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Abstract

We introduce multi-modal, attention-
based Neural Machine Translation (NMT)
models which incorporate visual features
into different parts of both the encoder
and the decoder. Global image features
are extracted using a pre-trained convo-
lutional neural network and are incorpo-
rated (i) as words in the source sentence,
(ii) to initialise the encoder hidden state,
and (iii) as additional data to initialise
the decoder hidden state. In our exper-
iments, we evaluate translations into En-
glish and German, how different strategies
to incorporate global image features com-
pare and which ones perform best. We
also study the impact that adding synthetic
multi-modal, multilingual data brings and
find that the additional data have a posi-
tive impact on multi-modal models. We
report new state-of-the-art results and our
best models also significantly improve on
a comparable Phrase-Based Statistical MT
(PBSMT) model trained on the Multi30k
data set according to all metrics evaluated.
To the best of our knowledge, it is the first
time a purely neural model significantly
improves over a PBSMT model on all met-
rics evaluated on this data set.

1 Introduction

Neural Machine Translation (NMT) has recently
been proposed as an instantiation of the sequence
to sequence (seq2seq) learning problem (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014b;
Sutskever et al., 2014). In this problem, each train-
ing example consists of one source and one tar-
get variable-length sequence, with no prior infor-
mation regarding the alignments between the two.

A model is trained to translate sequences in the
source language into corresponding sequences in
the target. This framework has been successfully
used in many different tasks, such as handwritten
text generation (Graves, 2013), image description
generation (Hodosh et al., 2013; Kiros et al., 2014;
Mao et al., 2014; Elliott et al., 2015; Karpathy and
Fei-Fei, 2015; Vinyals et al., 2015), machine trans-
lation (Cho et al., 2014b; Sutskever et al., 2014)
and video description generation (Donahue et al.,
2015; Venugopalan et al., 2015).

Recently, there has been an increase in the num-
ber of natural language generation models that
explicitly use attention-based decoders, i.e. de-
coders that model an intra-sequential mapping be-
tween source and target representations. For in-
stance, Xu et al. (2015) proposed an attention-
based model for the task of Image Description
Generation (IDG) where the model learns to at-
tend to specific parts of an image (the source) as it
generates its description (the target). In MT, one
can intuitively interpret this attention mechanism
as inducing an alignment between source and tar-
get sentences, as first proposed by Bahdanau et al.
(2015). The common idea is to explicitly frame a
learning task in which the decoder learns to attend
to the relevant parts of the source sequence when
generating each part of the target sequence.

We are inspired by recent successes in using
attention-based models in both IDG and NMT.
Our main goal in this work is to propose end-to-
end multi-modal NMT models which effectively
incorporate visual features in different parts of the
attention-based NMT framework. The main con-
tributions of our work are:

• We propose novel attention-based multi-
modal NMT models which incorporate visual
features into the encoder and the decoder.

• We discuss the impact that adding synthetic
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multi-modal and multilingual data brings to
multi-modal NMT.

• We show that images bring useful informa-
tion to an NMT model and report state-of-
the-art results.

One additional contribution of our work is that
we corroborate previous findings by Vinyals et al.
(2015) that suggested that using image features di-
rectly as additional context to update the hidden
state of the decoder (at each time step) prevents
learning.

The remainder of this paper is structured as fol-
lows. In §1.1 we briefly discuss relevant previous
related work. We then revise the attention-based
NMT framework and further expand it into differ-
ent multi-modal NMT models (§2). In §3 we intro-
duce the data sets we use in our experiments. In §4
we detail the hyperparameters, parameter initiali-
sation and other relevant details of our models. Fi-
nally, in §6 we draw conclusions and provide some
avenues for future work.

1.1 Related work

Attention-based encoder-decoder models for MT
have been actively investigated in recent years.
Some researchers have studied how to improve at-
tention mechanisms (Luong et al., 2015; Tu et al.,
2016) and how to train attention-based models to
translate between many languages (Dong et al.,
2015; Firat et al., 2016).

However, multi-modal MT has only recently
been addressed by the MT community in the form
of a shared task (Specia et al., 2016). We note that
in the official results of this first shared task no
submissions based on a purely neural architecture
could improve on the Phrase-Based SMT (PB-
SMT) baseline. Nevertheless, researchers have
proposed to include global visual features in re-
ranking n-best lists generated by a PBSMT sys-
tem or directly in a purely NMT framework with
some success (Caglayan et al., 2016; Calixto et al.,
2016; Libovický et al., 2016; Shah et al., 2016).
The best results achieved by a purely NMT model
in this shared task are those of Huang et al. (2016),
who proposed to use global and regional image
features extracted with the VGG19 (Simonyan and
Zisserman, 2014) and the RCNN (Girshick et al.,
2014) convolutional neural networks (CNNs).

Similarly to one of the three models we pro-

pose,1 Huang et al. (2016) extract global features
for an image, project these features into the vector
space of the source words and then add it as a word
in the input sequence. Their best model improves
over a strong NMT baseline and is comparable
to results obtained with a PBSMT model trained
on the same data, although not significantly bet-
ter. For that reason, their models are used as base-
lines in our experiments. Next, we point out some
key differences between the work of Huang et al.
(2016) and ours.

Architecture Their implementation is based on
the attention-based model of Luong et al. (2015),
which has some differences to that of Bahdanau
et al. (2015), used in our work (§2.1). Their en-
coder is a single-layer unidirectional LSTM and
they use the last hidden state of the encoder to ini-
tialise the decoder’s hidden state, therefore indi-
rectly using the image features to do so. We use
a bi-directional recurrent neural network (RNN)
with GRU (Cho et al., 2014a) as our encoder, bet-
ter encoding the semantics of the source sentence.

Image features We include image features sep-
arately either as a word in the source sen-
tence (§2.2.1) or directly for encoder (§2.2.2)
or decoder initialisation (§2.2.3), whereas Huang
et al. (2016) only use it as a word. We also show it
is better to include an image exclusively for the en-
coder or the decoder initialisation (Tables 1 and 2).

Data Huang et al. (2016) use object detections
obtained with the RCNN of Girshick et al. (2014)
as additional data, whereas we study the impact
that additional back-translated data brings.

Performance All our models outperform Huang
et al. (2016)’s according to all metrics evaluated,
even when they use additional object detections.
If we use additional back-translated data, the dif-
ference becomes even larger.

2 Attention-based NMT

In this section, we briefly revise the attention-
based NMT framework (§2.1) and expand it into
a multi-modal NMT framework (§2.2).

2.1 Text-only attention-based NMT

We follow the notation of Bahdanau et al. (2015)
and Firat et al. (2016) throughout this section.

1This idea has been developed independently by both re-
search groups.
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Given a source sequence X = (x1, x2, · · · , xN )
and its translation Y = (y1, y2, · · · , yM ), an NMT
model aims at building a single neural network
that translates X into Y by directly learning to
model p(Y |X). Each xi is a row index in a source
lookup matrix Wx ∈ R|Vx|×dx (the source word
embeddings matrix) and each yj is an index in a
target lookup matrix Wy ∈ R|Vy |×dy (the target
word embeddings matrix). Vx and Vy are source
and target vocabularies and dx and dy are source
and target word embeddings dimensionalities, re-
spectively.

A bidirectional RNN with GRU is used as
the encoder. A forward RNN

−→
Φ enc reads X

word by word, from left to right, and gener-
ates a sequence of forward annotation vectors
(
−→
h 1,
−→
h 2, · · · ,−→h N ) at each encoder time step

i ∈ [1, N ]. Similarly, a backward RNN
←−
Φ enc reads

X from right to left, word by word, and gener-
ates a sequence of backward annotation vectors
(
←−
h 1,
←−
h 2, · · · ,←−h N ), as in (1):−→

hi =
−→
Φ enc

(
Wx[xi],

−→
h i−1

)
,

←−
hi =

←−
Φ enc

(
Wx[xi],

←−
h i+1

)
. (1)

The final annotation vector for a given time step i
is the concatenation of forward and backward vec-
tors hi =

[−→
hi;
←−
hi

]
.

In other words, each source sequence X is
encoded into a sequence of annotation vectors
h = (h1,h2, · · · ,hN ), which are in turn used by
the decoder: essentially a neural language model
(LM) (Bengio et al., 2003) conditioned on the pre-
viously emitted words and the source sentence via
an attention mechanism.

At each time step t of the decoder, we compute
a time-dependent context vector ct based on the
annotation vectors h, the decoder’s previous hid-
den state st−1 and the target word ỹt−1 emitted by
the decoder in the previous time step.2

We follow Bahdanau et al. (2015) and use a
single-layer feed-forward network to compute an
expected alignment et,i between each source anno-
tation vector hi and the target word to be emitted
at the current time step t, as in (2):

et,i = va
T tanh(Uast−1 + Wahi). (2)

In Equation (3), these expected alignments are

2At training time, the correct previous target word yt−1

is known and therefore used instead of ỹt−1. At test or in-
ference time, yt−1 is not known and ỹt−1 is used instead.
Bengio et al. (2015) discussed problems that may arise from
this difference between training and inference distributions.

normalised and converted into probabilities:

αt,i =
exp (et,i)∑N

j=1 exp (et,j)
, (3)

where αt,i are called the model’s attention
weights, which are in turn used in computing the
time-dependent context vector ct =

∑N
i=1 αt,ihi.

Finally, the context vector ct is used in computing
the decoder’s hidden state st for the current time
step t, as shown in Equation (4):

st = Φdec(st−1,Wy[ỹt−1], ct), (4)
where st−1 is the decoder’s previous hidden state,
Wy[ỹt−1] is the embedding of the word emitted in
the previous time step, and ct is the updated time-
dependent context vector.

We use a single-layer feed-forward neural net-
work to initialise the decoder’s hidden state s0 at
time step t = 0 and feed it the concatenation of the
last hidden states of the encoder’s forward RNN
(
−→
Φ enc) and backward RNN (

←−
Φ enc), as in (5):

s0 = tanh
(
Wdi[

←−
h 1;
−→
hN ] + bdi

)
, (5)

where Wdi and bdi are model parameters. Since
RNNs normally better store information about
recent inputs in comparison to more distant
ones (Hochreiter and Schmidhuber, 1997; Bah-
danau et al., 2015), we expect to initialise the de-
coder’s hidden state with a strong source sentence
representation, i.e. a representation with a strong
focus on both the first and the last tokens in the
source sentence.

2.2 Multi-modal NMT (MNMT)

Our models can be seen as expansions of the
attention-based NMT framework described in §2
with the addition of a visual component to incor-
porate image features.

Simonyan and Zisserman (2014) trained and
evaluated an extensive set of deep Convolutional
Neural Networks (CNNs) for classifying images
into one out of the 1000 classes in ImageNet (Rus-
sakovsky et al., 2015). We use their 19-layer VGG
network (VGG19) to extract image feature vec-
tors for all images in our dataset. We feed an
image to the pre-trained VGG19 network and use
the 4096D activations of the penultimate fully-
connected layer FC73 as our image feature vector,
henceforth referred to as q.

We propose three different methods to incor-
porate images into the attentive NMT framework:

3We use the activations of the FC7 layer, which encode
information about the entire image, of the VGG19 network
(configuration E) in Simonyan and Zisserman (2014)’s paper.
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(a) An encoder bidirectional RNN that
uses image features as words in the
source sequence.

(b) Using an image to initialise the en-
coder hidden states.

(c) Image as additional data to initialise
the decoder hidden state s0.

Figure 1: Multi-modal neural machine translation models IMGW, IMGE, and IMGD.

using an image as words in the source sentence
(§2.2.1), using an image to initialise the source
language encoder (§2.2.2) and the target language
decoder (§2.2.3).

We also evaluated a fourth mechanism to incor-
porate images into NMT, namely to use an image
as one of the different contexts available to the de-
coder at each time step of the decoding process.
We added the image features directly as an addi-
tional context, in addition to Wy[ỹt−1], st−1 and
ct, to compute the hidden state st of the decoder
at a given time step t. We corroborate previous
findings by Vinyals et al. (2015) in that adding the
image features as such prevents the model from
learning.4

2.2.1 Images as source words: IMGW

One way we propose to incorporate images into
the encoder is to project an image feature vector
into the space of the words of the source sentence.
We use the projected image as the first and/or last
word of the source sentence and let the attention
model learn when to attend to the image represen-
tation. Specifically, given the global image feature
vector q ∈ R4096, we compute (6):

d = W 2
I · (W 1

I · q + b1
I) + b2

I , (6)
where W 1

I ∈ R4096×4096 and W 2
I ∈ R4096×dx are

image transformation matrices, b1
I ∈ R4096 and

b2
I ∈ Rdx are bias vectors, and dx is the source

words vector space dimensionality, all trained with
the model. We then directly use d as words in the
source words vector space: as the first word only
(model IMG1W), and as the first and last words of

4Outputs would typically consist of sets of 2-5 words re-
peated many times, usually without any syntax. For com-
parison, translations for the translated Multi30k test set
(described in §3) achieve just 3.8 BLEU (Papineni et al.,
2002), 15.5 METEOR (Denkowski and Lavie, 2014) and 93.0
TER (Snover et al., 2006).

the source sentence (model IMG2W).
An illustration of this idea is given in Figure 1a,

where a source sentence that originally contained
N tokens, after including the image as source
words will contain N + 1 tokens (model IMG1W)
or N + 2 tokens (model IMG2W). In model
IMG1W, the image is projected as the first source
word only (solid line in Figure 1a); in model
IMG2W, it is projected into the source words space
as both first and last words (both solid and dashed
lines in Figure 1a).

Given a sequence X = (x1, x2, · · · , xN ) in the
source language, we concatenate the transformed
image vector d to Wx[X] and apply the forward
and backward encoder RNN passes, generating
hidden vectors as in Figure 1a. When comput-
ing the context vector ct (Equations (2) and (3)),
we effectively make use of the transformed image
vector, i.e. the αt,i attention weight parameters
will use this information to attend or not to the im-
age features.

By including images into the encoder in mod-
els IMG1W and IMG2W, our intuition is that (i) by
including the image as the first word, we propa-
gate image features into the source sentence vector
representations when applying the forward RNN−→
Φ enc (vectors

−→
hi), and (ii) by including the image

as the last word, we propagate image features into
the source sentence vector representations when
applying the backward RNN

←−
Φ enc (vectors

←−
hi).

2.2.2 Images for encoder initialisation: IMGE

In the original attention-based NMT model de-
scribed in §2, the hidden state of the encoder is
initialised with the zero vector

#»
0 . Instead, we

propose to use two new single-layer feed-forward
neural networks to compute the initial states of the
forward RNN

−→
Φ enc and the backward RNN

←−
Φ enc,
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respectively, as illustrated in Figure 1b.
Similarly to §2.2.1, given a global image feature

vector q ∈ R4096, we compute a vector d using
Equation (6), only this time the parameters W 2

I

and b2
I project the image features into the same di-

mensionality as the textual encoder hidden states.
The feed-forward networks used to initialise the

encoder hidden state are computed as in (7):←−
h init = tanh

(
Wfd + bf

)
,

−→
h init = tanh

(
Wbd + bb

)
, (7)

where Wf and Wb are multi-modal projection
matrices that project the image features d into the
encoder forward and backward hidden states di-
mensionality, respectively, and bf and bb are bias
vectors.

2.2.3 Images for decoder initialisation:
IMGD

To incorporate an image into the decoder, we in-
troduce a new single-layer feed-forward neural
network to be used instead of the one described in
Equation 5. Originally, the decoder’s initial hid-
den state was computed using the concatenation
of the last hidden states of the encoder forward
RNN (

−→
Φ enc) and backward RNN (

←−
Φ enc), respec-

tively
−→
hN and

←−
h 1.

Our proposal is that we include the image fea-
tures as additional input to initialise the decoder
hidden state at time step t = 0, as in (8):

s0 = tanh
(
Wdi[

←−
h 1;
−→
hN ] + Wmd + bdi

)
, (8)

where Wm is a multi-modal projection matrix that
projects the image features d into the decoder hid-
den state dimensionality and Wdi and bdi are the
same as in Equation (5).

Once again we compute d by applying Equa-
tion (6) onto a global image feature vector
q ∈ R4096, only this time the parameters W 2

I and
b2

I project the image features into the same dimen-
sionality as the decoder hidden states. We illus-
trate this idea in Figure 1c.

3 Data set

Our multi-modal NMT models need bilingual sen-
tences accompanied by one or more images as
training data. The original Flickr30k data set con-
tains 30K images and 5 English sentence descrip-
tions for each image (Young et al., 2014). We
use the translated and the comparable Multi30k
datasets (Elliott et al., 2016), henceforth referred
to as M30kT and M30kC, respectively, which are
multilingual expansions of the original Flickr30k.

For each of the 30K images in the Flickr30k,
the M30kT has one of its English descriptions
manually translated into German by a professional
translator. Training, validation and test sets con-
tain 29K, 1014 and 1K images, respectively, each
accompanied by one sentence pair (the original
English sentence and its German translation). For
each of the 30K images in the Flickr30k, the
M30kC has five descriptions in German collected
independently of the English descriptions. Train-
ing, validation and test sets contain 29K, 1014 and
1K images, respectively, each accompanied by 5
English and 5 German sentences.

We use the scripts in Moses (Koehn et al., 2007)
to normalise, truecase and tokenize English and
German descriptions and we also convert space-
separated tokens into subwords (Sennrich et al.,
2016b). All models use a common vocabulary
of ∼83K English and ∼91K German subword to-
kens. If sentences in English or German are longer
than 80 tokens, they are discarded.

We use the entire M30kT training set for train-
ing, its validation set for model selection with
BLEU, and its test set to evaluate our models.
In order to study the impact that additional train-
ing data brings to the models, we use the base-
line model described in §2 trained on the textual
part of the M30kT data set (German→English and
English→German) without the images to build
back-translation models (Sennrich et al., 2016a).
We back-translate the 145K German (English) de-
scriptions in the M30kC into English (German)
and include the triples (synthetic English descrip-
tion, German description, image) as additional
training data when translating into German, and
(synthetic German description, English descrip-
tion, image) when translating into English.

We train models to translate from English into
German and from German into English, and re-
port evaluation of cased, tokenized sentences with
punctuation.

4 Experimental setup

Our encoder is a bidirectional RNN with GRU
(one 1024D single-layer forward RNN and one
1024D single-layer backward RNN). Source and
target word embeddings are 620D each and both
are trained jointly with our model. All non-
recurrent matrices are initialised by sampling from
a Gaussian (µ = 0, σ = 0.01), recurrent matrices
are orthogonal and bias vectors are all initialised
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to zero. Our decoder RNN also uses GRU and is
a neural LM (Bengio et al., 2003) conditioned on
its previous emissions and the source sentence by
means of the source attention mechanism.

Image features are obtained by feeding im-
ages to the pre-trained VGG19 network of Si-
monyan and Zisserman (2014) and using the ac-
tivations of the penultimate fully-connected layer
FC7. We apply dropout with a probability of 0.2
in both source and target word embeddings and
with a probability of 0.5 in the image features (in
all MNMT models), in the encoder and decoder
RNNs inputs and recurrent connections, and be-
fore the readout operation in the decoder RNN.
We follow Gal and Ghahramani (2016) and apply
dropout to the encoder bidirectional RNN and de-
coder RNN using the same mask in all time steps.

Our models are trained using stochastic gra-
dient descent with Adadelta (Zeiler, 2012) and
minibatches of size 40 for improved generalisa-
tion (Keskar et al., 2017), where each training in-
stance consists of one English sentence, one Ger-
man sentence and one image. We apply early stop-
ping for model selection based on BLEU scores,
so that if a model does not improve on the valida-
tion set for more than 20 epochs, training is halted.

We evaluate our models’ translation qual-
ity quantitatively in terms of BLEU4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), TER (Snover et al., 2006), and chrF3
scores5 (Popović, 2015) and we report statisti-
cal significance for the three first metrics us-
ing approximate randomisation computed with
MultEval (Clark et al., 2011).

As our main baseline we train an attention-
based NMT model (§2) in which only the tex-
tual part of M30kT is used for training. We also
train a PBSMT model built with Moses on the
same English→German (German→English) data,
where the LM is a 5–gram LM with modified
Kneser-Ney smoothing (Kneser and Ney, 1995)
trained on the German (English) of the M30kT
dataset. We use minimum error rate training (Och,
2003) for tuning the model parameters for BLEU
scores. Our third baseline (English→German), is
the best comparable multi-modal model by Huang
et al. (2016) and also their best model with addi-
tional object detections: respectively models m1
(image at head) and m3 in the authors’ paper. Fi-
nally, our fourth baseline (German→English) is

5We specifically compute character 6-gram F3 scores.

BLEU4↑ METEOR↑ TER↓ chrF3↑
English→German

PBSMT 32.9 54.1 45.1 67.4
NMT 33.7 52.3 46.7 64.5
Huang 35.1 52.2 — —
+ RCNN 36.5 54.1 — —

IMG1W 37.1†‡ (↑ 3.4) 54.5†‡ (↑ 0.4) 42.7†‡ (↓ 2.4) 66.9 (↓ 0.5)
IMG2W 36.9†‡ (↑ 3.2) 54.3†‡ (↑ 0.2) 41.9†‡ (↓ 3.2) 66.8 (↓ 0.6)
IMGE 37.1†‡ (↑ 3.4) 55.0†‡ (↑ 0.9) 43.1†‡ (↓ 2.0) 67.6 (↑ 0.2)
IMGD 37.3†‡ (↑ 3.6) 55.1†‡ (↑ 1.0) 42.8†‡ (↓ 2.3) 67.7 (↑ 0.3)
IMG2W+D 35.7†‡ (↑ 2.0) 53.6†‡ (↓ 0.5) 43.3†‡ (↓ 1.8) 66.2 (↓ 1.2)
IMGE+D 37.0†‡ (↑ 3.3) 54.7†‡ (↑ 0.6) 42.6†‡ (↓ 2.5) 67.2 (↓ 0.2)

German→English

PBSMT 32.8 34.8 43.9 61.8
NMT 38.2 35.8 40.2 62.8

IMG2W 39.5†‡ (↑ 1.3) 37.1†‡ (↑ 1.3) 37.1†‡ (↓ 3.1) 63.8 (↑ 1.0)
IMGE 41.1†‡ (↑ 2.9) 37.7†‡ (↑ 1.9) 37.9†‡ (↓ 2.3) 65.7 (↑ 2.9)
IMGD 41.3†‡ (↑ 3.1) 37.8†‡ (↑ 2.0) 37.9†‡ (↓ 2.3) 65.7 (↑ 2.9)
IMG2W+D 39.9†‡ (↑ 1.7) 37.2†‡ (↑ 1.4) 37.0†‡ (↓ 3.2) 64.4 (↑ 1.6)
IMGE+D 41.9†‡ (↑ 3.7) 37.9†‡ (↑ 2.1) 37.1†‡ (↓ 3.1) 66.0 (↑ 3.2)

Table 1: BLEU4, METEOR, chrF3 (higher is bet-
ter) and TER scores (lower is better) on the M30kT
test set for the two text-only baselines PBSMT
and NMT, the two multi-modal NMT models by
Huang et al. (2016) (English→German only) and
our MNMT models that: (i) use images as words
in the source sentence (IMG1W, IMG2W), (ii) use
images to initialise the encoder (IMGE), and (iii)
use images as additional data to initialise the de-
coder (IMGD). Best text-only baselines are un-
derscored and best overall results appear in bold.
We highlight in parentheses the improvements
brought by our models compared to the best cor-
responding text-only baseline score. Results differ
significantly from PBSMT baseline (†) or NMT
baseline (‡) with p = 0.05.

the best-performing model in the WMT’16 multi-
modal MT shared task (Shah et al., 2016), hence-
forth PBSMT+. It uses image features as well as
additional data from WordNet (Miller, 1995) to re-
rank n-best lists.

4.1 Results

The Multi30K dataset contains images and bilin-
gual descriptions. Overall, it is a small dataset
with a small vocabulary whose sentences have
simple syntactic structures and not much ambigu-
ity (Elliott et al., 2016). This is reflected in the
fact that even the simplest baselines perform fairly
well on it, i.e. the smallest BLEU scores of 32.9
for translating into German, which are still reason-
ably good results.
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BLEU4↑ METEOR↑ TER↓ chrF3↑
English→German

original training data
IMG2W 36.9 54.3 41.9 66.8
IMGE 37.1 55.0 43.1 67.6
IMGD 37.3 55.1 42.8 67.7

+ back-translated training data
PBSMT 34.0 55.0 44.7 68.0
NMT 35.5 53.4 43.3 65.3

IMG2W 36.7†‡ (↑ 1.2) 54.6†‡ (↓ 0.4) 42.0†‡ (↓ 1.3) 66.8 (↓ 1.2)
IMGE 38.5†‡ (↑ 3.0) 55.7†‡ (↑ 0.9) 41.4†‡ (↓ 1.9) 68.3 (↑ 0.3)
IMGD 38.5†‡ (↑ 3.0) 55.9†‡ (↑ 1.1) 41.6†‡ (↓ 1.7) 68.4 (↑ 0.4)

German→English

PBSMT+ 42.5 39.5 35.6 68.7

original training data
IMG2W 39.5 37.1 37.1 63.8
IMGE 41.1 37.7 37.9 65.7
IMGD 41.3 37.8 37.9 65.7

+ back-translated training data
NMT 42.6 38.9 36.1 67.6

IMG2W 42.4†‡ (↓ 0.2) 39.0†‡ (↑ 0.1) 34.7†‡ (↓ 1.4) 67.6 (↑ 0.0)

IMGE 43.9†‡ (↑ 1.3) 39.7†‡ (↑ 0.8) 34.8†‡ (↓ 1.3) 68.7 (↑ 1.1)
IMGD 43.4†‡ (↑ 0.8) 39.3†‡ (↑ 0.4) 35.2†‡ (↓ 0.9) 67.8 (↑ 0.2)

Improvements (original vs. + back-translated)
English→German / German→English

IMG2W ↓ 0.2 / ↑ 2.9 ↑ 0.1 / ↑ 1.9 ↑ 0.1 / ↓ 2.4 ↑ 0.0 / ↑ 3.8
IMGE ↑ 1.4 / ↑ 2.8 ↑ 0.7 / ↑ 2.0 ↓ 1.8 / ↓ 3.1 ↑ 0.7 / ↑ 2.9
IMGD ↑ 1.2 / ↑ 2.1 ↑ 0.8 / ↑ 1.5 ↓ 1.2 / ↓ 2.7 ↑ 0.7 / ↑ 2.1

Table 2: BLEU4, METEOR, TER and chrF3
scores on the M30kT test set for models trained on
original and additional back-translated data. Best
text-only baselines are underscored and best over-
all results in bold. We highlight in parentheses
the improvements brought by our models com-
pared to the best baseline score. Results differ
significantly from PBSMT baseline (†) or NMT
baseline (‡) with p = 0.05. We also show the
improvements each model yields in each metric
when only trained on the original M30kT training
set vs. also including additional back-translated
data. PBSMT+ is the best model in the multi-
modal MT shared task (Specia et al., 2016).

Multi30k In Table 1, we show results
for translating from English→German and
German→English. When translating into Ger-
man, our multi-modal models perform well, with
models IMGE and IMGD improving on both
baselines according to all metrics analysed. We
also note that all models but IMG2W+D perform
consistently better than the strong multi-modal
NMT baseline of Huang et al. (2016), even when
this model has access to more data (+RCNN
features).6 Combining image features in the

6In fact, model IMG2W+D still improves on the multi-
modal baseline of Huang et al. (2016) when trained on the

encoder and the decoder at the same time does not
seem to improve results compared to using the
image features in only the encoder or the decoder
when translating into German. To the best of
our knowledge, it is the first time a purely neural
model significantly improves over a PBSMT
model in all metrics on this data set.

When translating into English, all multi-modal
models significantly improve over the NMT
baseline, with the only exception being model
IMG2W’s BLEU scores. In this scenario, model
IMGE+D is the best performing one according to
all but one metric. However, differences between
multi-modal models are not statistically signifi-
cant, i.e. all multi-modal models but IMG2W and
IMG2W+D perform comparably.

Additional back-translated data Arguably, the
main downside of applying multi-modal NMT in
a real-world scenario is the small amount of pub-
licly available training data (∼30K entries). For
that reason, we back-translated the German and
English sentences in the M30kC and created two
sets of 145K synthetic triples, one for each trans-
lation direction, as described in §3.

In Table 2, we present results for some of
the models evaluated in Table 1 but when also
trained on the additional data. In order to add
more data to our PBSMT baseline, we simply
added the German sentences in the M30kC to train
the LM.7 We also include results for PBSMT+,
which uses image features as well as additional
features extracted using WordNet (Shah et al.,
2016). When translating into German, both our
models IMGE and IMGD that use global im-
age features to initialise the encoder and the de-
coder, respectively, significantly improve accord-
ing to BLEU, METEOR and TER with the ad-
ditional back-translated data, and also achieved
better chrF3 scores. When translating into En-
glish, IMGE is the only model to significantly im-
prove over both baselines according to all met-
rics with the additional back-translated data, also
improving chrF3 scores. We highlight that our
best-performing model IMGE significantly outper-
forms PBSMT+ according to BLEU and TER, and
all our other multi-modal models perform com-
parably to it. This is a noteworthy finding, since

same data.
7Adding the synthetic sentence pairs to train the baseline

PBSMT model, as we did with all neural MT models, deteri-
orated the results.
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Multi30k test set (English→German)
Ensemble? BLEU4 ↑ METEOR↑ TER↓ chrF3↑

IMGD × 37.3 55.1 42.8 67.7

IMGD + IMGE X 40.1 (↑ 2.8) 58.5 (↑ 3.4) 40.7 (↓ 2.1) 68.1 (↑ 0.4)

IMGD + IMGE + IMG2W X 41.0 (↑ 3.7) 58.9 (↑ 3.8) 39.7 (↓ 3.1) 68.3 (↑ 0.6)

IMGD + IMGE + IMG2W + IMGD X 41.3 (↑ 4.0) 59.2 (↑ 4.1) 39.5 (↓ 3.3) 68.5 (↑ 0.8)

Table 3: Results for different combinations of multi-modal models, all trained on the original M30kT
training data only, evaluated on the M30kT test set.

PBSMT+ uses image features as well as additional
data from WordNet and, to the best of our knowl-
edge, is the best published model in this language
pair and data set to date.

Ensemble decoding We now report on how can
ensemble decoding be used to improve transla-
tions obtained with our multi-modal NMT mod-
els. In order to do that, we use different combi-
nations of models trained on the original M30kT
training set to translate from English into German.
We built ensembles of different models by start-
ing with our best performing multi-modal model
on this language pair and data set, IMGD, and by
adding new models to the ensemble one by one,
until we reach a maximum of four independent
models, all of which are trained separately and on
the original M30kT training data only. In Table 3,
we show results when translating the M30kT’s test
set. These models were also evaluated in our re-
cent participation in the WMT 2017 multi-modal
MT shared task (Calixto et al., 2017a).

We first note that to add more models to the en-
semble seems to always improve translations, and
by a considerable margin (∼ 3 BLEU/METEOR
points). Adding model IMG2W to the ensemble
already consisting of models IMGE and IMGD im-
proves translations according to all metrics evalu-
ated. This is an interesting result, since compared
to these other two multi-modal models, model
IMG2W performs poorly according to BLEU, ME-
TEOR and chrF3. Regardless of that fact, our
best results are obtained with an ensemble of four
different multi-modal models, including model
IMG2W.

By using an ensemble of four different multi-
modal NMT models trained on the translated
Multi30k training data, we were able to obtain
translations comparable to or even better than
those obtained with the strong multi-modal NMT
model of Calixto et al. (2017b), which is pre-
trained on large amounts of English–German data

and uses local image features. Finally, we have
recently participated in the WMT 2017 multi-
modal MT shared task, and our system submis-
sions ranked among the best performing systems
under the constrained data regime (Calixto et al.,
2017a). We note that our models performed par-
ticularly well on the ambiguous MSCOCO test
set (Elliott et al., 2017), which indicate its abil-
ity to use the image information in disambiguating
difficult source sentences into their correct transla-
tions.

5 Error Analysis

In Table 4 we show translations into German gen-
erated by different models for one entry of the
M30k test set. In this example, the last three multi-
modal models extrapolate the reference+image
and describe “ceremony” as a “wedding cere-
mony” (IMG2W) and as an “Olympics ceremony”
(IMGE and IMGD). This could be due to the
fact that the training set is small, depicts a small
variation of different scenes and contains different
forms of biasses (van Miltenburg, 2015).

In Table 5, we draw attention to an example
where some models generate what seems to be
novel visual terms. Neither the source German
sentence nor the English reference translation con-
tained the translated units “having fun” or “Mex-
ican restaurant”, although both could have been
inferred at least partially from the image. In this
example, the visual term “having fun” is also gen-
erated by the baseline NMT model, making it clear
that at times what seems like a translation ex-
tracted exclusively from the image may have been
learnt from the training text data. However, none
of the two baselines translated “Mexikanischen
Setting” as “Mexican restaurant”, but four out of
the five multi-modal models did. The multi-modal
models also had problems translating the German
“trinkt Shots” (drinking shots). We observe trans-
lations such as “having drinks” (IMG2W), which
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src. a woman with long hair is at a graduation ceremony .
ref. eine Frau mit langen Haaren bei einer Abschluss Feier.

NMT eine Frau mit langen Haaren ist an einer StaZeremonie.
PBSMT eine Frau mit langen Haaren steht an einem Abschluss
IMG1W eine Frau mit langen Haaren ist an einer warmen Zeremonie teil
IMG2W eine Frau mit langen Haaren steht bei einer Hochzeit Feier.
IMGE eine lang haarige Frau bei einer olympischen Zeremonie.
IMGD eine lang haarige Frau bei einer olympischen Zeremonie.

Table 4: Translations for the 668th example in the M30k test set.

src. eine Gruppe junger Menschen trinkt Shots in einem Mexikanischen Setting .
ref. a group of young people take shots in a Mexican setting .

NMT a group of young people are having fun in an auditorium .
PBSMT a group of young people drinking at a Shots Mexikanischen Setting .
IMG2W a group of young people having drinks in a Mexican restaurant .
IMGE a group of young people drinking apples in a Mexican restaurant .
IMGD a group of young people drinking food in a Mexican restaurant .
IMG2W+D a group of young people having fun in a Mexican room .
IMGE+D a group of young people drinking dishes in a Mexican restaurant .

Table 5: Translations for 300th example in the M30k test set.

although not a novel translation is still correct, but
also “drinking apples” (IMGE), “drinking food”
(IMGD), and “drinking dishes” (IMGE+D), which
are clearly incorrect.

6 Conclusions and future work

In this work, we introduced models that incor-
porate images into state-of-the-art attention-based
NMT, by using images as words in the source sen-
tence, to initialise the encoder’s hidden state and
as additional data in the initialisation of the de-
coder’s hidden state. The intuition behind our ef-
fort is to use images to visually ground transla-
tions, and consequently increase translation qual-
ity. We demonstrate with extensive experiments
that adding global image features into NMT sig-
nificantly improves the translations of image de-
scriptions compared to text-only NMT and PB-
SMT. It also improves significantly on the previ-
ous state-of-the-art model of Huang et al. (2016)
(English→German), and performs comparably to
the best published results of Shah et al. (2016)
(German→English). Overall, we note that using
images as words in the source sequence (IMG1W,
IMG2W), an idea similarly entertained by Huang
et al. (2016), does not fare as well as to directly
incorporate the image either in the encoder or the
decoder (IMGE and IMGD), independently of the
target language. The fact that multi-modal NMT
models can benefit from back-translated data is

also an interesting finding.
In future work, we will conduct a more sys-

tematic study on the impact that synthetic back-
translated data brings to multi-modal NMT, and
run an error analysis to identify what particular
types of errors our models make (and prevent).
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Jindřich Libovický, Jindřich Helcl, Marek Tlustý,
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