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Abstract

One central mystery of neural NLP is what
neural models “know” about their subject
matter. When a neural machine transla-
tion system learns to translate from one
language to another, does it learn the syn-
tax or semantics of the languages? Can
this knowledge be extracted from the sys-
tem to fill holes in human scientific knowl-
edge? Existing typological databases con-
tain relatively full feature specifications
for only a few hundred languages. Ex-
ploiting the existence of parallel texts in
more than a thousand languages, we build
a massive many-to-one neural machine
translation (NMT) system from 1017 lan-
guages into English, and use this to pre-
dict information missing from typological
databases. Experiments show that the pro-
posed method is able to infer not only syn-
tactic, but also phonological and phonetic
inventory features, and improves over a
baseline that has access to information
about the languages’ geographic and phy-
logenetic neighbors.1

1 Introduction

Linguistic typology is the classification of human
languages according to syntactic, phonological,
and other classes of features, and the investiga-
tion of the relationships and correlations between
these classes/features. This study has been a sci-
entific pursuit in its own right since the 19th cen-
tury (Greenberg, 1963; Comrie, 1989; Nichols,
1992), but recently typology has borne practical
fruit within various subfields of NLP, particularly
on problems involving lower-resource languages.

1Code and learned vectors are available at http://
github.com/chaitanyamalaviya/lang-reps

Figure 1: Learning representations from mul-
tilingual neural MT for typology classification.
(Model MTBOTH)

Typological information from sources like the
World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013), has proven use-
ful in many NLP tasks (O’Horan et al., 2016),
such as multilingual dependency parsing (Ammar
et al., 2016), generative parsing in low-resource
settings (Naseem et al., 2012; Täckström et al.,
2013), phonological language modeling and loan-
word prediction (Tsvetkov et al., 2016), POS-
tagging (Zhang et al., 2012), and machine trans-
lation (Daiber et al., 2016).

However, the needs of NLP tasks differ in many
ways from the needs of scientific typology, and ty-
pological databases are often only sparsely pop-
ulated, by necessity or by design.2 In NLP, on
the other hand, what is important is having a rela-
tively full set of features for the particular group
of languages you are working on. This mis-
match of needs has motivated various proposals
to reconstruct missing entries, in WALS and other
databases, from known entries (Daumé III and
Campbell, 2007; Daumé III, 2009; Coke et al.,
2016; Littell et al., 2017).

In this study, we examine whether we can
2For example, each chapter of WALS aims to provide a

statistically balanced set of languages over language families
and geographical areas, and so many languages are left out in
order to maintain balance.
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tackle the problem of inferring linguistic typol-
ogy from parallel corpora, specifically by training
a massively multi-lingual neural machine trans-
lation (NMT) system and using the learned rep-
resentations to infer typological features for each
language. This is motivated both by prior work in
linguistics (Bugarski, 1991; Garcı́a, 2002) demon-
strating strong links between translation studies
and tools for contrastive linguistic analysis, work
in inferring typology from bilingual data (Östling,
2015) and English as Second Language texts
(Berzak et al., 2014), as well as work in NLP (Shi
et al., 2016; Kuncoro et al., 2017; Belinkov et al.,
2017) showing that syntactic knowledge can be
extracted from neural nets on the word-by-word
or sentence-by-sentence level. This work presents
a more holistic analysis of whether we can dis-
cover what neural networks learn about the lin-
guistic concepts of an entire language by aggre-
gating their representations over a large number of
the sentences in the language.

We examine several methods for discovering
feature vectors for typology prediction, including
those learning a language vector specifying the
language while training multilingual neural lan-
guage models (Östling and Tiedemann, 2017) or
neural machine translation (Johnson et al., 2016)
systems. We further propose a novel method for
aggregating the values of the latent state of the en-
coder neural network to a single vector represent-
ing the entire language. We calculate these feature
vectors using an NMT model trained on 1017 lan-
guages, and use them for typlogy prediction both
on their own and in composite with feature vectors
from previous work based on the genetic and geo-
graphic distance between languages (Littell et al.,
2017). Results show that the extracted representa-
tions do in fact allow us to learn about the typol-
ogy of languages, with particular gains for syn-
tactic features like word order and the presence of
case markers.

2 Dataset and Experimental Setup

Typology Database: To perform our analysis,
we use the URIEL language typology database
(Littell et al., 2017), which is a collection of bi-
nary features extracted from multiple typological,
phylogenetic, and geographical databases such
as WALS (World Atlas of Language Structures)
(Collins and Kayne, 2011), PHOIBLE (Moran
et al., 2014), Ethnologue (Lewis et al., 2015), and

Glottolog (Hammarström et al., 2015). These fea-
tures are divided into separate classes regarding
syntax (e.g. whether a language has prepositions
or postpositions), phonology (e.g. whether a lan-
guage has complex syllabic onset clusters), and
phonetic inventory (e.g. whether a language has
interdental fricatives). There are 103 syntactical
features, 28 phonology features and 158 phonetic
inventory features in the database.

Baseline Feature Vectors: Several previous
methods take advantage of typological implica-
ture, the fact that some typological traits corre-
late strongly with others, to use known features
of a language to help infer other unknown fea-
tures of the language (Daumé III and Campbell,
2007; Takamura et al., 2016; Coke et al., 2016).
As an alternative that does not necessarily require
pre-existing knowledge of the typological features
in the language at hand, Littell et al. (2017) have
proposed a method for inferring typological fea-
tures directly from the language’s k nearest neigh-
bors (k-NN) according to geodesic distance (dis-
tance on the Earth’s surface) and genetic distance
(distance according to a phylogenetic family tree).
In our experiments, our baseline uses this method
by taking the 3-NN for each language according
to normalized geodesic+genetic distance, and cal-
culating an average feature vector of these three
neighbors.

Typology Prediction: To perform prediction,
we trained a logistic regression classifier3 with
the baseline k-NN feature vectors described above
and the proposed NMT feature vectors described
in the next section. We train individual classi-
fiers for predicting each typological feature in a
class (syntax etc). We performed 10-fold cross-
validation over the URIEL database, where we
train on 9/10 of the languages to predict 1/10 of
the languages for 10 folds over the data.

3 Learning Representations for Typology
Prediction

In this section we describe three methods for
learning representations for typology prediction
with multilingual neural models.

LM Language Vector Several methods have
been proposed to learn multilingual language

3We experimented with a non-linear classifier as well, but
the logistic regression classifier performed better.
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models (LMs) that utilize vector representations
of languages (Tsvetkov et al., 2016; Östling and
Tiedemann, 2017). Specifically, these models
train a recurrent neural network LM (RNNLM;
Mikolov et al. (2010)) using long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber (1997))
with an additional vector representing the current
language as an input. The expectation is that
this vector will be able to capture the features of
the language and improve LM accuracy. Östling
and Tiedemann (2017) noted that, intriguingly, ag-
glomerative clustering of these language vectors
results in something that looks roughly like a phy-
logenetic tree, but stopped short of performing ty-
pological inference. We train this vector by ap-
pending a special token representing the source
language (e.g. “〈fra〉” for French) to the begin-
ning of the source sentence, as shown in Fig. 1,
then using the word representation learned for this
token as a representation of the language. We will
call this first set of feature vectors LMVEC, and
examine their utility for typology prediction.

NMT Language Vector In our second set of
feature vectors, MTVEC, we similarly use a lan-
guage embedding vector, but instead learn a multi-
lingual neural MT model trained to translate from
many languages to English, in a similar fashion to
Johnson et al. (2016); Ha et al. (2016). In contrast
to LMVEC, we hypothesize that the alignments to
an identical sentence in English, the model will
have a stronger signal allowing it to more accu-
rately learn vectors that reflect the syntactic, pho-
netic, or semantic consistencies of various lan-
guages. This has been demonstrated to some ex-
tent in previous work that has used specifically en-
gineered alignment-based models (Lewis and Xia,
2008; Östling, 2015; Coke et al., 2016), and we
examine whether these results apply to neural net-
work feature extractors and expand beyond word
order and syntax to other types of typology as
well.

NMT Encoder Mean Cell States Finally, we
propose a new vector representation of a language
(MTCELL) that has not been investigated in pre-
vious work: the average hidden cell state of the
encoder LSTM for all sentences in the language.
Inspired by previous work that has noted that the
hidden cells of LSTMs can automatically capture
salient and interpretable information such as syn-
tax (Karpathy et al., 2015; Shi et al., 2016) or

Syntax Phonology Inventory
-Aux +Aux -Aux +Aux -Aux +Aux

NONE 69.91 83.07 77.92 86.59 85.17 90.68
LMVEC 71.32 82.94 80.80 86.74 87.51 89.94
MTVEC 74.90 83.31 82.41 87.64 89.62 90.94
MTCELL 75.91 85.14 84.33 88.80 90.01 90.85
MTBOTH 77.11 86.33 85.77 89.04 90.06 91.03

Table 1: Accuracy of syntactic, phonological,
and inventory features using LM language vec-
tors (LMVEC), MT language vectors (MTVEC),
MT encoder cell averages (MTCELL) or both
MT feature vectors (MTBOTH). Aux indicates
auxiliary information of geodesic/genetic nearest
neighbors; “NONE -Aux” is the majority class
chance rate, while “NONE +Aux” is a 3-NN clas-
sification.

sentiment (Radford et al., 2017), we expect that
the cell states will represent features that may be
linked to the typology of the language. To cre-
ate vectors for each language using LSTM hidden
states, we obtain the mean of cell states (c in the
standard LSTM equations) for all time steps of all
sentences in each language.4

4 Experiments

4.1 Multilingual Data and Training Regimen

To train a multilingual neural machine translation
system, we used a corpus of Bible translations that
was obtained by scraping a massive online Bible
database at bible.com.5 This corpus contains
data for 1017 languages. After preprocessing the
corpus, we obtained a training set of 20.6 million
sentences over all languages.

The implementation of both the LM and NMT
models described in §3 was done in the DyNet
toolkit (Neubig et al., 2017). In order to ob-
tain a manageable shared vocabulary for all lan-
guages, we divided the data into subwords us-
ing joint byte-pair encoding of all languages (Sen-
nrich et al., 2016) with 32K merge operations. We

4We also tried using the mean of final hidden cell states
of the encoder LSTM, but the mean cell state over all words
in the sentence gave improved performance. Additionally,
we tried using the hidden states h, but we found that these
had significantly less information and lesser variance, due to
being modulated by the output gate at each time step.

5A possible concern is that Bible translations may use ar-
chaic language not representative of modern usage. How-
ever, an inspection of the data did not turn up such archaisms,
likely because the bulk of world Bible translation was done in
the late 19th and 20th centuries. In addition, languages that
do have antique Bibles are also those with many other Bible
translations, so the effect of the archaisms is likely limited.
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used LSTM cells in a single recurrent layer with
512-dimensional hidden state and input embed-
ding size. The Adam optimizer was used with a
learning rate of 0.001 and a dropout of 0.5 was en-
forced during training.

4.2 Results and Discussion

The results of the experiments can be found in
Tab. 1. First, focusing on the “-Aux” results,
we can see that all feature vectors obtained by
the neural models improve over the chance rate,
demonstrating that indeed it is possible to extract
information about linguistic typology from un-
supervised neural models. Comparing LMVEC

to MTVEC, we can see a convincing improve-
ment of 2-3% across the board, indicating that
the use of bilingual information does indeed pro-
vide a stronger signal, allowing the network to
extract more salient features. Next, we can see
that MTCELL further outperforms MTVEC, indi-
cating that the proposed method of investigating
the hidden cell dynamics is more effective than
using a statically learned language vector. Fi-
nally, combining both feature vectors as MTBOTH

leads to further improvements. To measure statis-
tical significance of the results, we performed a
paired bootstrap test to measure the gain between
NONE+AUX and MTBOTH+AUX and found that
the gains for syntax and inventory were significant
(p=0.05), but phonology was not, perhaps because
the number of phonological features was fewer
than the other classes (only 28).

When further using the geodesic/genetic dis-
tance neighbor feature vectors, we can see that
these trends largely hold although gains are much
smaller, indicating that the proposed method is
still useful in the case where we have a-priori
knowledge about the environment in which the
language exists. It should be noted, however, that
the gains of LMVEC evaporate, indicating that ac-
cess to aligned data may be essential when infer-
ring the typology of a new language. We also
noted that the accuracies of certain features de-
creased from NONE-AUX to MTBOTH-AUX, par-
ticularly gender markers, case suffix and negative
affix, but these decreases were to a lesser extent in
magnitude than the improvements.

Interestingly, and in contrast to previous meth-
ods for inferring typology from raw text, which
have been specifically designed for inducing word
order or other syntactic features (Lewis and Xia,

Feature NONE MT Gain
S NUMERAL AFTER NOUN 37.40 81.26 43.86

S NUMERAL BEFORE NOUN 46.49 83.22 36.73
S POSSESSOR AFTER NOUN 42.05 75.60 33.55

S OBJECT BEFORE VERB 50.97 80.89 29.92
S ADPOSITION AFTER NOUN 52.41 79.10 26.69

P UVULAR CONTINUANTS 77.57 97.37 19.80
P LATERALS 67.30 86.48 19.18
P LATERAL L 64.05 78.16 14.10

P LABIAL VELARS 82.16 95.93 13.76
P VELAR NASAL INITIAL 72.14 85.82 13.68

I VELAR NASAL 39.89 62.08 22.20
I ALVEOLAR LATERAL APPROXIMANT 60.92 79.32 18.40

I ALVEOLAR NASAL 81.49 92.98 11.48
I VOICED LABIODENTAL FRICATIVE 65.75 77.10 11.36

I VOICELESS PALATAL FRICATIVE 82.41 93.66 11.25

Table 2: Top 5 improvements from “NONE -Aux”
to “MTBOTH -Aux” in the syntax (“S ”), phonol-
ogy (“P ”), and inventory (“I ”) classes.

Figure 2: Cell trajectories for sentences in lan-
guages where S OBJ BEFORE VERB is either
active or inactive.

2008; Östling, 2015; Coke et al., 2016), our pro-
posed method is also able to infer information
about phonological or phonetic inventory fea-
tures. This may seem surprising or even counter-
intuitive, but a look at the most-improved phonol-
ogy/inventory features (Tab. 2) shows a number
of features in which languages with the “non-
default” option (e.g. having uvular consonants or
initial velar nasals, not having lateral consonants,
etc.) are concentrated in particular geographical
regions. For example, uvular consonants are not
common world-wide, but are common in partic-
ular geographic regions like the North American
Pacific Northwest and the Caucasus (Maddieson,
2013b), while initial velar nasals are common
in Southeast Asia (Anderson, 2013), and lateral
consonants are uncommon in the Amazon Basin
(Maddieson, 2013a). Since these are also regions
with a particular and sometimes distinct syntac-
tic character, we think the model may be find-
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ing regional clusters through syntax, and seeing
an improvement in regionally-distinctive phonol-
ogy/inventory features as a side effect.

Finally, given that MTCELL uses the feature
vectors of the latent cell state to predict typology,
it is of interest to observe how these latent cells
behave for typologically different languages. In
Fig. 2 we examine the node that contributed most
to the prediction of “S OBJ BEFORE VERB”
(the node with maximum weight in the classi-
fier) for German and Korean, where the feature
is active, and Portuguese and Catalan, where the
feature is inactive. We can see that the node
trajectories closely track each other (particularly
at the beginning of the sentence) for Portuguese
and Catalan, and in general the languages where
objects precede verbs have higher average val-
ues, which would be expressed by our mean
cell state features. The similar trends for lan-
guages that share the value for a typological fea-
ture (S OBJ BEFORE VERB) indicate that infor-
mation stored in the selected hidden node is con-
sistent across languages with similar structures.

5 Conclusion and Future Work

Through this study, we have shown that neural
models can learn a range of linguistic concepts,
and may be used to impute missing features in ty-
pological databases. In particular, we have demon-
strated the utility of learning representations with
parallel text, and results hinted at the importance
of modeling the dynamics of the representation as
models process sentences. We hope that this study
will encourage additional use of typological fea-
tures in downstream NLP tasks, and inspire fur-
ther techniques for missing knowledge prediction
in under-documented languages.
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