
Using Reinforcement Learning to Build a Better Model of Dialogue State

Joel R. Tetreault

University of Pittsburgh

Learning Research and Development Center

Pittsburgh PA, 15260, USA

tetreaul@pitt.edu

Diane J. Litman

University of Pittsburgh

Department of Computer Science &

Learning Research and Development Center

Pittsburgh PA, 15260, USA

litman@cs.pitt.edu

Abstract

Given the growing complexity of tasks

that spoken dialogue systems are trying to

handle, Reinforcement Learning (RL) has

been increasingly used as a way of au-

tomatically learning the best policy for a

system to make. While most work has

focused on generating better policies for

a dialogue manager, very little work has

been done in using RL to construct a better

dialogue state. This paper presents a RL

approach for determining what dialogue

features are important to a spoken dia-

logue tutoring system. Our experiments

show that incorporating dialogue factors

such as dialogue acts, emotion, repeated

concepts and performance play a signifi-

cant role in tutoring and should be taken

into account when designing dialogue sys-

tems.

1 Introduction

This paper presents initial research toward the

long-term goal of designing a tutoring system that

can effectively adapt to the student. While most

work in Markov Decision Processes (MDPs) and

spoken dialogue have focused on building better

policies (Walker, 2000; Henderson et al., 2005), to

date very little empirical work has tested the utility

of adding specialized features to construct a better

dialogue state. We wish to show that adding more

complex factors to a representation of student state

is a worthwhile pursuit, since it alters what action

the tutor should make. The five dialogue factors

we explore are dialogue acts, certainty level, frus-

tration level, concept repetition, and student per-

formance. All five are factors that are not just

unique to the tutoring domain but are important

to dialogue systems in general. Our results show

that using these features, combined with the com-

mon baseline of student correctness, leads to a sig-

nificant change in the policies produced, and thus

should be taken into account when designing a

system.

2 Background

We follow past lines of research (such as (Singh

et al., 1999)) for describing a dialogue
�

as a tra-

jectory within a Markov Decision Process (Sutton

and Barto, 1998). A MDP has four main com-

ponents: states, actions, a policy, which specifies

what is the best action to take in a state, and a re-

ward function which specifies the utility of each

state and the process as a whole. Dialogue man-

agement is easily described using a MDP because

one can consider the actions as actions made by

the system, the state as the dialogue context, and

a reward which for many dialogue systems tends

to be task completion success or dialogue length.

Typically the state is viewed as a vector of features

such as dialogue history, speech recognition con-

fidence, etc.

The goal of using MDPs is to determine the best

policy � for a certain state and action space. That

is, we wish to find the best combination of states

and actions to maximize the reward at the end of

the dialogue. In most dialogues, the exact reward

for each state is not known immediately, in fact,

usually only the final reward is known at the end

of the dialogue. As long as we have a reward func-

tion, Reinforcement Learning allows one to auto-

matically compute the best policy. The following

recursive equation gives us a way of calculating

the expected cumulative value (V-value) of a state
� (-value):

289

��� �������
	
�����
	��	�	
��� � ���

	��	�	
����� ��� �����
�
Here �

� ��� is the best action for state � at this

time, � is the probability of getting from state � to
� � via �

� ��� . This is multiplied by the sum of the re-

ward

�
for that traversal plus the value of the new

state multiplied by a discount factor

�
.

�
ranges

between 0 and 1 and discounts the value of past

states. The policy iteration algorithm (Sutton and

Barto, 1998) iteratively updates the value of each

state V(s) based on the values of its neighboring

states. The iteration stops when each update yields

an epsilon difference (implying that V(s) has con-

verged) and we select the action that produces the

highest V-value for that state.

Normally one would want a dialogue system to

interact with users thousands of times to explore

the entire traversal space of the MDP, however in

practice that is very time-consuming. Instead, the

next best tactic is to train the MDP (that is, cal-

culate transition probabilities for getting from one

state to another, and the reward for each state) on

already collected data. Of course, the whole space

will not be considered, but if one reduces the size

of the state vector effectively, data size becomes

less of an issue (Singh et al., 2002).

3 Corpus

For our study, we used an annotated corpus of

20 human-computer spoken dialogue tutoring ses-

sions. Each session consists of an interaction with

one student over 5 different college-level physics

problems, for a total of 100 dialogues. Before the

5 problems, the student is asked to read physics

material for 30 minutes and then take a pre-test

based on that material. Each problem begins with

the student writing out a short essay response to

the question posed by the computer tutor. The sys-

tem reads the essay and detects the problem areas

and then starts a dialogue with the student asking

questions regarding the confused concepts. Infor-

mally, the dialogue follows a question-answer for-

mat. Each of the dialogues has been manually au-

thored in advance meaning that the system has a

response based on the correctness of the student’s

last answer. Once the student has successfully an-

swered all the questions, he or she is asked to cor-

rect the initial essay. On average, each of the di-

alogues takes 20 minutes and contains 25 student

turns. Finally, the student is given a post-test sim-

ilar to the pre-test, from which we can calculate

their normalized learning gain:

 "!$# �&%(' ��)+* %-,/.0 * %-,/.
Prior to our study, the corpus was then anno-

tated for Student and Tutor Moves (see Tables 1

and 2) which can be viewed as Dialogue Acts

(Forbes-Riley et al., 2005). Note that tutor and stu-

dent turns can consist of multiple utterances and

can thus be labeled with multiple moves. For ex-

ample, a tutor can give feedback and then ask a

question in the same turn. Whether to include

feedback will be the action choice addressed in

this paper since it is an interesting open ques-

tion in the Intelligent Tutoring Systems (ITS) com-

munity. Student Moves refer to the type of an-

swer a student gives. Answers that involve a con-

cept already introduced in the dialogue are called

Shallow, answers that involve a novel concept are

called Novel, “I don’t know” type answers are

called Assertions (As), and Deep answers refer to

answers that involve linking two concepts through

reasoning. In our study, we merge all non-Shallow

moves into a new move “Other.”

In addition to Student Moves, we annotated five

other features to include in our representation of

the student state. Two emotion related features

were annotated manually (Forbes-Riley and Lit-

man, 2005): certainty and frustration. Certainty

describes how confident a student seemed to be in

his answer, while frustration describes how frus-

trated the student seemed to be in his last response.

We include three other features for the Student

state that were extracted automatically. Correct-

ness says if the last student answer was correct or

incorrect. As noted above, this is what most cur-

rent tutoring systems use as their state. Percent

Correct is the percentage of questions in the cur-

rent problem the student has answered correctly so

far. Finally, if a student performs poorly when it

comes to a certain topic, the system may be forced

to repeat a description of that concept again (con-

cept repetition).

It should be noted that all the dialogues were

authored beforehand by physics experts. For ev-

ery turn there is a list of possible correct, incor-

rect and partially correct answers the student can

make, and then for each one of these student re-

sponses a link to the next turn. In addition to

290

State Parameters

Student Move Shallow (S)
Novel & As & Deep (O)

Certainty Certain, Uncertain, Neutral

Frustration Frustrated (F), Neutral (N),

Correctness Correct (C), Incorrect (I)
Partially Correct (PC)

Percent Correct 50-100% (High), 0-50% (Low)

Concept Repetition Concept is not repeated (0),
Concept is repeated (R)

Table 1: Student Features in Tutoring Corpus

Action Parameters

Tutor Feedback Act Positive, Negative

Tutor Question Act Short Answer Question (SAQ)
Complex Answer Question (CAQ)

Tutor State Act Restatement, Recap, Hint
Expansion, Bottom Out

Table 2: Tutor Acts in Tutoring Corpus

explaining physics concepts, the authors also in-

clude feedback and other types of helpful mea-

sures (such as hints or restatements) to help the

student along. These were not written with the

goal of how best to influence student state. Our

goal in this study is to automatically learn from

this corpus which state-action patterns evoke the

highest learning gain.

4 Infrastructure

To test different hypotheses of what features best

approximate the student state and what are the best

actions for a tutor to consider, one must have a

flexible system that allows one to easily test dif-

ferent configurations of states and actions. To ac-

complish this, we designed a system similar to

the Reinforcement Learning for Dialogue Systems

(RLDS) (Singh et al., 1999). The system allows a

system designer to specify what features will com-

pose the state and actions as well as perform oper-

ations on each individual feature. For instance, the

tool allows the user to collapse features together

(such as collapsing all Question Acts together into

one) or quantize features that have continuous val-

ues (such as the number of utterances in the di-

alogue so far). These collapsing functions allow

the user to easily constrain the trajectory space. To

further reduce the search space for the MDP, our

tool allows the user to specify a threshold to com-

bine states that occur less than the threshold into a

single “threshold state.” In addition, the user can

specify a reward function and a discount factor,

For this study, we use a threshold of 50 and a

discount factor of 0.9, which is also what is com-

monly used in other RL models, such as (Framp-

ton and Lemon, 2005). For the dialogue reward

function, we did a median split on the 20 students

based on their normalized learning gain, which is

a standard evaluation metric in the Intelligent Tu-

toring Systems community. So 10 students and

their respective 5 dialogues were assigned a posi-

tive reward of +100 (high learners), and the other

10 students and their respective dialogues were as-

signed a negative reward of -100 (low learners). It

should be noted that a student’s 5 dialogues were

assigned the same reward since there was no way

to approximate their learning gain in the middle of

a session.

The output of the tool is a probability matrix

over the user-specified states and actions. This

matrix is then passed to an MDP toolkit (Chades et

al., 2005) written in Matlab.1 The toolkit performs

policy iteration and generates a policy as well as a

list of V-values for each state.

5 Experimental Method

With the infrastructure created and the MDP pa-

rameters set, we can then move on to the goal of

this experiment - to see what sources of informa-

tion impact a tutoring dialogue system. First, we

need to develop a baseline to compare the effects

of adding more information. Second, we gener-

ate a new policy by adding the new information

source to the baseline state. However, since we

are currently not running any new experiments to

test our policy, or evaluating over user simulations,

we evaluate the reliability of our policies by look-

ing at how well they converge over time, that is, if

you incrementally add more data (ie. a student’s 5

dialogues) does the policy generated tend to stabi-

lize over time? And also, do the V-values for each

state stabilize over time as well? The intuition is

that if both the policies and V-values tend to con-

verge then we can be sure that the policy generated

is reasonable.

The first step in our experiment is to determine

a baseline. We use feedback as our system action

in our MDP. The action size is 3 (tutor can give

feedback (Feed), give feedback with another tutor

act (Mix), or give no feedback at all (NonFeed).

Examples from our corpus can be seen in Table 3.

It should be noted that “NonFeed” does not mean

that the student’s answer is not acknowledged, it

1MDP toolkit can be downloaded from
http://www.inra.fr/bia/T/MDPtoolbox/

291

Case Tutor Moves Example Turn

Feed Pos “Super.”

Mix Pos, SAQ “Good. What is the direction of that force relative to your fi st?”

NonFeed Hint, CAQ “To analyze the pumpkin’s acceleration we will use Newton’s Second Law.
What is the defi nition of the law?”

Table 3: Tutor Action Examples

means that something more complex than a sim-

ple positive or negative phrase is given (such as a

Hint or Restatement). Currently, the system’s re-

sponse to a student depends only on whether or not

the student answered the last question correctly, so

we use correctness as the sole feature in our dia-

logue state. Recall that a student can either be cor-

rect, partially correct, or incorrect. Since partially

correct occurs infrequently compared to the other

two, we reduced the state size to two by combin-

ing Incorrect and Partially Correct into one state

(IPC) and keeping correct (C).

The third column of Table 4 has the resulting

learned MDP policy as well as the frequencies of

both states in the data. So for both states, the best

action for the tutor to make is to give feedback,

without knowing anything else about the student

state.

The second step in our experiment is to test

whether the policies generated are indeed reliable.

Normally, the best way to verify a policy is by con-

ducting experiments and seeing if the new policy

leads to a higher reward for the new dialogues. In

our context, this would entail running more sub-

jects with the augmented dialogue manager and

checking if the students had a higher learning gain

with the new policies. However, collecting data in

this fashion can take months. So, we take a differ-

ent tact of checking if the polices and values for

each state are indeed converging as we add data

to our MDP model. The intuition here is that if

both of those parameters were varying between a

corpus of 19 students to 20 students, then we can’t

assume that our policy is stable, and hence not re-

liable. However, if these parameters converged as

more data was added, this would indicate that the

MDP is reliable.

To test this out, we conducted a 20-fold cross-

averaging test over our corpus of 20 students.

Specifically, we made 20 random orderings of our

students to prevent any one ordering from giving a

false convergence. Each ordering was then chun-

ked into 20 cuts ranging from a size of 1 student, to

the entire corpus of 20 students. We then passed

each cut to our MDP infrastructure such that we

started with a corpus of just the first student of the

ordering and then determined a MDP policy for

that cut, then added another student to that original

corpus and reran our MDP system. We continue

this incremental addition of a student (5 dialogues)

until we completed all 20 students. So at the end,

we have 20 random orderings with 20 cuts each,

so 400 MDP trials were run. Finally, we average

the V-values of same size cuts together to produce

an average V-value for that cut size. The left-hand

graph in Figure 1 shows a plot of the average V-

values for each state against a cut. The state with

the plusses is the positive final state, and the one at

the bottom is the negative final state. However, we

are most concerned with how the non-final states

converge, which are the states in the middle. The

plot shows that for early cuts, there is a lot of in-

stability but then each state tends to stabilize after

cut 10. So this tells us that the V-values are fairly

stable and thus reliable when we derive policies

from the entire corpus of 20 students.

As a further test, we also check that the poli-

cies generated for each cut tend to stabilize over

time. That is, the differences between a policy at

a smaller cut and the final cut converge to zero as

more data is added. This “diffs” test is discussed

in more detail in Section 6.

6 Results

In this section, we investigate whether adding

more information to our student state will lead to

interesting policy changes. First, we add certainty

to our baseline of correctness, and then compare

this new baseline’s policy (henceforth Baseline 2)

with the policies generated when student moves,

frustration, concept repetition, and percent cor-

rectness are included. For each test, we employed

the same methodology as with the baseline case of

doing a 20-fold cross-averaging and examining if

the states’ V-values converge.

We first add certainty to correctness because

prior work (such as (Bhatt et al., 2004)) has shown

the importance of considering certainty in tutoring

292

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

of students

V
−

v
a
lu

e

Correctness

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

of students

V
−

v
a
lu

e

Correctness + Certainty

Figure 1: Baseline 1 and Baseline 2 Convergence Plots

systems. For example, a student who is correct

and certain probably does not need a lot of feed-

back. But one that is correct but uncertain could

signal that the student is becoming doubtful or at

least confused about a concept. There are three

types of certainty: certain (cer), uncertain (unc),

and neutral (neu). Adding these to our state repre-

sentation increases state size from 2 to 6. The new

policy is shown in Table 4. The second and third

columns show the original baseline states and their

policies. The next column shows the new policy

when splitting the original state into the new three

states based on certainty, as well as the frequency

of the new state. So the first row can be interpreted

as if the student is correct and certain, one should

give no feedback; if the student is correct and neu-

tral, give feedback; and if the student is correct and

uncertain, give non-feedback.

State Baseline +Certainty

1 C Feed (1308) cer: NonFeed (663)
neu: Feed (480)
unc: NonFeed (165)

2 IPC Feed (872) cer: NonFeed (251)
neu: Mix (377)
unc: NonFeed (244)

Table 4: Baseline Policies

Our reasoning is that if a feature is important to

include in a state representation it should change

the policies of the old states. For example, if cer-

tainty did not impact how well students learned

(as deemed by the MDP) then the policies for

certainty, uncertainty, and neutral would be the

same as the original policy for Correct or Incor-

rect/Partially Correct, in this case they would be

Feed. However, the figures show otherwise as

when you add certainty to the state, only one new

state (C while being neutral) retains the old pol-

icy of having the tutor give feedback. The policies

which differ with the original are shown in bold.

So in general, the learned policy is that one

should not give feedback if the student is certain

or uncertain, but rather give some other form of

feedback such as a Hint or a Restatement perhaps.

But when the student is neutral with respect to cer-

tainty, one should give feedback. One way of in-

terpreting these results is that given our domain,

for students who are confident or not confident at

all in their last answer, there are better things to

say to improve their learning down the road than

“Great Job!” But if the student does not display a

lot of emotion, than one should use explicit posi-

tive or negative feedback to perhaps bolster their

confidence level.

The right hand graph in Figure 1 shows the con-

vergence plot for the baseline state with certainty.

It shows that as we add more data, the values for

each state converge. So in general, we can say that

the values for our Baseline 2 case are fairly stable.

Next, we add Student Moves, Frustration, Con-

cept Repetition, and Percent Correct features indi-

vidually to Baseline 2. The first graph in Figure

2 shows a plot of the convergence values for the

Percent Correct feature. We only show one con-

vergence plot since the other three are similar. The

result is that the V-values for all four converge af-

ter 14-15 students.

The second graph shows the differences in poli-

cies between the final cut of 20 students and all

smaller cuts. This check is necessary because

some states may exhibit stable V-values but actu-

ally be oscillating between two different policies

of equal values. So each point on the graph tells

us how many differences in policies there are be-

tween the cut in question and the final cut. For

293

example, if the policy generated at cut 15 was to

give feedback for all states, and the policy at the fi-

nal cut was to give feedback for all but two states,

the “diff” for cut 15 would be two. So in the best

case, zero differences mean that the policies gen-

erated for both cuts are exactly the same. The

diff plots shows the differences decrease as data

is added and they exhibited very similar plots to

both Baseline cases. For cuts greater than 15, there

are still some differences but these are usually due

to low frequency states. So we can conclude that

since our policies are fairly stable they are worth

investigating in more detail.

In the remainder of this section, we look at the

differences between the Baseline 2 policies and

the policies generated by adding a new feature to

the Baseline 2 state. If adding a new feature actu-

ally does not really change what the tutor should

do (that is, the tutor will do the baseline policy

regardless of the new information), one can con-

clude that the feature is not worth including in a

student state. On the other hand, if adding the state

results in a much different policy, then the feature

is important to student modeling.

Student Move Feature The results of adding

Student Moves to Baseline 2 are shown in Table

5. Out of the 12 new states created, 7 deviate from

the original policy. The main trend is for the neu-

tral and uncertain states to give mixed feedback

after a student shallow move, and a non-feed re-

sponse when the student says something deep or

novel. When the student is certain, always give a

mixed response except in the case where he said

something Shallow and Correct.

State Baseline New Policy

1 certain:C NonFeed S: NonFeed
O: Mix

2 certain:IPC NonFeed S: Mix
O: Mix

3 neutral:C Feed S: Feed
O: NonFeed

4 neutral:IPC Mix S: Mix
O: NonFeed

5 uncertain:C NonFeed S: Mix
O: NonFeed

6 uncertain:IPC NonFeed S: Mix
O: NonFeed

Table 5: Student Move Policies

Concept Repetition Feature Table 6 shows

the new policy generated. Unlike the Student

Move policies which impacted all 6 of the base-

line states, Concept Repetition changes the poli-

cies for the first three baseline states resulting in

4 out of 12 new states differing from the baseline.

For states 1 through 4, the trend is that if the con-

cept has been repeated, the tutor should give feed-

back or a combination of feedback with another

Tutor Act. Intuitively, this seems clear because

if a concept were repeated it shows the student is

not understanding the concept completely and it

is neccessary to give them a little more feedback

than when they first see the concept. So, this test

indicates that keeping track of repeated concepts

has a significant impact on the policy generated.

State Baseline New Policy

1 certain:C NonFeed 0: NonFeed
R: Feed

2 certain:IPC NonFeed 0: Mix
R: Mix

3 neutral:C Feed 0: Mix
R: Feed

4 neutral:IPC Mix 0: Mix
R: Mix

5 uncertain:C NonFeed 0: NonFeed
R: NonFeed

6 uncertain:IPC NonFeed 0: NonFeed
R: NonFeed

Table 6: Concept Repetition Policies

Frustration Feature Table 7 shows the new

policy generated. Comparing the baseline policy

with the new policy (which includes categories for

when the original state is either neutral or frus-

tration), shows that adding frustration changes the

policy for state 1, when the student is certain or

correct. In that case, the better option is to give

them positive feedback. For all other states, frus-

tration occurs with each of them so infrequently 2

that the resulting states appeared less than the our

threshold of 50 instances. As a result, these 5 frus-

tration states are grouped together in the “thresh-

old state” and our MDP found that the best policy

when in that state is to give no feedback. So the

two neutral states change when the student is frus-

trated. Interestingly, for students that are uncer-

tain, the policy does not change if they are frus-

trated or neutral. The trend is to always give Non-

Feedback.

Percent Correctness Feature Table 8 shows

the new policy generated for incorporating a sim-

ple model of current student performance within

the dialog. This feature, along with Frustration,

seems to impact the baseline the state least since

both only alter the policies for 3 of the 12 new

2Only 225 out of 2180 student turns are marked as frus-
tration, while all the others are neutral

294

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

of students

V
−

v
a
lu

e

Percent Correctness Convergence

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14
Diffs for All 4 Features

Smoves

Concept

Percent Correct

Emotion

Figure 2: Percent Correct Convergence, and Diff Plots for all 4 Features

State Baseline New Policy

1 certain:C NonFeed N: NonFeed
F: Feed

2 certain:IPC NonFeed N: NonFeed
F: NonFeed

3 neutral:C Feed N: Feed
F: NonFeed

4 neutral:IPC Mix N: Mix
F: NonFeed

5 uncertain:C NonFeed N: NonFeed
F: NonFeed

6 uncertain:IPC NonFeed N: NonFeed
F: NonFeed

Table 7: Frustration Policies

states. States 3, 4, and 5 show a change in policy

for different parameters of correctness. One trend

seems to be that when a student has not been per-

forming well (L), to give a NonFeedback response

such as a hint or restatement.

State Baseline New Policy

1 certain:C NonFeed H: NonFeed
L: NonFeed

2 certain:IPC NonFeed H: NonFeed
L: NonFeed

3 neutral:C Feed H: Feed
L: NonFeed

4 neutral:IPC Mix H: Mix
L: NonFeed

5 uncertain:C NonFeed H: Mix
L: NonFeed

6 uncertain:IPC NonFeed H: NonFeed
L: NonFeed

Table 8: % Correctness Policies

7 Related Work

RL has been applied to improve dialogue sys-

tems in past work but very few approaches have

looked at which features are important to include

in the dialogue state. (Paek and Chickering, 2005)

showed how the state space can be learned from

data along with the policy. One result is that a

state space can be constrained by only using fea-

tures that are relevant to receiving a reward. Singh

et al. (1999) found an optimal dialogue length in

their domain, and showed that the number of in-

formation and distress attributes impact the state.

They take a different approach than the work here

in that they compare which feature values are opti-

mal for different points in the dialogue. Frampton

et al. (2005) is similar to ours in that they exper-

iment on including another dialogue feature into

their baseline system: the user’s last dialogue act,

which was found to produce a 52% increase in av-

erage reward. Williams et al. (2003) used Super-

vised Learning to select good state and action fea-

tures as an initial policy to bootstrap a RL-based

dialoge system. They found that their automati-

cally created state and action seeds outperformed

hand-crafted polices in a driving directions corpus.

In addition, there has been extensive work on cre-

ating new corpora via user simulations (such as

(Georgila et al., 2005)) to get around the possible

issue of not having enough data to train on. Our

results here indicate that a small training corpus is

actually acceptable to use in a MDP framework as

long as the state and action features are pruned ef-

fectively. The use of features such as context and

student moves is nothing new to the ITS commu-

nity however, such as the BEETLE system (Zinn

et al., 2005), but very little work has been done

using RL in developing tutoring systems.

8 Discussion

In this paper we showed that incorporating more

information into a representation of the student

state has an impact on what actions the tutor

should take. We first showed that despite not be-

295

ing able to test on real users or simulated users just

yet, that our generated policies were indeed reli-

able since they converged in terms of the V-values

of each state and the policy for each state.

Next, we showed that all five features investi-

gated in this study were indeed important to in-

clude when constructing an estimation of the stu-

dent state. Student Moves, Certainty and Concept

Repetition were the most compelling since adding

them to their respective baseline states resulted in

major policy changes. Tracking the student’s frus-

tration levels and how correct the student had been

in the dialogue had the least impact on policies.

While these features (and their resulting poli-

cies) may appear unique to tutoring systems they

also generalize to dialogue systems as a whole.

Repeating a concept (whether it be a physics term

or travel information) is important because it is an

implicit signal that there might be some confusion

and a different action is needed when the concept

is repeated. Whether a student (or user) gives a

short answer or a good explanation can indicate to

the system how well the user is understanding sys-

tem questions. Emotion detection and adaptation

is a key issue for any spoken dialogue systems as

designers try to make the system as easy to use

for a student or trip-planner, etc. Frustration can

come from difficulty in questions or in the more

frequent problem for any dialogue system, speech

recognition errors, so the manner in dealing with

it will always be important. Percent Correctness

can be viewed as a specific instance of tracking

user performance such as if they are continously

answering questions properly or are confused by

what the system wants from them.

In terms of future work, we are currently an-

notating more human-computer dialogue data and

will triple the size of our test corpus allowing us

to 1. create more complicated states since more

states will have been explored and 2. test out

more complex tutor actions such as when to give

Hints and Restatements. Finally, we are in the pro-

cess of running this same experiment on a corpus

of human-human tutoring dialogues to compare if

human tutors have different policies.

9 Acknowledgments

We would like to thank the ITSPOKE group

and the three anonymous reviewers for their in-

sight and comments. Support for the research re-

ported in this paper was provided by NSF grants

#0325054 and #0328431.

References

K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged
responses and expressions of affect in human/human
and human computer tutorial interactions. In Proc.
Cognitive Science.

I. Chades, M. Cros, F. Garcia, and R. Sabbadin. 2005.
Mdp toolbox v2.0 for matlab.

K. Forbes-Riley and D. Litman. 2005. Using bigrams
to identify relationships between student certainness
states and tutor responses in a spoken dialogue cor-
pus. In SIGDial.

K. Forbes-Riley, D. Litman, A. Huettner, and A. Ward.
2005. Dialogue-learning correlations in spoken dia-
logue tutoring. In AIED.

M. Frampton and O. Lemon. 2005. Reinforcement
learning of dialogue strategies using the user’s last
dialogue act. In IJCAI Wkshp. on K&R in Practical
Dialogue Systems.

K. Georgila, J. Henderson, and O. Lemon. 2005.
Learning user simulations for information state up-
date dialogue systems. In Interspeech.

J. Henderson, O. Lemon, and K. Georgila. 2005. Hy-
brid reinforcement/supervised learning for dialogue
policies from communicator data. In IJCAI Wkshp.
on K&R in Practical Dialogue Systems.

T. Paek and D. Chickering. 2005. The markov as-
sumption in spoken dialogue management. In 6th
SIGDial Workshop on Discourse and Dialogue.

S. Singh, M. Kearns, D. Litman, and M. Walker. 1999.
Reinforcement learning for spoken dialogue sys-
tems. In Proc. NIPS ’99.

S. Singh, D. Litman, M. Kearns, and M. Walker. 2002.
Optimizing dialogue managment with reinforcement
learning: Experiments with the njfun system. JAIR,
16.

R. Sutton and A. Barto. 1998. Reinforcement Learn-
ing. The MIT Press.

M. Walker. 2000. An application of reinforcement
learning to dialogue strategy selection in a spoken
dialogue system for email. JAIR, 12.

J. Williams and S. Young. 2003. Using wizard-of-
oz simulations to bootstrap reinforcement learning-
based dialog management systems. In 4th SIGdial
Workshop on Discourse and Dialogue.

C. Zinn, J. Moore, and M. Core. 2005. Intelligent in-
formation presentation for tutoring systems. Intelli-
gent Information Presentation.

296

