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Abstract

We formalize a new modular variant of current
question answering tasks by enforcing com-
plete independence of the document encoder
from the question encoder. This formulation
addresses a key challenge in machine compre-
hension by requiring a standalone representa-
tion of the document discourse. It addition-
ally leads to a significant scalability advantage
since the encoding of the answer candidate
phrases in the document can be pre-computed
and indexed offline for efficient retrieval. We
experiment with baseline models for the new
task, which achieve a reasonable accuracy but
significantly underperform unconstrained QA
models. We invite the QA research commu-
nity to engage in Phrase-Indexed Question An-
swering (PIQA, pika) for closing the gap. The
leaderboard is at: nlp.cs.washington.
edu/piqa

1 Introduction

Extractive question answering (QA) is the task of
selecting an answer phrase (span) to a question
given an evidence document. Due to the easi-
ness of evaluation (compared to generative QA)
and the fine-grainess of the answer (compared to
sentence-level QA), it has become one of the most
popular QA tasks, driven by massive new datasets
such as SQuAD (Rajpurkar et al., 2016) and Triv-
iaQA (Joshi et al., 2017). Current QA models
heavily rely on explicitly learning the interaction
between the evidence document and the question
using neural attention mechanisms (Wang and
Jiang, 2017; Xiong et al., 2017; Seo et al., 2017;
Lee et al., 2016, inter alia), in which the model
is fully aware of the question before or as it reads
the document. As a result, despite significant ad-
vances, they have not led to the standalone repre-
sentation of document discourse which is never-
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Figure 1: PIQA task for a short context sentence.

theless a key goal of research in reading compre-
hension. Furthermore, QA models that condition
the document representation on a question have
the practical scalability downside that the entire
model should be re-applied on the same document
for every question.

In this paper, we formalize a modular variant
of the QA task, Phrase Indexed Question Answer-
ing (PIQA), that enforces complete independence
between document encoder and question encoder
(Figure 1). In PIQA, all documents are processed
independently of any question to generate phrase
index vectors (blue nodes in the figure) for each
answer candidate (left boxes in the figure). Sim-
ilarly, the questions are independently mapped to
query vectors (red nodes in figure). Then, at in-
ference time, the answer is obtained by retrieving
the nearest indexed phrase vector to the query vec-
tor. Hence the algorithms aimed at tackling PIQA
have the inherent benefit of modularity and scala-
bility compared to current QA systems.

The task setup is analogous to how documents
or sentences are retrieved in modern search en-
gines via similarity search algorithms (Shrivastava
and Li, 2015). Nevertheless, there is a key dis-
tinction that search engines index each document
by its content, while PIQA requires one to index
each phrase in documents by its context.

We formally define the PIQA problem and
provide baseline models for the new task. Our
experiments show that the constraint introduced
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by PIQA leads to meaningful standalone docu-
ment representations and practical scalability ad-
vantage, demonstrating the significance of the new
task. Moreover, there is still a large gap between
the baselines and the unconstrained state of the art,
showing that the task is yet far from being solved.
We have set up a leaderboard1for PIQA challenge
and invite the research community to participate.
We currently support SQuAD and plan to expand
to other datasets as well.

2 Related Work
Reading comprehension. Massive reading
comprehension question answering datasets (Her-
mann et al., 2015; Hill et al., 2016; Dhingra et al.,
2017; Dunn et al., 2017) have driven a large
number of successful neural approaches (Kadlec
et al., 2016; Hu et al., 2017, inter alia). Choi et al.
(2017); Chen et al. (2017); Clark and Gardner
(2017); Min et al. (2018) tackled large-scale QA
by using a fast, coarse model (e.g. TF-IDF) to
retrieve few documents or sentences and then
using a slower, accurate model to obtain the
answer. Salant and Berant (2018) proposed
to minimize (but not prohibit) the influence of
question when modeling the document. Similarly
to ours, Lee et al. (2016) proposed to explicitly
learn the representation for each answer candidate
(phrase) in the document, but it was conditioned
(dependent) on the question.
Sentence retrieval. A closely related task to
ours is that of retrieving a sentence/paragraph in
a corpus that answers the question (Tay et al.,
2017). A comprehensive survey for neural ap-
proaches in information retrieval literature is dis-
cussed in Mitra and Craswell (2017). We note that
our problem is focused on phrasal answer extrac-
tion, which presents a unique challenge over sen-
tence retrieval—the need for context-based repre-
sentation as opposed to the content-based repre-
sentation in the sentence-retrieval literature.
Language representation. Recently there has
been a growing interest in developing natural
language representations that can be transferred
across tasks (Vendrov et al., 2016; Wieting et al.,
2016; Conneau et al., 2017, inter alia). In
particular, SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017) encourage archi-
tectures that first encode the hypothesis and the
premise independently before a comparator neu-

1nlp.cs.washington.edu/piqa

ral network is applied. Our proposed problem
shares similar traits but has a stronger constraint
that only inner product comparison is allowed and
one needs to model phrases instead of complete
sentences.

3 Phrase-Indexed Question Answering

Extractive question answering is the task of ob-
taining the answer â to a questionQ = {q1 . . . qn}
given an evidence document D = {d1 . . . dm},
where the answer â = (s, e) indicates the start
and end of a span in the document. The task is
often formulated as learning the probabilistic dis-
tribution of the answer given the question and the
document. In existing literature (Section 2), the
distribution is mainly featurized by Pr(a|Q,D) ∝
exp(Fθ(Q,D, a)) where Fθ could be any real-
valued scoring function parameterized by θ. Once
θ is learned, the prediction â is obtained by

â = argmax
a

Fθ(Q,D, a). (1)

So far, most competitive designs of Fθ(Q,D, a)
make use of attention connections between the
words in Q and D. As a result, these models can-
not yield a query independent representation of the
document D. It is subsequently not possible to
independently assess the document understanding
capability of the model. Furthermore, Fθ(Q,D, a)
needs to be re-computed for the entire document
for every new question. We believe that this inef-
ficiency precludes all current models as the candi-
dates for end-to-end QA systems.

We propose a new task—Phrase-Indexed Ques-
tion Answering (PIQA)—that addresses these is-
sues. We enforce the decomposability of Fθ
into two exclusive functions Gθ(Q), Hθ(D, a) ∈
Rk. The answer distribution is then modeled by
Pr(a|Q,D) ∝ exp(Gθ(Q) • Hθ(D, a)), where •
is the inner product. The prediction is obtained by

â = argmax
a

Gθ(Q) •Hθ(D, a). (2)

In this setting, the document encoder Hθ learns
models the document independently of the ques-
tion. Successful question answering models that
follow the structure of PIQA will have two im-
portant advantages over current QA models: full
document comprehension and scalablity.

Full document comprehension. Language un-
derstanding ability is widely associated with learn-
ing a good standalone representation of text (or its
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components such as phrases) independent of the
end task (Bowman et al., 2015). Under PIQA con-
straints, the document encoder Hθ learns the rep-
resentation of the answer candidate phrases a in
the document D independent of the question. In
order to correctly answer questions, these phrase
representations (index vectors) need to correctly
encode their meaning with respect to their con-
text. Therefore, PIQA constraint enforces eval-
uating research in document comprehension and
phrase representation learning.

Scalability. Models that adhere to the PIQA
constraint only need to be run once for each docu-
ment, regardless of the number of questions asked.
To answer a question, the model then just needs to
encode the question and compare it to each of the
answer candidates via the inner product in Equa-
tion 2. Implemented naively, computing a single
inner product for each answer candidate is more
efficient than building a new document encoding;
after the documents are pre-encoded, Equation 2
is O(k) time per word where k is the vector size
(most neural models require O(k2) per word for
matrix multiplications).

More importantly, PIQA also permits an ap-
proximate solution in sublinear time using asym-
metric locality-sensitive hashing (aLSH) (Shrivas-
tava and Li, 2014, 2015), through which Equa-
tion 2 can be approximated for N answer candi-
dates with O(kNρ logN) time, where ρ < 1 is a
function of the approximation factor and the prop-
erties of the hash functions. We argue that this
type of approach will be essential for the develop-
ment of real world QA systems, where the number
of potential answers N is extremely large.

4 Baseline Models

We introduce several baselines for PIQA that are
motivated by related literature.

For all (neural) baselines, we represent the
words in D and Q with one of three embed-
ding mechanisms: CharCNN (Kim, 2014) +
GloVe (Pennington et al., 2014), and ELMo (Pe-
ters et al., 2018). We follow the majority
of the related literature and apply bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997) to
these embeddings to build the context-aware rep-
resentations of the document D = {d1 . . .dm}
and question Q = {q1 . . .qn}, where the forward
& backward LSTM outputs are concatenated to
get a single word representation, i.e. di,qi ∈ R2k

where k is the hidden state size of LSTMs.
PIQA disallows cross-attention between docu-

ment and question. However, we can still bene-
fit from self-attention, which has become crucial
for machine translation (Vaswani et al., 2017) and
QA (Huang et al., 2018; Yu et al., 2018). In all
of our baselines, each variable-length question is
collapsed into a fixed length vector via the sum
qSA =

∑
i uiqi where u = {u1 . . . un} is a vec-

tor containing a single weight for each word in
the question. Similarly, we experiment with doc-
ument side self attention to represent each docu-
ment word dj as a weighted sum of itself and all
neighboring words dSA

j =
∑

i h
j
idj . The weight

vectors u and hj are calculated as

u = softmaxi(w
>qi)

hj = softmaxi(Rθ(D, j)
>Kθ(D, i))

where Rθ, and Kθ are trainable neural networks
with the same ouptut size, and w ∈ R2k is a train-
able weight vector. We use independent BiLSTMs
with hidden state size k (i.e. the output size is 2k)
to model both Rθ and Kθ. That is, Rθ(D, j) is
the j-th output of BiLSTM on top of D, and we
similarly define Kθ with unshared parameters.

For all (neural) baselines, the question is rep-
resented using the concatenation of two copies
of qSA, one that should have high inner product
with the vector for the answer’s start span and an-
other that should have high inner product with the
vector for the answer’s end. Thus, Equation 2’s
Gθ(Q) = [qSA

s ,qSA
e ] where the subscripts s (start)

and e (end) imply that different sets of parameters
were used. Now we define several baselines.

LSTM baseline. An answer candidate a =
(s, e) is represented using the LSTM outputs at
its endpoints: from Equation 2, Hθ(D, (s, e)) =
[ds,de] ∈ R4k and Gθ(Q) = [qSA

s ,qSA
e ] ∈ R4k.

LSTM+SA baseline. The LSTM outputs are
augmented with the endpoint representations that
come out of the document’s self-attention (SA):
Hθ(D, (s, e)) = [ds,d

SA
s ,de,d

SA
e ] ∈ R8k and

Gθ(Q) = [qSA
s1 ,q

SA
s2 ,q

SA
e1 ,q

SA
e2 ] ∈ R8k.

TF-IDF. We lastly include a purely TF-IDF-
based model, where each answer candidate phrase
is associated with a bag of neighbor words within
a distance of 7. Then the BOW vector is normal-
ized via TF-IDF and indexed. When the query
comes in, its TF-IDF vector is queried on the in-
dexed phrases to yield the answer.
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Constraint Model F1 (%) EM (%)

PI

TF-IDF 15.0 3.9
LSTM 57.2 46.8
LSTM+SA 59.8 49.0
LSTM+ELMo 60.9 50.9
LSTM+SA+ELMo 62.7 52.7

None
Rajpurkar et al. (2016) 51.0 40.0
Yu et al. (2018) 89.3 82.5

Table 1: Performance on SQuAD dev set with the
PIQA constraint (top), and without the constraint (bot-
tom). See Section 4 for the description of the terms.

For training the (neural) models, we minimize
the negative log probability of getting the cor-
rect answer: the loss function for each example
(D,Q, a∗) is L(θ) = − log Pr(a∗|D,Q) where
a∗ is the correct answer.

5 Experiments

We impose the independence restrictions from
PIQA on the Stanford Question Answering
Dataset2. We only consider answer spans with
length ≤ 7. We use the hidden state size (k) of
128, which results in a 512D (4k) and 1024D (8k)
vector for each phrase in LSTM and LSTM+SA,
respectively. The default embedding model is
CharCNN concatenated with 200D GloVe, with
an option to append ELMo vectors following the
same setup for SQuAD experiments discussed
in Peters et al. (2018). We use a batch size of 64
and train for 20 epochs with the default Adam op-
timizer (Kingma and Ba, 2015), and take the best
model on the validation set during training.

Results. Table 1 shows the results for the PIQA
baselines (top) and the unconstrained state of the
art (bottom). First, the TF-IDF model performs
poorly, which signifies the limitations of tradi-
tional document retrieval models for the task. Sec-
ond, we note that the addition of self-attention
makes a significant impact on results, improving
F1 by 2.6%. Next, we see that adding ELMo gives
3.7% and 2.9% improvement on F1 for LSTM and
LSTM+SA models, respectively. Lastly, the best
PIQA baseline model is 11.7% higher than the
first (unconstrained) baseline model (Rajpurkar
et al., 2016) and 26.6% lower than the state of the
art (Yu et al., 2018). This gives us a reasonable
starting point of the new task and a significant gap

2PIQA paradigm can be also extended to other extractive
QA datasets.

- According to the American Library Association, this makes. . .
- . . . tasked with drafing a European Charter of Human Rights,. . .

- The LM engines were successfully test-fired and restarted, . . . .
- Steam turbines were extensively applied. . .

- . . . primarily accomplished through the ductile stretching and thinning.
- . . . directly derived from the homogeneity or symmetry of space. . .

Table 2: Most similar phrase pairs from disjoint sets of
documents. Bold print is the phrase, and non-bold is its
context.

to close for future work.

Phrase representations. Since PIQA models
encode all answer candidates into the same space,
we expect similar answer candidates to have high
inner products with one another. Table 2 shows
pairs of answer candidates that come from differ-
ent documents in SQuAD, but that have similar
encodings (high inner product). We observe that
phrase representations learned through the PIQA
task capture different interesting characteristics of
the phrases. In all three rows, we can see that the
phrase pairs seem to fit into natural categories: na-
tional, or multi-national organizational constructs;
mechanical engines; and mechanical properties,
respectively. This suggests that the model has
learned interesting typing information above the
word level. The second and third rows also indi-
cate that the model has learned a rich representa-
tion of context. This is particularly obvious in the
third row where the two phrases are lexically dis-
similar, but preceded by the similar contexts ‘pri-
marily accomplished through’ and ‘directly de-
rived from’. We believe that this analysis, while
not complete, points toward exciting future lines
of work in learning highly contextualized phrase
representations through question answering.

Scalability. PIQA can also gain massive execu-
tion time speedups once the documents are pre-
encoded: in our simple benchmark on a consumer-
grade CPU and NumPy (for LSTM+SA model,
1024D vectors), one can easily perform exact
search over 1 million document words per second.
BiDAF (Seo et al., 2017), an open-sourced and rel-
atively light QA model reaching 77.5% F1 (66.5%
EM), can process less than 1k document words per
second with an equivalent computing power (after
pre-encoding the document as much as possible),
which is more than 1,000x slower.3

3The difference will be even higher with a dedicated sim-
ilarity search package such as Faiss (Johnson et al., 2017) or
approximate search (Section 3).
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Figure 2: F1 score versus number of vectors per word
for LSTM+SA. Answer candidates have been filtered
with varying threshold on an independent classifier
learned on the candidate representations.

It is also important to consider the memory
cost for storing a vector representation of each
of the answer candidates. We train an indepen-
dent single-layer perceptron classifier that pre-
dicts whether the phrase encoding is likely to be
a good one. By varying a threshold on the score
assigned by this classifier, we can filter answer
candidates prior to storage. Figure 2 illustrates
the trade-off between accuracy and memory (mea-
sured in mean number of vectors per document
word) resulting from this filtering procedure for
the LSTM+SA model. We observe that 1.3 vectors
(candidates) per word on average reaches > 98%
of the model’s F1 accuracy. This is equivalent to
5.2 KB per word with 1024D (4 KB) float vectors,
or around 15 TB for the entire English Wikipedia
(3 billion words). Future work will also involve
creating a better classifier (i.e. improving the
trade-off curve in Figure 2) for determining which
phrase vectors to store.

6 Conclusion and Future Work

We introduced Phrase-Indexed Question Answer-
ing (PIQA), a new variant of the extractive ques-
tion answering task that requires documents and
question encoded completely independently and
that they only interact each other via inner prod-
uct. We argued that building a question-agnostic
document encoder for question answering should
be an important consideration for those in the QA
community with the research goal of learning a
model that reads and comprehends documents.
Furthermore, the imposed constraint of the task
implies a sublinear scalability benefit. Given that
SQuAD models have recently outperformed hu-

mans, PIQA formulation motivates a new chal-
lenge for which we hope that the community’s
effort gradually closes the gap between our con-
strained baselines and the unconstrained models.
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