
An Equipment Model and Its Role in the Interpretation of Nominal Compounds

Tomasz Ksiezyk and Ralph Gr i shman

Department of Computer Science
Courant Institute of Mathematical Sciences -

New York University
251 Mercer St.

New York, New York 10012
(212) 460-7446, (212) 460-7492

Abstract

For natural language understanding systems designed for domains including relatively
complex equipment, it is not sufficient to use general knowledge about this equipment.
We show problems which can be solved only if the system has access to a detailed
equipment model. We discuss features of such models, in particular, their ability to
simulate the equipment's behavior. As an illustration, we describe a simulation model
for an air compressor. Finally, we demonstrate how to find referents in ~is model for
nominal compounds.

1. Introduction
The work presented here is part of the P R O T E U S (-PROtotype TEx t Unders tand ing

System) system current ly under deve lopment at the Couran t Institute of Mathemat ica l

Sciences, New York Universi ty. l The objective of our research is to unders tand shor t natural
language texts about equipment . Our texts at present are CASual ty REP o r t s (C A S R E P s)
which describe failures of equ ipment installed on Navy ships. Our initial domain is the
starting air system for propuls ion gas turbines. A typical C A S R E P consists of several
sentences, for example:

Unable to maintain lube oil pressure to SAC [Starting Air Compressor]. Disengaged
immediately after alarm. Metal particles in oil sample and strainer.

It is widely accepted among researchers that in o rde r to achieve natural language
unders tanding systems robust enough for practical application, it is necessary to provide them
with a lot of common-sense and domain-specific knowledge. H o w e v e r , so far , there is no
consensus as to what is the best way of choosing, organizing and using such knowledge .

The novelty of the approach presented here is that, besides general knowledge abou t
equipment , we also use a quite extensive simulat ion model for the specific piece o f
equ ipment which the texts deal with. We found that for unders tanding purposes it is more
appropria te to make the simulation qualitative ra ther than quantat ive. Thus, for example , we
are not interested in the precise value of oil pressure , but only whe ther it is too low or too
high. The model is built f rom instances of pro to types which contain the bulk of genera l
knowledge. It exists in the system permanent ly . In this situation the analysis of a piece o f text
consists of two stages: (1) locating in the model the objects ment ioned in text; (2) in terpre t ing
the text using both the specific informat ion residing in the model and the genera l knowledge
which is accessible f rom the model . There is no clear-cut distinction be tween these two stages
(see discussion of the examples in the next section).

i An overview of the system is given in [Grishman 1986], submitted to the AAAI-86.

8 1

We s e e the fol lowing merits of having a simulation model:
(a) the model p r o v i d e s us with a reliable background against which we can check the

correc tness of the understanding process on several levels: finding re fe ren ts of noun phrases,
assigning semantic cases to verbs, establishing causal relationships be tween individual
sentences of the text.

(b) the requ i rements of s imulat ion help us to decide what kind of knowledge about the
equ ipment should be included in the model , how it Could best be organ ized and which
inferences it should be possible to make. It appears that the in fo rma t ion needed for
s imulat ion largely coincides with that necessary for language unders tanding.

(c) the ability to simulate the behavior of a piece of equ ipment provides a very nice
verif icat ion method for the unders tanding process at the level of interact ion with a user - it is
relat ively s t ra ight forward to build a dynamic graphical interface which allows the user to
have a fr iendly insight in the way his input has been unders toood by the system.

In the remainder of the paper we will show examples of problems which can be solved only
if the system has access to some kind of a simulation model of the domain equipment .
Having demons t ra ted the need for such a model , we will discuss the design decisions which
we found impor tan t for our domain and which seem to apply genera l ly fo r complex
equipment . How these considerat ions inf luenced the model for the SAC may be seen in the
next section. Then we present a me thod of finding referents in the mode l for nominal
compounds describing SAC's components . Finally, we briefly describe our fu ture work .

2. N e e d for a M o d e l

In most natural language unders tanding systems the knowledge about the domain of
discourse is organized in the form of prototypes for objects and actions, and for the relations
between them which are re levant for the domain. The prototypes are reposi tor ies for
knowledge about the instances they subsume. This knowledge is highly s t ruc tured - there are
many links through which apparent ly distant concepts may be connec ted . The text is
processed on a sentence by sentence basis. Usually, each sentence is split into linguistic
entities with syntactic and semant ic informat ion attached. This i n fo rma t ion is used to
de te rmine the p ro to type for each enti ty. Through these prototypes there is access to general
in format ion about the concepts invoked by the sentence. This in format ion is o f ten necessary
for the adequate in terpreta t ion (i .e. unders tanding) of the sentence. To account for the fact
that the unders tanding of an ut terance depends somet imes on the context in which the
ut terance is set, it is necessary to maintain informat ion about the discourse context . One way
of organizing this informat ion is by creating and storing instances of p ro to types for entit ies
f rom the text as they come unde r analysis. The combined in format ion coming f rom the
context and f rom the processed sentence is used to solve problems like anaphora resolut ion,
connect ivi ty , etc.

Assuming this approach, let 's consider the following sentence (let it be the first sentence in
the analyzed text):

Starting air regulating valve failed.
Having comple ted the syntactic and semantic analysis of the sentence, we would recognize
starting air regulating valve as an example of the pro to type regulating valve. W e would then
fetch its descript ion and create an instance of a regulating valve. Next , using the genera l
knowledge about valves (of which regulating valve is a more specific case) , and the semant ic
in format ion about starting air, we would modify the just created instance with the fact that
the substance the valve regulates is starting air. From the syntactic analysis we would know
that starting air regulating valve is the subject of verb fail. Using the p ro to type of the action
fail, we would create its instance and possibly also would fur ther modi fy the instance of the
valve so: that the fact about its opera t ional state is recorded. These two instances would now
consti tute the discourse context so far. Now, suppose the message cont inues with the
s c n t e n ~ :

8 2

Unable to consistently start nr Ib turbine.
The processing would be similar to what has been described above for the first sentence. We
would create an instance of a gas turbine, would fill its proper name slot with nr I b and
finally use the instance as an argument in another instance recording the finding about start
problems.

These two sentences come f rom an actual C A S R E P . In the starting air system (our initial
domain) there are three different valves regulating start ing air. Two questions might be
posed in connect ion with this short, two-sentence text: (I) which of the three valves was
meant in the first sentence? (2) could the failure of the valve ment ioned in the first sentence
be the cause o f the trouble repor ted in the second sen tence?

The general knowledge of equipment may tell us a lot about failures, such as: if a
machinery e lement fails, then it is inoperat ive, or if an e l emen t is inoperat ive , then the
e lement of which it is part is probably inopera t ive as well , etc. Unfor tuna te ly , such
knowledge is not enough: there is no way to answer these two questions (not only for an
artificial unders tanding system, but even for us, humans) wi thout access to ra ther detai led
knowledge about how various elements of the given piece of equ ipment are in terconnected
and how they work as an ensemble. In our case we could hypothesize (using general
knowledge about text structures) that there is a causal re la t ionship between the facts stated in
the two sentences. To test this, we would have to consider each of the three valves in turn
and check bow its inoperat ive state could affect the starting of the specific (i.e. nr lb)
turbine. If one of the three valves, when inopera t ive , would make the turbine starting
unrel iable , then we could claim that this valve is the p roper re fe ren t for the starting air
regulating valve ment ioned in the first sentence. This f inding would let us also answer
quest ion (2) aff i rmatively.

The above example, as well as others of similar nature , demons t ra te that in cases where
the domain is very specialized and complicated (a typical si tuation for real-life equ ipment) ,
language understanding systems should be provided not only with general knowledge about
the equ ipment but also have access to its model .

With an equ ipment model available, the processing of the two sentences would change: for
the first sentence, instead of building a new descript ion for the starting air regulating valve,
we would ra ther try to find an object / objects in the model which could be described by this
noun phrase. We would treat nr lb gas turbine similarly. The semantics of start would be a
kind of s imulat ion procedure defined for the model . Now, let 's consider problems (1) and (2)
again. Viewing nr lb as a proper name, we should easily find the object in the model which
cor responds to the refer red turbine. The analysis of starting air regulating valve would leave
us with three pointers to the three objects in the model cor responding to the three starting air
regulating valves in the equipment . In order to resolve this ambiguity we could make the
fol lowing assumption, which seems very reasonable:

Suppose first, that the valve's failure has indeed caused problems for the
turbine. Now, if we confirm that at least one among the three valves, if
inopera t ive , has this effect , then our assumption was correct and we found the
right re ferent (s) ; if none of the three valves has any impact on the turbine, then
our assumption was wrong: it answers quest ion (2) negat ively and leaves (1) still
open .

Then we would proceed with the confirmation phase, consider ing each of the three candidates
separate ly . We would temporari ly set its opera t ional state to I N O P E R A T I V E , initiate the
S T A R T procedure , and then check whether the functional state of the nr lb gas turbine in the
model has been set to R U N N I N G (for simplicity reasons let 's assume that there is no
consistently adverb in the second sentence). If for all three simulation exper iments we wind
up with the value R U N N I N G for the turbine, then we must conclude that there is no causa l
relat ionship between the sentences. Otherwise, we would claim to have found the r ight
r e fe ren t fo r the valve. Having unambiguously located the object r e fe r red to in the first
sentence, we would modify its operational state accordingly.

83

3. Characteristics of an Equipment Model

In the preceding section we tried to show that genera l knowledge about e q u i p m e n t is by
itself not enough to solve some p rob l ems of unders tanding . The decision to p rov ide
P R O T E U S with an equ ipment model con f ron ted us with a new quest ion. W h e r e and how to
draw a division line be tween the knowledge abou t equ ipmen t in general and a m o d e l of a
specif ic piece of equ ipment? The ul t imate objec t ive of our research is to design P R O T E U S in
such a way that it may be adapted easily to new equ ipment . Clearly, the model has to be built
anew each t ime we want to use P R O T E U S for a new piece of equ ipment . The genera l
knowledge , on the other hand, should unde rgo , in such cases, only a slight ex tens ion due to
the new types of componen t s in the new equ ipmen t . For example , moving f rom the s tar t ing
air sys tem to the main reduction gear , we would have to build a new model for the gear , but
while doing this, we should be able to use m a n y of the structures designed for model l ing
c o m p o n e n t s which also occured in the s tar t ing air sys tem, like bear ings , lubr ica t ion sys tem
e l emen t s , etc. This goal can be achieved using p ro to types and their instances: the mode l
would be built of instances of p ro to types . The p ro to types would const i tute par t o f the
genera l knowledge data base. In the instances we would store only the in fo rma t ion which is
specif ic to the object described by the instance. For example , in case of a gea rbox , the
in fo rmat ion about its function (i.e. speed change) should be s tored in the p r o t o t y p e , and only
the rat io of this change should reside in the instance of a specific gea rbox . Also the
in fo rmat ion about how a specific gearbox is used in the domain equ ipmen t mus t be kep t in
the instance. Of course, the p ro to type- ins tance scheme ensures that all the genera l k n o w l e d g e
connec ted with the p ro to type is also accessible f rom instances of this p ro to type . We found
the rich reper toi re of p r o g r a m m i n g tools const i tut ing the f lavor system in Symbolics-Lisp a
very convenient vehicle for implement ing this s t ra tegy.

On the level of proto types we should apply the principle of general i ty as well. Hence , for
e x a m p l e , we should consider the p ro to type of a regulat ing valve as a special case of a valve
and have the knowledge characterist ic for all possible types of valves connec ted with the
valve pro to type . This knowledge could then be p ropaga ted down in the h ie ra rchy if
necessary . Because the p rob lems of s t ructur ing knowledge in the fo rm of p r o t o t y p e s have
been extensively invest igated (research on f r ames , scripts, semant ic nets, e tc .) , we w o n ' t
e l abo ra t e on this here. We will c o m m e n t on only one aspect of the h ierarchy of p ro to types . I t
s eems to us that, for purposes of equ ipmen t model l ing , this h ierarchy should have the
s t ruc ture of a graph ra ther than of a tree: its nodes should be al lowed to have m o r e than just
one immedia te parent . We ment ioned a l ready that there are regulat ing va lves in our
equ ipmen t . These are valves whose funct ion is to regulate the med ium in some m a n n e r ,
usually changing one of its pa rame te r s , like pressure or t empera tu re . We also have o ther
va lves whose function is dif ferent , for examp le rel ief or shut -off valves . Thus , is it
conceivable to divide valves into classes according to their function. H o w e v e r , this is not the
only dimension along which classification is possible . Valves may be also ca tegor ized
accord ing to their operat ing principle as electr ic , hydraul ic or pneumat ic valves . Now, the
p r o b l e m with a tree-like t axonomy is that we have to a r range the d imens ions l inearly: if we
decide to consider the functional aspect first, we will have to repeat the division according to
the opera t iona l aspect at each node of the funct ional level of the h ierarchy t ree . With the
r eve r sed order of d imensions the p rob lem remains the same. It would be t h e r e f o r e much
be t te r to allow a node in the hierarchy to inheri t p roper t i es f rom more than one immed ia t e ly
p reced ing node. The f lavor sys tem, with its mechan i sm allowing f lavors to be mixed , p rov ed
to be very helpful here.

I t ' s obv ious that any real-l ife equ ipmen t deserv ing a natural language f ron t end is big and
comple x . For example , the start ing air sys tem (our initial domain) consists of severa l
hundred e lements each of which may be r e f e r r ed to by its descript ive name and be men t ioned
in a casaul ty repor t . A good measure of the sys t em ' s complexi ty is the size of its descr ip t ion
in the ship ' s manual : 28 pages of text, f igures and tables. Wha t is the best way of o rgan iz ing

84

this vast amount of data into a managable model? Clearly, some simplification is
unavoidable. How much? Let us address the former problem first. A salient feature of a
piece of equipment is its task, i.e. what it should do. Generally speaking, all complex
equipment may be viewed as processors of something - if this something is changed
quali tat ively into something else (e.g. fuel into rotary movement) we may speak of
genera tors ; if only some pa rame te r s of this someth ing are changed (e .g. low-pressure air into
h igh-pressure air) we may speak of t r ans fo rmers . Usual ly only par t of the e q u i p m e n t ' s
componen t s are directly involved in this p r i m a r y task. The r e s t - a r e there to ensure that
special condit ions are created at certain points in the equ ipmen t . This observa t ion p rov ides
us with an impor t an t structural hint: we can t reat a piece of e q u i p m e n t as a functional sys tem
consisting of c o m p o n e n t sys tems among which one is respons ib le for the p r imary funct ion
(the equ ipmen t task) and the others fulfill auxiliary funct ions. If necessary , we may apply the
same approach recursively to any of the lower level sys tems. Systems of this kind may be
viewed as chains of componen t s l inked toge ther in such a way that , at each node of the chain,
the processed substance changes slightly, becoming thus m o r e s imi lar to its desired f o r m at
the end of the chain. Many of these componen t s work p rope r ly only if special condit ions are
created. Hence the need for auxiliary systems. A n o t h e r , m o r e convent ional way of
s tructuring the mode l is in the fo rm of a par t /whole h ie rarchy . A natural quest ion arises:
where one should stop with these two types of r e f inemen t s (in sys tem/bas ic-par t and
par t /whole h ierarchies)? This is a more specific vers ion of the ques t ion we posed above : how
much to s impl i fy? A possible answer is to ref ine the h ierarchy far enough so that eve ry th ing
which potential ly may be re fe r red to in the repor ts would have a descript ion in the model .
This, however , seems impractical . Cons ider , for example , the fo l lowing sentence:

Borescope investigation revealed a broken tooth on the hub ring gear.
Consider ing that there are several d i f ferent gears in our s tar t ing air system and each of

them has m a n y teeth which are very much alike, it 's obv ious that creating a scpara te
descript ion for each of them wouldn ' t be reasonable . The s a m e r e m a r k is true for balls in
bearings or for connecting e lements like screws, bolts o r pins. On the other hand,
in format ion abou t the tooth conveyed in the above sentence cannot go unnoticed. The
solution we accepted for such e lements is not to include their descr ipt ions in the mode l on a
p e r m a n e n t basis but to keep the possibili ty open to create and to implan t into the model their
descript ions if such a need arises during the analysis. A rule of t humb for deciding whe the r a
part icular c l emen t deserves a pe rmanen t place in the mode l can be fo rmula ted in the fo rm of
the question: how much informat ion specific to this c l e m e n t is necessary to solve
unders tanding p r o b l e m s , like finding re feren ts (see the sect ion on nominal compounds) or
making inferences? As an example of the latter, let 's consider a specific gear. We would like
to know, among o ther things, what is this gear ' s role and place in the model led equ ipmen t so
that, in case of its damage , we could de te rmine the impac t of this on the equ ipment .
In fo rma t ion of this type can be deduced nei ther f rom the ana lyzed text nor f rom genera l
knowledge abou t gears . It must be known in advance. Our way to achieve this is to keep the
gear ' s descr ipt ion permanent ly in the model .

The re are, h o w e v e r , e lements like teeth which have so little r e l evan t s tructure that they are
always re fe r red to as tooth, teeth together with the e l e m e n t h igher up in the par t /whole
h ierarchy (let 's call such an e l emen t a host). Thus , it is not necessa ry to maintain any specif ic
in fo rmat ion abou t them in the model . It is enough , if we are able to crea te their descr ipt ions
only when they occur in the text. All the possible i n fo rma t ion we will ever need to include
into such descr ipt ions will come f rom the text. The in fo rma t ion relat ing such e lements with
o ther parts of the equ ipment will come f rom their hosts. For example , the impact of a
tooth ' s dam age on the equipment may be der ived f rom the funct ional in format ion connec ted
with its host.

It is : impor tan t to notice that there is nothing absolute in dist inct ions such as the one made
above . It is conceivable to have a piece of equ ipmen t of a l a rger scale than the SAC, where
e lements like gears are not essential enough for us to be bo the r ed with their shapes or

8 5

locations; if b roken they p robab ly would be re fe r red to by giving the h igher - leve l e l emen t of
which they are part . In such cases we would ra ther treat gears like we t reat teeth here.

It is des i rable to be able to use the mode l on several levels o f abs t rac t ion. For s o m e
purposes it is enough to treat, say, a speed increasing gearbox as a sys tem for which we only
know its outside behavior ; in o ther cases, we would like to use in fo rmat ion abou t its in ternal
s t ructure as well. It should, o f course , be possible to deduce the externa l behav io r of an
object by analyzing its parts; howeve r , it w o u l d n ' t be practical to go down to the level of
basic c o m p o n e n t s each time we need to know someth ing about the behav io r of the e q u i p m e n t
on the in te rmedia te level. Our approach of gradual ly ref ined levels of funct ional sys t ems
descr ibed above fulfills this des ide ra tum. It seems inevitable that any division into levels will
a lways be artificial and the re fo re , w h a t e v e r s t ructure of the mode l we could design, we
a lways will find sentences which ment ion objects f rom different levels. Cons ide r for example :

Believe the coupling from diesel to SAC lube oil pump to be sheared.
In our mode l for the starting air sys tem the diesel and SAC are at the s ame level of
abst ract ion. The lube oil pump is two levels below the SAC in the h ierarchy. H o w we solve
the p rob lem of de termining the re fe ren t for the above coupling is descr ibed in the section on
nomina l c o m p o u n d s (see below). H e r e we wan t only to point out that for any mult i - level
mode l , there must be mechanisms avai lable for moving between abs t rac t ion levels flexibly.

In the preceding section we discussed two unders tanding p rob lems . The solution we
p roposed there relied heavily on the ability to s imulate certain actions and processes of the
domain equ ipment . We have men t ioned a l ready in the in t roduct ion that it is suff icient to
s imulate equ ipmen t behavior qual i tat ively. It is clear that the solut ion to the s imula t ion
p rob lem depends a lot on the s t ructure of the model . The re fo re , the s imula t ion r e q u i r e m e n t
should be one of the impor tan t design cri teria for the model . Dividing the equ ipmen t into
funct ional subsys tems and model l ing them as chains of componen t s (comp. above) facili tates
the s imulat ion task considerably.

There is ano ther aspect of natural language unders tanding sys tems whose sat is factory
t r ea tmen t depends a lot on an effect ive solution to the s imulat ion p rob l em. We may expec t
that in real- l i fe cases, the output of such sys tems is ei ther fed into some exper t sys tem or
communica t ed to a human user. In both cases impor tan t decisions are p r e sumab ly made ,
based on this output - o therwise , why to spend m o n e y for building them. It is the re fo re very
impor tan t for such systems to p rov ide users with means to check the quali ty of their
unders tanding . In the case of equ ipmen t , one quick and user- f r iendly way of ver i fy ing the
analysis is th rough graphics (we e labora te on this a little more in the section describing fu ture
work , be low) . Because equ ipment is very dynamic , most t ex t s , abou t them involve act ions,
events , p rocedures occuring in a cer tain t ime sequence. In order to show this graphical ly , it is
necessary to s imulate the essential aspects of this on the screen.

The s imulat ion should be designed in such a way that its two independen t appl icat ions in
the sys tem (i.e. text unders tanding and communica t ion with users) w o u l d n ' t require two
sepera te s imulat ion systems.

4. The Starting Air System Model

As ment ioned above , the e q u i p m e n t we have chosen as our initial domain is the s tar t ing air
sys tem on Navy ships. Its funct ion is to supply a ship 's propuls ion gas turbines with the
h igh-pressure air necessary to s tar t the turbines . The main par t of the start ing air sys tem is
its c o m p r e s s o r (SAC - Starting Air C o m p r e s s o r) . It is by far the mos t compl ica ted e l e m e n t
and the re fo re is p rone to var ious kinds of damage and mal funct ion . Because of its
impor t ance , we started our e f for t s by building a model of the SAC. So far we have
i m p l e m e n t e d parts of it on a Symbolics Lisp machine using Zeta-Lisp.

86

r
tSAC (I=I)

~ , e . - e l f l o t o r
SyStem

/ •
~ A a b ~ e n t)

R ~ r

Lo rl Sv~ten

. ~',': :,~1 e 1~_/~ i

I e r , l : . e , , !~ u r ?

Figure I. Division of the SAC into subsystems.

Following the guidelines for equipment models given in the preceding section, we divided
the SAC into its three functional subsystems (comp. Fig. I):

(a) Air System - this is the system partially responsible for the SAC's primary task: it
takes ambient air, compresses it to the desired pressure and outputs the flow to a system of
temperature and pressure regulating valves which precede the turbine starter;

(b) Motor System (auxiliary) - its function is to transmit mechanical rotation from the
diesel motor to the compressor blade assembly and lubrication oil pump;

(c) Lubrication Oil (LO) System (auxiliary) - it distributes the oil throughout the SAC
and supplies it under pressure to such elements as bearings and some couplings.

so_. :i . t lcooo,,o. t: .J
[. ' e ~ e : ~ ' { S h a f t | ShaFt C l u t c h

:i R s s e ~ b l v 2 Gearbo~ ; RsseMb I v t: i! C e a r b o K] '
. ~ L ~ ~I L t! JL f

Cear
'1 ~ v ~ t. el,,i j l

J

r ,
L__'

i

1
!,t ' lotor S v s t e n (1 : 1 1

q~

C o ~ p r e • ~ o r I :
Sh.t ' t t li;

R ~ e n b l y ~,

Figure 2. Division of the SAC Motor System into subsystems on level 1.

87

Each of these three systems may be split into further systems. For example, we view the
Motor System as consisting of subsystems shown in Fig. 2. Each of these constituents is
again a system consisting of more basic elements. So, for example, one of the two speed
increasing gearboxes consists of a hub, a ring gear, an arrangement of three star gears, and a
pinion mounted on a shaft.

Every system may be viewed on several levels of abstraction. For example, Fig. 2 shows
level 1 of the Motor System. Fig. 3 and 4 show the same system on level 0 and level 2,
respectively.

J ' (l=O)]

\ / " - - - '~ I V / S), s t e n ~/',..~ ~-~-~/~ Syl l te~ j

@

Figure 3. The SAC Motor System on level O.

All the figures presented here are Symbolics screen images genera ted by P R O T E U S f rom
descriptions of the model 's e lements used for the understanding process. As a ma t t e r of fact,
we have provided dynamic displays reflecting some of the simulat ion possibilit ies of the
model . Consider , for example , Fig. 4. It is possible, using the mouse, to position the cursor
on, say, the D I E S E L ON switch and click on it causing the diesel to be tu rned on. The
compressor starts to run: the small globes inside each of the square e lements (f rom diesel
shaft to the clutch) start to rotate in circles with dif ferent speeds depending on their place in
the system (before or af ter the speed increasing gearbox) ; fu r the rmore , all the e lements
which should be lubricated (those which have in- and outlets in the form of a r rows) get oil
influx (depicted as dots appearing inside the elements) . This follows f rom the way the SAC
operates : the Motor System transmits the rotary movemen t to the lube oil pump, which starts
to work and t o s u p p l y oil via the LO System (not shown here) . Similarly, when we set the
clutch to the I N position, the other e lements (following the clutch in the chain) will start to
rotate . Again, all this is achieved as a side effect of the simulation used for unders tand ing
purposes . We want to stress that the "movie" is not the point here. We have to know how the
ro tary movemen t propagates in the system, if we want to conduct tests like the one descr ibed
in section 2, above. Such tests are the pr imary reason why we equipped our mode l with a
s imulat ion capability.

88

Roto r SymteR (1m2)

m

S w 4 t c h e s

DIESEL CLUICH

Cur ren t S t o r e

~ - i u n c l l 1
44~3~86 13:28:58 k$iezwk

CoRmun4cotton Ulndov

USE;: ~un

Figure 4. The SAC Motor System on level 2.

Let's turn now to the internal structure of our model for SAC. The structure of the model
is based o~ the Symbolics-Lisp flavor system. The prototypes of elements of which the model
is built are represented as flavors. The specific elements of the model are encoded as
instances of their prototype flavors. The general knowledge about elements is stored in the
prototype flavors and can be divided into two parts: (1) declarative knowledge expressed in
the form of defaults and restrictions on instance variables; (2) procedural knowledge in the
form of methods defined for the flavors. The flavor instances contain only declarative
knowledge comprised of instance-variable -- value pairs (we will use more traditional names
here: slot -- slot-filler). The prototype flavors are built as mixtures of component flavors,
each of which captures a certain aspect(s) of the prototype. The component flavors, which
form a graph-like hierarchy, may be viewed as sets of isolated features common to several
different prototypes. The sophisticated inheritance mechanism of the flavor system, which
works on the level of instance variables (slots) and on the level of methods, allows us to
design this hierarchy of flavors in a consise manner. We illustrate these points below with a
couple of examples.

Eve/-y element which is represented permanently in the model is an instance of a flavor
which has the %building-block flavor as one of its components flavors (directly or indirectly
through intermediate flavors). This reflects the observation that certain facts about model

89

e lemen t s will have to be recorded for any kind of e lement . For example , for every e l e m e n t
we wan t to know its opera t ional state (r e m e m b e r that the texts we are dealing with are abou t
e q u i p m e n t fa i lures) or the system of which it is a par t . So, we define:

(defflavor %building-block
(location operational-state part-of screen-location caption)
0
(:settable-instance-variables :screen-location :operational-state)
:gettable-instance-variables
(:initable-instance-variables :function :location :part-of)
(:default-init-plist :operational-state 'OK))

In the above def ini t ion the first e l ement is the f l avor ' s name , the second is a list of instance
var iab les , the third is a list of c o m p o n e n t f lavors (emp ty here) , and the rest of the def ini t ion
descr ibes va r ious aspects of instance var iables , such as their defaults , how they can be
ini t ial ized, accessed, etc. (we have omi t ted this par t f rom f lavor defini t ions given be low) .

The p e r m a n e n t e lements in the mode l fall into two categor ies : sys tems and basic par ts .
systems are those building blocks which have s tructural in format ion . They are chains of
e l emen t s uni ted by a working substance which they process (for example , the lube oil
sys tem) . Sys tems are described at severa l levels of abst ract ion. The filler of the structure slot
is a list of descr ip t ions of the system on d i f ferent levels - each e l emen t in this list specif ies ,
a m o n g o thers , the s tar t and end nodes of the chain of c o m p o n e n t s on this level:

(defflavor %system
(working-substance structure)
(%building-block))

basic parts are those building blocks which are at the bo t tom of the par t /whole h i e ra rchy . The
components slot is initially set to an empty list. It is p rov ided as a dest inat ion for those
e q u i p m e n t par ts which were not included into the mode l a priori but have to be r eco rded if
they occur in the analyzed text (see section 3 for our discussion on this issue).

(defflavor %basic-part
(components)
(%building-block))

A n o t h e r ve ry c o m m o n f lavor describes the aspects of a building block which capture its
role as a c o m p o n e n t (a node) in some system. It is used as a mixin f lavor for building blocks
which are sys tems or basic parts . Its slots record how it is incorpora ted in the system (from,
to slots) and wha t its function is with respect to the work ing substance (i.e. how the subs tance
changes whi le passing this e lement) . The filler of the function slot is a fo rmula in te rp re ted by
a me tho d def ined for the pro to type f lavor of the e lement . This method accesses values of
severa l slots of the instance to which it is applied, for examp le input or operational-state. The
lat ter is i m p o r t a n t because of the potent ial of fa i lure or d a m a g e of the e l emen t (see our
discussion in sect ion 2, above):

(defflavor %system-node
(from to input output function)
0)

C o m p l e x e q u i p m e n t is usually controlled f rom outs ide automat ica l ly or manual ly by service
personne l . The re are, therefore , e lements whose opera t iona l modes may be changed .
E x a m p l e s o f such e lements in the SAC are the diesel and clutch. To account for such
e l emen t s , we def ined a f lavor %multiplexer, which may be mixed with o ther c o m p o n e n t
f lavors to f o r m a pro to type . The filler of switch-locations is a list of all places f rom which
switching is poss ible (in our case these are the local and r emote control consoles) , switch-
actions speci f ies for each possible switch posit ion a p rocedure which has to be run in case the
e l e m e n t is set into this position.

(defflavor %mul:iplexer
(switch-locations switch-anions actual-switch-position)

9 0

0)

N o n e of the above are prototype flavors. They are componen t f lavors which we can use to
def ine proto types . Let us consider the pro to type for diesel motors . It is a piece o f e q u i p m e n t
complicated enough to treat as a system. Diesels generate rotary m o v em en t which is then
used to run other pieces of equipment . Thus they are parts of larger systems. Because they
run only if a need arises, there must be ways to influence their operat ional modes . All these
facts justify the following definit ion of a f lavor which can serve as a p ro to type for diesel
motors . The point of this definit ion is to mix together several c o m p o n e n t f lavors
cor responding to the just ment ioned features .

(defflavor %diesel
0
(%system %system-node %multiplexer))

Now we are ready to introduce the instance of a specific diesel motor which is par t of the
start ing air system.

(setq @diesel-2 (make-instance '%diese!
':put-of

'~ssdg-2
':working-substance

'(ROTATION)
':caption

'("Diesel")
':tO

'((ROTATION @sac-2 RIGHT))
':from

'((OIL @container-2 LEFT)
(AIR @container-1 UP))

':function
'((ROTATION ((OIL. LOW) (AIR. LOW)) . (ROTATION. LOW)))

' : s t r U.cttlr~
'((0. (DOWN. ((ROTATION OIL AIR) @diesel-2 (@diesel-2) (2.2))))

(1. (...)))))

This instance, its prototype, and the componen t flavors we showed, are in fact simplified
versions of the structures we use in our model . We have included here only these parts which
we considered helpful to convey the basic ideas of our prototype-instance scheme used for
building the model.

The examples discussed so far demonst ra te only the declarative aspect (i .e. the inheri tance
of instance variables) of the hierarchy we may build using flavors. We also def ine with each
f lavor a set of methods which, when combined , provide each instance with a lot of p rocedura l
knowledge . It is more difficult to show examples of this because methods are typically long
procedures . Describing the %system-node f lavor above, we ment ioned one such method.
Similarly, for %multiplexer we define a me thod which, using the data s tored in instance's
slots, simulates the switching action. Still another example of a method is a d r a w i n g
p rocedure which we define for prototypes whose instances may be displayed on the screen.
The f lavor system supports object-or iented programming. This is ref lected in the way
methods are invoked - by sending messages (method names) to instances. This allow us to
use identically named methods to invoke quite different procedures . For example , it's
obvious f rom looking at the pictures that we use several d i f ferent drawing procedures .
H o w e v e r , we may use the same name, say, :draw for all of them. Suppose we have
ident if ied an e lement by locating its instance in the model and want to draw it. We don ' t have
to bo ther about its prototype in o rder to know how to draw it - it's enough to send the :draw
message to this instance. The right method will be chosen automatically. This si tuation is
advantageous for the language understanding process as well. The first thing we do during
clause analysis is to find referents in the model (i.e. instances) for linguistic entit ies occuring
in the sentence. The semantics of the verb or predicate adjective is typically expressed in the

91

form of a method . The interpretat ion of the clause with respect to the model consists then in
sending this me thod to one of the arguments . The part of P R O T E U S which deals with the
interpreta t ion of clauses hasn't been implemen ted yet, so we won ' t go deeper into this subject
here.

5. Finding Referents for Nominal Compounds

One notable feature of technical texts is the heavy use of nomina l . compounds . It seems that
their average length is proport ional to the complexi ty of the discourse domain. In the doma in
of the starting air system, examples like

stripped lube oil pump drive gear and hub ring gear,
are, by no means, seldom occurences.

The problem with nominal compounds is their ambiguity. The syntactic analysis is of
almost no help here. Semantically they are also very difficult to deal with [Finin 1986]. The
problem may be metaphorical ly described as a jigsaw puzzle: given several pieces (c o m p o u n d
descriptions) put them together to build a s ens ib l ep i c tu r e (nominal compound descr ip t ion) .
The task becomes somewhat easier in cases when we know that nominal compounds r e fe r to
objects existing in the system. In terms of our metaphor it translates into a hint: a set of
pictures is given with the assumption that the solution is one of these pictures.

The above observat ion is the next a rgument for maintaining an equ ipmen t model . No t all
nominal compounds fall into this category (a notable class here are verb nomal iza t ions , like
borescope investigation). However , most of them (especially the longest ones) r e fe r to objects
maintained in the model.

P R O T E U S processes sentences sequential ly (first syntax, then semantics , finally
discourse). Both the syntactic and semantic analyzers have been implemented a l ready.
[Grishman 1986] describes the overall organizat ion of P R O T E U S in some detail . The
syntactic componen t delimits the noun phrases, but does not assign any s t ructure to the pro-
nominal modif iers . The interpreter of nominal compounds takes as input an o rd e r ed list of
words of which the nominal compound consists, and tries to achieve two goals: (1) to
determine the structure of the pre-nominal modif iers ; (2) to locate the instance(s) in the
equipment model refer red to by the nominal compound.

The parsing of the nominal compound proceeds bot tom-up without backtracking. The
words are analyzed f rom right to left. The parser maintains a Parse Stack where all possible
partial parses are kept. The information about each partial parse (State Vector) consists of
three lists: (1) the Word List: the unparsed part of the nominal compound ; initially contains
the whole compound ; (2) the Forest: list of partial parse trees for the part of the c o m p o u n d
which has been analyzed so far: initially empty ; (3) the List of Referents : for each part ial
parse tree in the Fores t , a list of the model instances which may be named by the words in
that partial parse tree.

The condit ion for a successful parse is twofold: (1) the Word List is empty ; (2) the Forest
contains one tree (in such a case the List of Referents will, necessarily, also have one list of
instances - they will be considered the referents of the compound nominal) . T h e parser works
as the fol lowing coroutine:

LOOP WHILE Parse Stack not erupt'
State-Vect = Pop (Parse Stack):
Word = next word from the Word List of State-Vect;
Dict-Entry = dictionary entry for Word;
FOR each reduction rule applicable to State-Vect and Dict-Enrry

C r e a t e New-State-Vect;
IF (termination conditions fu2filled for New-State-Vect)

THEN r e t u r n (New-State-Vect)
ELSE push (Parse Stack New-State-Vecr)

?

Each word in the dictionary is assigned two propert ies: its model class (M O D - C) and its
semantic class (SEM-C) . We use five d i f ferent model classes:

9 2

Instance - a w o r d o f this c lass n a m e s a s e t o f i n s t a n c e s in the m o d e l ; this s e t is part o f the
dict ionary en t ry (in Fig. 5 the w o r d pump is an e x a m p l e ; (pl p2 p3) are i n s t a n c e s o f p u m p s
which occur in the mode l) ,

Slot -Fi l ler - a w o r d o f this class can carry i n fo rma t ion used as s lo t f i l l ers in s o m e i n s t a n c e s ;
taken a l o n e it d o e s n ' t n a m e any m o d e l ins tance (in Fig . 5 the w o r d lube is an e x a m p l e) ,

S lo t -Name - a w o r d o f this class indicates how to in te rpre t s o m e o t h e r adajcent w o r d s in the
c o m p o u n d ; an example is s p e e d - it tells how to t rea t low in the nomina l c o m p o u n d low speed

gearbox ,

Procedure - each word of this class is ass igned a p rocedure which, w h e n cal led with
a rgumen t s coming f rom other parts of the noun phrase , re turns a r e fe ren t (s) ; an e x a m p l e is
coup l ing , as in coupl ing f r o m diesel to sac lube oil p u m p - the coupl ing m e a n t here is not a
single coupl ing, but a whole sequence of them on the path be tween diesel and lube oil p u m p ;
this sequence has to be evalua ted using the mode l ,

C o m p o n e n t - a word of this class names a set of objects in the domain e q u i p m e n t which are
not p e r m a n e n t l y present in the mode l (for e x a m p l e s and discussion of this issue see sect ion
3).

DICTIONARY

(lube
(oil
(pump
(SAC

(MOD-C Slot-Filler)
(MOD-C Instance (ol o2 03))
(MOD-C Instance (pl p2 p3))
(MOD-C Instance (sl))

SEM-C --> SLOT-NAME TABLE

(SEM-C Function))
(SEM-C Working-Substance))
(SEM-C Machinery))
(SEM-C Machinery))

(Function
(Machinery
(Working-Substance

INSTANCES

:function)
:part-of :components :location)
:working-substance)

;;; SAC lube oil pump
(setq p3 (make-instance %pump

':part-of 'los2
':working-substance '(OIL . 03)))

;;; SAC lube oil
(setq 03 (make-instance %working-substance

':function 'LUBE))

;;; SAC lube oil system
(setq los2 (make-instance %system

':part-of 'sl))

;;; SAC
(setq sl (make-instance %system

Figure 5. F ragmen t s of data used by the parse r of nomina l compounds .

The two mos t often used reduct ion rules are:

(1) instance + instance--> instance
(2) slot-filler + instance --> instance

In (1), the set of model instances for the resul t consists of those instances of the second
cons t i tuent which can be linked through s o m e pa th in the mode l to some instance o f the f irst

93

consti tuent . In (2), the resulting instances are those instances of the second consti tuent which
have a slot whose filler may be matched with the first consti tuent . The types of links
t raversed in the search (in the first case) or the checked slots (in the second case) are a
funct ion of the semantic class (SEM-C) of the first const i tuent . This function assigns to each
semant ic class a set of slot names (see SEM-C - -> S L O T - N A M E T A B L E in Fig. 5).

Le t us illustrate the way the interpreter works with an example . Fig. 6 shows the trace of
parsing SAC lube oil pump. We enclosed State Vectors in square brackets; the lists del imited
by curled brackets represent (f rom left to right): the W o r d List , the Fores t , and the List of
Referents . The words are represented by numbers ; the names ~1 , p2, p3, ol, ...) are model
instances taken f rom the dictionary (comp. Fig. 5). We analyze the words f rom right to left.
We start with pump. We remove it from the W o r d List , find its defini t ion in the dict ionary
(Fig. 5), and applying a rule not shown above, create the new State Vector (Fig. 6, first
vec tor above the compound) . The next word is oil. Now, two reduct ion rules are applicable:
the same one we used for pump - resulting in the left branch on Fig. 6 and rule (1) above. To
apply rule (1), we first find in the dictionary that oil is of class Instance and names the
instances (ol o2 o3). Next , we try to find out whether any of these instances may be linked to
any of the (pl p2 p3). To do this we take the semantic class of oil f rom the dict ionary (Fig.
5): Working-Substance. Then we check in the SEM-C - -> S L O T - N A M E T A B L E (Fig. 5)
which slot names we should consider - the only candidate in this case is :working-substance.
Finally, we consider each of the instances (pl p2 p3) and check the fillers of their :working-
substance slots. In Fig. 5 we show only the instance p3 (the instances pl and p2 are similar).
For p3 we indeed find that it can be linked with one of the considered candidates (namely
with o3) through the :working-substance link. Thus , we include p3 into the resulting set. A
similar analysis for pl and p2 would result in including them into the resulting set as well.
Hence , the State Vector in the right branch in Fig. 6 has (3 4) as a partial parse tree whose
leaves, when combined into one constituent, re fe r to the set (pl p2 p3). The analysis at the
o the r points of the trace is similar.

(SUCCESS)
[{} {((I) ((2 3) (4)))} {(p3)}]

[{} {(1) ((2 3) (4))} {(sl) (p2 p3)}]

t
[{1} {((2 3) (4))} {(p2 p3)}]

[{1} {(2 3) (4)} {(o2 o3) (pl p2 p3)}]

(SUCCESS)
[{} {((1) ((2 3) (4)))} {(p3)}]

l
[{1} 1((2 3) (4))} {(p2 p3)}l

[{1 2} {(3) (4)} {(oi 02 03) (pl p2 p3)}]

[{1 2 3} {(4)} {(pl p2 p3)}l

[{1 2 3 4} {} {}]

(DEAD END)
[{12} 1(3 4)} {(pl p2 p3)}]

S A C l u b e o i l p u m p
(1) (2) (3) (4)

Figure 6. The parsing trace for the nominal compound SAC lube oil pump.

94

[Grishman 1986] discusses how to treat modifiers describing the state of a part, such as
cracked or sheared, and also how to handle some ambiguities in conjoined noun phrases (for
an example see the beginning of this section).

6. Future W o r k

The immediate next step in the development of our system is to extend the coverage of the
interpreter of nominal compounds to full-fledged noun phrases (including relative clauses,
prepositional phrases and conjunctions). Then we plan to work on the interpretation of
clauses. It should be possible to define the semantics of most verbs from the domain as
operations on the equipment model. Finally, to obtain a robust system, it will be necessary to
develop components for finding temporal and causal links between sentences in the text. As
is known from previous research (e.g. [Charniak 1977]), success in this area depends mainly
on the quality of solutions to the knowledge representation and inference problems. As we
indicated in section 2 of this paper, one of the possible approaches to inference mechanism
involves the use of a simulation model.

The initial motivation for the system has been the conversion of a stream of messages to a
data for subsequent querying, summarization, and trend analysis. However, the use of a
detailed equipment model, similar to that employed in simulation systems (e.g. STEAMER
[Hollan 1984]), suggests that it may be equally useful as an interface for such systems.

A c k n o w l e d g e m e n t

This research was supported in part by the Defense Advanced Research Projects Agency
under contract N00014-85-K-0163 from the Office of Naval Research.

References

[Bobrow 1977] Bobrow, D. and Winograd, T. An overview of KRL - a knowledge
representation language. Cognitive Science, 1977, 3-46

[Charniak 1977] Charniak, E. Inference and knowledge in language comprehension. In
Machine Intelligence 8, D. Michie, Ed. American Elsevier, New York, 541-574

[Finin 1986] Finnin, T. Nominal compounds in a limited context. In Analyzing Language in
Restricted Domains, R. Grishman and R. Kittredge, Eds. Lawrence Erlbaum Assoc.,
Hillsdale, NJ

[Grishman 1986] Grishman, R., Ksiezyk, T., and Nhan, N.T. Model-based analysis of
messages about equipment. Submitrted to the AAAI-86

[Hollan 1984] Hollan, J., Hutchins, E., and Weitzman, L. STEAMER: an interactive
inspectable simulation-based training system. AI Magazine, Summer 1984, 15-27

Reference Guide to Symbolics-Lisp, Symbolics, Cambridge, MA, 1984

95

