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ABSTRACT
Chunk parsing has focused on the recognition of partial constituent
structures at the level of individual chunks. Little attention has been
paid to the question of how such partial analyses can be combined
into larger structures for complete utterances.

The TüSBL parser extends current chunk parsing techniques by
a tree-construction component that extends partial chunk parses to
complete tree structures including recursive phrase structure as well
as function-argument structure. TüSBL’s tree construction algo-
rithm relies on techniques from memory-based learning that allow
similarity-based classification of a given input structure relative to
a pre-stored set of tree instances from a fully annotated treebank.

A quantitative evaluation of TüSBL has been conducted using
a semi-automatically constructed treebank of German that consists
of appr. 67,000 fully annotated sentences. The basic PARSEVAL
measures were used although they were developed for parsers that
have as their main goal a complete analysis that spans the entire in-
put. This runs counter to the basic philosophy underlying TüSBL,
which has as its main goal robustness of partially analyzed struc-
tures.
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1. INTRODUCTION
Current research on natural language parsing tends to gravitate

toward one of two extremes: robust, partial parsing with the goal
of broad data coverage versus more traditional parsers that aim at
complete analysis for a narrowly defined set of data. Chunk pars-
ing [1, 2] offers a particularly promising and by now widely used
example of the former kind. The main insight that underlies the
chunk parsing strategy is to isolate the (finite-state) analysis of non-
recursive, syntactic structure, i.e. chunks, from larger, recursive
structures. This results in a highly-efficient parsing architecture
that is realized as a cascade of finite-state transducers and that pur-

.

sues a longest-match, right-most pattern-matching strategy at each
level of analysis.

Despite the popularity of the chunk parsing approach, there seem
to be two apparent gaps in current research:

1. Chunk parsing research has focused on the recognition of
partial constituent structures at the level of individual chunks.
By comparison, little or no attention has been paid to the
question of how such partial analyses can be combined into
larger structures for complete utterances.

2. Relatively little has been reported on quantitative evaluations
of chunk parsers that measure the correctness of the output
structures obtained by a chunk parser.

The main goal of the present paper is help close those two re-
search gaps.

2. THE TÜSBL ARCHITECTURE
In order to ensure a robust and efficient architecture, TüSBL, a

similarity-based chunk parser, is organized in a three-level archi-
tecture, with the output of each level serving as input for the next
higher level. The first level is part-of-speech (POS) tagging of the
input string with the help of the bigram tagger LIKELY [10].1 The
parts of speech serve as pre-terminal elements for the next step,
i.e. the chunk analysis. Chunk parsing is carried out by an adapted
version of Abney’s [2] scol parser, which is realized as a cascade
of finite-state transducers. The chunks, which extend if possible to
the simplex clause level, are then remodeled into complete trees in
the tree construction level.

The tree construction is similar to the DOP approach [3, 4] in that
it uses complete tree structures instead of rules. Contrary to Bod,
we do not make use of probabilities and do not allow tree cuts,
instead we only use the complete trees and minimal tree modifica-
tions. Thus the number of possible combinations of partial trees
is strictly controlled. The resulting parser is highly efficient (3770
English sentences took 106.5 seconds to parse on an Ultra Sparc
10).

3. CHUNK PARSING AND TREE CONSTRUC-
TION

The division of labor between the chunking and tree construction
modules can best be illustrated by an example.

1The inventory of POS tags is based on the Stuttgart-Tübingen
Tagset (STTS) [11].
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Figure 2: Sample tree construction output

Input:
dann w”urde ich vielleicht noch vorschlagen Donnerstag den elften
und Freitag den zw”olften August
(then I would suggest maybe Thursday eleventh and Friday twelfth
of August)

Chunk parser output:

[simpx [advx [adv dann]]
[vxfin [vafin w"urde]]
[nx2 [pper ich]]
[advx [adv vielleicht]]
[advx [advmd noch]]
[vvinf vorschlagen]]

[nx3 [day Donnerstag]
[art den]
[adja elften]]

[kon und]

[nx3 [day Freitag]
[art den]
[adja zw"olften]
[month August]]

Figure 1: Chunk parser output

For complex sentences such as the German input dann w”urde
ich vielleicht noch vorschlagen Donnerstag den elften und Fre-
itag den zw”olften August (then I would suggest maybe Thursday
eleventh and Friday twelfth of August), the chunker produces a
structure in which some constituents remain unattached or partially
annotated in keeping with the chunk-parsing strategy to factor out
recursion and to resolve only unambigous attachments, as shown in
Fig. 1.

In the case at hand, the subconstituents of the extraposed co-
ordinated noun phrase are not attached to the simplex clause that
ends with the non-finite verb that is typically in clause-final posi-
tion in declarative main clauses of German. Moreover, each con-
junct of the coordinated noun phrase forms a completely flat struc-
ture. TüSBL’s tree construction module enriches the chunk output

as shown in Fig. 22. Here the internally recursive NP conjuncts
have been coordinated and integrated correctly into the clause as a
whole. In addition, function labels such as mod (for: modifier), hd
(for: head), on (for: subject), oa (for: direct object), and ov (for:
verbal object) have been added that encode the function-argument
structure of the sentence.

4. SIMILARITY-BASED TREE CONSTRUC-
TION

The tree construction algorithm is based on the machine learning
paradigm of memory-based learning [12].3 Memory-based learn-
ing assumes that the classification of a given input should be based
on the similarity to previously seen instances of the same type that
have been stored in memory. This paradigm is an instance of lazy
learning in the sense that these previously encountered instances
are stored “as is” and are crucially not abstracted over, as is typi-
cally the case in rule-based systems or other learning approaches.
Past applications of memory-based learning to NLP tasks consist
of classification problems in which the set of classes to be learnt
is simple in the sense that the class items do not have any internal
structure and the number of distinct items is small.

The use of a memory-based approach for parsing implies that
parsing needs to be redefined as a classification task. There are two
fundamentally different, possible approaches: the one is to split
parsing up into different subtasks, that is, one needs separate clas-
sifiers for each functional category and for each level in a recur-
sive structure. Since the classifiers for the functional categories as
well as the individual decisions of the classifiers are independent,
multiple or no candidates for a specific grammatical function or
constituents with several possible functions may be found so that
an additional classifier is needed for selecting the most appropriate
assignment (cf. [6]).

The second approach, which we have chosen, is to regard the
complete parse trees as classes so that the task is defined as the
selection of the most similar tree from the instance base. Since in

2All trees in this contribution follow the data format for trees de-
fined by the NEGRA project of the Sonderforschungsbereich 378
at the University of the Saarland, Saarbrücken. They were printed
by the NEGRA annotation tool [5].
3Memory-based learning has recently been applied to a variety of
NLP classification tasks, including part-of-speech tagging, noun
phrase chunking, grapheme-phoneme conversion, word sense dis-
ambiguation, and pp attachment (see [9], [14], [15] for details).



construct tree(chunk list, treebank):
while (chunk list is not empty) do

remove first chunk from chunk list
process chunk(chunk, treebank)

Figure 3: Pseudo-code for tree construction, main routine.

process chunk(chunk, treebank):
words := string yield(chunk)
tree := complete match(words, treebank)
if (tree is not empty) direct hit,
then output(tree) i.e. complete chunk found in treebank
else

tree := partial match(words, treebank)
if (tree is not empty)
then

if (tree = postfix of chunk)
then

tree1 := attach next chunk(tree, treebank)
if (tree is not empty)
then tree := tree1

if ((chunk - tree) is not empty) if attach next chunk succeeded
then tree := extend tree(chunk - tree, tree, treebank) chunk might consist of both chunks
output(tree)
if ((chunk - tree) is not empty) chunk might consist of both chunks (s.a.)
then process chunk(chunk - tree, treebank) i.e. process remaining chunk

else back off to POS sequence
pos := pos yield(chunk)
tree := complete match(pos, treebank)
if (tree is not empty)
then output(tree)
else back off to subchunks

while (chunk is not empty) do
remove first subchunk c1 from chunk
process chunk(c1, treebank)

Figure 4: Pseudo-code for tree construction, subroutine process chunk.

this case, the internal structure of the item to be classified (i.e. the
input sentence) and of the class item (i.e. the most similar tree in the
instance base) need to be considered, the classification task is much
more complex, and the standard memory-based approach needs to
be adapted to the requirements of the parsing task.

The features TüSBL uses for classification are the sequence of
words in the input sentence, their respective POS tags and (to a
lesser degree) the labels in the chunk parse. Rather than choosing a
bag-of-words approach, since word order is important for choosing
the most similar tree, the algorithm needed to be modified in order
to rely more on sequential information.

Another modification was necessitated by the need to generalize
from the limited number of trees in the instance base. The classifi-
cation is simple only in those cases where a direct hit is found, i.e.
where a complete match of the input with a stored instance exists.
In all other cases, the most similar tree from the instance base needs
to be modified to match the chunked input.

If these strategies for matching complete trees fail, TüSBL at-
tempts to match smaller subchunks in order to preserve the qual-
ity of the annotations rather than attempt to pursue only complete
parses.

The algorithm used for tree construction is presented in a slightly
simplified form in Figs. 3-6. For readability’s sake, we assume
here that chunks and complete trees share the same data structure

so that subroutines like string yield can operate on both of them
indiscriminately.

The main routine construct tree in Fig. 3 separates the list of in-
put chunks and passes each one to the subroutine process chunk in
Fig. 4 where the chunk is then turned into one or more (partial)
trees. process chunk first checks if a complete match with an in-
stance from the instance base is possible.4 If this is not the case,
a partial match on the lexical level is attempted. If a partial tree
is found, attach next chunk in Fig. 5 and extend tree in Fig. 6 are
used to extend the tree by either attaching one more chunk or by re-
sorting to a comparison of the missing parts of the chunk with tree
extensions on the POS level. attach next chunk is necessary to en-
sure that the best possible tree is found even in the rare case that the
original segmentation into chunks contains mistakes. If no partial
tree is found, the tree construction backs off to finding a complete
match in the POS level or to starting the subroutine for processing
a chunk recursively with all the subchunks of the present chunk.

The application of memory-based techniques is implemented in
the two subroutines complete match and partial match. The pre-
sentation of the two cases as two separate subroutines is for ex-
pository purposes only. In the actual implementation, the search
is carried out only once. The two subroutines exist because of

4string yield returns the sequence of words included in the input
structure, pos yield the sequence of POS tags.



attach next chunk(tree, treebank): attempts to attach the next chunk to the tree
take first chunk chunk2 from chunk list
words2 := string yield(tree, chunk2)
tree2 := complete match(words2, treebank)
if (tree2 is not empty)
then

remove chunk2 from chunk list
return tree2

else return empty

Figure 5: Pseudo-code for tree construction, subroutine attach next chunk.

extend tree(rest chunk, tree, treebank): extends the tree on basis of POS comparison
words := string yield(tree)
rest pos := pos yield(rest chunk)
tree2 := partial match(words + rest pos, treebank)
if ((tree2 is not empty) and (subtree(tree, tree2)))
then return tree2
else return empty

Figure 6: Pseudo-code for tree construction, subroutine extend tree.

the postprocessing of the chosen tree which is necessary for par-
tial matches and which also deviates from standard memory-based
applications. Postprocessing mainly consists of shortening the tree
from the instance base so that it covers only those parts of the chunk
that could be matched. However, if the match is done on the lexical
level, a correction of tagging errors is possible if there is enough ev-
idence in the instance base. TüSBL currently uses an overlap met-
ric, the most basic metric for instances with symbolic features, as
its similarity metric. This overlap metric is based on either lexical
or POS features. Instead of applying a more sophisticated metric
like the weighted overlap metric, TüSBL uses a backing-off ap-
proach that heavily favors similarity of the input with pre-stored
instances on the basis of substring identity. Splitting up the classi-
fication and adaptation process into different stages allows TüSBL
to prefer analyses with a higher likelihood of being correct. This
strategy enables corrections of tagging and segmentation errors that
may occur in the chunked input.

4.1 Example

Input:
dann w”urde ich sagen ist das vereinbart

(then I would say this is arranged)
Chunk parser output:

[simpx [advx [adv dann]]
[vxfin [vafin w"urde]]
[nx2 [pper ich]]
[vvinf sagen]]

[simpx [vafin ist]
[nx2 [pds das]]
[vvpp vereinbart]]

Figure 7: Chunk parser output

For the input sentence dann w”urde ich sagen ist das vereinbart
(then I would say this is arranged), the chunked output is shown in
Fig. 7. The chunk parser correctly splits the input into two clauses

Table 1: Quantitative evaluation
minimum maximum average

precision 76.82% 77.87% 77.23%
recall 66.90% 67.65% 67.28%
crossing accuracy 93.44% 93.95% 93.70%

dann w”urde ich sagen and ist das vereinbart. A look-up in the
instance base finds a direct hit for the first clause. Therefore, the
correct tree can be output directly. For the second clause, only a
partial match on the level of words can be found. The system finds
the tree for the subsequence of words ist das, as shown in Fig. 8.
By backing off to a comparison on the POS level, it finds a tree for
the sentence hatten die gesagt (they had said) with the same POS
sequence and the same structure for the first two words. Thus the
original tree that covers only two words is extended via the newly
found tree. TüSBL’s output for the complete sentence is shown in
Fig. 9.

5. QUANTITATIVE EVALUATION
A quantitative evaluation of TüSBL has been conducted using

a semi-automatically constructed treebank of German that consists
of appr. 67,000 fully annotated sentences or sentence fragments.5

The evaluation consisted of a ten-fold cross-validation test, where
the training data provide an instance base of already seen cases for
TüSBL’s tree construction module.

The evaluation focused on three PARSEVAL measures: labeled
precision, labeled recall and crossing accuracy, with the results
shown in Table 1.

While these results do not reach the performance reported for
other parsers (cf. [7], [8]), it is important to note that the task carried
out here is more difficult in a number of respects:

1. The set of labels does not only include phrasal categories, but
also functional labels marking grammatical relations such as
subject, direct object, indirect object and modifier. Thus, the
evaluation carried out here is not subject to the justified crit-
icism levelled against the gold standards that are typically

5See [13] for further details.
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Figure 9: TüSBL’s output for the complete sentence

in conjunction with the PARSEVAL measures, namely that
the gold standards used typically do not include annotations
of syntactic-semantic dependencies between bracketed con-
stituents.

2. The German treebank consists of transliterated spontaneous
speech data. The fragmentary and partially ill-formed na-
ture of such spoken data makes them harder to analyze than
written data such as the Penn treebank typically used as gold
standard.

It should also be kept in mind that the basic PARSEVAL mea-
sures were developed for parsers that have as their main goal a
complete analysis that spans the entire input. This runs counter to
the basic philosophy underlying an amended chunk parser such as
TüSBL, which has as its main goal robustness of partially analyzed
structures: Precision and recall measure the percentage of brackets,
i.e. constituents with the same yield or bracketing scope, which are
identical in the parse tree and the gold standard. If TüSBL finds
only a partial grouping on one level, both measures consider this
grouping wrong, as a consequence of the different bracket scopes.
In most cases, the error ’percolates’ up to the highest level. Fig.
10 gives an example of a partially matched tree structure for the
sentence “bei mir ginge es im Februar ab Mittwoch den vierten”
(for me it would work in February after Wednesday the fourth).
The only missing branch is the branch connecting the second noun
phrase (NX) above “Mittwoch” to the NX “den vierten”. This re-
sults in precision and recall values of 10 out of 15 because of the

altered bracketing scopes of the noun phrase, the two prepositional
phrases (PX), the field level (MF) and the sentence level (SIMPX).

In order to capture this specific aspect of the parser, a second
evaluation was performed that focused on the quality of the struc-
tures produced by the parser. This evaluation consisted of manually
judging the TüSBL output and scoring the accuracy of the recog-
nized constituents. The scoring was performed by the human an-
notator who constructed the treebank and was thus in a privileged
position to judge constituent accuracy with respect to the treebank
annotation standards. This manual evaluation resulted in a score
of 92.4% constituent accuracy; that is: of all constituents that were
recognized by the parser, 92.4% were judged correct by the hu-
man annotator. This seems to indicate that approximately 20% of
the precision errors are due to partial constituents whose yield is
shorter than in the corresponding gold standard. Such discrepan-
cies typically arise when TüSBL outputs only partial trees. This
occurs when no complete tree structures can be constructed that
span the entire input.

6. CONCLUSION AND FUTURE RESEARCH
In this paper we have described how the TüSBL parser extends

current chunk parsing techniques by a tree-construction compo-
nent that completes partial chunk parses to tree structures including
function-argument structure.

As noted in section 4, TüSBL currently uses an overlap metric, i.
e. the most basic metric for instances with symbolic features, as its
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Figure 10: A partially grouped tree output of the TÜSBL system

similarity metric. We anticipate that the results reported in Fig. 1
can be further improved by experimenting with more sophisticated
similarity metrics. However, we will have to leave this matter to
future research.6
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