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Abstract
Most machine learning systems for natural lan-
guage processing are tailored to specific tasks.
As a result, comparability of models across
tasks is missing and their applicability to new
tasks is limited. This affects end users without
machine learning experience as well as model
developers. To address these limitations, we
present DERE, a novel framework for declara-
tive specification and compilation of template-
based information extraction. It uses a generic
specification language for the task and for data
annotations in terms of spans and frames. This
formalism enables the representation of a large
variety of natural language processing chal-
lenges. The backend can be instantiated by dif-
ferent models, following different paradigms.
The clear separation of frame specification and
model backend will ease the implementation
of new models and the evaluation of different
models across different tasks. Furthermore,
it simplifies transfer learning, joint learning
across tasks and/or domains as well as the as-
sessment of model generalizability. DERE is
available as open-source software.

1 Introduction

A large number of tasks in natural language pro-
cessing (NLP) are information extraction (IE) tasks,
such as n-ary relation extraction (Doddington et al.,
2004; Mintz et al., 2009; Hendrickx et al., 2010),
semantic role labeling (Das et al., 2014) and event
extraction (Kim et al., 2009; Doddington et al.,
2004). Researchers address these tasks with a vari-
ety of different model paradigms, such as support
vector machines (Rink and Harabagiu, 2010), con-
volutional neural networks (Collobert et al., 2011;
Zeng et al., 2014) and recurrent neural networks
(Tang et al., 2015; Nguyen et al., 2016).

This landscape of different tasks and models
gives rise to four challenges: (C1) Lack of gener-

∗All authors contributed equally.

alizability: Most models are tailored to a specific
task or setup, making it hard to transfer lessons
learned between tasks; (C2) Lack of comparabil-
ity: Although benchmark datasets are available
for most tasks, end-to-end evaluation typically in-
cludes peripheral aspects, such as preprocessing
components – thus, it is unclear to what extent re-
ported improvements mark actual advances in the
core models or model components; (C3) Difficulty
of reusability: Given task-specific models inside
complex systems, it is hard to reuse specific code
or models; (C4) Difficulty of usage: Users typically
have limited areas of expertise, but IE systems span
a range of such areas. Thus, developers of IE tools
may have trouble properly (re)training complex
machine learning models, and end users without
ML or CS background might even be unable to use
existing tools.

To tackle these challenges, we develop the
general framework DERE (Declarative Relation
Extraction). It enables users to (i) specify (novel
or established) IE tasks, (ii) compile models and
transfer them across tasks without additional de-
velopment effort, (iii) develop and evaluate models
across tasks, (iv) formulate and address research
questions, such as the investigation of model gen-
eralizability across tasks, transfer learning, or joint
learning across tasks and/or domains, and (v) verify
the generalizability of models by applying them to
a large variety of tasks.

DERE achieves this by providing (a) a general
mechanism to declaratively specify IE tasks and
(b) a shared processing framework that decouples
frontend and backend. This provides an attractive
shared basis for modeling tasks which are typically
perceived as being very different. In this paper, we
use BioNLP event extraction and aspect-based sen-
timent analysis (ABSA) as examples. At the same
time, the decoupling exposes accessible interfaces
for different user groups (cf. Section 3).
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Generic frame

BioNLP event extraction task
Aspect-based 

sentiment analysis task

Frame 1 <Regulation>

Trigger: regulation
Theme: IL-4

IL-4 gene regulation in general involves the 
nuclear factor of activated T cells (NFAT) family 
of transcription factors, of which NFAT1 and 
NFAT2 are most prominent in peripheral T cells.

This toaster is very stylish. 

Frame 2 <Regulation>

Trigger: involves
Theme: Frame 1
Cause: NFAT1

Frame 2 <Positive>

Trigger: very stylish
Target: toaster

Frame <type>

trigger:  span
slot 1:   {span | frame}
…
slot n:   {span | frame}

instantiation

extraction

Figure 1: Example formalizations of two different tasks
in terms of frames, slots, and spans.

The declarative specification of a task (which
we call a schema) builds upon spans and relations
between spans as basic concepts which are used by
essentially all IE tasks. To model n-ary relations,
we propose a slot-filling scheme in which frames
model n-ary relations and their arguments. Figure 1
shows the general structure of frames (below) and
two concrete instantiations for ABSA and BioNLP
(above). Each frame is triggered (anchored) by
a span, e.g., a subjective evaluating phrase like
“very stylish” or a BioNLP event trigger, such as
“regulation” or “involves”.

Frames hold a task-specific number of typed
slots, filled by relation arguments. The frames for
ABSA have a slot filled by the target (aspect) of the
sentiment while the frames for the BioNLP regula-
tion event hold a Theme slot and an optional Cause
slot. While triggers are always textual spans, slots
can be filled by either spans or frames, depending
on the task specification. We argue that this sim-
ple setup can model most IE tasks. Note that the
framework poses no theoretical restrictions to the
window from which frames are extracted. Thus, it
can model sentence-level, document-level as well
as multi-document tasks.

2 Related Work

Several applications require the joint extraction
of spans and relations between spans, such as the
BioNLP shared task (Kim et al., 2009), seman-
tic role labeling (Das et al., 2014) or (temporal)
slot filling (Surdeanu, 2013). However, all sys-

tems we are aware of for solving these tasks are
tailored to specific scenarios (Angeli et al., 2016;
Adel et al., 2016, i.a.). As a result, it is not straight-
forward to apply them to other use cases. In con-
trast, our framework is designed to be task- and
domain-independent.

Clarke et al. (2012) develop an NLP component
manager which combines several existing NLP
tools in a pipeline. Similarly, Curran (2003) aims
at a general NLP infrastructure but only reports im-
plementations of non-relational sequence-tagging
tasks. Examples of the few available toolkits which
are intended to provide users with the possibility
of automatically extracting information from text
data are Jet (Java Extraction Toolkit), GATE (Gen-
eral Architecture for Text Engineering, Cunning-
ham et al., 2013), UIMA (Unstructured Informa-
tion Management Architecture, Ferrucci and Lally,
2004), FACTORIE (McCallum et al., 2009) and
Stanbol which integrates other NLP frameworks,
e.g., OpenNLP (Morton et al., 2005).

Stanbol and OpenNLP, however, focus on tag-
ging tasks and do not provide tools for relation
extraction. FACTORIE is a general approach to
formulate factor graphs for arbitrary tasks. Our
framework takes arbitrary model paradigms as a
backend and is focused on IE, which enables the
abstraction layers introduced earlier. Jet, on the
other hand, is an IE engine developed specifically
for the ACE task specification.

GATE is most similar to our framework in scope.
It offers both a framework for programmers and
an environment for language engineers and com-
putational linguists. However, it is a very general
framework and working with it requires both do-
main and machine learning knowledge. In contrast,
our framework provides end users with an interface
for training models on new tasks without requiring
any specific knowledge.

3 Framework Design

Use Cases. We address the needs of the follow-
ing three user groups with associated use cases:
(1) Researchers/Model developers: Our framework
helps researchers to formulate their models in a
task-independent manner, such that they can be
tested and compared across tasks. This addresses
challenges C1, C2 and C3 mentioned in Section 1.
(2) Developers of IE tools for a new use case: Our
framework provides a common interface to models
previously developed for other tasks. Those mod-
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annotates

defines Baseline model Configuration

...

Other model
e.g. graphical model,
deep learning model

Configuration

High-level configuration

Figure 2: Structure of the DERE framework.

els can be integrated and interchanged for new use
cases. This addresses challenges C3 and C4 from
Section 1. (3) Users of IE tools: With the common
interface our framework provides, end-users do not
need to know theoretical details about models but
can still use different models for their use case.
This addresses challenge C4 from Section 1.

Framework Structure. Figure 2 illustrates the
structure of the DERE framework. It is composed
of two main components: The frontend comprises
the user specification of the task (“task schema”),
including the types of spans and entities to be iden-
tified, and the possible relations that can exist be-
tween them. It manages reading corpora and anno-
tation files and provides an interface for users. The
backend hosts the models that make actual predic-
tions for spans, frames, and slots, given the task
schema, and their configurations. DERE backends
follow a modular design, wherein different back-
ends, using different methods for prediction, can
be used interchangeably with minimal changes to
the frontend.

Task Schemata. DERE represents all relations
r ∈ R in terms of two types of entities: spans and
frames. A span s ∈ S is a contiguous span of text
from the input corpus. Each span has a type t ∈ TS ,
corresponding to the kind of entity that that span
represents. The set of possible span types TS is
specified by the user for the task. A frame f ∈ F
represents a relationship between multiple spans
or other frames. Each frame contains a number of
named slots l ∈ L. These slots can each be filled
by zero or more other spans or frames. The set
of frame types TF , like span types, is task-specific.
For each frame type, the user specifies a set of slots,
and for each slot, what types of frames or spans
can fill it, plus optional cardinality constraints.

We represent a task schema as an XML file. Fig-
ure 3 gives an example task schema file, for a sub-

<deREschema name="BioNLP-ST 2009" ver="0.01" auth="Klinger">
<spantypes>
<span name="Protein" predict="False"/>
<span name="Gene_expression" anchors="Gene_expression"

predict="True"/>
<span name="Binding" anchors="Binding" predict="True"/>

</spantypes>
<frames>
<frame name="Gene_expression">
<slot name="Theme" types="Protein" cardinality="1"/>

</frame>
<frame name="Binding">
<slot name="Theme" types="Protein" mincardinality="0"/>

</frame>
</frames>

</deREschema>

Figure 3: A small but complete task schema for part
of the BioNLP shared task. Three span types are speci-
fied: Protein, Gene expression, and Binding.
The latter two anchor frames of the same name. Both
frames possess a single slot Theme which can be filled
by Protein spans. Gene expression frames
always have exactly one Theme, while Binding
frames may have zero or more Themes.

T1 Protein 1650 1655 IP-10
T2 Protein 951 955 PU.1
T3 Protein 1665 1670 ISG54
T4 Protein 978 992 CSF receptor
T5 Binding 932 937 binds
T6 Gene_expression 1634 1644 expression
E1 Binding:T5 Theme:T2 Theme2:T4
E2 Gene_expression:T6 Theme:T1
E3 Gene_expression:T6 Theme:T3

Figure 4: An example annotation in BRAT format, fol-
lowing the task specification from Figure 3. The text-
bound annotations T are the span annotations, the event
annotations E define our frames.

set of the BioNLP shared task (Kim et al., 2009).
Note that this specification defines a directed graph
with spans and frames as vertices V = S ∪ F and
relations as edges: E = R.

Data Files. Annotated data, needed for train-
ing models, are provided to DERE as annotation
files. We currently support annotations in the BRAT

(Stenetorp et al., 2012) format, cf. Figure 4.

4 Proof-of-Concept System

As a proof of concept, we present the following
system consisting of a pipeline of traditional NLP
formalizations: First, spans relevant for the task
are identified. Then, a classifier decides for each
pair of relevant spans which slots of which frame
they are likely to fill. Finally, a heuristic decod-
ing step compiles the results into frames. Figure 5
illustrates this pipeline. The proof-of-concept sys-
tem only supports non-recursive structures: slots of
frames cannot be filled by other frames, but must
be filled by spans – i.e., the right-hand BioNLP
frame from Figure 1 could not be predicted in this
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(1)

(2)

... migrating B2 complex contains both p50 and p55 ...
Localization Protein Protein

theme
theme

(3)

Localization
: migrating

theme: p50
theme: p55

−−−−→

Localization
: migrating

theme: p50

Localization
: migrating

theme: p55

Figure 5: Proof-of-concept pipeline: span identifi-
cation (1), slot classification (2), and decoding into
frames (3). : frame anchors (triggers)

implementation. Note that this is only a proof-of-
concept baseline but the framework is not limited
to pipeline models. In the future, we will develop
joint models that can cope with recursive structures.

Span Identification. We cast the span identifi-
cation problem as a BIO-style sequence-labeling
task that predicts the span boundaries. To model
overlapping spans, we train one model per span
type which outputs all spans of that type. Our
proof-of-concept system uses conditional random
fields (CRF, Lafferty et al., 2001). The feature
set consists of the lower-cased words, their stems,
their shape (orthographic case, digits, punctuation),
and a flag indicating whether the word is included
in a task-specific gazetteer. All features (except
the last one) are applicable to any NLP task. The
gazetteer feature is based on a simple lexicon of
label-specific words (e.g., positive words for detect-
ing positive spans for sentiment analysis) and can
be instantiated without any technical knowledge.

Slot Classification. Once the spans are identi-
fied, the slot classifier is used to predict which slots
of which frame they are likely to fill. We break this
question down to a classification task at the level of
span pairs – one anchor span representing a frame,
and another span representing a potential argument.
The search space is restricted to those pairs with
compatible types according to the schema.

Formally, the classifier takes as input the set S
of all spans identified previously, along with a task
schema. For each pair (si, sj) ∈ S2 of spans fol-
lowing the task schema, our classifier produces as
output either a single relation label rij , or NR (no
relation)1 if the two spans are unrelated. Conceptu-
ally, two spans si and sj are related iff si anchors a
frame, and sj fills a slot in that same frame. Rela-
tion labels rij are pairs (fi, lj) ∈ TF ×L, where fi

1We generate negative examples automatically.

is the frame type anchored by si and lj is the slot
type in fi that sj fills. This enables us to model, e.g.,
in the task schema in Figure 3, BINDING.THEME

and GENE EXPRESSION.THEME as separate rela-
tions. A linear support vector machine is used to
predict the most likely relation label (or NR). Users
can enable subsampling of negative examples.

As outlined in the introduction, the features we
take into account are included with the aim of be-
ing task-agnostic. Intra-span features are types of
identified spans and the bag of words in both spans.
Inter-span features take into account context. We
use the bag of words of tokens between the spans,
and of the tokens on the shortest path connecting
the spans in a parsed dependency tree, which we
assume to accurately capture the relationship ex-
pressed by the slot that links the two spans. Since
spans can contain multiple tokens, there can be
several shortest paths between tokens from the two
spans. Under the assumption that tokens in a span
are closely related to each other, we select the short-
est of these paths. In addition, we also use a bag
of bigrams of alternating label-token sequence on
that same path. Finally, we measure the length of
the shortest path and the token distance.

Decoding. Once the slot classifier identifies
all related span pairs, the decoding step gener-
ates frames. Pairs of spans (si, sj) that stand in
a relation r are first partitioned into equivalence
classes Ch according to their anchor span (i.e.,
(si, sj) ∈ Ci). It would be possible to produce
one frame for each equivalence class Ch, anchored
by the common anchoring span sh, and with slots
filled according to each span pair’s relation label
r. However, as equivalence classes can be arbi-
trarily large, this would allow for each slot to be
filled by arbitrarily many spans (as illustrated in the
bottom-left of Figure 5). As the task schema might
impose cardinality constraints, further processing is
required to ensure that all produced frames are con-
sistent with the task schema. For each equivalence
class Ch, we consider all possible legal frames –
i.e., all frames that are consistent with the task
schema and whose slots are filled according to
some subset of Ch. Of these legal frames, we retain
all maximally-filled legal frames (see bottom-right
of Figure 5).

Evaluation and Results. To prove the feasabil-
ity of our proof of concept, we report results with
this configuration on the 2009 BioNLP shared task,
for which we re-use the original evaluation machin-
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Event Class Precision Recall F1

Gene expression 68.12 57.30 62.25
Transcription 70.59 14.63 24.24
Protein catabolism 64.00 76.19 69.57
Phosphorylation 65.85 57.45 61.36
Localization 78.57 41.51 54.32

SVT-TOTAL 68.46 50.27 57.97

Table 1: Performance of the proof-of-concept system
for biomedical relation extraction (BioNLP’09 dev set)

Sentiment Class Precision Recall F1

Positive 41.07 24.19 28.57
Negative 26.68 7.15 11.00
Neutral 5.83 4.50 5.08

Table 2: Performance of the proof-of-concept sys-
tem for aspect based sentiment analysis (10-fold cross-
validation on USAGE corpus).

ery. The evaluation calculates the F1 scores for
the individual frames (events in the BioNLP task)
using a soft matching for trigger boundaries and
approximate recursive matching. Table 1 provides
the results of our simple system on that task. Due
to the restriction of our proof of concept to non-
recursive structures (cf. Section 4), we only report
on the BioNLP event types where all slots are filled
by spans. In comparison to the second-ranked sys-
tem, which also reports results on dev (Buyko et al.,
2009), our performance is slightly lower (1 percent-
age point less for protein catabolism, 13pp less
for gene expression and phosphorylation, but 11pp
more for localization). This confirms the general
usability of our general method.

Correspondingly, Table 2 provides the current re-
sults of the same model on the USAGE corpus for
aspect based sentiment analysis (Klinger and Cimi-
ano, 2014), with 10-fold crossvalidation on the En-
glish subset. In comparison to previous results, our
numbers are very low. Previous work showed that
this is tackled by joint inference, which we did not
implement yet (Klinger and Cimiano, 2013; Yang
and Cardie, 2013). However, this proof-of-concept
implementation of the same model already shows
the reusability of our framework by only changing
the task schema specification. It motivates and en-
ables further research on reusable models across
tasks with different needs.

Technical Details and Availability. The frame-
work is implemented in Python, following an
object-oriented design for frontend and backends
to support easy interchangeability of components.

The choice of Python will also help with future in-
tegration of neural network models. For the proof-
of-concept backend, we use scikit-learn for fea-
ture extraction and training (Pedregosa et al., 2011)
with crfsuite and liblinear. Tokenization and stem-
ming is done with NLTK (Loper and Bird, 2002),
dependency features are extracted with spacy (Hon-
nibal and Johnson, 2015) and dependency graphs
are stored and processed using NetworkX (Schult,
2008). The code is available under the Apache 2.0
License.2

5 Conclusion and Future Work

This paper presented DERE, a general framework
for declarative specification and compilation of
template-based slot filling. It addresses the needs of
three groups of users: backend model developers,
developers of information extraction tools for new
use cases and end users of information extraction
tools. vEspecially, it simplifies the evaluation and
comparison of new information extraction models
across tasks as well as the straightforward appli-
cation of existing models to new tasks. By our
general design of spans and frames, it is possible to
apply DERE to a large variety of natural language
processing tasks, such as unary, binary and n-ary
relation extraction, event extraction, semantic role
labeling, aspect-based sentiment analysis, etc.

As BRAT annotations are not as expressive as
our task schema files, we plan to extend the fron-
tend of DERE by supporting a native, XML-based
annotation format in the future. For the backend,
our goal is to develop a variety of state-of-the-art
models with joint span identification, slot classifi-
cation, and frame decoding, e.g., neural networks
with structured-prediction output layers (Lample
et al., 2016; Adel and Schütze, 2017, i.a.). Given
a variety of different models and tasks, we will be
able to address interesting research questions, such
a transfer learning and joint learning across tasks
and domains. We plan to further analyze the usage
of DERE and the possibilities it provides for inte-
grating different model types and configurations in
a multi-task oriented shared task.
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