
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 114–119
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

114

Interactive Instance-based Evaluation of
Knowledge Base Question Answering

Daniil Sorokin and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES

Department of Computer Science, Technische Universität Darmstadt
www.ukp.tu-darmstadt.de

Abstract

Most approaches to Knowledge Base Ques-
tion Answering are based on semantic pars-
ing. In this paper, we present a tool that aids
in debugging of question answering systems
that construct a structured semantic represen-
tation for the input question. Previous work
has largely focused on building question an-
swering interfaces or evaluation frameworks
that unify multiple data sets. The primary ob-
jective of our system is to enable interactive
debugging of model predictions on individual
instances (questions) and to simplify manual
error analysis. Our interactive interface helps
researchers to understand the shortcomings of
a particular model, qualitatively analyze the
complete pipeline and compare different mod-
els. A set of sit-by sessions was used to vali-
date our interface design.

1 Introduction

Knowledge base question answering (QA) is an
important natural language processing problem.
Given a natural language question, the task is to
find a set of entities in a knowledge base (KB) that
constitutes the answer. For example, for a question
“Who played Princess Leia?” the answer, “Carrie
Fisher”, could be retrieved from a general-purpose
KB, such as Wikidata1. A successful KB QA sys-
tem would ultimately provide a universally acces-
sible natural language interface to factual knowl-
edge (Liang, 2016).

KB QA requires a precise modeling of the ques-
tion semantics through the entities and relations
available in the KB in order to retrieve the correct
answer. It is common to break down the task into
three main steps: entity linking, semantic parsing
or relation disambiguation and answer retrieval.
We show in Figure 1 how the outlined steps lead
to an answer on an example question and how the

1https://www.wikidata.org/

what are taylor swift’s albums?

Input question:

1. Entity linking:

Taylor Swift Q462 album Q24951125

2. Semantic parsing:

what are taylor swift’s albums?

Q462 Q24951125q
PERFORMER

INSTANCE OF

3. Answer retrieval:

q Red, 1989, . . .WIKIDATA

Figure 1: Typical steps undertaken by a QA system.
Gray dashed arrows show how the output of the previ-
ous step is passed into the next one. Qxxx stands for a
KB identifier

output of each step is re-used in the next one. This
approach has been exhibited by the most of the
recent works on the KB QA (Berant and Liang,
2014; Reddy et al., 2016; Yih et al., 2015; Peng
et al., 2017; Sorokin and Gurevych, 2018b). The
multi-step pipeline poses particular challenges for
error analysis, since many unique errors can arise
at different processing stages. With our tool, we
aim at supporting the evaluation of QA systems and
helping to identify problems that do not necessarily
form generalisable error patterns, but hinder the
overall system performance nonetheless.

Some frameworks have been introduced recently
to streamline the evaluation of KB QA systems.
The ParlAI framework focuses on building a uni-

www.ukp.tu-darmstadt.de
https://www.wikidata.org/


115

fied interface for multiple QA data sets (Miller
et al., 2017), while GerbilQA2 introduces evalua-
tion of individual steps of a QA pipeline. However,
none of them addresses an interactive debugging
scenario, that can be used by the researchers to do
instance-base error analysis. This is especially rel-
evant in the context of such benchmarks as QALD,
where each individual question is meant to test a
particular aspect of the system and debugging indi-
vidual instances is crucial for understanding of the
system performance (Unger et al., 2016).

Another set of tools have focused on building
an infrastructure to support the development for
KB QA. Ask Wikidata3 offers an easy way to
post queries to Wikidata via a web-based interface,
though the tool relies on manual disambiguation to
understand a question. The WDAqua project4 has
produced a speech-based plug-in interface (Kumar
et al., 2017) and the Qanary specification for QA
systems (Singh et al., 2016). These tools follow
the described steps of the QA pipeline, but do not
facilitate the interactive instance-based evaluation
that is the main aspect of this work.

Main contribution In this paper, we present a
modular debugging application for KB QA that
can be used to manually evaluate the main steps of
a QA pipeline. Our system focuses on the analy-
sis of individual examples and a detailed view of
possible causes of errors, so that individual error
propagation cases can be identified.

Demo system and the code A demo instance
with the default QA model is running at the
following url: http://semanticparsing.

ukp.informatik.tu-darmstadt.de:5000/

question-answering/. Our system is freely
available: https://github.com/UKPLab/

emnlp2018-question-answering-interface.

2 A prototypical QA pipeline and the
requirements

The first stage of every QA approach is entity link-
ing (EL), that is the identification of entity mentions
in the question and linking them to entities in KB.
In Figure 1, two entity mentions are detected and
linked to the KB referents. According to multiple
error analyses, entity linking is a common source
of errors in a QA system (Berant and Liang, 2014;
Reddy et al., 2016).

2http://aksw.org/Projects/GERBIL.html
3https://tools.wmflabs.org/bene/ask/
4http://wdaqua.eu

Debugging UI

Question
Answers, entities,
graphs, weights

Preprocessing Entity linking QA model

WIKIDATACORE NLP

HTTP
REST

HTTP
REST

Figure 2: Overview of the system architecture

The entity linking stage is followed by semantic
parsing that consists of combining the extracted
entities into a single structured meaning represen-
tation. The entities are connected with semantic
relations to a special question variable that denotes
the answer to the question (Yih et al., 2015).

Given the ambiguity of the natural language, a
semantic parsing model constructs multiple repre-
sentations that can match the question and assigns
probabilities to them (Liang, 2016). It is common
to learn a vector encoding for the question and the
structured representations and then use a similarity
function to compute the probabilities (Yih et al.,
2015; Reddy et al., 2016). The most probable struc-
tured representation is then translated into a query
and used to extract the answer from the KB.

Some approaches circumvent building a struc-
tured representation and instead directly compose
vector encodings of the potential answers (Dong
et al., 2015). Since this is a less common archi-
tecture type for KB QA, we focused on semantic
parsing approaches while developing our interface.

The described pipeline lets us outline the main
requirements for an interactive debugging tool:

1. It needs to represent all stages of the QA
pipeline in a sequential manner to let the user
identify where the error occurs and how it
propagates.

2. It needs to account for the specific properties
of semantic parsing approaches to KB QA,
such as structured semantic representations.

3. It needs to include an analysis block that
shows if the model has learned meaningful
vector representations.

http://semanticparsing.ukp.informatik.tu-darmstadt.de:5000/question-answering/
http://semanticparsing.ukp.informatik.tu-darmstadt.de:5000/question-answering/
http://semanticparsing.ukp.informatik.tu-darmstadt.de:5000/question-answering/
https://github.com/UKPLab/emnlp2018-question-answering-interface
https://github.com/UKPLab/emnlp2018-question-answering-interface
http://aksw.org/Projects/GERBIL.html
https://tools.wmflabs.org/bene/ask/
http://wdaqua.eu


116

1 e n t i t y . l i n k i n g :
2 model : models / e lmode l . p k l
3 max . e n t i t y . o p t i o n s : 5
4 max . ngram . l e n : 4
5
6 model :
7 model . f i l e : models / qamodel . p k l
8
9 e v a l u a t i o n :

10 max . num . e n t i t i e s : 3
11 beam . s i z e : 10
12 . . .
13
14 w i k i d a t a :
15 backend : l o c a l h o s t : 8 8 9 0 / s p a r q l
16 t i m e o u t : 10
17 . . .

Listing 1: A snippet of the YAML configuration
file with the main modules and settings

3 System overview

Our system consists of a web-based front-end and a
set of back-end services that communicate through
HTTP REST API (see Figure 2). The front-end
contains the interactive debugging user interface
(Section 4). A separate request is sent to the back-
end service for each processing step of the QA
pipeline. Thus, we are able to show the results to
the user as they are being delivered by the back-end
services. The front-end is responsible for aggregat-
ing and visualizing the information after each step.
In case any service fails, a partial result from the
previous steps would be available to the user.

The back-end services include the pre-
processing, the entity linking and the semantic
parsing modules. The pre-processing module
performs tokenization and part-of speech tagging
using the Stanford CoreNLP toolkit (Manning
et al., 2014). The entity linking module recognizes
mentions of the KB entities in the input question.
We provide a default model for entity linking on
Wikidata that is freely available feature-based
implementation of Sorokin and Gurevych (2018a).

The semantic parsing module includes the con-
struction of structured semantic representations and
a learned model that selects the correct represen-
tation. The integrated model uses a convolutional
neural network architecture to learn vector encod-
ings for questions and semantic representations
(Sorokin and Gurevych, 2017). We provide an in-
tegrated model for demonstartion purposes, while
the main purpose of the tool is to enable manual
evaluation and comparison of new models. We de-
fine an interface that a user needs to implement in

Figure 3: The main input field and the answer block

order to integrate their own model into the tool.
Finally, using the KB query provided by the se-

mantic parsing module, the front-end retrieves the
answers from the KB. The back-end modules can
be configured using a YAML properties file (see
Listing 1 for an example configuration).

3.1 Implementation details

We implement the user interface and the back-end
services with modern web technologies, such as
JQuery, D3.js and Bootstrap. The back-end ser-
vices are implemented in Python with Flask. It
is configurable and can be further easily extended
with other models for entity linking and QA.

A new QA model can be integrated either as a
Python module or as a separate REST service. To
communicate the results to the front-end, the ser-
vice has to send the response in the defined JSON
format. We refer to the published code repository
for additional details on the implementation.

4 User interface

The interactive web-based user interface (UI) is the
central element of our system. We have designed
the interface for an expert user and have considered
the following user traits (Raskin, 2000): a back-
ground in KB QA, a knowledge of programming
languages, an interest in manual error analysis.

The UI is modeled after the prototypical QA
pipeline as described in Section 2. Each step of the
pipeline is represented as a separate block in the
interface (see the complete UI depicted in Figure 5).
That is, the represented model of the UI directly
corresponds to the implementation model of the
prototypical QA system. Such design choice is
appropriate for tools aimed at domain experts who
already have a clear mental model of the underlying
processes and it makes the UI understandable for
the first time (expert) users (Cooper et al., 2007).

Consequently, the interface is divided into blocks



117

that correspond to the steps of the QA pipeline.
There are several base blocks that are fixed and can
not be removed, such as the input question block,
while the other ones can be hidden if needed.

Input question and answer block The first
block consists of the input question field and the
answer area (Figure 3). When the user first loads
the interface, only the input question field is pre-
sented. This avoids the confusion as to what is the
starting point of the interactions with the system.
Further elements appear only when the correspond-
ing results are returned. For example, the answers
area is only shown when the processing is finished.

Although the answer retrieval from the KB is
the last step of the pipeline, we put the answer area
right below the input question field. This design
choice makes it easy to see right away if the system
has processed the question correctly.

Entity linking block In this block, we list all
identified entity mentions in the input question and
the top 5 entity disambiguation candidates. The
entity candidate with the highest score is automati-
cally selected and forwared to the QA model.

The list of entity disambiguation candidates is
interactive and the user can select all or none can-
didates for each entity mention. In case multiple
candidates are selected, all of them are sent to the
QA system as separate entities. This lets the user
correct potential entity linker mistakes by selecting
some other than the top disambiguation candidate
and continue to debug the rest of the pipeline.

Semantic graphs We visualize the structured se-
mantic representations that the QA model generates
as graphs. That is the most common way to visually
depict structured representations (Yih et al., 2015;
Reddy et al., 2016; Sorokin and Gurevych, 2018b).
A semantic graph consists of a question variable
node that denotes the answer to the question, KB
entities and KB relation types.

We use circles to depict entities and solid lines
between them to show relations. In each graph
the question variable node is represented with a
high-contrast blue circle. Since most relations are
attached to the question node, this makes it easier
to parse the structure of the graph. Additionally,
since each graph has only one high contrast node,
the user can identify at the first sight how many
graphs have been composed for the input question.
For example, Figure 4 shows four semantic graphs
for a question “Who played Princess Leia in Star

Figure 4: The semantic graphs block for the question
“Who played Princess Leia in Star Wars?”

Wars?”, that are clearly visible. In this instance,
the model selects an incorrect graph (highlighted
in green) and retrieves all cast members of the Star
Wars movie. The correct graph would be the second
one, that also uses the entity Princess Leia.

Representation analysis The visual inspection
of the learned vector representation in the two final
blocks makes it possible to identify implementation
or training errors in the QA model. Once the error
is attributed to the learned model, a researcher can
continue to inspect the model in the tool that would
be the most appropriate to inspect the weights of a
particular model architecture (e.g. TensorBoard5).

The token-level representations block visualizes
the weights computed by the model for each input
token of the question. This kind of visual analy-
sis is helpful to identify if the model is learning
meaningful word representations. We rely on the
shade and saturation visual variables to encode the
computed vectors. Each vertical line corresponds
to a vector dimension and the darker saturated col-
ors denote a higher numerical value. In Figure 5,
one can see that the model is assigning the highest
weights to the main entity in the question.

The second representation analysis block places
the vector representation of the question and
of the semantic relations on a 2D-plane using

5https://www.tensorflow.org/programmers_
guide/summaries_and_tensorboard

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard


118

t-SNE (van der Maaten and Hinton, 2008). The
vectors of the relations that appear in the generated
semantic graphs are rendered as red circles. The
user can zoom in and out to compare the position
of the question vector to the surrounding relations.

5 User study

The interface was designed with the requirements
that were outlined in Section 2. As domain ex-
perts, we were personally interested in applying
the developed tool to QA systems. To verify that
the interface and the designed interactions are in
line with expectations of the first-time users, we
have conducted a set of brief sit-by testing sessions.
Sit-by sessions are usually used for exploratory sit-
uations and gathering first impressions about the
design of a product (Rubin and Chisnell, 2008).

In the user study, we aimed to evaluate: can a
person familiar with KB QA use the tool indepen-
dently? Does the developed tool make it possible
to manually identify errors in a QA pipeline? Two
participants with background in natural language
processing and linguistics were asked to perform a
simple analysis task while a moderator was sitting
near them and monitoring the progress. The partic-
ipants were asked to input a list of three questions
into the tool and tell if the model succeeded in an-
swering them. In case of an incorrect answer, we
have expected participants to be able to identify the
stage of the pipeline that caused the error. During
the sit-by sessions, we were able to confirm that
the interface is intuitive and easy to use. All the
participants were able to complete the task in under
10 minutes and could point out at what stage an
error has occurred for all input questions. The rep-
resentation analysis instruments, on the contrary,
have proven to be the least intuitive element of the
interface. Although the participants could attribute
the error to the model, they were unable to say if
the learned vector representations were meaningful
based on the provided visualization.

6 Conclusions

In this work, we have presented an interactive de-
bugging tool for semantic parsing approaches to
KB QA. We have started by defining the main re-
quirements for an instance-based evaluation tool
and then demonstarted how the different aspects of
the designed interface fulfill them. Our tool enables
researchers to explore and qualitatively analyse a
developed QA pipeline. We used sit-by sessions to

verify the design choices and to assess the usabil-
ity of the tool. Our architecture includes default
models for entity linking and question answering,
which makes it easy to replace only one of the
components with a new module.

Acknowledgments

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group AIPHES (grant No. GRK 1994/1), and via
the QA-EduInf project (grant GU 798/18-1 and RI
803/12-1). We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the
Titan X GPU.

References
Jonathan Berant and Percy Liang. 2014. Semantic

Parsing via Paraphrasing. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 1415–1425, Balti-
more, MD, USA.

Alan Cooper, Robert Reimann, and David Cronin.
2007. About Face 3: The Essentials of Interaction
Design. John Wiley & Sons.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.
Question Answering over Freebase with Multi-
Column Convolutional Neural Networks. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (ACL-IJCNLP), pages 260–269.

Ashwini Jaya Kumar, Christoph Schmidt, and Joachim
Khler. 2017. A knowledge graph based speech inter-
face for question answering systems. Speech Com-
munication, 92:1–12.

Percy Liang. 2016. Learning Executable Semantic
Parsers for Natural Language Understanding. Com-
munications of the ACM, 59(9):68–76.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing High-Dimensional Data using t-SNE.
Journal of Machine Learning Research, 9:2579–
2605.

Christopher D. Manning, John Bauer, Jenny Finkel,
Steven J. Bethard, Mihai Surdeanu, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL): System Demonstrations,
pages 55–60, Baltimore, MD, USA.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bor-
des, D. Parikh, and J. Weston. 2017. ParlAI: A Di-
alog Research Software Platform. arXiv preprint
arXiv:1705.06476.



119

Haoruo Peng, Ming-Wei Chang, and Wen-Tau Yih.
2017. Maximum Margin Reward Networks for
Learning from Explicit and Implicit Supervision. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2358–2368, Copenhagen, Denmark.

J Raskin. 2000. The Humane Interface: New Direc-
tions for Designing Interactive Systems. Addison-
Wesley.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics, 4:127–140.

J Rubin and D Chisnell. 2008. Handbook of Usability
Testing: Howto Plan, Design, and Conduct Effective
Tests, 2nd edition. Wiley Publishing.

Kuldeep Singh, Andreas Both, Dennis Diefenbach,
Saedeeh Shekarpour, Didier Cherix, and Christoph
Lange. 2016. Qanary – The Fast Track to Creat-
ing a Question Answering System with Linked Data
Technology. In The Semantic Web, pages 183–188,
Cham. Springer International Publishing.

Daniil Sorokin and Iryna Gurevych. 2017. End-to-end
representation learning for question answering with
weak supervision. In Semantic Web Challenges: 4th
SemWebEval Challenge at ESWC 2017, volume 769
of Communications in Computer and Information
Science, pages 70–83, Cham. Springer International
Publishing.

Daniil Sorokin and Iryna Gurevych. 2018a. Mixing
Context Granularities for Improved Entity Linking
on Question Answering Data across Entity Cate-
gories. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics
(*SEM), pages 65–75, New Orleans, LA, USA. As-
sociation for Computational Linguistics.

Daniil Sorokin and Iryna Gurevych. 2018b. Model-
ing semantics with gated graph neural networks for
knowledge base question answering. In Proceed-
ings of COLING 2018, the 27th International Con-
ference on Computational Linguistics, pages 3306–
3317. Association for Computational Linguistics.

Christina Unger, Axel-Cyrille Ngonga Ngomo, and
Elena Cabrio. 2016. 6th Open Challenge on Ques-
tion Answering over Linked Data (QALD-6). In
Semantic Web Challenges, pages 171–177, Cham.
Springer International Publishing.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic Parsing via Staged
Query Graph Generation: Question Answering with
Knowledge Base. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP), pages 1321–1331, Beijing, China.

Figure 5: The complete unrolled UI for the question
“Who played Luke Skywalker in Star Wars?”


