
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1557–1567,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Incorporating Discrete Translation Lexicons
into Neural Machine Translation

Philip Arthur∗, Graham Neubig∗†, Satoshi Nakamura∗
∗ Graduate School of Information Science, Nara Institute of Science and Technology

† Language Technologies Institute, Carnegie Mellon University
philip.arthur.om0@is.naist.jp gneubig@cs.cmu.edu s-nakamura@is.naist.jp

Abstract

Neural machine translation (NMT) often
makes mistakes in translating low-frequency
content words that are essential to understand-
ing the meaning of the sentence. We propose
a method to alleviate this problem by aug-
menting NMT systems with discrete transla-
tion lexicons that efficiently encode transla-
tions of these low-frequency words. We de-
scribe a method to calculate the lexicon proba-
bility of the next word in the translation candi-
date by using the attention vector of the NMT
model to select which source word lexical
probabilities the model should focus on. We
test two methods to combine this probability
with the standard NMT probability: (1) using
it as a bias, and (2) linear interpolation. Exper-
iments on two corpora show an improvement
of 2.0-2.3 BLEU and 0.13-0.44 NIST score,
and faster convergence time.1

1 Introduction

Neural machine translation (NMT, §2; Kalchbren-
ner and Blunsom (2013), Sutskever et al. (2014))
is a variant of statistical machine translation (SMT;
Brown et al. (1993)), using neural networks. NMT
has recently gained popularity due to its ability to
model the translation process end-to-end using a sin-
gle probabilistic model, and for its state-of-the-art
performance on several language pairs (Luong et al.,
2015a; Sennrich et al., 2016).

One feature of NMT systems is that they treat
each word in the vocabulary as a vector of

1Tools to replicate our experiments can be found at
http://isw3.naist.jp/~philip-a/emnlp2016/index.html

Input: I come from Tunisia.
Reference: チュニジアの出身です。

Chunisia no shusshindesu.
(I’m from Tunisia.)

System: ノルウェーの出身です。
Noruue- no shusshindesu.
(I’m from Norway.)

Figure 1: An example of a mistake made by NMT
on low-frequency content words.

continuous-valued numbers. This is in contrast to
more traditional SMT methods such as phrase-based
machine translation (PBMT; Koehn et al. (2003)),
which represent translations as discrete pairs of
word strings in the source and target languages. The
use of continuous representations is a major advan-
tage, allowing NMT to share statistical power be-
tween similar words (e.g. “dog” and “cat”) or con-
texts (e.g. “this is” and “that is”). However, this
property also has a drawback in that NMT systems
often mistranslate into words that seem natural in the
context, but do not reflect the content of the source
sentence. For example, Figure 1 is a sentence from
our data where the NMT system mistakenly trans-
lated “Tunisia” into the word for “Norway.” This
variety of error is particularly serious because the
content words that are often mistranslated by NMT
are also the words that play a key role in determining
the whole meaning of the sentence.

In contrast, PBMT and other traditional SMT
methods tend to rarely make this kind of mistake.
This is because they base their translations on dis-
crete phrase mappings, which ensure that source
words will be translated into a target word that has

1557

been observed as a translation at least once in the
training data. In addition, because the discrete map-
pings are memorized explicitly, they can be learned
efficiently from as little as a single instance (barring
errors in word alignments). Thus we hypothesize
that if we can incorporate a similar variety of infor-
mation into NMT, this has the potential to alleviate
problems with the previously mentioned fatal errors
on low-frequency words.

In this paper, we propose a simple, yet effective
method to incorporate discrete, probabilistic lexi-
cons as an additional information source in NMT
(§3). First we demonstrate how to transform lexi-
cal translation probabilities (§3.1) into a predictive
probability for the next word by utilizing attention
vectors from attentional NMT models (Bahdanau et
al., 2015). We then describe methods to incorporate
this probability into NMT, either through linear in-
terpolation with the NMT probabilities (§3.2.2) or as
the bias to the NMT predictive distribution (§3.2.1).
We construct these lexicon probabilities by using
traditional word alignment methods on the training
data (§4.1), other external parallel data resources
such as a handmade dictionary (§4.2), or using a hy-
brid between the two (§4.3).

We perform experiments (§5) on two English-
Japanese translation corpora to evaluate the
method’s utility in improving translation accuracy
and reducing the time required for training.

2 Neural Machine Translation

The goal of machine translation is to translate a se-
quence of source words F = f

|F |
1 into a sequence of

target words E = e
|E|
1 . These words belong to the

source vocabulary Vf , and the target vocabulary Ve

respectively. NMT performs this translation by cal-
culating the conditional probability pm(ei|F, ei−1

1)
of the ith target word ei based on the source F and
the preceding target words ei−1

1 . This is done by en-
coding the context ⟨F, ei−1

1 ⟩ a fixed-width vector ηi,
and calculating the probability as follows:

pm(ei|F, ei−1
1) = softmax(Wsηi + bs), (1)

where Ws and bs are respectively weight matrix and
bias vector parameters.

The exact variety of the NMT model depends on
how we calculate ηi used as input. While there

are many methods to perform this modeling, we opt
to use attentional models (Bahdanau et al., 2015),
which focus on particular words in the source sen-
tence when calculating the probability of ei. These
models represent the current state of the art in NMT,
and are also convenient for use in our proposed
method. Specifically, we use the method of Luong et
al. (2015a), which we describe briefly here and refer
readers to the original paper for details.

First, an encoder converts the source sentence F
into a matrix R where each column represents a sin-
gle word in the input sentence as a continuous vec-
tor. This representation is generated using a bidirec-
tional encoder

−→r j = enc(embed(fj),
−→r j−1)

←−r j = enc(embed(fj),
←−r j+1)

rj = [←−r j ;
−→r j].

Here the embed(·) function maps the words into a
representation (Bengio et al., 2003), and enc(·) is
a stacking long short term memory (LSTM) neural
network (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000; Sutskever et al., 2014). Finally we con-
catenate the two vectors −→r j and←−r j into a bidirec-
tional representation rj . These vectors are further
concatenated into the matrix R where the jth col-
umn corresponds to rj .

Next, we generate the output one word at a time
while referencing this encoded input sentence and
tracking progress with a decoder LSTM. The de-
coder’s hidden state hi is a fixed-length continuous
vector representing the previous target words ei−1

1 ,
initialized as h0 = 0. Based on this hi, we calculate
a similarity vector αi, with each element equal to

αi,j = sim(hi, rj). (2)

sim(·) can be an arbitrary similarity function, which
we set to the dot product, following Luong et al.
(2015a). We then normalize this into an attention
vector, which weights the amount of focus that we
put on each word in the source sentence

ai = softmax(αi). (3)

This attention vector is then used to weight the en-
coded representation R to create a context vector ci

for the current time step

c = Ra.

1558

Finally, we create ηi by concatenating the previous
hidden state hi−1 with the context vector, and per-
forming an affine transform

ηi = Wη[hi−1; ci] + bη,

Once we have this representation of the current
state, we can calculate pm(ei|F, ei−1

1) according to
Equation (1). The next word ei is chosen according
to this probability, and we update the hidden state by
inputting the chosen word into the decoder LSTM

hi = enc(embed(ei), hi−1). (4)

If we define all the parameters in this model as
θ, we can then train the model by minimizing the
negative log-likelihood of the training data

θ̂ = argmin
θ

∑

⟨F, E⟩

∑

i

− log(pm(ei|F, ei−1
1 ; θ)).

3 Integrating Lexicons into NMT

In §2 we described how traditional NMT models
calculate the probability of the next target word
pm(ei|ei−1

1 , F). Our goal in this paper is to improve
the accuracy of this probability estimate by incorpo-
rating information from discrete probabilistic lexi-
cons. We assume that we have a lexicon that, given
a source word f , assigns a probability pl(e|f) to tar-
get word e. For a source word f , this probability will
generally be non-zero for a small number of transla-
tion candidates, and zero for the majority of words
in VE . In this section, we first describe how we in-
corporate these probabilities into NMT, and explain
how we actually obtain the pl(e|f) probabilities in
§4.

3.1 Converting Lexicon Probabilities into
Conditioned Predictive Proabilities

First, we need to convert lexical probabilities pl(e|f)
for the individual words in the source sentence
F to a form that can be used together with
pm(ei|ei−1

1 , F). Given input sentence F , we can
construct a matrix in which each column corre-
sponds to a word in the input sentence, each row
corresponds to a word in the VE , and the entry cor-
responds to the appropriate lexical probability:

LF =

pl(e = 1|f1) · · · pl(e = 1|f|F |)
...

. . .
...

pl(e = |Ve||f1) · · · pl(e = |Ve||f|F |)

 .

This matrix can be precomputed during the encoding
stage because it only requires information about the
source sentence F .

Next we convert this matrix into a predictive prob-
ability over the next word: pl(ei|F, ei−1

1). To do so
we use the alignment probability a from Equation
(3) to weight each column of the LF matrix:

pl(ei|F, ei−1
1) = LF ai =

pl(e = 1|f1) · · · plex(e = 1|f|F |)
...

. . .
...

pl(e = Ve|f1) · · · plex(e = Ve|f|F |)

ai,1

...
ai,|F |

 .

This calculation is similar to the way how attentional
models calculate the context vector ci, but over a
vector representing the probabilities of the target vo-
cabulary, instead of the distributed representations
of the source words. The process of involving ai

is important because at every time step i, the lexi-
cal probability pl(ei|ei−1

1 , F) will be influenced by
different source words.

3.2 Combining Predictive Probabilities

After calculating the lexicon predictive proba-
bility pl(ei|ei−1

1 , F), next we need to integrate
this probability with the NMT model probability
pm(ei|ei−1

1 , F). To do so, we examine two methods:
(1) adding it as a bias, and (2) linear interpolation.

3.2.1 Model Bias

In our first bias method, we use pl(·) to bias
the probability distribution calculated by the vanilla
NMT model. Specifically, we add a small constant ϵ
to pl(·), take the logarithm, and add this adjusted log
probability to the input of the softmax as follows:

pb(ei|F, ei−1
1) = softmax(Wsηi + bs+

log(pl(ei|F, ei−1
1) + ϵ)).

We take the logarithm of pl(·) so that the values will
still be in the probability domain after the softmax is
calculated, and add the hyper-parameter ϵ to prevent
zero probabilities from becoming −∞ after taking
the log. When ϵ is small, the model will be more
heavily biased towards using the lexicon, and when
ϵ is larger the lexicon probabilities will be given less
weight. We use ϵ = 0.001 for this paper.

1559

3.2.2 Linear Interpolation
We also attempt to incorporate the two probabil-

ities through linear interpolation between the stan-
dard NMT probability model probability pm(·) and
the lexicon probability pl(·). We will call this the
linear method, and define it as follows:

po(ei|F, ei−1
1) =

pl(ei = 1|F, ei−1
1) pm(e = 1|F, ei−1

1)
...

...
pl(ei = |Ve||F, ei−1

1) pm(e = |Ve||F, ei−1
1)

[
λ

1− λ

]
,

where λ is an interpolation coefficient that is the re-
sult of the sigmoid function λ = sig(x) = 1

1+e−x .
x is a learnable parameter, and the sigmoid func-
tion ensures that the final interpolation level falls be-
tween 0 and 1. We choose x = 0 (λ = 0.5) at the
beginning of training.

This notation is partly inspired by Allamanis et
al. (2016) and Gu et al. (2016) who use linear inter-
polation to merge a standard attentional model with
a “copy” operator that copies a source word as-is
into the target sentence. The main difference is that
they use this to copy words into the output while our
method uses it to influence the probabilities of all
target words.

4 Constructing Lexicon Probabilities

In the previous section, we have defined some ways
to use predictive probabilities pl(ei|F, ei−1

1) based
on word-to-word lexical probabilities pl(e|f). Next,
we define three ways to construct these lexical prob-
abilities using automatically learned lexicons, hand-
made lexicons, or a combination of both.

4.1 Automatically Learned Lexicons

In traditional SMT systems, lexical translation prob-
abilities are generally learned directly from parallel
data in an unsupervised fashion using a model such
as the IBM models (Brown et al., 1993; Och and
Ney, 2003). These models can be used to estimate
the alignments and lexical translation probabilities
pl(e|f) between the tokens of the two languages us-
ing the expectation maximization (EM) algorithm.

First in the expectation step, the algorithm esti-
mates the expected count c(e|f). In the maximiza-

tion step, lexical probabilities are calculated by di-
viding the expected count by all possible counts:

pl,a(e|f) =
c(f, e)∑
ẽ c(f, ẽ)

,

The IBM models vary in level of refinement, with
Model 1 relying solely on these lexical probabil-
ities, and latter IBM models (Models 2, 3, 4, 5)
introducing more sophisticated models of fertility
and relative alignment. Even though IBM models
also occasionally have problems when dealing with
the rare words (e.g. “garbage collecting” effects
(Liang et al., 2006)), traditional SMT systems gen-
erally achieve better translation accuracies of low-
frequency words than NMT systems (Sutskever et
al., 2014), indicating that these problems are less
prominent than they are in NMT.

Note that in many cases, NMT limits the target
vocabulary (Jean et al., 2015) for training speed or
memory constraints, resulting in rare words not be-
ing covered by the NMT vocabulary VE . Accord-
ingly, we allocate the remaining probability assigned
by the lexicon to the unknown word symbol ⟨unk⟩:

pl,a(e = ⟨unk⟩|f) = 1−
∑

i∈Ve

pl,a(e = i|f). (5)

4.2 Manual Lexicons
In addition, for many language pairs, broad-
coverage handmade dictionaries exist, and it is desir-
able that we be able to use the information included
in them as well. Unlike automatically learned lexi-
cons, however, handmade dictionaries generally do
not contain translation probabilities. To construct
the probability pl(e|f), we define the set of trans-
lations Kf existing in the dictionary for particular
source word f , and assume a uniform distribution
over these words:

pl,m(e|f) =

{
1

|Kf | if e ∈ Kf

0 otherwise
.

Following Equation (5), unknown source words will
assign their probability mass to the ⟨unk⟩ tag.

4.3 Hybrid Lexicons
Handmade lexicons have broad coverage of words
but their probabilities might not be as accurate as the

1560

Data Corpus Sentence
Tokens

En Ja

Train
BTEC 464K 3.60M 4.97M
KFTT 377K 7.77M 8.04M

Dev
BTEC 510 3.8K 5.3K
KFTT 1160 24.3K 26.8K

Test
BTEC 508 3.8K 5.5K
KFTT 1169 26.0K 28.4K

Table 1: Corpus details.

learned ones, particularly if the automatic lexicon is
constructed on in-domain data. Thus, we also test a
hybrid method where we use the handmade lexi-
cons to complement the automatically learned lexi-
con.2 3 Specifically, inspired by phrase table fill-up
used in PBMT systems (Bisazza et al., 2011), we
use the probability of the automatically learned lex-
icons pl,a by default, and fall back to the handmade
lexicons pl,m only for uncovered words:

pl,h(e|f) =

{
pl,a(e|f) if f is covered
pl,m(e|f) otherwise

(6)

5 Experiment & Result

In this section, we describe experiments we use to
evaluate our proposed methods.

5.1 Settings
Dataset: We perform experiments on two widely-
used tasks for the English-to-Japanese language
pair: KFTT (Neubig, 2011) and BTEC (Kikui et
al., 2003). KFTT is a collection of Wikipedia article
about city of Kyoto and BTEC is a travel conversa-
tion corpus. BTEC is an easier translation task than
KFTT, because KFTT covers a broader domain, has
a larger vocabulary of rare words, and has relatively
long sentences. The details of each corpus are de-
picted in Table 1.

We tokenize English according to the Penn Tree-
bank standard (Marcus et al., 1993) and lowercase,

2Alternatively, we could imagine a method where we com-
bined the training data and dictionary before training the word
alignments to create the lexicon. We attempted this, and results
were comparable to or worse than the fill-up method, so we use
the fill-up method for the remainder of the paper.

3While most words in the Vf will be covered by the learned
lexicon, many words (13% in experiments) are still left uncov-
ered due to alignment failures or other factors.

and tokenize Japanese using KyTea (Neubig et al.,
2011). We limit training sentence length up to 50
in both experiments and keep the test data at the
original length. We replace words of frequency less
than a threshold u in both languages with the ⟨unk⟩
symbol and exclude them from our vocabulary. We
choose u = 1 for BTEC and u = 3 for KFTT, re-
sulting in |Vf | = 17.8k, |Ve| = 21.8k for BTEC and
|Vf | = 48.2k, |Ve| = 49.1k for KFTT.
NMT Systems: We build the described models us-
ing the Chainer4 toolkit. The depth of the stacking
LSTM is d = 4 and hidden node size h = 800.
We concatenate the forward and backward encod-
ings (resulting in a 1600 dimension vector) and then
perform a linear transformation to 800 dimensions.

We train the system using the Adam (Kingma and
Ba, 2014) optimization method with the default set-
tings: α = 1e−3, β1 = 0.9, β2 = 0.999, ϵ =
1e−8. Additionally, we add dropout (Srivastava et
al., 2014) with drop rate r = 0.2 at the last layer of
each stacking LSTM unit to prevent overfitting. We
use a batch size of B = 64 and we run a total of
N = 14 iterations for all data sets. All of the ex-
periments are conducted on a single GeForce GTX
TITAN X GPU with a 12 GB memory cache.

At test time, we use beam search with beam size
b = 5. We follow Luong et al. (2015b) in replac-
ing every unknown token at position i with the tar-
get token that maximizes the probability pl,a(ei|fj).
We choose source word fj according to the high-
est alignment score in Equation (3). This unknown
word replacement is applied to both baseline and
proposed systems. Finally, because NMT models
tend to give higher probabilities to shorter sentences
(Cho et al., 2014), we discount the probability of
⟨EOS⟩ token by 10% to correct for this bias.
Traditional SMT Systems: We also prepare two
traditional SMT systems for comparison: a PBMT
system (Koehn et al., 2003) using Moses5 (Koehn et
al., 2007), and a hierarchical phrase-based MT sys-
tem (Chiang, 2007) using Travatar6 (Neubig, 2013),
Systems are built using the default settings, with
models trained on the training data, and weights
tuned on the development data.
Lexicons: We use a total of 3 lexicons for the

4http://chainer.org/index.html
5http://www.statmt.org/moses/
6http://www.phontron.com/travatar/

1561

System
BTEC KFTT

BLEU NIST RECALL BLEU NIST RECALL
pbmt 48.18 6.05 27.03 22.62 5.79 13.88
hiero 52.27 6.34 24.32 22.54 5.82 12.83
attn 48.31 5.98 17.39 20.86 5.15 17.68
auto-bias 49.74∗ 6.11∗ 50.00 23.20† 5.59† 19.32
hyb-bias 50.34† 6.10∗ 41.67 22.80† 5.55† 16.67

Table 2: Accuracies for the baseline attentional NMT (attn) and the proposed bias-based method using
the automatic (auto-bias) or hybrid (hyb-bias) dictionaries. Bold indicates a gain over the attn
baseline, † indicates a significant increase at p < 0.05, and ∗ indicates p < 0.10. Traditional phrase-based
(pbmt) and hierarchical phrase based (hiero) systems are shown for reference.

proposed method, and apply bias and linear
method for all of them, totaling 6 experiments. The
first lexicon (auto) is built on the training data
using the automatically learned lexicon method of
§4.1 separately for both the BTEC and KFTT ex-
periments. Automatic alignment is performed using
GIZA++ (Och and Ney, 2003). The second lexicon
(man) is built using the popular English-Japanese
dictionary Eijiro7 with the manual lexicon method
of §4.2. Eijiro contains 104K distinct word-to-word
translation entries. The third lexicon (hyb) is built
by combining the first and second lexicon with the
hybrid method of §4.3.
Evaluation: We use standard single reference
BLEU-4 (Papineni et al., 2002) to evaluate the trans-
lation performance. Additionally, we also use NIST
(Doddington, 2002), which is a measure that puts a
particular focus on low-frequency word strings, and
thus is sensitive to the low-frequency words we are
focusing on in this paper. We measure the statistical
significant differences between systems using paired
bootstrap resampling (Koehn, 2004) with 10,000 it-
erations and measure statistical significance at the
p < 0.05 and p < 0.10 levels.

Additionally, we also calculate the recall of rare
words from the references. We define “rare words”
as words that appear less than eight times in the tar-
get training corpus or references, and measure the
percentage of time they are recovered by each trans-
lation system.

5.2 Effect of Integrating Lexicons
In this section, we first a detailed examination of
the utility of the proposed bias method when used

7http://eijiro.jp

0 1000 2000 3000 4000
time (minutes)

5

10

15

20

BL
EU
attn
auto-bias
hyb-bias

Figure 2: Training curves for the baseline attn and
the proposed bias method.

with the auto or hyb lexicons, which empirically
gave the best results, and perform a comparison
among the other lexicon integration methods in the
following section. Table 2 shows the results of these
methods, along with the corresponding baselines.

First, compared to the baseline attn, our bias
method achieved consistently higher scores on both
test sets. In particular, the gains on the more diffi-
cult KFTT set are large, up to 2.3 BLEU, 0.44 NIST,
and 30% Recall, demonstrating the utility of the pro-
posed method in the face of more diverse content
and fewer high-frequency words.

Compared to the traditional pbmt systems
hiero, particularly on KFTT we can see that the
proposed method allows the NMT system to exceed
the traditional SMT methods in BLEU. This is de-
spite the fact that we are not performing ensembling,
which has proven to be essential to exceed tradi-
tional systems in several previous works (Sutskever

1562

Input Do you have an opinion regarding extramarital affairs?
Reference 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka.
attn サッカーに関する意見はありますか。

Sakkā ni kansuru iken wa arimasu ka. (Do you have an opinion about soccer?)
auto-bias 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka. (Do you have an opinion about affairs?)
Input Could you put these fragile things in a safe place?
Reference この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.
attn 貴重品を安全に出したいのですが。

Kichō-hin o anzen ni dashitai nodesuga. (I’d like to safely put out these valuables.)
auto-bias この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.
(Could you put these fragile things in a safe place?)

Table 3: Examples where the proposed auto-bias improved over the baseline system attn. Underlines
indicate words were mistaken in the baseline output but correct in the proposed model’s output.

et al., 2014; Luong et al., 2015a; Sennrich et al.,
2016). Interestingly, despite gains in BLEU, the
NMT methods still fall behind in NIST score on
the KFTT data set, demonstrating that traditional
SMT systems still tend to have a small advantage in
translating lower-frequency words, despite the gains
made by the proposed method.

In Table 3, we show some illustrative examples
where the proposed method (auto-bias) was able
to obtain a correct translation while the normal at-
tentional model was not. The first example is a
mistake in translating “extramarital affairs” into the
Japanese equivalent of “soccer,” entirely changing
the main topic of the sentence. This is typical of the
errors that we have observed NMT systems make
(the mistake from Figure 1 is also from attn, and
was fixed by our proposed method). The second ex-
ample demonstrates how these mistakes can then af-
fect the process of choosing the remaining words,
propagating the error through the whole sentence.

Next, we examine the effect of the proposed
method on the training time for each neural MT
method, drawing training curves for the KFTT data
in Figure 2. Here we can see that the proposed bias
training methods achieve reasonable BLEU scores
in the upper 10s even after the first iteration. In con-
trast, the baseline attn method has a BLEU score
of around 5 after the first iteration, and takes signifi-
cantly longer to approach values close to its maximal

Figure 3: Attention matrices for baseline attn and
proposed bias methods. Lighter colors indicate
stronger attention between the words, and boxes sur-
rounding words indicate the correct alignments.

accuracy. This shows that by incorporating lexical
probabilities, we can effectively bootstrap the learn-
ing of the NMT system, allowing it to approach an
appropriate answer in a more timely fashion.8

It is also interesting to examine the alignment vec-
tors produced by the baseline and proposed meth-

8Note that these gains are despite the fact that one iteration
of the proposed method takes a longer (167 minutes for attn
vs. 275 minutes for auto-bias) due to the necessity to cal-
culate and use the lexical probability matrix for each sentence.
It also takes an additional 297 minutes to train the lexicon with
GIZA++, but this can be greatly reduced with more efficient
training methods (Dyer et al., 2013).

1563

(a) BTEC

Lexicon
BLEU NIST

bias linear bias linear
- 48.31 5.98
auto 49.74∗ 47.97 6.11 5.90
man 49.08 51.04† 6.03∗ 6.14†

hyb 50.34† 49.27 6.10∗ 5.94
(b) KFTT

Lexicon
BLEU NIST

bias linear bias linear
- 20.86 5.15
auto 23.20† 18.19 5.59† 4.61
man 20.78 20.88 5.12 5.11
hyb 22.80† 20.33 5.55† 5.03

Table 4: A comparison of the bias and linear
lexicon integration methods on the automatic, man-
ual, and hybrid lexicons. The first line without lexi-
con is the traditional attentional NMT.

ods, a visualization of which we show in Figure
3. For this sentence, the outputs of both meth-
ods were both identical and correct, but we can
see that the proposed method (right) placed sharper
attention on the actual source word correspond-
ing to content words in the target sentence. This
trend of peakier attention distributions in the pro-
posed method held throughout the corpus, with
the per-word entropy of the attention vectors being
3.23 bits for auto-bias, compared with 3.81 bits
for attn, indicating that the auto-bias method
places more certainty in its attention decisions.

5.3 Comparison of Integration Methods

Finally, we perform a full comparison between the
various methods for integrating lexicons into the
translation process, with results shown in Table 4.
In general the bias method improves accuracy for
the auto and hyb lexicon, but is less effective for
the man lexicon. This is likely due to the fact that
the manual lexicon, despite having broad coverage,
did not sufficiently cover target-domain words (cov-
erage of unique words in the source vocabulary was
35.3% and 9.7% for BTEC and KFTT respectively).

Interestingly, the trend is reversed for the
linear method, with it improving man systems,
but causing decreases when using the auto and

hyb lexicons. This indicates that the linear
method is more suited for cases where the lexi-
con does not closely match the target domain, and
plays a more complementary role. Compared to
the log-linear modeling of bias, which strictly en-
forces constraints imposed by the lexicon distribu-
tion (Klakow, 1998), linear interpolation is intu-
itively more appropriate for integrating this type of
complimentary information.

On the other hand, the performance of linear in-
terpolation was generally lower than that of the bias
method. One potential reason for this is the fact that
we use a constant interpolation coefficient that was
set fixed in every context. Gu et al. (2016) have re-
cently developed methods to use the context infor-
mation from the decoder to calculate the different in-
terpolation coefficients for every decoding step, and
it is possible that introducing these methods would
improve our results.

6 Additional Experiments

To test whether the proposed method is useful on
larger data sets, we also performed follow-up ex-
periments on the larger Japanese-English ASPEC
dataset (Nakazawa et al., 2016) that consist of 2
million training examples, 63 million tokens, and
81,000 vocabulary size. We gained an improvement
in BLEU score from 20.82 using the attn baseline
to 22.66 using the auto-bias proposed method.
This experiment shows that our method scales to
larger datasets.

7 Related Work

From the beginning of work on NMT, unknown
words that do not exist in the system vocabulary
have been focused on as a weakness of these sys-
tems. Early methods to handle these unknown words
replaced them with appropriate words in the target
vocabulary (Jean et al., 2015; Luong et al., 2015b)
according to a lexicon similar to the one used in this
work. In contrast to our work, these only handle
unknown words and do not incorporate information
from the lexicon in the learning procedure.

There have also been other approaches that incor-
porate models that learn when to copy words as-is
into the target language (Allamanis et al., 2016; Gu
et al., 2016; Gülçehre et al., 2016). These models

1564

are similar to the linear approach of §3.2.2, but
are only applicable to words that can be copied as-
is into the target language. In fact, these models can
be thought of as a subclass of the proposed approach
that use a lexicon that assigns a all its probability to
target words that are the same as the source. On the
other hand, while we are simply using a static in-
terpolation coefficient λ, these works generally have
a more sophisticated method for choosing the inter-
polation between the standard and “copy” models.
Incorporating these into our linear method is a
promising avenue for future work.

In addition Mi et al. (2016) have also recently pro-
posed a similar approach by limiting the number of
vocabulary being predicted by each batch or sen-
tence. This vocabulary is made by considering the
original HMM alignments gathered from the train-
ing corpus. Basically, this method is a specific ver-
sion of our bias method that gives some of the vocab-
ulary a bias of negative infinity and all other vocab-
ulary a uniform distribution. Our method improves
over this by considering actual translation probabil-
ities, and also considering the attention vector when
deciding how to combine these probabilities.

Finally, there have been a number of recent works
that improve accuracy of low-frequency words us-
ing character-based translation models (Ling et al.,
2015; Costa-Jussà and Fonollosa, 2016; Chung et
al., 2016). However, Luong and Manning (2016)
have found that even when using character-based
models, incorporating information about words al-
lows for gains in translation accuracy, and it is likely
that our lexicon-based method could result in im-
provements in these hybrid systems as well.

8 Conclusion & Future Work

In this paper, we have proposed a method to in-
corporate discrete probabilistic lexicons into NMT
systems to solve the difficulties that NMT systems
have demonstrated with low-frequency words. As
a result, we achieved substantial increases in BLEU
(2.0-2.3) and NIST (0.13-0.44) scores, and observed
qualitative improvements in the translations of con-
tent words.

For future work, we are interested in conducting
the experiments on larger-scale translation tasks. We
also plan to do subjective evaluation, as we expect

that improvements in content word translation are
critical to subjective impressions of translation re-
sults. Finally, we are also interested in improve-
ments to the linear method where λ is calculated
based on the context, instead of using a fixed value.

Acknowledgment

We thank Makoto Morishita and Yusuke Oda for
their help in this project. We also thank the faculty
members of AHC lab for their supports and sugges-
tions.

This work was supported by grants from the Min-
istry of Education, Culture, Sport, Science, and
Technology of Japan and in part by JSPS KAKENHI
Grant Number 16H05873.

References

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of the
33th International Conference on Machine Learning
(ICML).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
4th International Conference on Learning Representa-
tions (ICLR).

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
pages 1137–1155.

Arianna Bisazza, Nick Ruiz, and Marcello Federico.
2011. Fill-up versus interpolation methods for phrase-
based SMT adaptation. In Proceedings of the 2011
International Workshop on Spoken Language Transla-
tion (IWSLT), pages 136–143.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, pages 263–311.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, pages 201–228.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of the Workshop on Syntax
and Structure in Statistical Translation (SSST), pages
103–111.

1565

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A character-level decoder without explicit seg-
mentation for neural machine translation. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1693–1703.

Marta R. Costa-Jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 357–361.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the Second Interna-
tional Conference on Human Language Technology
Research, pages 138–145.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of IBM model 2. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 644–648.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cum-
mins. 2000. Learning to forget: Continual prediction
with LSTM. Neural Computation, pages 2451–2471.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 1631–1640.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 140–149.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, pages
1735–1780.

Sébastien Jean, KyungHyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In Pro-
ceedings of the 53th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL) and the 7th
Internationali Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1–10.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1700–1709.

Gen-ichiro Kikui, Eiichiro Sumita, Toshiyuki Takezawa,
and Seiichi Yamamoto. 2003. Creating corpora for
speech-to-speech translation. In 8th European Confer-
ence on Speech Communication and Technology, EU-

ROSPEECH 2003 - INTERSPEECH 2003, Geneva,
Switzerland, September 1-4, 2003, pages 381–384.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. CoRR.

Dietrich Klakow. 1998. Log-linear interpolation of lan-
guage models. In Proceedings of the 5th International
Conference on Speech and Language Processing (IC-
SLP).

Phillip Koehn, Franz Josef Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), pages 48–
54.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 177–180.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the 2006 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT-NAACL), pages 104–111.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine transla-
tion. CoRR.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 1054–1063.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1412–1421.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) and the
7th Internationali Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 11–19.

1566

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics, pages 313–330.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary manipulation for neural machine transla-
tion. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 124–129.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. Aspec: Asian scien-
tific paper excerpt corpus. In Proceedings of the Ninth
International Conference on Language Resources and
Evaluation (LREC 2016), pages 2204–2208.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 529–533.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Graham Neubig. 2013. Travatar: A forest-to-string ma-
chine translation engine based on tree transducers. In
Proceedings of the 51th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 91–
96.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, pages 19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 311–318.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 86–96.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, pages 1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proceedings of the 28th Annual Conference on Neural
Information Processing Systems (NIPS), pages 3104–
3112.

1567

