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Abstract

There are lexical, syntactic, semantic and
discourse variations amongst the languages
used in various biomedical subdomains. It
is important to recognise such differences
and understand that biomedical tools that
work well on some subdomains may not
work as well on others. We report here
on the semantic variations that occur in
the sublanguages of two biomedical subdo-
mains, i.e. cell biology and pharmacology,
at the level of named entity information. By
building a classifier using ratios of named
entities as features, we show that named en-
tity information can discriminate between
documents from each subdomain. More
specifically, our classifier can distinguish
between documents belonging to each sub-
domain with an accuracy of 91.1% F-score.

1 Introduction

Biomedical information extraction efforts in the
past decade have focussed on fundamental tasks
needed to create intelligent systems capable
of improving search engine results and easing
the work of biologists. More specifically, re-
searchers have concentrated mainly on named en-
tity recognition, mapping them to concepts in
curated databases (Krallinger et al., 2008) and
extracting simple binary relations between enti-
ties. Recently, an increasing number of resources
that facilitate the training of systems to extract
more detailed information have become available,
e.g., PennBioIE (Kulick et al., 2004), GENE-
TAG (Tanabe et al., 2005), BioInfer (Pyysalo et
al., 2007), GENIA (Kim et al., 2008), GREC
(Thompson et al., 2009) and Metaknowledge GE-
NIA (Thompson et al., 2011). Moreover, several

other annotated corpora have been developed for
shared task purposes, such as BioCreative I, II, III
(Arighi et al., 2011) and BioNLP Shared Tasks
2009 and 2011 (Cohen et al., 2009; Kim et al.,
2011).

Many of the tools currently used for biomedi-
cal language processing were trained and evalu-
ated on such popular corpora, most of which con-
sist of documents from the molecular biology sub-
domain. However, previous studies (discussed in
Section 2) have established that different biomed-
ical sublanguages exhibit linguistic variations. It
follows that tools which were developed and eval-
uated on corpora derived from one subdomain
might not always perform as well on corpora from
other subdomains. Understanding these linguistic
variations is essential to the process of adaptat-
ing natural language processing tools to new do-
mains.

In this paper, we highlight the variations be-
tween biomedical sublanguages by focussing on
the different types of named entities (NEs) that
are relevant to them. We show that the frequen-
cies of different named entity types vary enough
to allow a classifier for scientific subdomains to
be built based upon them.

The study is performed on open access jour-
nal articles present in the UK PubMed Central1

(UKPMC) (McEntyre et al., 2010), an article
database that extends the functionality of the orig-
inal PubMed Central (PMC) repository2. This
database was chosen as our source, since most of
the documents within it are already tagged with
named entity information. We report here on the
results obtained for two biomedical subdomains,

1http://ukpmc.ac.uk/
2http://www.ncbi.nlm.nih.gov/pmc
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i.e. cell biology and pharmacology. Our focus on
these two particular subdomains is motivated by
an increasing interest expressed by the biomedi-
cal research community, according to recent find-
ings that have shown their relevance to discover-
ing possible causes and treatments for incurable
diseases, such as cancer or Alzheimer’s Disease.

2 Related work

Harris (1968) introduced a formalisation of the
notion of sublanguage, which was defined as a
subset of general language. According to this
theory, it is possible to process specialised lan-
guages, since they have a structure that can be ex-
pressed in a computable form. More recently, sev-
eral works on the study of biomedical languages
substantiated his theory.

For instance, Sager et al. (1987) worked on
pharmacological literature and lipid metabolism,
whereas Friedman et al. (2002) analysed the prop-
erties of clinical and biomolecular sublanguages.

Other studies have investigated the differ-
ences between general and biomedical lan-
guages by focussing on specific linguistic aspects,
such as verb-argument relations and pronomi-
nal anaphora. For instance, Wattarujeekrit et al.
(2004) analysed the predicate-argument structures
of 30 verbs used in biomedical articles. Their re-
sults suggest that, in certain cases, a significant
difference exists in the predicate frames compared
to those obtained from analysing news articles in
the PropBank project (Palmer et al., 2005). Sim-
ilarly, based on the GENIA and PennBioIE cor-
pora, Cohen et al. (2008) performed a study of
argument realisation with respect to the nominal-
isation and alternation of biomedical verbs. They
concluded that there is a high occurrence of these
phenomena in this semantically restricted do-
main, and underline that this sublanguage model
applies only to biomedical language.

Taking a different angle, Nguyen and Kim
(2008) examined the differences in the use of
pronouns by studying general domains (MUC
and ACE) and one biomedical domain (GENIA).
They observed that compared to the MUC and
ACE corpora, the GENIA corpus has significantly
more occurrences of neutral and third-person pro-
nouns, whilst first and second person pronouns
are non-existent.

Verspoor et al. (2009) measured lexical and
structural variation in biomedical Open Access

journals and subscription-based journals, con-
cluding that there are no significant differences
between them. Therefore, a model trained on one
of these sources can be used successfully on the
other, as long as the subject matter is maintained.
Furthermore, they compared a mouse genomics
corpus with two reference corpora, one composed
of newswire texts and another of general biomed-
ical articles. In this case, unsurprisingly, signifi-
cant differences were found across many linguis-
tic dimensions. Relevant to our study is the com-
parison between the more specific mouse genome
corpus to the more general biomedical one: whilst
similar from some points of view, such as nega-
tion and passivisation, they differ in sentence
length and semantic features, such as the presence
of various named entities.

Our work is most similar to that of Lippincott
et al. (2011), in which a clustering-based quantita-
tive analysis of the linguistic variations across 38
different biomedical sublanguages is presented.
They investigated four dimensions relevant to the
performance of NLP systems, i.e. vocabulary,
syntax, semantics and discourse structure. With
regard to semantic features, the authors induced
a topic model using Latent Dirichlet Analysis for
each word, and then extended the model to docu-
ments and subdomains according to observed dis-
tributions. Their conclusion is that a machine
learning system is able to create robust clusters
of subdomains, thus proving their hypothesis that
the commonly used molecular biology subdomain
is not representative of the domain as a whole.

In contrast, we examine the differences be-
tween biomedical sublanguages at the semantic
level, using only named entities. Furthermore,
we choose to perform our analysis only on two
subdomains (i.e. cell biology and pharmacology),
and try to classify these by using supervised ma-
chine learning algorithms.

3 Methodology

We designed an experiment in which various ma-
chine learning algorithms are trained and tested
on data obtained from open access journal arti-
cles. Firstly, a corpus of articles was created (Sec-
tion 3.1), after which the documents were auto-
matically annotated with named entities (Section
3.2). We then extracted a number features rele-
vant to the named entities present in the corpus
(Section 3.3).
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3.1 Corpus development

Our corpus was created by first searching the
NLM Catalog3 for journals whose Broad Sub-
ject Term attributes contain only cell biology or
pharmacology, and then narrowing down the re-
sults to those which are in English and avail-
able via PubMed Central. Also, since we are
concentrating on full-text documents, we retained
only those journals that are available within the
PubMed Open Access subset4. According to this
procedure, we obtained a final list of two journals
for cell biology and six for pharmacology.

Using the PMC IDs of all articles published
in the selected journals, we retrieved documents
from UK PubMed Central. This database was
chosen as our source as the documents it contains
are already tagged with named entity information.
A total of 360 articles was retrieved for each cat-
egory, i.e. cell biology and pharmacology.

The retrieved documents were encoded in
XML format. Several unusable fragments were
removed before converting them to plain text. Ex-
amples of such fragments are article metadata (au-
thors, their affiliations, publishing history, etc.),
tables, figures and references. Table 1 shows the
statistics regarding the corpus following the ap-
plication of the pre-processing step. In the case
of pharmacology, the document collection con-
tains almost 1.4 million words, whilst the set of
cell biology articles consists of almost 2.5 million
words. The ratio of named entities to the total
number of words is almost the same in the two
collections, i.e. about 10%.

Subdomain Cell biology Pharmacology
No. of docs. 360 360
No. of words 2.49 m. 1.35 m.
No. of NEs 231761 103484

Table 1: Named entity types and their source.

3.2 Tagging of Named Entities

To extract named entities from the corpus, we
used a simple method that augments the named
entities present in the UKPMC articles with the
output of two named entity recognition tools

3http://www.ncbi.nlm.nih.gov/
nlmcatalog

4http://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist

(NERs), i.e. NeMine and OSCAR. The types of
entities in the output be each of the two tools, to-
gether with the NE types present in the UKPMC
articles, are summarised in Table 2.

Named entities in the UKPMC database were
identified using NeMine (Sasaki et al., 2008), a
dictionary-based statistical named entity recogni-
tion system. This system was later extended and
used by Nobata et al. (2009) to recognise more
types, such as phenomena, processes, organs and
symptoms. We used this most recent version of
the software as our second source of more diverse
entity types.

The Open-Source Chemistry Analysis Rou-
tines (OSCAR) software (Jessop et al., 2011) is
a toolkit for the recognition of named entities and
data in chemistry publications. Currently in its
fourth version, it uses three types of chemical en-
tity recognisers, namely regular expressions, pat-
terns and Maximum Entropy Markov models.

In total, 20 different classes of entities were
considered in this study. However, due to the
combination of several NERs, some NE types are
identified by more than one NER. Furthermore,
some of the NE types are more general and cover
other more specific types, which are also anno-
tated by one or mroe of the tools. This can lead to
double annotation. For instance, the Gene|Protein
type is more general than both Gene and Protein,
whereas the Chemical molecule type is a hyper-
nym of Gene, Protein, Drug and Metabolite. In
the case of multiple annotations over the same
span of text, we removed the more general labels,
so that each NE has only one label. Contradictory
cases, where two NERs label one NE with com-
pletely different tags, were not found.

After augmenting the existing NEs by running
the two NER tools on the corpus, the outputs were
combined to give a single “silver” annotation list.
This operation was performed by computing the
mathematical union of the three individual anno-
tation sets, as shown in Equation 1.

ASilver = AUKPMC ∪ AOscar ∪ ANeMine (1)

Table 3 shows the ratios of named entities to the
number of words in each subcorpus. The ≈ sign
indicates strictly positive percentages, but which
are rounded down to zero in this table for for-
matting purposes. In the four places where it oc-
curs, the percentages lie between 0% and 0.005%,
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Type UKPMC NeMine OSCAR
Gene X X
Protein X X
Gene|Protein X
Disease X X
Drug X X
Metabolite X X
Bacteria X
Diagnostic process X
General phenomenon X
Human phenomenon X
Indicator X
Natural phenomenon X
Organ X
Pathologic function X
Symptom X
Therapeutic process X
Chemical molecule X
Chemical adjective X
Enzyme X
Reaction X

Table 2: Named entity types and their source.

exclusively. It can be observed that some entity
types have approximately the same percentages in
the two subdomains, e.g. phenomena and reac-
tions. However, large differences can be observed
in the case of some of the other entity types. For
instance, chemical molecules occur twice as of-
ten in pharmacology articles than in cell biology,
whereas proteins appear almost three times more
often in cell biology than in pharmacology.

3.3 Experimental setup

Using the corpus described previously, we cre-
ated a training set for supervised machine learn-
ing algorithms. Every document in the corpus
was transformed into a vector consisting of 20
features. Each of these features corresponds to
an entity type in Table 2, having a numeric value
ranging from 0 to 1. This number represents the
ratio of the specific entity type to the total number
of named entities recognised in that document, as
shown in Equation 2.

θ =
ntype

N
(2)

where ntype represents the number of NEs of a
certain type in a document and N represents the
total number of NEs in that document.

Furthermore, each vector was labelled with the
subdomain to which the respective document be-
longs (i.e., cell biology or pharmacology).

Weka (Witten and Frank, 2005; Hall et al.,
2009) was employed as the machine learning
framework, due to its large variety of classifica-
tion algorithms. We experimented with a large
number of classifiers, ranging from Bayesian nets
to functions, decision trees, decision rules and
meta-classifiers. The best performing classifiers
are shown in Table 4. BayesNet is an implemen-
tation of Bayesian Networks, SMO is an imple-
mentation of Support Vector Machines, J48 is an
implementation of decision trees, whilst Jrip is an
implementation of decision rules. Random For-
est is an ensemble classifier that consists of many
decision trees (in this study, J48 was used), out-
putting the class that occurs most frequently in the
output of individual trees.

The baseline that has been used is ZeroR, a sim-
ple algorithm that classifies all instances as per-
taining to the majority class. Since our classes
have equal numbers of instances, the F-score of
ZeroR is 50%.
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Type CellBio Pharma
Enzyme 0.05% 0.09%
Bacteria 0.01% 0.16%
Chemical adjective ≈0% ≈0%
Chemical molecule 30.13% 60.86%
Diagnose process 0.03% 0.23%
Disease 3.35% 4.27%
Drug 1.25% 2.83%
Gene 0.87% 1.09%
Gene|Protein 5.02% 0.89%
General phenomenon ≈0% 0.01%
Human phenomenon 0% ≈0%
Indicator 0.36% 0.16%
Metabolite 3.26% 7.53%
Natural phenomenon 0.02% 0.1%
Organ 0.09% 0.27%
Pathologic function 0.04% 0.04%
Protein 53.31% 19.13%
Reaction 1.71% 1.31%
Symptom 0.03% 0.06%
Therapeutic process 0.47% 0.96%

Table 3: Ratios of NE types to the total number of NEs
in the two subdomains.

4 Results

The previously described features were used as in-
put to various supervised machine learning algo-
rithms; results and error analysis are provided in
Section 4.1 and Section 4.2, respectively.

4.1 Experimental results
As can be seen from Table 4, Random Forest
performs best, with 91.1% F-score. The other
three classifiers give lower results, varying be-
tween 86% and 89.5%.

Algorithm P R F1

BayesNet 89.5 89.4 89.4
SMO 86.1 86.1 86.1
JRip 87.8 87.8 87.8
J48 86.8 86.8 86.8
Random Forest 91.3 91.1 91.1

Table 4: Classification results for the best-performing
algorithms.

We also employed AdaBoost in conjunction
with the previously mentioned four classifiers,
and the results are given in Table 5. AdaBoost
is a meta-algorithm that adapts itself during the

course of several iterations in the sense that in
each iteration, classifiers built are tweaked to cor-
rect those instances misclassified by prior classi-
fiers. In this study, AdaBoost was run over 20
iterations, and it significantly improved the result
of J48, by almost 4%, to 90.3%. However, Ad-
aBoost decreased the F-score of Random Forest
by 1% and that of BayesNet by 0.3%.

Algorithm P R F1

BayesNet 89.2 89.2 89.2
SMO 86.1 86.1 86.1
JRip 87.9 87.9 87.9
J48 90.3 90.3 90.3
Random Forest 90.3 90.1 90.1

Table 5: Classification results for AdaBoost in con-
junction with the best-performing algorithms.

In order to determine which features have the
most influence on classification, regardless of
the classifying algorithm, two attribute evaluators
were used to measure the information gain for
each feature and to compute the value of the chi-
squared statistic with respect to the class. The val-
ues obtained are shown in Table 6, and to illustrate
their influence, are plotted in Figure 1, after being
normalised.

Unsurprisingly, Protein is the feature with the
most discriminatory power, considering it has the
highest count and it occurs almost three times
more often in the cell biology class than in the
pharmacology class. Chemical molecules follow
closely, again due to a high count and large differ-
ence between the classes. Due to their high scores
obtained from the attribute evaluators, we ran the
experiment again considering only these two fea-
tures. The Random Forest classifier achieved an
F-score of 80% using these parameters.

At the other end of the scale, there are five
features which have very little influence in dis-
criminating between the two classes. The corre-
sponding named entity types have the lowest oc-
currence counts in the corpora, with the exception
of Organ. When running Random Forest with
these five features only, an F-score of 50.5% is
obtained. This result is very close to the baseline,
surpassing it by only a small fraction.

4.2 Error analysis
As can be seen in Table 7, a total of 64 papers
were misclassified by the Random Forest classi-
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Attribute InfoGain ChiSquare
Protein 0.4482 386.5648
Chemical molecule 0.3169 272.0111
Gene|Protein 0.2265 211.8034
Indicator 0.1805 170.0186
Gene 0.1718 156.9504
Metabolite 0.1667 155.8135
Reaction 0.1545 144.6946
Drug 0.1301 124.2604
Therapeutic process 0.1259 111.4571
Disease 0.1189 111.1882
Chemical adjective 0.0642 55.5556
Enzyme 0.0473 41.089
Diagnostic process 0.0388 32.1161
Bacteria 0.0297 26.0522
Natural phenomenon 0.0227 20.8004
Pathologic function 0 0
Symptom 0 0
General phenomenon 0 0
Organ 0 0
Human phenomenon 0 0

Table 6: Attribute selection output from two attribute
evaluators.

fier, the best performing algorithm. Of these, 45
(i.e. 70%) are cell biology papers which were in-
correctly classified as belonging to pharmacology,
whilst the remaining 19 belong to the pharmacol-
ogy class and are classified as cell biology.

Labelled as Cell_bio Pharma
Cell_bio 315 19
Pharma 45 341

Table 7: Confusion matrix for the Random Forest clas-
sifier.

As previously mentioned, the two features that
achieved the highest information gain are the ra-
tios for the Protein and Chemical molecule types.
Accordingly, only these two features were consid-
ered in this error analysis.

We firstly examined the features of the cell
biology documents which were incorrectly clas-
sified as pharmacology papers. It was notice-
able that the majority of the misclassified doc-
uments in this case have a small percentage of
Proteins (less than 0.35) and/or a large percent-
age of Chemical molecules (greater than 0.58). To
confirm this observation, a sample of documents
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Figure 1: Normalised attribute selection output from
two attribute evaluators.

was accessed via the PubMed Central page which
provides links to identified entities such as com-
pounds, substances, genes and proteins. For in-
stance, the misclassified cell biology paper with
PMCID 2755470 was found to have no proteins,
whilst the one with PMCID 2679709 has quite a
large number of substances (chemical molecules).

We also analysed the features of papers in the
pharmacology subdomain which were misclassi-
fied as cell biology documents. In contrast to
the first type of misclassification, these documents
have a large percentage of Proteins and/or small
percentage of Chemical molecules. For example,
the pharmacology paper with PMCID 2817930
contains many protein instances, whilst the one
with PMCID 2680808 has no mentions of chemi-
cal molecules.

5 Conclusions and Future Work

We have shown that with the help of named en-
tity identification, classifiers can be built that are
able to distinguish between papers belonging to
different biomedical subdomains. The Random
Forest algorithm is able to discriminate between
cell biology and pharmacology open-access full-
text articles with an F-score of 91%. This result
supports the hypothesis that sublanguages used in
different biomedical domains exhibit significant
semantic variations. Such variations should there-
fore be considered when adapting automated tools
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developed for a particular subdomain to new sub-
domains.

One possible future direction is to analyse mul-
tiple medical subdomains, such as neurology, vi-
rology and critical care. This could enable the
measurement of the distance between various sub-
domains with respect to specific named entity
types. Furthermore, a comparison of the method
described above with those using bag-of-words
or other non-semantic features could further en-
force the importance of named entities in doc-
ument classification and sublanguage identifica-
tion.
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