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Abstract  

For natural language understanding systems designed for domains including relatively 
complex equipment, it is not sufficient to use general knowledge about this equipment. 
We show problems which can be solved only if the system has access to a detailed 
equipment model. We discuss features of such models, in particular, their ability to 
simulate the equipment's behavior. As an illustration, we describe a simulation model 
for an air compressor. Finally, we demonstrate how to find referents in ~is model for 
nominal compounds. 

1. Introduction 
The work presented here  is part of the P R O T E U S  (-PROtotype TEx t  Unders tand ing  

System) system current ly  under  deve lopment  at the Couran t  Institute of  Mathemat ica l  

Sciences, New York Universi ty.  l The  objective of our  research is to unders tand shor t  natural  
language texts about  equipment .  Our  texts at present  are CASual ty  REP o r t s  ( C A S R E P s )  
which describe failures of equ ipment  installed on Navy ships. Our  initial domain  is the 
starting air system for  propuls ion gas turbines.  A typical C A S R E P  consists of  several  
sentences,  for  example:  

Unable to maintain lube oil pressure to SAC [Starting Air Compressor]. Disengaged 
immediately after alarm. Metal particles in oil sample and strainer. 

It is widely accepted among researchers  that in o rde r  to achieve natural  language 
unders tanding systems robust  enough for  practical application,  it is necessary to provide  them 
with a lot of  common-sense  and domain-specific knowledge.  H o w e v e r ,  so far ,  there  is no 
consensus as to what  is the best way of choosing,  organizing and using such knowledge .  

The novelty of  the approach presented here  is that,  besides general  knowledge  abou t  
equipment ,  we also use a quite extensive simulat ion model  for  the specific piece o f  
equ ipment  which the texts deal with. We found that for  unders tanding purposes  it is more  
appropria te  to make  the simulation qualitative ra ther  than quantat ive.  Thus,  for  example ,  we 
are not interested in the precise value of  oil pressure ,  but  only whe ther  it is too low or  too 
high. The model  is built f rom instances of pro to types  which contain the bulk of  genera l  
knowledge.  It exists in the system permanent ly .  In this situation the analysis of  a piece o f  text  
consists of two stages: (1) locating in the model the objects ment ioned in text; (2) in terpre t ing  
the text using both the specific informat ion residing in the model  and the genera l  knowledge  
which is accessible f rom the model .  There  is no  clear-cut  distinction be tween  these two stages 
(see discussion of the examples in the next  section).  

i An overview of the system is given in [Grishman 1986], submitted to the AAAI-86. 
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We s e e  the fol lowing merits of  having a simulation model:  
(a) the model  p r o v i d e s  us with a reliable background against which we can check the 

correc tness  of  the understanding process on several levels: finding re fe ren ts  of  noun phrases,  
assigning semantic  cases to verbs,  establishing causal relationships be tween  individual 
sentences of  the text.  

(b) the requ i rements  of s imulat ion help us to decide what kind of knowledge  about  the 
equ ipment  should be included in the model ,  how it Could best be organ ized  and which 
inferences it should be possible to make.  It appears that the in fo rma t ion  needed  for  
s imulat ion largely coincides with that necessary for  language unders tanding.  

(c) the ability to simulate the behavior  of a piece of equ ipment  provides  a very  nice 
verif icat ion method  for  the unders tanding  process at the level of interact ion with a user - it is 
relat ively s t ra ight forward  to build a dynamic graphical interface which allows the user to 
have a fr iendly insight in the way his input has been unders toood by the system.  

In the remainder  of  the paper  we will show examples  of  problems which can be solved only 
if the system has access to some kind of  a simulation model  of  the domain  equipment .  
Having demons t ra ted  the need for  such a model ,  we will discuss the design decisions which 
we found impor tan t  for  our  domain  and which seem to apply genera l ly  fo r  complex  
equipment .  How these considerat ions inf luenced the model  for  the SAC may be seen in the 
next  section. Then  we present  a me thod  of finding referents  in the mode l  for  nominal  
compounds  describing SAC's components .  Finally, we briefly describe our  fu ture  work .  

2. N e e d  for  a M o d e l  

In most  natural  language unders tanding  systems the knowledge about  the domain  of  
discourse is organized in the form of prototypes  for objects and actions,  and for  the relations 
between them which are re levant  for  the domain.  The prototypes  are reposi tor ies  for  
knowledge  about  the instances they subsume.  This knowledge is highly s t ruc tured  - there  are 
many  links through which apparent ly  distant concepts may be connec ted .  The  text is 
processed on a sentence by sentence  basis. Usually,  each sentence is split into linguistic 
entities with syntactic and semant ic  informat ion  attached. This i n fo rma t ion  is used to 
de te rmine  the p ro to type  for  each enti ty.  Through  these prototypes there  is access to general  
in format ion  about  the concepts invoked  by the sentence.  This in format ion  is o f ten  necessary 
for  the adequate  in terpreta t ion (i .e.  unders tanding)  of the sentence.  To  account  for  the fact 
that the unders tanding of an ut terance depends somet imes on the context  in which the 
ut terance is set, it is necessary to maintain informat ion  about  the discourse context .  One way 
of  organizing this informat ion is by creating and storing instances of p ro to types  for  entit ies 
f rom the text as they come unde r  analysis. The  combined in format ion  coming f rom the 
context  and f rom the processed sentence is used to solve problems like anaphora  resolut ion,  
connect ivi ty ,  etc. 

Assuming this approach,  let 's consider  the following sentence (let it be the first  sentence in 
the analyzed text):  

Starting air regulating valve failed. 
Having comple ted  the syntactic and semantic analysis of the sentence,  we would  recognize  
starting air regulating valve as an example  of the pro to type  regulating valve. W e would  then 
fetch its descript ion and create an instance of  a regulating valve. Next ,  using the genera l  
knowledge  about  valves (of which regulating valve is a more  specific case) ,  and the semant ic  
in format ion  about  starting air, we would modify the just created instance with the fact that 
the substance the valve regulates is starting air. From the syntactic analysis we would know 
that starting air regulating valve is the subject of verb  fail. Using the p ro to type  of the action 
fail, we would create its instance and possibly also would fur ther  modi fy  the instance of  the 
valve so: that the fact about  its opera t ional  state is recorded.  These two instances would now 
consti tute the discourse context  so far.  Now,  suppose the message cont inues  with the 
s c n t e n ~ :  
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Unable to consistently start nr Ib turbine. 
The processing would be similar to what has been described above  for the first sentence.  We 
would create an instance of  a gas turbine, would  fill its proper name slot with nr  I b  and 
finally use the instance as an argument in another instance recording the finding about  start  
problems.  

These  two sentences come f rom an actual C A S R E P .  In the starting air system (our  initial 
domain)  there are three different valves regulating start ing air. Two  questions might  be 
posed in connect ion with this short,  two-sentence text: ( I )  which  of the three valves was 
meant  in the first sentence? (2) could the failure of  the valve ment ioned  in the first sentence 
be the cause o f  the trouble repor ted in the second sen tence?  

The general  knowledge of equipment  may tell us a lot about  failures, such as: if a 
machinery  e lement  fails, then it is inoperat ive,  or if an e l emen t  is inoperat ive ,  then the 
e lement  of  which it is part is probably inopera t ive  as well ,  etc. Unfor tuna te ly ,  such 
knowledge  is not enough: there is no way to answer  these two questions (not only for  an 
artificial unders tanding system, but even for us, humans)  wi thout  access to ra ther  detai led 
knowledge  about how various elements of the given piece of  equ ipment  are in terconnected  
and how they work as an ensemble.  In our  case we could hypothesize  (using general  
knowledge  about  text structures) that there is a causal re la t ionship between the facts stated in 
the two sentences.  To test this, we would have to consider  each of  the three valves in turn 
and check bow its inoperat ive state could affect  the starting of the specific (i.e. nr lb)  
turbine.  If one of the three valves, when inopera t ive ,  would make the turbine starting 
unrel iable ,  then we could claim that this valve is the p roper  re fe ren t  for  the starting air 
regulating valve ment ioned in the first sentence.  This f inding would let us also answer 
quest ion (2) aff i rmatively.  

The above example,  as well as others of similar nature ,  demons t ra te  that in cases where  
the domain  is very specialized and complicated (a typical si tuation for real-life equ ipment ) ,  
language understanding systems should be provided not  only with general  knowledge about  
the equ ipment  but  also have access to its model .  

With an equ ipment  model available, the processing of  the two sentences would change: for  
the first sentence,  instead of building a new descript ion for  the starting air regulating valve, 
we would ra ther  try to find an object / objects in the model  which could be described by this 
noun phrase.  We would treat nr lb  gas turbine similarly. The semantics of start would be a 
kind of s imulat ion procedure  defined for the model .  Now,  let 's consider problems (1) and (2) 
again. Viewing nr lb  as a proper  name, we should easily find the object in the model  which 
cor responds  to the refer red  turbine.  The analysis of  starting air regulating valve would leave 
us with three pointers to the three objects in the model  cor responding  to the three starting air 
regulating valves in the equipment .  In order  to resolve this ambiguity we could make the 
fol lowing assumption,  which seems very reasonable:  

Suppose first, that the valve's  failure has indeed caused problems for  the 
turbine.  Now,  if we confirm that at least one  among the three valves, if 
inopera t ive ,  has this effect ,  then our  assumption was correct  and we found the 
right re ferent (s ) ;  if none of the three valves has any impact  on the turbine,  then 
our  assumption was wrong: it answers quest ion (2) negat ively and leaves (1) still 
open .  

Then  we would  proceed with the confirmation phase,  consider ing each of  the three candidates 
separate ly .  We would temporari ly  set its opera t ional  state to I N O P E R A T I V E ,  initiate the 
S T A R T  procedure ,  and then check whether the functional  state of  the nr lb  gas turbine in the 
model  has been set to R U N N I N G  (for simplicity reasons let 's assume that there  is no 
consistently adverb  in the second sentence).  If for  all three simulation exper iments  we wind 
up with the value R U N N I N G  for  the turbine, then we must  conclude that there is no causa l  
relat ionship between the sentences. Otherwise,  we would claim to have found the r ight  
r e fe ren t  fo r  the valve. Having unambiguously located the object  r e fe r red  to in the first 
sentence,  we would modify its operational  state accordingly.  
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3. Characteristics of an Equipment Model 

In the preceding section we tried to show that  genera l  knowledge  about  e q u i p m e n t  is by 
itself not  enough to solve some p rob l ems  of  unders tanding .  The  decision to p rov ide  
P R O T E U S  with an equ ipment  model  con f ron ted  us with a new quest ion.  W h e r e  and how to 
draw a division line be tween  the knowledge  abou t  equ ipmen t  in general  and a m o d e l  of  a 
specif ic piece of  equ ipment?  The ul t imate objec t ive  of  our  research is to design P R O T E U S  in 
such a way that it may be adapted  easily to new equ ipment .  Clearly,  the model  has to be built  
anew each t ime we want  to use P R O T E U S  for  a new piece of  equ ipment .  The  genera l  
knowledge ,  on the other  hand,  should unde rgo ,  in such cases,  only a slight ex tens ion  due to 
the new types of  componen t s  in the new equ ipmen t .  For  example ,  moving  f rom the s tar t ing 
air sys tem to the main reduction gear ,  we would  have to build a new model  for  the gear ,  but 
while doing this, we should be able to use m a n y  of  the structures designed for  model l ing  
c o m p o n e n t s  which also occured in the s tar t ing air  sys tem,  like bear ings ,  lubr ica t ion  sys tem 
e l emen t s ,  etc. This goal can be achieved using p ro to types  and their  instances:  the mode l  
would  be built of  instances of  p ro to types .  The  p ro to types  would const i tute par t  o f  the 
genera l  knowledge  data base.  In the instances we would store only the in fo rma t ion  which is 
specif ic  to the object described by the instance.  For  example ,  in case of  a gea rbox ,  the 
in fo rmat ion  about  its function (i.e. speed change)  should be s tored in the p r o t o t y p e ,  and only 
the rat io of this change should reside in the instance of a specific gea rbox .  Also the 
in fo rmat ion  about  how a specific gearbox  is used in the domain  equ ipmen t  mus t  be kep t  in 
the instance.  Of  course,  the p ro to type- ins tance  scheme  ensures  that all the genera l  k n o w l e d g e  
connec ted  with the p ro to type  is also accessible f rom instances of  this p ro to type .  We  found  
the rich reper toi re  of p r o g r a m m i n g  tools const i tut ing the f lavor  system in Symbolics-Lisp a 
very  convenient  vehicle for  implement ing  this s t ra tegy.  

On the level of proto types  we should apply the principle of  general i ty  as well.  Hence ,  for  
e x a m p l e ,  we should consider  the p ro to type  of  a regulat ing valve as a special case of  a valve 
and have  the knowledge  characterist ic  for  all possible  types of valves connec ted  with the 
valve pro to type .  This knowledge  could then be p ropaga ted  down in the h ie ra rchy  if 
necessary .  Because the p rob lems  of  s t ructur ing knowledge  in the fo rm of  p r o t o t y p e s  have  
been extensively invest igated ( research on f r ames ,  scripts,  semant ic  nets,  e tc . ) ,  we w o n ' t  
e l abo ra t e  on this here.  We will c o m m e n t  on only one  aspect  of  the h ierarchy of p ro to types .  I t  
s eems  to us that, for  purposes  of  equ ipmen t  model l ing ,  this h ierarchy should have  the 
s t ruc ture  of  a graph ra ther  than of a tree:  its nodes  should be al lowed to have m o r e  than just 
one  immedia te  parent .  We ment ioned  a l ready that  there  are regulat ing va lves  in our  
equ ipmen t .  These  are valves  whose funct ion is to regulate  the med ium in some  m a n n e r ,  
usually changing one of its pa rame te r s ,  like pressure  or  t empera tu re .  We also have  o ther  
va lves  whose function is dif ferent ,  for  examp le  rel ief  or shut -off  valves .  Thus ,  is it 
conceivable  to divide valves into classes according to their function.  H o w e v e r ,  this is not  the 
only dimension along which classification is possible .  Valves  may  be also ca tegor ized  
accord ing  to their operat ing principle as electr ic ,  hydraul ic  or  pneumat ic  valves .  Now,  the 
p r o b l e m  with a tree-like t axonomy  is that we have  to a r range  the d imens ions  l inearly:  if we 
decide to consider the functional  aspect  first,  we will have to repeat  the division according to 
the opera t iona l  aspect at each node of  the funct ional  level of  the h ierarchy t ree .  With the 
r eve r sed  order  of d imensions  the p rob lem remains  the same.  It would be t h e r e f o r e  much  
be t te r  to allow a node in the hierarchy to inheri t  p roper t i es  f rom more  than one immed ia t e ly  
p reced ing  node.  The  f lavor  sys tem,  with its mechan i sm allowing f lavors  to be mixed ,  p rov ed  
to be very  helpful here.  

I t ' s  obv ious  that any real-l ife equ ipmen t  deserv ing  a natural  language f ron t  end is big and 
comple  x . For  example ,  the start ing air sys tem (our  initial domain)  consists of  severa l  
hundred  e lements  each of which may be r e f e r r ed  to by its descript ive name  and be men t ioned  
in a casaul ty  repor t .  A good measure  of  the sys t em ' s  complexi ty  is the size of  its descr ip t ion 
in the ship ' s  manual :  28 pages of  text,  f igures  and tables.  Wha t  is the best  way of o rgan iz ing  
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this vast amount of data into a managable model? Clearly, some simplification is 
unavoidable. How much? Let us address the former problem first. A salient feature of a 
piece of equipment is its task, i.e. what it should do. Generally speaking, all complex 
equipment may be viewed as processors of something - if this something is changed 
quali tat ively into something else (e.g. fuel into rotary movement) we may speak  of 
genera tors ;  if only some  pa rame te r s  of  this someth ing  are changed  (e .g.  low-pressure  air into 
h igh-pressure  air) we may  speak of t r ans fo rmers .  Usual ly  only  par t  of  the e q u i p m e n t ' s  
componen t s  are directly involved in this p r i m a r y  task. The  r e s t - a r e  there to ensure  that  
special condit ions are created at certain points in the equ ipmen t .  This  observa t ion  p rov ides  
us with an impor t an t  structural  hint: we can t reat  a piece of  e q u i p m e n t  as a functional sys tem 
consisting of  c o m p o n e n t  sys tems among  which one is respons ib le  for  the p r imary  funct ion 
(the equ ipmen t  task) and the others  fulfill auxiliary funct ions.  If  necessary ,  we may  apply the 
same approach  recursively to any of the lower level sys tems.  Systems of this kind may  be 
viewed as chains of  componen t s  l inked toge ther  in such a way  that ,  at  each node of  the chain,  
the processed substance changes slightly, becoming  thus m o r e  s imi lar  to its desired f o r m  at 
the end of the chain. Many  of  these componen t s  work  p rope r ly  only if special condit ions are 
created.  Hence  the need for  auxiliary systems.  A n o t h e r ,  m o r e  convent ional  way of  
s tructuring the mode l  is in the fo rm of a par t /whole  h ie rarchy .  A natural  quest ion arises:  
where  one should stop with these two types of  r e f inemen t s  (in sys tem/bas ic-par t  and 
par t /whole  h ierarchies)?  This is a more  specific vers ion of the ques t ion  we posed above :  how 
much to s impl i fy?  A possible answer  is to ref ine  the h ierarchy far  enough so that  eve ry th ing  
which potential ly may  be re fe r red  to in the repor ts  would  have  a descript ion in the model .  
This,  however ,  seems  impractical .  Cons ider ,  for  example ,  the fo l lowing sentence: 

Borescope investigation revealed a broken tooth on the hub ring gear. 
Consider ing that  there are several  d i f ferent  gears  in our  s tar t ing air system and each of  

them has m a n y  teeth which are very much alike, it 's obv ious  that creating a scpara te  
descript ion for  each of them wouldn ' t  be reasonable .  The  s a m e  r e m a r k  is true for  balls in 
bearings or  for  connecting e lements  like screws,  bolts o r  pins. On the other  hand,  
in format ion  abou t  the tooth conveyed in the above  sentence  cannot  go unnoticed.  The  
solution we accepted  for  such e lements  is not to include their  descr ipt ions  in the mode l  on a 
p e r m a n e n t  basis but to keep the possibili ty open  to create  and to implan t  into the model  their  
descript ions if such a need arises during the analysis.  A rule of  t humb for  deciding whe the r  a 
part icular  c l emen t  deserves  a pe rmanen t  place in  the mode l  can be fo rmula ted  in the fo rm of 
the question: how much informat ion  specific to this c l e m e n t  is necessary to solve 
unders tanding  p r o b l e m s ,  like finding re feren ts  (see the sect ion on nominal  compounds )  or  
making  inferences?  As an example  of  the latter,  let 's  consider  a specific gear.  We would like 
to know,  among  o ther  things, what  is this gear ' s  role and place in the model led  equ ipmen t  so 
that,  in case of  its damage ,  we could de te rmine  the impac t  of  this on the equ ipment .  
In fo rma t ion  of  this type can be deduced nei ther  f rom the ana lyzed  text  nor f rom genera l  
knowledge  abou t  gears .  It must  be known in advance.  Our  way  to achieve  this is to keep  the 
gear ' s  descr ipt ion permanent ly  in the model .  

The re  are,  h o w e v e r ,  e lements  like teeth which have so little r e l evan t  s tructure that  they are 
always re fe r red  to as tooth, teeth together  with the e l e m e n t  h igher  up in the par t /whole  
h ierarchy ( let 's  call such an e l emen t  a host).  Thus ,  it is not necessa ry  to maintain any specif ic 
in fo rmat ion  abou t  them in the model .  It  is enough ,  if we are able to crea te  their descr ipt ions 
only when  they occur  in the text. All the possible  i n fo rma t ion  we will ever  need to include 
into such descr ipt ions will come f rom the text. The  in fo rma t ion  relat ing such e lements  with 
o ther  parts  of  the equ ipment  will come f rom their hosts.  For  example ,  the impact  of  a 
tooth ' s  dam age  on the equipment  may be der ived f rom the funct ional  in format ion  connec ted  
with its host.  

It is : impor tan t  to notice that there is nothing absolute  in dist inct ions such as the one made  
above .  It  is conceivable  to have a piece of  equ ipmen t  of  a l a rger  scale than the SAC,  where  
e lements  like gears  are not essential  enough for  us to be bo the r ed  with their  shapes  or  
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locations;  if b roken  they p robab ly  would  be re fe r red  to by giving the h igher - leve l  e l emen t  of 
which they are part .  In such cases we would ra ther  treat  gears like we  t reat  teeth here.  

It is des i rable  to be able to use the mode l  on several  levels o f  abs t rac t ion.  For  s o m e  
purposes  it is enough to treat,  say,  a speed increasing gearbox as a sys tem for  which we only 
know its outside behavior ;  in o ther  cases,  we would like to use in fo rmat ion  abou t  its in ternal  
s t ructure  as well. It should,  o f  course ,  be possible to deduce the externa l  behav io r  of  an 
object  by analyzing its parts;  howeve r ,  it w o u l d n ' t  be practical to go down to the level of  
basic c o m p o n e n t s  each time we need to know someth ing  about  the behav io r  of  the e q u i p m e n t  
on the in te rmedia te  level. Our  approach  of gradual ly  ref ined levels of  funct ional  sys t ems  
descr ibed above  fulfills this des ide ra tum.  It seems inevitable that  any division into levels will 
a lways be artificial and the re fo re ,  w h a t e v e r  s t ructure  of  the mode l  we could design,  we 
a lways will find sentences which ment ion  objects f rom different  levels.  Cons ide r  for example :  

Believe the coupling from diesel to SAC lube oil pump to be sheared. 
In our  mode l  for  the starting air sys tem the diesel and SAC are at the s ame  level of  
abst ract ion.  The  lube oil pump is two levels below the SAC in the h ierarchy.  H o w  we solve 
the p rob lem of  de termining  the re fe ren t  for  the above  coupling is descr ibed in the section on 
nomina l  c o m p o u n d s  (see below).  H e r e  we wan t  only to point  out that  for  any mult i - level  
mode l ,  there must  be mechanisms avai lable  for  moving  between abs t rac t ion  levels flexibly.  

In the preceding  section we discussed two unders tanding p rob lems .  The  solution we 
p roposed  there  relied heavily on the ability to s imulate  certain actions and processes  of  the 
domain  equ ipment .  We have men t ioned  a l ready in the in t roduct ion that  it is suff icient  to 
s imulate  equ ipmen t  behavior  qual i tat ively.  It is clear that the solut ion to the s imula t ion  
p rob lem depends  a lot on the s t ructure  of the model .  The re fo re ,  the s imula t ion  r e q u i r e m e n t  
should be one of the impor tan t  design cri teria for  the model .  Dividing the equ ipmen t  into 
funct ional  subsys tems  and model l ing them as chains of  componen t s  (comp.  above)  facili tates 
the s imulat ion task considerably.  

There  is ano ther  aspect of natural  language unders tanding sys tems whose  sat is factory 
t r ea tmen t  depends  a lot on an effect ive  solution to the s imulat ion p rob l em.  We  may expec t  
that in real- l i fe  cases, the output  of such sys tems  is ei ther fed into some  exper t  sys tem or 
communica t ed  to a human  user.  In both  cases impor tan t  decisions are p r e sumab ly  made ,  
based on this output  - o therwise ,  why to spend m o n e y  for  building them.  It  is the re fo re  very  
impor tan t  for  such systems to p rov ide  users  with means  to check the quali ty of their  
unders tanding .  In the case of  equ ipmen t ,  one quick and user- f r iendly  way of  ver i fy ing  the 
analysis is th rough graphics (we e labora te  on this a little more  in the section describing fu ture  
work ,  be low) .  Because equ ipment  is very dynamic ,  most  t ex t s , abou t  them involve act ions,  
events ,  p rocedures  occuring in a cer tain t ime sequence.  In order  to show this graphical ly ,  it is 
necessary  to s imulate  the essential  aspects of  this on the screen.  

The s imulat ion should be designed in such a way that its two independen t  appl icat ions in 
the sys tem (i.e. text unders tanding and communica t ion  with users)  w o u l d n ' t  require  two 
sepera te  s imulat ion systems.  

4. The Starting Air System Model 

As ment ioned  above ,  the e q u i p m e n t  we have  chosen as our  initial domain  is the s tar t ing air 
sys tem on Navy  ships. Its funct ion is to supply  a ship 's  propuls ion gas turbines with the 
h igh-pressure  air necessary to s tar t  the turbines .  The  main par t  of  the start ing air sys tem is 
its c o m p r e s s o r  (SAC - Starting Air  C o m p r e s s o r ) .  It is by far the mos t  compl ica ted  e l e m e n t  
and the re fo re  is p rone  to var ious  kinds of  damage  and mal funct ion .  Because of its 
impor t ance ,  we started our e f for t s  by building a model  of  the SAC. So far we have 
i m p l e m e n t e d  parts  of  it on a Symbolics Lisp machine  using Zeta-Lisp. 
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Figure I. Division of the SAC into subsystems. 

Following the guidelines for equipment models given in the preceding section, we divided 
the SAC into its three functional subsystems (comp. Fig. I): 

(a) Air System - this is the system partially responsible for the SAC's primary task: it 
takes ambient air, compresses it to the desired pressure and outputs the flow to a system of 
temperature and pressure regulating valves which precede the turbine starter; 

(b) Motor System (auxiliary) - its function is to transmit mechanical rotation from the 
diesel motor to the compressor blade assembly and lubrication oil pump; 

(c) Lubrication Oil (LO) System (auxiliary) - it distributes the oil throughout the SAC 
and supplies it under pressure to such elements as bearings and some couplings. 
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Figure 2. Division of the SAC Motor System into subsystems on level 1. 
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Each of these three systems may be split into further systems. For example, we view the 
Motor System as consisting of subsystems shown in Fig. 2. Each of these constituents is 
again a system consisting of more basic elements. So, for example, one of the two speed 
increasing gearboxes consists of a hub, a ring gear, an arrangement of three star gears, and a 
pinion mounted on a shaft. 

Every system may be viewed on several levels of abstraction. For example, Fig. 2 shows 
level 1 of the Motor System. Fig. 3 and 4 show the same system on level 0 and level 2, 
respectively. 

J ' ( l=O)  ] 

\ / " - - - '~  I V / S  ), s t e n  ~/',..~ ~-~-~/~ Syl l te~ j 

@ 

Figure 3. The  SAC Motor  System on level O. 

All the figures presented here  are Symbolics screen images genera ted  by P R O T E U S  f rom 
descriptions of  the model 's  e lements  used for  the understanding process.  As a ma t t e r  of  fact,  
we have provided  dynamic displays reflecting some of the simulat ion possibilit ies of  the 
model .  Consider ,  for example ,  Fig. 4. It is possible, using the mouse,  to position the cursor  
on,  say, the D I E S E L  ON switch and click on it causing the diesel to be tu rned  on. The  
compressor  starts to run: the small globes inside each of  the square e lements  ( f rom diesel 
shaft  to the clutch) start to rotate  in circles with dif ferent  speeds depending on their  place in 
the system (before  or af ter  the speed increasing gearbox) ;  fu r the rmore ,  all the e lements  
which should be lubricated (those which have in- and outlets in the form of a r rows)  get oil 
influx (depicted as dots appearing inside the elements) .  This follows f rom the way the SAC 
operates :  the Motor  System transmits the rotary movemen t  to the lube oil pump,  which starts 
to work and t o s u p p l y  oil via the LO System (not shown here) .  Similarly, when we set the 
clutch to the I N  position, the other  e lements  (following the clutch in the chain) will start  to 
rotate .  Again,  all this is achieved as a side effect  of the simulation used for unders tand ing  
purposes .  We want to stress that the "movie" is not the point here.  We have to know how the 
ro tary  movemen t  propagates in the system, if we want to conduct  tests like the one  descr ibed  
in section 2, above.  Such tests are the pr imary  reason why we equipped our  mode l  with a 
s imulat ion capability. 
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Figure 4. The SAC Motor  System on level 2. 

Let's turn now to the internal structure of our model for SAC. The structure of the model 
is based o~ the Symbolics-Lisp flavor system. The prototypes of elements of which the model 
is built are represented as flavors. The specific elements of the model are encoded as 
instances of their prototype flavors. The general knowledge about elements is stored in the 
prototype flavors and can be divided into two parts: (1) declarative knowledge expressed in 
the form of defaults and restrictions on instance variables; (2) procedural knowledge in the 
form of methods defined for the flavors. The flavor instances contain only declarative 
knowledge comprised of instance-variable -- value pairs (we will use more traditional names 
here: slot -- slot-filler). The prototype flavors are built as mixtures of  component flavors, 
each of which captures a certain aspect(s) of the prototype. The component  flavors, which 
form a graph-like hierarchy, may be viewed as sets of isolated features common to several 
different prototypes. The sophisticated inheritance mechanism of the flavor system, which 
works on the level of instance variables (slots) and on the level of methods, allows us to 
design this hierarchy of flavors in a consise manner. We illustrate these points below with a 
couple of examples. 

Eve/-y element which is represented permanently in the model is an instance of a flavor 
which has the %building-block flavor as one of its components flavors (directly or indirectly 
through intermediate flavors). This reflects the observation that certain facts about model 
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e lemen t s  will have  to be recorded for  any kind of  e lement .  For  example ,  for  every  e l e m e n t  
we wan t  to know its opera t ional  state ( r e m e m b e r  that  the texts we are dealing with are abou t  
e q u i p m e n t  fa i lures)  or  the system of  which it is a par t .  So, we define:  

(defflavor %building-block 
(location operational-state part-of screen-location caption) 
0 
(:settable-instance-variables :screen-location :operational-state) 
:gettable-instance-variables 
(:initable-instance-variables :function :location :part-of) 
(:default-init-plist :operational-state 'OK)) 

In the above  def ini t ion the first  e l ement  is the f l avor ' s  name ,  the second is a list of  instance 
var iab les ,  the third is a list of  c o m p o n e n t  f lavors  ( emp ty  here) ,  and the rest of  the def ini t ion 
descr ibes  va r ious  aspects of  instance var iables ,  such as their  defaults ,  how they can be 
ini t ial ized,  accessed,  etc. (we have omi t ted  this par t  f rom f lavor  defini t ions given be low) .  

The  p e r m a n e n t  e lements  in the mode l  fall into two categor ies :  sys tems and basic par ts .  
systems are  those  building blocks which have s tructural  in format ion .  They are chains of  
e l emen t s  uni ted by a working substance which they process  ( for  example ,  the lube oil 
sys tem) .  Sys tems  are described at severa l  levels of  abst ract ion.  The  filler of the structure slot 
is a list of  descr ip t ions  of the system on d i f ferent  levels - each e l emen t  in this list specif ies ,  
a m o n g  o thers ,  the s tar t  and end nodes of  the chain of  c o m p o n e n t s  on this level: 

(defflavor %system 
(working-substance structure) 
(%building-block)) 

basic parts are  those  building blocks which are at the bo t tom of the par t /whole  h i e ra rchy .  The  
components slot  is initially set to an empty  list. It is p rov ided  as a dest inat ion for  those 
e q u i p m e n t  par ts  which were not included into the mode l  a priori but have to be r eco rded  if 
they occur  in the analyzed text (see section 3 for  our  discussion on this issue).  

(defflavor %basic-part 
(components) 
(%building-block)) 

A n o t h e r  ve ry  c o m m o n  f lavor  describes the aspects of  a building block which capture  its 
role as a c o m p o n e n t  (a node) in some system.  It is used as a mixin f lavor  for building blocks  
which are sys tems  or basic parts .  Its slots record how it is incorpora ted  in the system (from, 
to slots) and wha t  its function is with respect  to the work ing  substance (i.e. how the subs tance  
changes  whi le  passing this e lement) .  The filler of the function slot is a fo rmula  in te rp re ted  by 
a me tho d  def ined  for  the pro to type  f lavor  of  the e lement .  This  method accesses values  of  
severa l  slots of  the instance to which it is applied,  for  examp le  input or operational-state. The 
lat ter  is i m p o r t a n t  because of the potent ial  of  fa i lure  or  d a m a g e  of the e l emen t  (see our  
discussion in sect ion 2, above):  

(defflavor %system-node 
(from to input output function) 
0)  

C o m p l e x  e q u i p m e n t  is usually controlled f rom outs ide  automat ica l ly  or  manual ly  by service  
personne l .  The re  are,  therefore ,  e lements  whose  opera t iona l  modes  may  be changed .  
E x a m p l e s  o f  such e lements  in the SAC are the diesel and clutch. To  account  for  such 
e l emen t s ,  we  def ined  a f lavor  %multiplexer, which may be mixed with o ther  c o m p o n e n t  
f lavors  to f o r m  a pro to type .  The filler of  switch-locations is a list of  all places f rom which 
switching is poss ible  (in our case these are the local and r emote  control  consoles) ,  switch- 
actions speci f ies  for  each possible switch posit ion a p rocedure  which has to be run in case the 
e l e m e n t  is set  into this position. 

(defflavor %mul:iplexer 
(switch-locations switch-anions actual-switch-position) 

9 0  



0) 

N o n e  of  the above are prototype flavors. They  are componen t  f lavors  which we can use to 
def ine  proto types .  Let  us consider the pro to type  for  diesel motors .  It is a piece o f  e q u i p m e n t  
complicated enough to treat as a system. Diesels generate rotary m o v em en t  which is then 
used to run other  pieces of  equipment .  Thus they are parts of  larger  systems.  Because they 
run only if a need arises, there must be ways to influence their  operat ional  modes .  All these 
facts justify the following definit ion of  a f lavor  which can serve as a p ro to type  for  diesel 
motors .  The point of  this definit ion is to mix together  several  c o m p o n e n t  f lavors  
cor responding  to the just ment ioned features .  

(defflavor %diesel 
0 
(%system %system-node %multiplexer)) 

Now we are ready to introduce the instance of  a specific diesel motor  which is par t  of  the 
start ing air system. 

(setq @diesel-2 (make-instance '%diese! 
':put-of 

'~ssdg-2 
':working-substance 

'(ROTATION) 
':caption 

'("Diesel") 
':tO 

'((ROTATION @sac-2 RIGHT)) 
':from 

'((OIL @container-2 LEFT) 
(AIR @container-1 UP)) 

':function 
'((ROTATION ((OIL. LOW) (AIR. LOW)) . (ROTATION. LOW))) 

' : s t r  U.cttlr~ 
'((0. (DOWN. ((ROTATION OIL AIR) @diesel-2 (@diesel-2) (2.2))))  

(1. (...))))) 

This instance, its prototype,  and the componen t  flavors we showed,  are in fact simplified 
versions of the structures we use in our  model .  We have included here only these parts which 
we considered helpful to convey the basic ideas of  our prototype-instance scheme used for 
building the model.  

The  examples discussed so far  demonst ra te  only the declarative aspect (i .e.  the inheri tance 
of  instance variables) of  the hierarchy we may build using flavors.  We also def ine with each 
f lavor  a set of methods which, when combined ,  provide each instance with a lot of  p rocedura l  
knowledge .  It is more difficult to show examples  of  this because methods  are typically long 
procedures .  Describing the %system-node f lavor  above,  we ment ioned one such method.  
Similarly,  for  %multiplexer we define a me thod  which, using the data s tored in instance's  
slots, simulates the switching action. Still another  example of  a method  is a d r a w i n g  
p rocedure  which we define for  prototypes  whose  instances may be displayed on the screen. 
The  f lavor  system supports  object-or iented programming.  This is ref lected in the way 
methods  are invoked - by sending messages (method  names) to instances. This allow us to 
use identically named methods  to invoke quite different  procedures .  For  example ,  it's 
obvious  f rom looking at the pictures that we use several d i f ferent  drawing procedures .  
H o w e v e r ,  we may use the same name,  say, :draw for all of  them. Suppose we have 
ident if ied an e lement  by locating its instance in the model and want to draw it. We don ' t  have 
to bo ther  about  its prototype in o rder  to know how to draw it - it's enough to send the :draw 
message  to this instance. The right method will be chosen automatically.  This si tuation is 
advantageous  for the language understanding process as well. The  first thing we do during 
clause analysis is to find referents  in the model  (i.e. instances) for  linguistic entit ies occuring 
in the sentence.  The semantics of the verb  or  predicate adjective is typically expressed  in the 
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form of a method .  The interpretat ion of  the clause with respect to the model  consists then in 
sending this me thod  to one of the arguments .  The part of  P R O T E U S  which deals with the 
interpreta t ion of  clauses hasn't  been implemen ted  yet,  so we won ' t  go deeper  into this subject  
here.  

5. Finding Referents for Nominal Compounds 

One notable feature  of  technical texts is the heavy use of nomina l . compounds .  It seems  that  
their average length is proport ional  to the complexi ty  of the discourse domain.  In the doma in  
of  the starting air system, examples like 

stripped lube oil pump drive gear and hub ring gear, 
are,  by no means,  seldom occurences. 

The problem with nominal compounds is their  ambiguity.  The syntactic analysis is of  
almost  no help here.  Semantically they are also very difficult to deal with [Finin 1986]. The 
problem may be metaphorical ly described as a jigsaw puzzle: given several  pieces ( c o m p o u n d  
descriptions) put them together  to build a s ens ib l ep i c tu r e  (nominal  compound  descr ip t ion) .  
The task becomes  somewhat  easier in cases when we know that nominal  compounds  r e fe r  to 
objects existing in the system. In terms of our  metaphor  it translates into a hint: a set of  
pictures is given with the assumption that the solution is one of these pictures.  

The above observat ion is the next a rgument  for  maintaining an equ ipmen t  model .  No t  all 
nominal  compounds  fall into this category (a notable class here are verb  nomal iza t ions ,  like 
borescope investigation). However ,  most of them (especially the longest  ones)  r e fe r  to objects  
maintained in the model.  

P R O T E U S  processes sentences sequential ly (first syntax, then semantics ,  finally 
discourse).  Both the syntactic and semantic  analyzers have been implemented  a l ready.  
[Grishman 1986] describes the overall  organizat ion of P R O T E U S  in some detail .  The  
syntactic componen t  delimits the noun phrases,  but does not assign any s t ructure  to the pro- 
nominal  modif iers .  The interpreter  of nominal  compounds  takes as input an o rd e r ed  list of  
words of which the nominal compound consists, and tries to achieve two goals: (1) to 
determine the structure of the pre-nominal  modif iers ;  (2) to locate the instance(s)  in the 
equipment  model  refer red  to by the nominal compound.  

The parsing of the nominal  compound proceeds  bot tom-up without  backtracking.  The 
words are analyzed f rom right to left. The  parser  maintains a Parse  Stack where  all possible 
partial parses are kept. The information about  each partial parse (State Vector)  consists of  
three lists: (1) the Word  List: the unparsed part  of the nominal compound ;  initially contains  
the whole compound ;  (2) the Forest:  list of  partial parse trees for  the part  of the c o m p o u n d  
which has been analyzed so far: initially empty ;  (3) the List of Referents :  for  each part ial  
parse tree in the Fores t ,  a list of the model  instances which may be named by the words  in 
that partial parse tree. 

The condit ion for a successful parse is twofold:  (1) the Word  List is empty ;  (2) the Forest 
contains one tree (in such a case the List of  Referents  will, necessarily,  also have one  list of  
instances - they will be considered the referents  of  the compound nominal ) .  T h e  parser  works  
as the fol lowing coroutine:  

LOOP WHILE Parse Stack not erupt' 
State-Vect = Pop (Parse Stack): 
Word = next word from the Word List of State-Vect; 
Dict-Entry = dictionary entry for Word; 
FOR each reduction rule applicable to State-Vect and Dict-Enrry 

C r e a t e  New-State-Vect; 
IF (termination conditions fu2filled for New-State-Vect) 

THEN r e t u r n  (New-State-Vect) 
ELSE push (Parse Stack New-State-Vecr) 

? 

Each word in the dictionary is assigned two propert ies:  its model  class ( M O D - C )  and its 
semantic class (SEM-C) .  We use five d i f ferent  model  classes: 
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Instance - a w o r d  o f  this c lass  n a m e s  a s e t  o f  i n s t a n c e s  in the  m o d e l ;  this s e t  is part  o f  the 
dict ionary en t ry  ( in Fig.  5 the  w o r d  pump is an e x a m p l e ;  (pl  p2  p3 )  are i n s t a n c e s  o f  p u m p s  
which occur  in the mode l ) ,  

Slot -Fi l ler  - a w o r d  o f  this class can carry i n fo rma t ion  used  as s lo t  f i l l ers  in s o m e  i n s t a n c e s ;  
taken  a l o n e  it d o e s n ' t  n a m e  any m o d e l  ins tance  ( in  Fig .  5 the w o r d  lube is an e x a m p l e ) ,  

S lo t -Name  - a w o r d  o f  this class indicates how to in te rpre t  s o m e  o t h e r  adajcent  w o r d s  in the 
c o m p o u n d ;  an example  is s p e e d  - it tells how to t rea t  low in the nomina l  c o m p o u n d  low speed  

gearbox ,  

Procedure  - each word  of  this class is ass igned a p rocedure  which,  w h e n  cal led with 
a rgumen t s  coming  f rom other  parts  of  the noun phrase ,  re turns  a r e fe ren t ( s ) ;  an e x a m p l e  is 
coup l ing ,  as in coupl ing f r o m  diesel  to sac lube oil p u m p  - the coupl ing m e a n t  here  is not  a 
single coupl ing,  but a whole  sequence  of  them on the path  be tween  diesel and lube oil p u m p ;  
this sequence  has to be evalua ted  using the mode l ,  

C o m p o n e n t  - a word  of  this class names  a set  of  objects  in the domain  e q u i p m e n t  which are 
not  p e r m a n e n t l y  present  in the mode l  ( for  e x a m p l e s  and discussion of  this issue see sect ion 
3). 

DICTIONARY 

(lube 
(oil 
(pump 
(SAC 

(MOD-C Slot-Filler) 
(MOD-C Instance (ol o2 03)) 
(MOD-C Instance (pl p2 p3)) 
(MOD-C Instance (sl)) 

SEM-C --> SLOT-NAME TABLE 

(SEM-C Function)) 
(SEM-C Working-Substance)) 
(SEM-C Machinery)) 
(SEM-C Machinery)) 

(Function 
(Machinery 
(Working-Substance 

INSTANCES 

:function) 
:part-of :components :location) 
:working-substance) 

;;; SAC lube oil pump 
(setq p3 (make-instance %pump 

':part-of 'los2 
':working-substance '(OIL . 03))) 

;;; SAC lube oil 
(setq 03 (make-instance %working-substance 

':function 'LUBE)) 

;;; SAC lube oil system 
(setq los2 (make-instance %system 

':part-of 'sl)) 

;;; SAC 
(setq sl (make-instance %system 

Figure  5. F ragmen t s  of  data used by the parse r  of  nomina l  compounds .  

The  two mos t  often used reduct ion rules are:  

(1) instance + instance--> instance 
(2) slot-filler + instance --> instance 

In (1), the set of  model  instances for  the resul t  consists  of  those instances of  the  second 
cons t i tuent  which can be linked through s o m e  pa th  in the mode l  to some  instance o f  the f irst  
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consti tuent .  In (2),  the resulting instances are those instances of  the second consti tuent  which 
have a slot whose filler may be matched with the first consti tuent .  The types of  links 
t raversed  in the search (in the first case) or  the checked slots (in the second case) are a 
funct ion of  the semantic  class (SEM-C) of the first const i tuent .  This function assigns to each 
semant ic  class a set of  slot names (see SEM-C - ->  S L O T - N A M E  T A B L E  in Fig. 5). 

Le t  us illustrate the way the interpreter  works  with an example .  Fig. 6 shows the trace of  
parsing SAC lube oil pump. We enclosed State Vectors  in square  brackets;  the lists del imited 
by curled brackets represent  ( f rom left  to right): the W o r d  List ,  the Fores t ,  and the List of 
Referents .  The  words  are represented by numbers ;  the names  ~1 ,  p2, p3, ol, ...) are model  
instances taken f rom the dictionary (comp. Fig. 5). We analyze the words  f rom right to left. 
We start  with pump. We remove  it from the W o r d  List ,  find its defini t ion in the dict ionary 
(Fig. 5),  and applying a rule not shown above,  create the new State Vector  (Fig. 6, first 
vec tor  above the compound) .  The next word is oil. Now,  two reduct ion rules are applicable: 
the same one  we used for pump - resulting in the left  branch on Fig. 6 and rule (1) above.  To  
apply rule (1), we first find in the dictionary that oil is of  class Instance and names the 
instances (ol o2 o3). Next ,  we try to find out whether  any of  these instances may be linked to 
any of  the (pl p2 p3). To do this we take the semantic  class of oil f rom the dict ionary (Fig. 
5): Working-Substance. Then we check in the SEM-C - ->  S L O T - N A M E  T A B L E  (Fig. 5) 
which slot names  we should consider - the only candidate  in this case is :working-substance. 
Finally,  we consider  each of  the instances (pl p2 p3) and check the fillers of their :working- 
substance slots. In Fig. 5 we show only the instance p3 (the instances pl  and p2 are similar).  
For  p3 we indeed find that it can be linked with one  of  the considered candidates (namely  
with o3) through the :working-substance link. Thus ,  we include p3 into the resulting set. A 
similar analysis for  pl  and p2 would result in including them into the resulting set as well. 
Hence ,  the State Vector  in the right branch in Fig. 6 has (3 4) as a partial parse tree whose 
leaves,  when combined  into one constituent,  re fe r  to the set (pl p2 p3). The analysis at the 
o the r  points of  the trace is similar. 

(SUCCESS) 
[{} {((I) ((2 3) (4)))} {(p3)}] 

[{} {(1) ((2 3) (4))} {(sl) (p2 p3)}] 

t 
[{1} {((2 3) (4))} {(p2 p3)}] 

[{1} {(2 3) (4)} {(o2 o3) (pl p2 p3)}] 

(SUCCESS) 
[{} {((1) ((2 3) (4)))} {(p3)}] 

l 
[{1} 1((2 3) (4))} {(p2 p3)}l 

[{1 2} {(3) (4)} {(oi 02 03) (pl p2 p3)}] 

[{1 2 3} {(4)} {(pl p2 p3)}l 

[{1 2 3 4} {} {}] 

(DEAD END) 
[{12} 1(3 4)} {(pl p2 p3)}] 

S A C  l u b e  o i l  p u m p  
(1) (2) (3) (4) 

Figure  6. The  parsing trace for the nominal compound  SAC lube oil pump. 
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[Grishman 1986] discusses how to treat modifiers describing the state of a part, such as 
cracked or sheared, and also how to handle some ambiguities in conjoined noun phrases (for 
an example see the beginning of this section). 

6. Future  W o r k  

The immediate next step in the development of our system is to extend the coverage of the 
interpreter of nominal compounds to full-fledged noun phrases (including relative clauses, 
prepositional phrases and conjunctions). Then we plan to work on the interpretation of 
clauses. It should be possible to define the semantics of most verbs from the domain as 
operations on the equipment model. Finally, to obtain a robust system, it will be necessary to 
develop components for finding temporal and causal links between sentences in the text. As 
is known from previous research (e.g. [Charniak 1977]), success in this area depends mainly 
on the quality of solutions to the knowledge representation and inference problems. As we 
indicated in section 2 of this paper, one of the possible approaches to inference mechanism 
involves the use of a simulation model. 

The initial motivation for the system has been the conversion of a stream of messages to a 
data for subsequent querying, summarization, and trend analysis. However, the use of a 
detailed equipment model, similar to that employed in simulation systems (e.g. STEAMER 
[Hollan 1984]), suggests that it may be equally useful as an interface for such systems. 
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