
D e t e r m i n i s t i c C o n s i s t e n c y C h e c k i n g o f L P C o n s t r a i n t s

Suresh Manandhar
Language Technology Group

Human Communication Research Centre
University of Edinburgh, Scotland

email : Sure sh.Manandhar~ed, ac.uk

Abstract

We provide a constraint based compu-
tational model of linear precedence as
employed in the HPSG grammar formal-
ism. An extended feature logic which
adds a wide range of constraints involv-
ing precedence is described. A sound,
complete and terminating deterministic
constraint solving procedure is given.
Deterministic computational model is
achieved by weakening the logic such
that it is sufficient for linguistic appli-
cations involving word-order.

S u b j e c t areas : feature logic, constraint based
grammars

1 Introduction
Within HPSG (Pollard and Sag, 1987) (Pollard
and Sag, 1994) the constituent ordering princi-
ple given in (1) is intended to express the rela-
tion between the value of the PHON attribute and
the DTRS attribute which contains the hierarchical
structure of the derivation.

[DTRS rPHON] (1) phrasal_sign = ~der_constituent([~)

(2) Linear Precedence Constraint 1 (LP1):
HEAD[LEX+] < []

However, it is not entirely clear how or-
der_constituent is supposed to interpret various
linear precedence statements such as LP1.

1.1 R e a p e ' s a p p r o a c h

The idea taken in Reape's approach (Reape, 1993)
is to suggest that word-order is enforced between
locally definable word order domains which are or-
dered sequences of constituents. Word order do-
mains in Reape's approach are totally ordered se-
quences. A domain union operation as given in (3)
is then employed to construct word order domains
locally within a HPSG derivation step.

(3) 0(,1, ,1, ,7).

0(o~,= o ,~ ,= o oD ~ O(,,,,,,~,,,~).

If A is the string < a,b > and B is the
string < c,d >, their domain union C given by
O (A , B , C) will produce all the sequences in
which a precedes b and c precedes d i.e. the fol-
lowing sequences:

< a , b , c , d > < a , c , b , d >
< a,c,d,b > < c,d,a,b >
< c,d,a,b > < c,a,b,d >

However in this system to encode the property
that {x, y, z} is a domain in which the ordering is
arbitrary (i.e. free) then one needs the following
disjunctive statements:

< x , y , z > U < x , z , y > H

< y , x , z > U < y , z , x > H

< z , x , y > U < z , y , x >

It is simply not possible to be agnostic about
the relative ordering of sequence elements within
Reape's system.

We identify two deficiencies in Reape's ap-
proach namely:

• System is non-deterministic (generate and
test paradigm)

• Not possible to be agnostic about order

This is so since domain union is a non-
deterministic operation and secondly underspec-
ification of ordering within elements of a domain
is not permitted.

In the following sections we describe a con-
straint language for specifying LP constraints that
overcomes both these deficiencies. Additionally
our constraint language provides a broad range of
constraints for specifying linear precedence that
go well beyond what is available within current
typed feature formalisms. Our approach is in the
spirit of Reape's approach but improves upon it.

Furthermore, a sound, complete and terminat-
ing consistency checking procedure is described.

165

Our constraint solving rules axe de t e rmin i s t i c and
i ncremen ta l . Hence these do not introduce costly
choice-points. These constraint solving rules can
be employed for building an efficient implementa-
tion. This is an impor tant requirement for prac-
tical systems. Indeed we have successfully ex-
tended the P r o F I T typed feature formalism (Er-
bach, 1995) with the constructs described in this
paper.

2 O u t l i n e of an a l t e r n a t i v e
a p p r o a c h

To motivate our approach we star t with an exam-
ple on scrambling in German subordinate clauses.

(4) dab er einen Mann in der Strafle lanfen
tha t he a man in the street walking

sah.
s a w .

tha t he saw a man walking in the street.

(5) dab er in der Strafle einen Mann laufen sah.

(6) daft einen Mann er in der Stral3e lanfen sah.

(7) daft einen Mann in der Stral]e er lanfen sah.

(8) daft in der Stral]e er einen Mann laufen sah.

(9) daft in der Strai]e einen Mann er laufen sah.

The above da ta can be captured precisely if we
can s tate tha t sah requires-both its verbal argu-
ment lau fen and its NP argument er to precede it.
Similarly, lau fen would require both its arguments
e inen M a n n and in der Straf le to precede it. This
is i l lustrated schematically in (10) below.

(10) { e r } { sah}

/
{ einen mann, in der strasse} { laufen }

Our idea is to employ a specification such as the
one given in (11) which is a partial specification
of the lexical entry for the verb sah. The specifi-
cation can be thought of as a formal specification
of the intuitive description given in (12).

(11)
V [3 phon : < sah > 13

f i e l d : F ie ld [3
s y n : (cat : v [3

subcat : { N P [3 dora : N P d o m ,
V i [3 dora : V i d o m } [3

dora :D N P d o m [3
dora :D V i d o m) [3

V i d o m < dora {V} [3
N P d o m < do,n {Vi} [3
V i < V

For space reasons, our t rea tment is necessar-
ily somewhat superficial since we do not take
into account other interacting phenomena such as
f ron t ing or extraposi t ion.

The definition in (11) does not make specific as-
sumption about whether a context-free backbone
is employed or not. However, if a CFG back-
bone is employed then we assume tha t the value
of the subcat at t r ibute is t reated as an unordered
sequence (i.e. a set) as defined in (11).

(12) N P d o m V

Vidom

/
V~

The essential idea is to use set-valued descrip-
tions to model word-order domains. In paxticu-
lax subset constraints (Manandhar , 1994) are em-
ployed to construct larger domains from smaller
ones. Thus in example (11) the domain of the verb
is constructed by including the domains of the
subcategorised arguments (enforced by the con-
straints dora :D N P d o m f 3 d o m :D V i D o m) . Note
tha t in this example the verb itself is not par t of its
own domain. The binary constraint Vi < V en-
forces precedence ordering between the s igns V i

and V. The constraint V ~ d o m < do,~ {V} en-
sures tha t every element of the set V i D o m pre-
cedes the sign V. In other words, the set V i D o m

is in the d o m a i n precedence relation with the sin-
gleton {V}.

However there are strong constraints on order-
ing in the middle field. For instance, when prono-
mial complements are involved then not all per-
mutat ions are acceptable. Examples such as (13)
are considered ungrammatical .

(13) *dab in der Strafle ihn er laufen sah.

According to Uszkoreit (Uszkoreit, 1985), order-
ing of arguments in the middle field is governed by
the following set of LP constraints given in (14)
which axe to be interpreted disjunctively.

(14) P P R N : + < P P R N : -
T R : agent < T R : t h e m e
T R : agent < T R : goal
T R : goal < T R : t h e m e
F O C U S : - < F O C U S : +

The LP constraint in (14) states tha t for every
pair of constituents in the middle field at least one
of the conditions should apply otherwise the sen-
tence is considered ungrammatical . A related but
more elaborate LP rule mechanism is considered
in (Steinberger, 1994).

166

To approximate this complex LP constraint em-
ploying the kind of logical machinery described in
this paper, we can use a description such as the
one given in (15). The definition given in (15)
extends the description given in (11).

(15) s y n : d o m : M F f3
3 x 3 y i f x E M F A y E M F A x < y

t h e n
i f x = p p r n : + A y = p p r n : - -

t h e n T
else
i f x ---- t r : a g e n t A y = t r : t h e m e

t h e n T
e lse
i f x = t r : a g e n t A y = t r : goal

t h e n T
e lse
i f x = t r : goal A y = t r : t h e m e

t h e n T
else

x = f o c u s : - A y -= f o c u s : +

The definition in (15) can be understood as fol-
lows. The feature constraint s y n : dora : M F co-
instantiates the middle field domain to the vari-
able M F . To keep the example simple, we assume
that the whole domain is in the middle field and
we ignore f r o n t i n g or ex t r apos i t i on . A more com-
plex condition would be needed to handle these.

The rest of the definition in (15) ensures that for
every pair of elements x and y such that x and y
are both members of M F and x precedes y at least
one of the LP constraints hold. If every LP con-
straint is violated then an inconsistency results.
The constraints in (15) is a weaker representation
of the disjunctive specification given in (16).

(16) S x ~ y i f (x e M F A y e M F A x < y)

t h e n

x = t r : a g e n t A y = t r : t h e m e
V x = t r : a g e n t A y = t r : goal

x = t r : g o a l A y = t r : t h e m e
x = f o c u s : - A y = f o c u s : +

The description in (16) non-deterministicaily re-
quires that at least one of the LP constraints hold.
On the other hand, the description in (15) w a i t s

until either one of the LP constraints is satisfied
(in which case it succeeds) or all the LP con-
straints are violated (in which case it fails). Thus
the description in (15) can be solved determinis-
tically.

Thus (15) should rule out the ungrammatical
example in (13) if the assumptions regarding f o c u s

are made as in (17).

(17) *dab in der Strafle ihn er laufen sah.
pprn:- focus:-
t h : t h e m e pprn : +

tw. a g e n t

Note that it is not necessary to know whether the
PP i n d e r S t ra f l e is focussed to rule out (17) since
the fact that the pronoun i h n is f ocus : - is enough
to trigger the inconsistency.

3 Some generic LP constraints

As suggested by the example in (11), in general
we would want support within typed feature for-
malisms for at least the following kinds of LP con-
straints.

1. Sign1 < Signs

2. Doml < d o m Dom~
(Dotal and Dom~ are set-valued)

3. Doml is i n c l u d e d in Dom~

The constraint Sign1 < Sign~ states that Sign1
precedes Signs. The constraint Dom~ < dora Dom2
states that every element of the set described by
Doml precedes every element of the set described
by Dom=. Constraints such as Doml is i n c l u d e d

in Dora2 essentially builds larger domains from
smaller ones and can be thought of as achieving
the same effect as Reape's domain union oper-
ation. Note crucially that within our approach
the specification of precedence constraints (such
as Sign1 < Sign~ and Dom~ < ~om Dom2) is in-
dependent of the domain building constraint (i .e .

the constraint Doml is i n c l u d e d in Dom=). This
we believe is a generaiisation of Reape's approach.

Other constraints such as the following involv-
ing i m m e d i a t e p recedence and f i r s t e l e m e n t o f a

d o m a i n are of lesser importance. However, these
could be of the form:

1. Sign1 i m m e d i a t e l y - p r e c e d e s Sign=

2. F i r s t d a u g h t e r o f Dom~ is Sign1

To be able to state descriptions such as in (15),
we also want to introduce g u a r d e d (or c o n d i t i o n a l)

LP constraints such the following:

1. i f Sign~ is NP[acc] A Sign2 is NP[dat]
t h e n Sign, < Sign=

(Guards on Feature constraints)

2. if Sign~ < Sign2 t h e n

(Guards on precedence constraints)

3. 3 x 3 y (/fx:NP[acc] E Dom A
y:NP[dat] E Dom

t h e n x < y)
(Guards on set members)

Guarded constraints can be thought of as c o n d i -

t i o n a l c o n s t r a i n t s whose execution depends on the
presence of other constraints. The condition part

167

G of a guarded constraint i f G then S else T is
known as a guard. The consequent S is executed if
the current set of constraints entail the guard G.
The consequent T is executed if the current set
of constraints disentail the guard G. If the cur-
rent set of constraints neither entail nor disentail
G then the execution of the whole guarded con-
straint is blocked until more information is avail-
able.

The application of guarded constraints within
computat ional linguistics has not been well ex-
plored. However, the Horn extended feature struc-
tures described in (Hegner, 1991) can be thought
of as adding guards to feature structures. On the
other hand, within logic programming guarded
logic programming languages have a longer his-
tory originating with committed-choice languages
(Ueda, 1985) and popularised by the concurrent
constraint programming paradigm due to Saraswat
(Saraswat and Rinard, 1990) (Saraswat, 1993).

For space reasons, we do not cover the logic of
guarded feature constraints, guards on set mem-
bership constraints and guards o.n precedence con-
straints. Guarded feature constraints have been
extensively studied in (Ait-Kaci et al., 1992)
(Smolka and Treinen, 1994) (Ait-Kaci and Podel-
ski, 1994).

4 A fea ture logic wi th LP
cons t ra in t s

In this section we provide formal definitions for
the syntax and semantics of an extended feature
logic tha t directly supports linear precedence con-
straints as logical primitives. The logic described
in this paper is a further development of the one
described in (Manandhar , 1993).

The syntax of the constraint language is defined
by the following BNF definitions.

Syntax
Let ~ be the set of relation symbols and let 79

be the set of irreflexive relation symbols. We shall
require tha t :7- and 79 are disjoint.

¢, ¢ ~ x = f : y feature constraint
x = 3 f : y set-membership
x = 31o + : y transitive closure
x = 3p* : y reflex-trans closure
x = f :D g(y) subset inclusion
x = [f p 1]y first daughter
f (x) : p+ : g(y) domain precedence
f (x) : p* : g(y) domain prec. equals
¢ & ¢ conjunction

where f E .7- and p E 79

The constraint x = f : y specifies tha t y is the
only f -value of x. The constraint x = 3 f : y

states tha t y is one of the f -values of x.

The constraint x = 3p + : y just says tha t
x is related to y via the transit ive closure of p.
The precedence constraint such as Sign1 precedes
Sign= is intended to be captured by the constraint
Sign1 = 3p + :Sign= where p denotes the (user cho-
sen) immediate precedence relation.

Similarly, x = 31o* : y states tha t x is related
to y via the transitive, reflexive closure of p. This
constraint is similar to the constraint x = 3p + : y
except tha t it permits x and y to be equal.

The constraints f (x) : p+ : g(y) and f (x) : p* :
g(y) are intended to enforce precedence between
two word-ordering domains. The constraint f (x) :
p+ : g(y) states tha t every f -value of x precedes
(i.e. is in the p+ relation with) every g-value of y.
The constraint f (x) : p* : g(y) is analogous.

The constraint x = I f p 1]y states tha t y is the
first daughter amongst the f-values of x (i.e. is in
the p* relation with every f -value of x).

Since our language supports both feature con-
straints and set-membership constraints the con-
ventional semantics for feature logic (Smolka,
1992) needs to be extended. The essential differ-
ence being tha t we interpret every feature/ re la t ion
as a binary relation on the domain of interpreta-
tion. Feature constraints then require tha t they
behave functionally on the variable upon which
the constraint is expressed.

A precise semantics of our constraint language
is given next.

Semantics
An interpretat ion s tructure 27 = < / / z , .I > is a

structure such that:

• / / / i s an arbi t rary non-empty set

• .i is an interpretat ion function which maps:

- every relation f E ~- to a binary relation:
/ I _c///x U I

- every relation p E 79 to a binary relation:
pi C / / i X / / I with the added condition
tha t (pZ)+ is irreflexive

A variable assignment ~ is a function
c~:12 ~/ /J .

We shall write f I (e) to mean the set:

i f (e) = {e' e / / I I (e ,e ') E f i }

We say tha t an interpretat ion 27 and a variable as-
signment a satisfies a constraint ¢ wri t ten Z, a
¢ if the following conditions are satisfied:

168

z, ~ ~ x = f : ~ ~ #(,~(z)) = {~(~)}
z, ~ ~ z = 3 f : y ¢=~ (~(x), a(y)) e f1
Z , a ~ x = 3p+ : y ~ (a (x) , a (y)) e (pl)+
z, ~ ~ x = 3p*: y ¢=~ (~(x), ~(y)) e (#)*
:r, ~ ~ x = f :D_ g(y) ~ f l (a (x)) D_ gl(a(y))

Z, c~ ~ x = [f p 1]y ~ o~(y) e fz(t~(x))A
Ve E/.t z

(e e f (~ (=))
(~(y),e) e (#)*)

Z,c~ ~ f (x) :p+ : g(y) ~ Vel ,% e Ll I
((~ e f z (~(~))^
~ e # (~ (u)))

(e~, e~) e (#) +)
Z , a ~ f (x) : p* : g(y) ¢==~ Ve~,% ELI I

((el ~ f (a (x)) ^
e~ e # (~(~)))

(e~, e~) e (#)*)
Given the above semantics, it turns out that the

first-daughter constraint can be defined in terms
of other constraints in the logic. Let f_p_l be a
distinct relation symbol then we can equivalently
define the first-daughter constraint by:

• x = [f p l] y ~ x = f _ p _ l : y A
x = 3 f : y A f_p_l (x) :p*: f (x)

The translation states that y (which is the f_p_l-
value of x) precedes or is equal to every f-value
of x and y is a f-value of x. For this to work, we
require that the feature symbol f_p_l appears only
in the translation of the constraint x = [f p 1]y.

4.1 T w o R e s t r i c t i o n s

The logic we have described comes with 2 limita-
tions which at first glance appears to be somewhat
severe, namely:

• N O atomic values

• N O precedence as a feature

This is so because it turns out that adding both
functionM precedence and atoms in general leads
to a non-deterministic constraint solving proce-
dure. To illustrate this, consider the following
constraints:

x = f : y A y = a A x = 3 f * : z

where a is assumed to be an atom.
The above constraints state that y is the f-value

of x and y is the atom a and z is related to x by
the reflexive-transitive closure of f .

Determining consistency of such constraints in
general involves solving for the following disjunc-
tive choices of constraints.

x = z o r y = z

(Equals) x = y A Ca
= = ~ ^ [= / ~] c i
if x # y and x occurs in Cs

- " A x = , f : z h C ~

x = f : y A x = 3 f : z A C s
(FeatExists) x = f : y A x = B f : z A y = z A C s

(Subset)
x = f :2 g(Y) A y = G: z A C~

x = 3 f : y A x = f :D g(y) A y = G : z A C ~
if x = 3 f : y ([Cs
where G ranges over g, 3g

Figure 1: Constraint Solving - I

However for practical reasons we want to eliminate
any form of backtracking since this is very likely
to be expensive for implemented systems. On the
other hand, we certainly cannot prohibit atoms
since they are crucially required in grammar spec-
ification. But disallowing functional precedence
is less problematic from a grammar development
perspective.

4.2 I m p o s i n g t h e r e s t r i c t i o n

We note that precedence can be restricted to non-
atomic types such as HPSG signs without com-
promising the grammar in any way. We then need
to ensure that precedence constraints never have
to consider atoms as their values. This can be
easily achieved within current typed feature for-
mglisms by employing appropriateness conditions
(Carpenter, 1992).

An appropriateness condition just states that
a given feature (in our case a relation) can only
be defined on certain (appropriate) types. The
assumption we make is that precedence is specified
in such a way that is appropriate only for non-
atomic types. This restriction can be imposed by
the system (i.e. a typed feature formalism) itself.

5 C o n s t r a i n t S o l v i n g

We are now ready to consider consistency checking
rules for our constraint language. To simplify the
presentation we have split up the rules into two
groups given in figure 1 and figure 2.

The constraint solving rules given in figure
1 deal with constraints involving features, set-
memberships, subset and first daughter. Rules
(Equals) and (Feat) are the usual feature logic
rules (Smolka, 1992) that deal with equality and
features. By [x/y]Cs we mean replacing every
occurrence of x with y in Cs. Rule (FeatEx-

169

(TransConj) x = 3 p * : y A x = 3 p + : y A C s
x = 3 p + : y A C s

(TransClos) x = S R 1 : y A y = 3 R = : z A C 8
X = 3(R1 X R2) :zA

x = 3 R I : y A y = ~ R 2 : z A C s
if x = Sp+ : z ~ C~A
x = 3(R~ × R~) : z ¢ C ~
where R~ x R= is computed from:

x p* p+
p* p* p+
p+ p+ p+

(Cycle) x = 3p* : y
X

f (x) : R : g(y) A x = 3 f : x l A
y ---- 3g : yl AC8

(DomPrec)
xl = 3 R : y~ A f (x) : R : g(y)A
x = 3 f : x l A y = 3 g : y l A C s

i fx~ = 3 p + : y l ¢ C ~ A
x~ = 3R : y~ ¢_ Cs

where R ranges over p+, p*

Figure 2: Constraint Solving - I I

ists) deals with the interaction of feature and
set-membership constraint. Rule (Subset) deals
with subset constraints and adds a new constraint
x = 5 f : y in the presence of the subset constraint
x = f :D g(y) and the constraint y = G : z (where
G ranges over g, 3g).

The constraint solving rules given in figure
2 deal with constraints involving the precedes
and the precedes or equal to relations and do-
main precedence. Rule (TransConj) eliminates
the weaker constraint x = 3 p * : y when both
x = 2 p * : y A x = 3 p + : y hold. Rule (TransC-
los) effectively computes the transitive closure of
the precedence relation one-step at a time. Rule
(Cycle) detects cyclic relations tha t are consis-
tent, namely, when x precedes or equals y and
vice versa then x = y is asserted. Finally rule
(DomPrec) propagates constraints involving do-
main precedence.

We say tha t a set of constraints are in n o r m a l
f o r m if no constraint solving rules are applicable
to it. We say tha t a set of constraints in normal
form contains a c l a sh if it contains constraints of
the form:

x = Bp+ : x

In the following sections we show tha t our con-
straint solving rules are sound and every c lash-
f ree constraint system in normal form is consis-
tent.

5.1 Soundness, Completeness and
Termination

Theorem 1 (Soundness) Let Z,o~ be any inter-
pretation, assignment pair and let Cs be any set
of constraints. I f a constraint solving rule trans-
forms Cs to Crs then:

z , a ~ C, iffz, a ~ C',
Proof Sketch: The soundness claim can be verified
by checking tha t every rule indeed preserves the
interpretation of every variable and every relation
symbol.

Let succ(x , f) and succ(x,p) and denote the
sets:

• succ(x , f) =

{ y i x = ~ f : y e C s V x = f : y e C s }

• succ(x,p) = { , I
x = 3R : y 6 Csh
- , 3 z : (x = 3 R , : z A z = 3 R 2 : y) 6 C s }
where R, R1, R2 6 {p+,p*}

Theorem 2 (Completeness) A constraint sys-
tem Cs in normal form is consistent iff Cs is
clash-flee.

Proof Sketch: For the first part , let Cs be a con-
straint system containing a clash then it is clear
from the definition of clash tha t there is no in-
terpretat ion E and variable assignment a which
satisfies Cs.

Let Cs be a clash-free constraint sys tem in nor-
mal form.

We shall construct an interpretat ion
7¢ =< L/n, .n > and a variable assignment a such
tha t TO, a ~ Cs.

Let L/R = Y.
The assignment function a is defined as follows:

• if x does not occur in Cs then a (x) = x

• if x is such tha t x occurs exactly once in x =
y 6 C~ then a(x) = x

• if x = y 6 Cs then a(y) = a(x)

Note that for constraints in normal form: if x =
y 6 C8 then either x is identical to y or x occurs
just once in C~ (in the constraint x = y). Other-
wise Rule (Equals) is applicable.

The interpretat ion function .R is defined as fol-
lows:

• fa((x(x)) = succ(a(x), f)

• p ~ (~ (x)) = succ(~(x),p)

It can be shown by a case by case analysis tha t
for every constraint K in C, :
~ , a ~ K .

Hence we have the theorem.

170

(Initial Description)

Figure 3: Linearisation of precedence ordered
DAGs

Theorem 3 (Termination)
The consistency checking procedure terminates in
a finite number of steps.

Proof Sketch: The termination claim can be easily
verified if we first exclude rules (Subset), (TransC-
los) and (DomPrec) from consideration. Then for
the remainder of the rules termination is obvious
since these rules only simplify existing constraints.
For these rules:

1. Rule (Subset) increases the size of succ(x, f)
but since none of our rules introduces new
variables this is terminating.

2. Rules (TransClos) and (DomPrec) asserts a
relation R between pairs of variables x, y.
However, none of these rules apply once x =
3p + : y is known. Furthermore, if x = 3p + : y
is known it is never simplified to the weaker
x = 3p* : y. This means that these rules
converge.

6 L i n e a r i s a t i o n of p r e c e d e n c e
o r d e r e d D A G s

The models generated by the completeness theo-
rem interpret (the map of) every precedence re-
lation p as a directed acyclic graph (DAG) as de-
picted in figure 3. However sentences in natural
languages are always totally ordered (i.e. they are
strings of words). This then raises the question:

Is it possible to generate linearised models?

For the logic that we have described this is always
possible. We only provide a graphical argument
given in figure 3 to illustrate that this is indeed
possible.

The question that arises is then:

What happens when we add immediate prece-
dence?

I A I B o I o I Inco-ect
Model)

Model)

I A & C I B & D I (Correct Model)

Figure 4: Difficulty in guaranteeing linearisable
models with immediate precedence

6.1 P r o b l e m w i t h immediate precedence

However if we add immediate precedence to our
logic then it is not clear whether we can guarantee
linearisable models. This is highlighted in figure
4.

As illustrated in this figure consistency check-
ing of constraints involving both linear precedence
and immediate precedence with a semantics that
requires linearised models is not trivial. So we do
not explore this scenario in this paper.

However, it is possible to add immediate prece-
dence and extend the constraint solving rules de-
scribed in this paper in such a way that it is sound
and complete with respect to the current seman-
tics described in this paper (which does not insist
on linearised models).

7 Handling immediate precedence

In this section, we provide additional constraint
solving rules for handling immediate precedence.
The basic idea is to treat immediate precedence
as a functional relation whose inverse too is func-
tional.

In effect what we add to our logic is both prece-
dence as a feature and a new constraint for repre-
senting the inverse functional precedence.

This is summarised by:

• Represent x immediately precedes y by :
x = p : y A y = p -1 :x

• Semantics: Z, a ~ y = p-1 : x
(#)-1 (~(y)) = {~(x)}

The additional rules given in figure below are all
that is needed to handle immediate precedence.

171

x = p : y A C s
(FeatExists) x = p : y A x = 3 p : y A C s

if x = 3p : y ~ Cs

(ExistsTrans) x = 3p : y A Cs
x = 3 p : y A x = 3p + :y A C s

if x = 3/) + : y ¢. Cs

(InvIntro) x = p-1 : y A Cs
y = 3 p : x A x = p - ~ : y A C s
if y = 3p : x ¢ Cs

(InvExists) x = p-1 : y A z = 3p : x A Cs
y = z A x = p - ~ : y A y = 3 p : x A C ~

i f y C z

8 Conclusions

We have shown tha t the logic of linear precedence
can be handled elegantly and deterministically by
adding new logical primitives to feature logic. Al-
though, theoretically speaking, our logic comes
with some restrictions these have no practical con-
sequences whatsoever. Our implementat ion of the
logic as an extension to the P roF IT typed feature
formalism shows tha t a reasonably efficient imple-
mentat ion is feasible. Some further work is neces-
sary to determine the computat ional complexity
of our constraint solving procedure. However, we
believe tha t it is polynomial.

The logic presented in this paper generalises the
approach taken in (Reape, 1993). Our approach
demonstrates tha t it is not necessary to employ a
non-deterministic operat ion such as domain union
to manipulate domains. Instead precedence con-
straints are directly embedded in feature logic
and a deterministic constraint solving procedure
is provided. A wide range of constraints involv-
ing precedence is provided directly in feature logic
ranging from constraints expressing precedence be-
tween variables, precedence between domains to
guards on precedence constraints.

9 Acknowledgments
This work was supported by The Commission of
the European Communit ies through the project
LRE-61-061 "Reusable Grammat ica l Resources",
where the logic described in this paper has been
implemented. Thanks to Wojciech Skut for devel-
oping sample g rammars to test the implementa-
tion and for working on the interface to ProFIT.
Thanks to Gregor Erbach for demoing the ex-
tended system dubbed CL-ONE. Thanks to Her-
bert Ruessink and Craig Thiersch for using and
providing feedback on the implementation. And
thanks to Ralf Steinberger for providing useful
comments on an earlier draft.

References
Hassan Ait-Kaci and Andreas Podelski. 1994. Func-

tions as Passive Constraints in LIFE. ACM Trans-
actions on Programming Languages and Systems,
16(4):1-40, July.

Hassan AYt-Kaci, Gert Smolka, and R. Treinen. 1992.
A feature-based constraint system for logic pro-
gramming with entailment. Research report, DFKI,
Saarbrficken, Germany.

Bob Carpenter. 1992. The Logic of Typed Feature
Structures. Cambridge University Press.

Gregor Erbach. 1995. ProFIT: Prolog with Features,
Inheritance and Templates. In Seventh Conference
of the EACL (This Vol.), Dublin, Ireland, March.

S. Hegner. 1991. Horn extended feature structures:
fast unification with negation and limited disjunc-
tion. In Fifth Conference of the EACL, pages 33-38,
Berlin, Germany.

Suresh Manandhar. 1993. Relational Extensions to
Feature Logic: Applications to Constraint Based
Grammars. Ph.D. thesis, Department of Artificial
Intelligence, University of Edinburgh.

Suresh Manandhar. 1994. An Attributive Logic of Set
Descriptions and Set Operations. In 32nd Annual
Meeting of the ACL, pages 255-262, Las Cruces,
New Mexico.

Carl Pollard and Ivan Andrew Sag. 1987.
Information-Based Syntax and Semantics: Volume
1 Fundamentals, volume 13 of Lecture Notes. CSLI,
Stanford, CA.

Carl Pollard and Ivan Andrew Sag. 1994. Head-driven
Phrase Structure Grammar. Chicago: University of
Chicago Press and Stanford: CSLI Publications.

Mike Reape. 1993. Getting Things in Order. In
Wietske Sijtsma and Arthur van Horck, editors,
Discontinuous Constituency. Berlin: Mouton de
Gruyte.

V. Saraswat and M. Rinard. 1990. Concurrent Con-
straint Programming. In Proceedings of the 7th
A CM Symposium on the Principles of Programming
Languages, pages 232-245, San Francisco, CA, Jan-
uary.

Vijay Saraswat. 1993. Concurrent Constraint Pro-
gramming. MIT Press.

Gert Smolka and Ralf Treinen. 1994. Records for
logic programming. Journal of Logic Programming,
18(3):229-258, April.

Gert Smolka. 1992. Feature constraint logics for uni-
fication grammars. Journal of Logic Programming,
12:51-87.

Ralf Steinberger. 1994. Treating 'Free Word Order'
in Machine Translation. In Proceedings of COLING
1994, VoL I, pages 69-75, Kyoto, Japan.

K. Ueda. 1985. Guarded Horn Clauses. Technical
Report TR-103, ICOT, Japan.

Hans Uszkoreit. 1985. Constraints on order. Tech-
nical Note 364, SRI International, 333 R~venswood
Ave., Menlo Park, CA 94025, October.

172

