The set of distinctive features used to characterize 13 
vowels 

These studies generally show that the choice of paramet- 
ric representations is very important to recognition perfor- 
mance, and auditory-based representations generally yield 
better performance than more conventional representations. 
In the comparison of the psychoacoustically-motivated audi- 
tory model with MFCC, however, different methods of analy- 
sis led to different results. Therefore, it will be interesting to 
compare outputs of an auditory model with the computation- 
ally simpler reel-based representation when the experimental 
conditions are more carefully controlled. 

E x p e r i m e n t a l  P r o c e d u r e  

Our study compares six acoustic representations [9], using 
the MLP classifier. Three of the representations are obtained 
from the auditory model proposed by Seneff [12]. Two repre- 
sentations are based on reel-frequency, which has gained pop- 
ularity in the speech recognition community. The remaining 
one is based on conventional Fourier transform. Attention 
is focused upon the relative classification performance of the 
representations, the effects of varying the amount of train- 
ing data, and the tolerance of the different representations to 
additive white noise. 

For each representation, the speech signal is sampled at 16 
kHz and a 40-dimensional spectral vector is computed once 
every 5 ms, covering a frequency range of slightly over 6 kHz. 
To capture the dynamic characteristics of vowel articulation, 
three feature vectors, representing the average spectra for the 
initial, middle, and final third of every vowel token, are de- 
termined for each representation. A 120-dimensional feature 
vector for the MLP is then obtained by appending the three 
average vectors. 

Seneff's auditory model (SAM) produces two outputs: the 
mean-rate response (MR) which corresponds to the mean 
probability of firing on the auditory nerve, and the synchrony 
response (SR) which measures the extent of dominance at 
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the critical band filters' characteristic frequencies. Each of 
these responses is a 40-dimensional spectral vector. Since the 
mean-rate and synchrony responses were intended to encode 
complementary acoustic information in the signal, a repre- 
sentation combining the two is also included by appending 
the first 20 principal components of the MR and SiR to form 
another 40-dimensional vector (SAM-PC). 

To obtain the mel-frequency spectral and cepstral coeffi- 
cients (MFSC and MFCC, respectively), the signal is pre- 
emphasized via first differencing and windowed by a 25.6 
ms Hamming window. A 256-point discrete Fourier trans- 
form (DFT) is then computed from the windowed waveform. 
Following Mermelstein et al [10], these Fourier transform 
coefficients are later squared, and the resultant magnitude 
squared spectrum is passed through the reel-frequency tri- 
angular filter-banks described below. The log energy output 
(in decibels) of each filter, X k ,  k = 1,2,..,40, collectively 
form the 40-dimensional MFSC vector. Carrying out a co- 
sine transform [10] on the MFSC according to the following 
equation yields the MFCC's, Yi, i = 1,2, .., 40. 

4O 

k = l  

The lowest cepstrum coefficient, Y0, is excluded to reduce 
sensitivity to overall loudness. 

The mel-frequency triangular filter banks are designed to 
resemble the critical band filter bank of SAM. The filter bank 
consists of 40 overlapping triangular filters spanning the fre- 
quency region from 130 to 6400 Hz. Thirteen triangles are 
evenly spread on a linear frequency scale from 130 Hz to 1 
kHz, and the remaining 27 triangles are evenly distributed on 
a logarithmic frequency scale from 1 kHz to 6.4 kHz, where 
each subsequent filter is centered at 1.07 times the previous 
filter's center frequency. The area of each triangle is normal- 
ized to unit magnitude. 

The Fourier transform representation is obtained by com- 
puting a 256-point DFT from a smoothed cepstrum, and then 
downsampling to 40 points. 

One of the experiments investigates the relative immunity 
of each representation to additive white noise. The noisy test 
tokens are constructed by adding white noise to the signal to 
achieve a peak signal-to-noise ratio (SNR) of 20dB, which 
corresponds to a SNR (computed with average energies) of 
slightly below 10dB. 

Results  

For each acoustic representation, four separate experi- 
ments were conducted using 2,000, 4,000, 8,000, and finally 
20,000 training tokens. In general, performance improves as 
more training tokens are utilized. This is illustrated in Fig- 
ure 1, in which accuracies on training and testing data as a 
function of the amount of training tokens for SAM-PC and 

MFCC. As the size of the training set increases, so does the 
classification accuracy on testing data. This is accompanied 
by a corresponding decrease in performance on training data. 
At 20,000 training tokens, the difference between training and 
testing set performance is about 5% for both representations. 

SAM PC (train) 

----O--- MFCC(wain) 

SAM PC 

MFCC 

7O 
66 

60 

8c 

50 
1000 10000 100000 

Number of Training Tokens 

F i g u r e  1: Effect of increasing training data on testing accuracies 

To investigate the relative immunity of the various acous- 
tic representations to noise degradation, we determine the 
classification accuracy of the noise-corrupted test set on the 
networks after they have been fully trained on clean tokens. 
The results with noisy test speech are shown in Figure 2, 
together with the corresponding results on the clean test set. 
The decrease in accuracy ranges from about 12% (for the 
combined auditory model) to almost 25% (for the DFT). 

"i 

OB 

SAM PC Mean Rat¢ Synchro~y MFSC MFCC DFF 

Acoustic Representation 

F i g u r e  2: Performance on noisy and clean speech 

A C O U S T I C  A T T R I B U T E S  A N D  
D I S T I N C T I V E  F E A T U R E S  

Our experiments were again conducted using an MLP 
classifier for speaker independent vow(.] classification. Three 
experimental parameters were systematically varied, result- 
ing in six different conditions, as depicted in Figure 3. These 
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three parameters specify whether the acoustic attributes are 
extracted, whether an intermediate distinctive feature repre- 
sentation is used, and how the feature values are combined 
for vowel classification. In some conditions (cf. conditions 
A, E, and F), the spectral vectors from the mean-rate re- 
sponse were used directly, whereas in others (cf. conditions 
B, C, and D), each vowel token was represented by a set 
of automatically-extracted acoustic attributes. In still other 
conditions (cf. conditions c, D, E, and F), an intermediate 
representation based on distinctive features was introduced. 
The feature values were either used directly for vowel identi- 
fication through one bit quantization (i.e. transforming them 
into a binary representation) and table look-up (cf. condi- 
tions c and E), or were fed to another MLP for further clas- 
sification (cf. conditions D and F). Taken as a whole, these 
experiments will enable us to answer the questions that we 
posed earlier. Thus, for example, we can assess the usefulness 
of extracting acoustic attributes by comparing the classifica- 
tion performance of conditions A versus S and D versus F. 

( 
A J ' B 

Vowels 

C Features ) C Features ) 

Figure 3: Experimental paradigm comparing direct phonetic 
classification with attribute extraction, and the use of linguistic 
features. The mean rate response is chosen to be the signal. 

Acoustic Representation 

Each vowel token is characterized either directly by a set 
of spectral coefficients, or indirectly by a set of automatically 
derived acoustic attributes. In either case, three average vec- 
tors are used to characterize the left, middle, and right thirds 
of the token, in order to implicitly capture the context de- 
pendency of vowel articulation. 

Spectral Representation Comparative experiments des- 
cribed in the previous section indicate that representations 
from Seneff's auditory model result in performance superior 
to others. While the combined mean rate and synchrony 

representation (SAM-PC) gave the best performance, it may 
not be an appropriate choice for our present work, since the 
heterogeneous nature of the representation poses difficulties 
in acoustic attribute extraction. As a result, we have selected 
the next best representation - the mean rate response (MR). 

Acoustic Attributes The attributes that we extract are 
intended to correspond to the acoustic correlates of distinc- 
tive features. However, we do not as yet possess a full under- 
standing of how these correlates can be extracted robustly. 
Besides, we must somehow capture the variabilities of these 
features across speakers and phonetic environments. For 
these reasons, we have adopted a more statistical and data- 
driven approach. In this approach, a general property de- 
tector is proposed, and the specific numerical values of the 
free parameters are determined from training data using an 
optimization criterion [14]. In our case, the general property 
detectors chosen are the spectral center of gravity and its 
amplitude. This class of detectors may carry formant infor- 
mation, and can be easily computed from a given spectral 
representation. Specifically, we used the mean rate response, 
under the assumption that the optimal signal representation 
for phonetic classification should also be the most suitable 
for defining and quantifying acoustic attributes, from which 
distinctive features can eventually be extracted. 

The process of attribute extraction is as follows. First, 
the spectrum is shifted down linearly on the bark scale by 
the median pitch for speaker normalization. For each distinc- 
tive feature, the training tokens are divided into two classes 
- [+feature] and [-feature]. The lower and upper frequency 
edges (or "free parameters")of  the spectral center of grav- 
ity are chosen so that the resultant measurement can maxi- 
mize the Fisher's Discriminant Criterion (FDC) between the 
classes [+feature] and [-feature] [2]. 

For the features [BACK], [TENSE], [ROUND], and [RETRO- 
FLEX] only one attribute per feature is used. For [HIGH] and 
[LOW], we found it necessary to include two attributes per 
feature, using the two sets of optimized free parameters giving 
the highest and the second highest FDC. These 8 frequency 
values, together with their corresponding amplitudes, make 
up 16 attributes for each third of a vowel token. Therefore, 
the overall effect of performing acoustic attribute extraction 
is to reduce the input dimensions from 120 to 48. 

Results 

The results of our experiments are summarized in Fig- 
ure 4, plotted as classification accuracy for each of the condi- 
tions shown in Figure 3. The values in this figure represent 
the average of six iterations; performance variation among 
iterations of the same experiment amounts to about 1%. 

By comparing the results for conditions A and B, we see 
that there is no statistically significant difference in perfor- 
mance as one replaces the spectral representation by the 
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F i g u r e  4: Performance of the six classification pathways in our 
experimental paradigm 

acoustic attributes. This result is further corroborated by 
the comparison between conditions c and E, and D and F. 

Figure 4 shows a significant deterioration in performance 
when one simply maps the feature values to a binary repre- 
sentation for table look-up (i.e., comparing conditions A to E 
and B to C). We can also examine the accuracies of binary 
feature assignment for each feature, and the results are shown 
in Figure 5. The accuracy for individual features ranges from 
87% to 98%, and there is again little difference between the 
results using the mean rate response and using acoustic at- 
tributes. It is perhaps not surprising that table look-up us- 
ing binary feature values result in lower performance, since it 
would require that all of the features be identified correctly. 
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Distinctive Feature 

Figure 5: Distinctive features mapping accuracies for the mean 
rate response and acoustic attributes 

However, when we use a second MLP to classify the fea- 
tures into vowels, a considerable improvement (> 4%) is ob- 
tained to the extent that the resulting accuracy is again com- 
parable to other conditions (cf. conditions A and F, and con- 
ditions B and D). 

D I S C U S S I O N  
Our results indicate that, on a fully trained network, rep- 

resentations based on auditory modelling consistently out- 
perform other representations. The best among the three 
auditory-based representations, SAM PC, achieved a top- 
choice accuracy of 66%. 

The MFSC and MFCC representations performed worse 
than the auditory-based representations and slightly better 
that the DFT. At first glance, it may appear that the dis- 
crepancies are small, since the error rate is only increased 
slightly (from 33% to 38%). However, previous research on 
human and machine identification of vowels, independent of 
context, have shown that the best performance attained is 
around 65% [11]. Looking in this light, the difference in per- 
formance becomes much more significant. One legitimate 
concern may be that principal component analysis has been 
applied to SAM PC, but not to MFCC. However, the cosine 
transform used in obtaining the MFCC performs a similar 
function to principal component analysis. Experiments have 
been conducted using the first 40 principal components of 
MFCC, and the classification accuracy (61.3%) shows that 
principal component analysis has no statistically significant 
effects on performance. It may also be argued that too many 
MFCC coefficients have been used, and this may degrade its 
performance. But further experiments have shown that clas- 
sification accuracy increases with the number of MFCC used, 
and using 40 MFCC yielded the highest performance. There- 
fore, we may tentatively conclude that auditory-based signal 
representations are preferred, at least within the bounds of 
our experimental conditions. 

Performance on noisy speech for the various representa- 
tions follows the trend of that on clean speech, with the ex- 
ception that the range of accuracy increased substantially. 
The degradation of the SAM representations was least se- 
vere - about 12%, whereas the reel-representations showed a 
drop of 17%. The DFT is most affected by noise, and its 
performance degraded by over 24%. We believe that train- 
ing with clean speech and testing with noisy speech is a fair 
experimental paradigm since the noise level of test speech is 
often unknown in practice, but the environment for recording 
training speech can always be controlled. 

Our investigation on the use of acoustic attributes is partly 
motivated by the belief that these attributes can enhance 
phonetic contrasts by focusing upon relevant information in 
the signal, thereby leading to improved phonetic classifica- 
tion performance when only a finite amount of training data 
is available. The acoustic attributes that we have chosen are 
intuitively reasonable and easy to measure. But they are by 
no means optimum, since we did not set out to design the 
best set of attributes for enhancing vowel contrasts. Never- 
theless, their use has led to performance comparable to the 
direct use of spectral information. With an improved under- 
standing of the relationship between distinctive features and 
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I Pathway ] A I B I C 24~0 40E64 47F04 Connections 4288 1984 1760 

Table 3: Sizes of the networks in our experimental paradigm. 

their acoustic correlates, and a little more care in the de- 
sign and extraction of these attributes, it is conceivable that 
better classification accuracy can be obtained. 

Another advantage of using acoustic attributes is a saving 
on run-time computations through reduction of input dimen- 
sions. Table 3 compares the total number of connections in 
the one or more MLP within each condition in our experi- 
mental paradigm. With a small amount of preprocessing, the 
use of acoustic attributes can save about half of the compu- 
tations required by the direct use of spectral representation. 

One potential source of discrepancy in our experiments 
has to do with pitch normalization, which was not performed 
on the mean-rate response. However, a pitch-normalized 
spectral center of gravity measure was used to extract acous- 
tic attributes, since it can eliminate singularities that compli- 
cate the search for a maximum FDC value in the optimization 
process. However, this advantage is obtained sometimes at 
the expense of getting a lower FDC value, thus leading to 
poorer performance. While we do not feel that pitch nor- 
malization has any significant effect on the outcome of our 
experiments, further experiments are clearly necessary. 

To introduce a set of linguistically motivated distinctive 
features as an intermediate representation for phoneti c classi- 
fication, we first transform the acoustic representations into 
a set of features, and then map the features into vowel la- 
bels. While one may argue that such a two-step process is 
inherently sub-optimal, we nevertheless were able to obtain 
comparable performance, corroborating the findings of Leung 
[7]. Such an intermediate representation can offer us a great 
deal of flexibility in describing contextual variations. For ex- 
ample, all vowels sharing the feature [+ROUND] will affect the 
acoustic properties of neighboring consonants in predictable 
ways, which can be described more parsimoniously. By de- 
scribing context dependencies this way, we can also make use 
of training data more effectively by collapsing all available 
data along a given feature dimension. 

Figure 5 shows that performance on some features is worse 
than others, presumably due to inadequacies in the attributes 
that we use. For example, performance on the feature [TENSE] 
should be improved by incorporating segment duration as an 
additional attribute. When a second classifier is used to map 
the feature values into vowel labels, a 4-5% accuracy increase 
is realized such that the performance is again comparable to 
cases without this intermediate feature representation. This 
result suggests that the acoustic-phonetic information is pre- 
served in the aggregate of the features, and that the sub- 
sequent performance recovery may be a consequence of the 

redundant nature of distinctive features, as well as the ability 
by the second classifier to capture various contextual effects. 

Based on the results of our experiments, we may tenta- 
tively conclude that the auditory-based representations are 
preferred. Furthermore, the use of acoustic attributes can 
significantly reduce run-time computation for vowel classifi- 
cation with no cost to accuracy. Finally, the introduction of 
an intermediate representation based on distinctive features 
can potentially provide us with a flexible framework to de- 
scribe contextual variations and make more effective use of 
training data, again at no cost to classification performance. 
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